1
|
Yuan VG. Rhythms in Remodeling: Posttranslational Regulation of Bone by the Circadian Clock. Biomedicines 2025; 13:705. [PMID: 40149680 PMCID: PMC11940027 DOI: 10.3390/biomedicines13030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The circadian clock is a fundamental timekeeping system that regulates rhythmic biological processes in response to environmental light-dark cycles. In mammals, core clock genes (CLOCK, BMAL1, PER, and CRY) orchestrate these rhythms through transcriptional-translational feedback loops, influencing various physiological functions, including bone remodeling. Bone homeostasis relies on the coordinated activities of osteoblasts, osteoclasts, and osteocytes, with increasing evidence highlighting the role of circadian regulation in maintaining skeletal integrity. Disruptions in circadian rhythms are linked to bone disorders such as osteoporosis. Posttranslational modifications (PTMs), including phosphorylation, acetylation, and ubiquitination, serve as crucial regulators of both circadian mechanisms and bone metabolism. However, the specific role of PTMs in integrating circadian timing with bone remodeling remains underexplored. This review examines the intersection of circadian regulation and PTMs in bone biology, elucidating their impact on bone cell function and homeostasis. Understanding these interactions may uncover novel therapeutic targets for skeletal diseases associated with circadian disruptions.
Collapse
Affiliation(s)
- Vincent G Yuan
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Tang Y, Wang Z, Cao J, Tu Y. Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions. Trends Mol Med 2025; 31:281-295. [PMID: 39438197 DOI: 10.1016/j.molmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Osteoarthritis (OA) is a prevalent articular disorder characterized by joint degeneration and persistent pain; it imposes a significant burden on both individuals and society. While OA has traditionally been viewed as a localized peripheral disorder, recent preclinical and clinical studies have revealed the crucial interconnections between the bone and the brain, highlighting the systemic nature of OA. The neuronal pathway, molecular signaling, circadian rhythms, and genetic underpinnings within the bone-brain axis play vital roles in the complex interplay that contributes to OA initiation and progression. This review explores emerging evidence of the crosstalk between the bone and brain in OA progression, and discusses the potential contributions of the bone-brain axis to the development of effective interventions for managing OA.
Collapse
Affiliation(s)
- Yilan Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang J, Wu S, Xing F, Kong N, Zhao Y, Duan X, Li Y, Wang K, Tian R, Yang P. Unveiling the role of melatonin-related gene CSNK1D in osteoclastogenesis and its implications for osteoporosis treatment. Exp Physiol 2025; 110:261-276. [PMID: 39612374 PMCID: PMC11782177 DOI: 10.1113/ep092189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Osteoporosis (OP) is a prevalent bone disease characterized by reduced bone density and quality, increasing fragility and fracture risk. Osteoclast (OC) activity and circadian rhythm play a role in the pathogenesis of OP. Melatonin is a circadian regulator that affects bone metabolism, but its molecular mechanism has not been studied in detail. This study aimed to identify the relationship between melatonin-related genes and OP through bioinformatics methods and to verify it experimentally.We analysed microarray data from the GSE35959 dataset, identifying differentially expressed genes in OP patients. Circadian rhythm-related genes and melatonin-related genes intersect with these differentially expressed genes, highlighting that CSNK1D is a central gene. Functional enrichment, correlation and protein-protein interaction analyses were conducted. Experimental validation involved in vitro differentiation assays using RAW264.7 cells and in vivo studies with an ovariectomy-induced rat model of OP to evaluate the role of CSNK1D in osteoclastogenesis to verify its effect on OP. Differential expression analysis revealed 272 significant genes, with CSNK1D identified as central to the circadian rhythm and to melatonin and OP interplay. Functional analyses showed involvement of CSNK1D in OC differentiation and inflammatory pathways. in vitro experiments confirmed CSNK1D upregulation during OC differentiation, and small interfering RNA-mediated knockdown reduced OC marker expression and TRAP+ cell formation. in vivo, CSNK1D expression is associated with bone loss in OP rats. Melatonin-related CSNK1D promotes OC differentiation and promotes the development of OP. These findings suggest CSNK1D as a potential therapeutic target for OP, offering insights into new treatment strategies integrating circadian rhythm regulation.
Collapse
Affiliation(s)
- Jiewen Zhang
- Joint & Ankle SectionThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Shaobo Wu
- Department of Spinal Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Fangze Xing
- Joint & Ankle SectionThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ning Kong
- Joint & Ankle SectionThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yiwei Zhao
- Joint & Ankle SectionThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xudong Duan
- Joint & Ankle SectionThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yiyang Li
- Joint & Ankle SectionThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Kunzheng Wang
- Joint & Ankle SectionThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Run Tian
- Joint & Ankle SectionThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Pei Yang
- Joint & Ankle SectionThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
4
|
Zhang C, Tan L, Li J, Shen Z, Yao J, Huang Y, Wu L, Yu C, Gao L, Zhao C. REV-ERBα Inhibits Osteoclastogenesis and Protects against Alveolar Bone Loss. J Dent Res 2025; 104:193-203. [PMID: 39629951 DOI: 10.1177/00220345241290444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Circadian rhythm disruption is thought to be associated with periodontitis, and molecular clock genes play critical roles in regulating bone homeostasis. However, the specific contribution of molecular clock genes to alveolar bone resorption caused by periodontitis is poorly understood. In this study, we introduced a novel Periodontitis Circadian Rhythm Score (PeriCRS) model that was established through machine learning using periodontal transcriptomic data from periodontitis clinical cohorts in the Gene Expression Omnibus (GEO) database. This approach revealed the potential regulatory role of circadian rhythm disruption in periodontitis and identified key molecular clock genes associated with alveolar bone destruction. Moreover, we established an experimental periodontitis model with circadian rhythm disturbance via periodontal ligation in mice exposed to a 6-h advanced LD12:12 cycle every 2 d. Our bioinformatics analysis revealed that NR1D1, which encodes REV-ERBα, is a pivotal factor in the impact of circadian rhythm disruption on periodontitis in periodontal tissues. Next, we confirmed the abnormal expression of the molecular clock gene Rev-erbα in inflammatory periodontal tissue in mice and confirmed that circadian rhythm disruption altered REV-ERBα expression. Furthermore, the activation of REV-ERBα with the agonist SR9009 notably decreased RANKL-induced osteoclast differentiation and suppressed the expression of osteoclast-related factors. Subsequent in vivo experiments demonstrated that SR9009 mitigated alveolar bone loss caused by periodontitis. Mechanistically, we found that the IL-22-STAT3 pathway inhibited REV-ERBα expression and modulated RANKL-induced osteoclast differentiation in vitro. Our results elucidate the role of REV-ERBα in osteoclastogenesis and suggest a potential new therapeutic avenue for addressing alveolar bone resorption associated with periodontitis.
Collapse
Affiliation(s)
- C Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - L Tan
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - J Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Z Shen
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - J Yao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Y Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - L Wu
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - C Yu
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - L Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - C Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Reeves J, Tournier P, Becquart P, Carton R, Tang Y, Vigilante A, Fang D, Habib SJ. Rejuvenating aged osteoprogenitors for bone repair. eLife 2024; 13:RP104068. [PMID: 39692737 DOI: 10.7554/elife.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Aging is marked by a decline in tissue regeneration, posing significant challenges to an increasingly older population. Here, we investigate age-related impairments in calvarial bone healing and introduce a novel two-part rejuvenation strategy to restore youthful repair. We demonstrate that aging negatively impacts the calvarial bone structure and its osteogenic tissues, diminishing osteoprogenitor number and function and severely impairing bone formation. Notably, increasing osteogenic cell numbers locally fails to rescue repair in aged mice, identifying the presence of intrinsic cellular deficits. Our strategy combines Wnt-mediated osteoprogenitor expansion with intermittent fasting, which leads to a striking restoration of youthful levels of bone healing. We find that intermittent fasting improves osteoprogenitor function, benefits that can be recapitulated by modulating NAD+-dependent pathways or the gut microbiota, underscoring the multifaceted nature of this intervention. Mechanistically, we identify mitochondrial dysfunction as a key component in age-related decline in osteoprogenitor function and show that both cyclical nutrient deprivation and Nicotinamide mononucleotide rejuvenate mitochondrial health, enhancing osteogenesis. These findings offer a promising therapeutic avenue for restoring youthful bone repair in aged individuals, with potential implications for rejuvenating other tissues.
Collapse
Affiliation(s)
- Joshua Reeves
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Pierre Tournier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pierre Becquart
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert Carton
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Alessandra Vigilante
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Yin Y, Tang Q, Yang J, Gui S, Zhang Y, Shen Y, Zhou X, Yu S, Chen G, Sun J, Han Z, Zhang L, Chen L. Endothelial BMAL1 decline during aging leads to bone loss by destabilizing extracellular fibrillin-1. J Clin Invest 2024; 134:e176660. [PMID: 39680455 DOI: 10.1172/jci176660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/15/2024] [Indexed: 12/18/2024] Open
Abstract
The occurrence of aging is intricately associated with alterations in circadian rhythms that coincide with stem cell exhaustion. Nonetheless, the extent to which the circadian system governs skeletal aging remains inadequately understood. Here, we noticed that skeletal aging in male mice was accompanied by a decline in a core circadian protein, BMAL1, especially in bone marrow endothelial cells (ECs). Using male mice with endothelial KO of aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), we ascertained that endothelial BMAL1 in bone played a crucial role in ensuring the stability of an extracellular structural component, fibrillin-1 (FBN1), through regulation of the equilibrium between the extracellular matrix (ECM) proteases thrombospondin type 1 domain-containing protein 4 (THSD4) and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which promote FBN1 assembly and breakdown, respectively. The decline of endothelial BMAL1 during aging prompted excessive breakdown of FBN1, leading to persistent activation of TGF-β/SMAD3 signaling and exhaustion of bone marrow mesenchymal stem cells. Meanwhile, the free TGF-β could promote osteoclast formation. Further analysis revealed that activation of ADAMTS4 in ECs lacking BMAL1 was stimulated by TGF-β/SMAD3 signaling through an ECM-positive feedback mechanism, whereas THSD4 was under direct transcriptional control by endothelial BMAL1. Our investigation has elucidated the etiology of bone aging in male mice by defining the role of ECs in upholding the equilibrium within the ECM, consequently coordinating osteogenic and osteoclastic activities and retarding skeletal aging.
Collapse
Affiliation(s)
- Ying Yin
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jingxi Yang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shiqi Gui
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yufeng Shen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhenshuo Han
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
7
|
Bahlmann O, Taheri S, Spaeth M, Schröder K, Schilling AF, Dullin C, Maronde E. Skeletal Phenotyping of Period-1-Deficient Melatonin-Proficient Mice. J Pineal Res 2024; 76:e70020. [PMID: 39697088 DOI: 10.1111/jpi.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
In mice, variability in adult bone size and density has been observed among common inbred strains. Also, in the group of genes regulating circadian rhythmicity in mice, so called clock genes, changes in body size and skeletal parameters have been noted in knockout mice. Here, we studied the size and density of prominent bones of the axial and appendicular skeleton of clock gene Period-1-deficient (Per1-/-) mice by means of microcomputed tomography. Our data show shorter spinal length, smaller and less dense femora and tibiae, but no significant changes in the shape of the skull and the length of the head. Together with the significantly lower total body weight of Per1-/- mice, we conclude that Per1-deficiency in a melatonin-proficient mouse strain is associated with an altered body phenotype with smaller appendicular (hind limb) bone size, shorter spine length and lower total body weight while normal head length and brain weight. The observed changes suggest an involvement of secondary bone mineralisation with impact on long bones, but lesser impact on those of the skull. Evidence and overall physiological implications of these findings are discussed.
Collapse
Affiliation(s)
- Olaf Bahlmann
- Faculty of Medicine, Institute for Anatomy II, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Manuela Spaeth
- Faculty of Medicine, Institute for Cardiovascular Physiology, Goethe University, Frankfurt Am Main, Germany
| | - Katrin Schröder
- Faculty of Medicine, Institute for Cardiovascular Physiology, Goethe University, Frankfurt Am Main, Germany
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- Department for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Translational Molecular Imaging, MPI for Multidisciplinary Sciences, Göttingen, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste, Italy
| | - Erik Maronde
- Faculty of Medicine, Institute for Anatomy II, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Shen J, Gao Y, Deng Y, Xia Z, Wang X, He X, He Y, Yang B. Eucommia ulmoides extract regulates oxidative stress to maintain calcium homeostasis and improve diabetic osteoporosis. Food Sci Nutr 2024; 12:8067-8083. [PMID: 39479615 PMCID: PMC11521638 DOI: 10.1002/fsn3.4413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/02/2024] Open
Abstract
Diabetic osteoporosis (DOP) is a secondary disease that severely affects the health and quality of life of patients with diabetes mellitus. This study aimed to explore the bone protective effect of aqueous extract of Eucommia ulmoides (EUL) in DOP mice. DOP mice were established using a high-sugar, high-fat diet and streptozotocin (STZ) (35 mg/kg for three consecutive days), and the EUL aqueous extract (2.5 g/kg/day) was orally administered for 6 weeks. The serum levels of oxidative stress-related factors, calcium, and phosphorus were assessed using biochemical assays. The osteoprotective effect of EUL was assessed using micro-computer tomography, three-point bending assay, histological analysis, and immunoblotting. Quantitative real-time polymerase chain reaction and western blotting were performed to detect the expression levels of calcium transport channel factors in the kidney and small intestine tissues. Furthermore, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the femur, kidney, and small intestine tissues were detected using western blotting and quantitative real-time polymerase chain reaction. EUL aqueous extract reduced blood glucose levels, increased body weight, and relieved symptoms in DOP mice (p < .05). It also increased bone mineral density, improved the bone microstructure, decreased the number of femoral osteoclasts, and increased the expression of femoral Runx2 and Bmp2 in DOP mice (p < .01). After 6 weeks of EUL aqueous extract administration, serum levels of SOD, CTA, calcium, and phosphorus were upregulated, whereas MDA levels were decreased (p < .01). The aqueous EUL extract also upregulated the expression of TRPV5, PMCA-1b, and CaBP-9 k in the kidney and small intestine of DOP mice (p < .01). Furthermore, the expression of Nrf2 and HO-1 in the kidney, small intestine, and femur tissues was increased (p < .01). EUL aqueous extract reduced blood glucose levels in DOP mice and regulated oxidative stress through the Nrf2/HO-1 pathway, thereby maintaining calcium homeostasis and ultimately improving bone quality. Our study suggested that EUL aqueous extract may be effective in the treatment of DOP.
Collapse
Affiliation(s)
- Jie Shen
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Yichen Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Yuyao Deng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Zhaoxin Xia
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Xia Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Xianyi He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Yun He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Binbin Yang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| |
Collapse
|
9
|
Tao H, Zhu P, Xia W, Chu M, Chen K, Wang Q, Gu Y, Lu X, Bai J, Geng D. The Emerging Role of the Mitochondrial Respiratory Chain in Skeletal Aging. Aging Dis 2024; 15:1784-1812. [PMID: 37815897 PMCID: PMC11272194 DOI: 10.14336/ad.2023.0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| |
Collapse
|
10
|
Mei G, Wang J, Wang J, Ye L, Yi M, Chen G, Zhang Y, Tang Q, Chen L. The specificities, influencing factors, and medical implications of bone circadian rhythms. FASEB J 2024; 38:e23758. [PMID: 38923594 DOI: 10.1096/fj.202302582rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.
Collapse
Affiliation(s)
- Gang Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lanxiang Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
11
|
Luo B, Song J, Zhang J, Han J, Zhou X, Chen L. The contribution of circadian clock to the biological processes. Front Mol Biosci 2024; 11:1387576. [PMID: 38903177 PMCID: PMC11187296 DOI: 10.3389/fmolb.2024.1387576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
All organisms have various circadian, behavioral, and physiological 24-h periodic rhythms, which are controlled by the circadian clock. The circadian clock controls various behavioral and physiological rhythms. In mammals, the primary circadian clock is present in the suprachiasmatic nucleus of the hypothalamus. The rhythm of the circadian clock is controlled by the interaction between negative and positive feedback loops, consisting of crucial clock regulators (including Bmal1 and Clock), three cycles (mPer1, mPer2, and mPer3), and two cryptochromes (Cry1 and Cry2). The development of early mammalian embryos is an ordered and complex biological process that includes stages from fertilized eggs to blastocysts and undergoes important morphological changes, such as blastocyst formation, cell multiplication, and compaction. The circadian clock affects the onset and timing of embryonic development. The circadian clock affects many biological processes, including eating time, immune function, sleep, energy metabolism, and endocrinology, therefore, it is also crucial for overall health, growth and development after birth. This review summarized the effects of the circadian clock in the body's physiological activities. A new strategy is proposed for the prevention of malformations or diseases by regulating the circadian clock or changing circadian rhythms.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiangyuan Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jun Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
12
|
Salichos L, Thayavally R, Kloen P, Hadjiargyrou M. Human nonunion tissues display differential gene expression in comparison to physiological fracture callus. Bone 2024; 183:117091. [PMID: 38570121 PMCID: PMC11023750 DOI: 10.1016/j.bone.2024.117091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The healing of bone fractures can become aberrant and lead to nonunions which in turn have a negative impact on patient health. Understanding why a bone fails to normally heal will enable us to make a positive impact in a patient's life. While we have a wealth of molecular data on rodent models of fracture repair, it is not the same with humans. As such, there is still a lack of information regarding the molecular differences between normal physiological repair and nonunions. This study was designed to address this gap in our molecular knowledge of the human repair process by comparing differentially expressed genes (DEGs) between physiological fracture callus and two different nonunion types, hypertrophic (HNU) and oligotrophic (ONU). RNA sequencing data revealed over ∼18,000 genes in each sample. Using the physiological callus as the control and the nonunion samples as the experimental groups, bioinformatic analyses identified 67 and 81 statistically significant DEGs for HNU and ONU, respectively. Out of the 67 DEGs for the HNU, 34 and 33 were up and down-regulated, respectively. Similarly, out of the 81 DEGs for the ONU, 48 and 33 were up and down-regulated, respectively. Additionally, we also identified common genes between the two nonunion samples; 8 (10.8 %) upregulated and 12 (22.2 %) downregulated. We further identified many biological processes, with several statistically significant ones. Some of these were related to muscle and were common between the two nonunion samples. This study represents the first comprehensive attempt to understand the global molecular events occurring in human nonunion biology. With further research, we can perhaps decipher new molecular pathways involved in aberrant healing of human bone fractures that can be therapeutically targeted.
Collapse
Affiliation(s)
- Leonidas Salichos
- Department of Biological & Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA; Center for Biomedical Data Science, New York Institute of Technology, New York, NY 10023, USA
| | - Rishika Thayavally
- Department of Biological & Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA; Center for Biomedical Data Science, New York Institute of Technology, New York, NY 10023, USA
| | - Peter Kloen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location, Meibergdreef 9, the Netherlands; Amsterdam Movement Sciences, (Tissue Function and Regeneration), Amsterdam, the Netherlands
| | - Michael Hadjiargyrou
- Center for Biomedical Data Science, New York Institute of Technology, New York, NY 10023, USA; Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA.
| |
Collapse
|
13
|
Li S, Liu G, Hu S. Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology. Front Immunol 2024; 15:1396122. [PMID: 38817601 PMCID: PMC11137183 DOI: 10.3389/fimmu.2024.1396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system's role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| |
Collapse
|
14
|
Kikyo N. Circadian Regulation of Bone Remodeling. Int J Mol Sci 2024; 25:4717. [PMID: 38731934 PMCID: PMC11083221 DOI: 10.3390/ijms25094717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.
Collapse
Affiliation(s)
- Nobuaki Kikyo
- Stem Cell Institute, Minneapolis, MN 55455, USA;
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Peng X, Zhou R, Liu C, Chen X, Zhu T, Chen G. Abnormal sleep duration is associated with sarcopenia in older Chinese people: A large retrospective cross-sectional study. Open Med (Wars) 2024; 19:20240938. [PMID: 38584821 PMCID: PMC10998674 DOI: 10.1515/med-2024-0938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Aim Abnormalities in sleep patterns are a common health problem for the older adults. The relationship between sarcopenia and sleep duration in older people is controversial. This research is to examine the association between sleep duration and sarcopenia. Methods We drew 21,095 adults from the China Health and Retirement Longitudinal Survey (CHARLS). Not only we explore the relationship between sleep duration and sarcopenia, but also compare sleep duration to three sarcopenia subcomponents. Moreover, the sensitivity analysis was conducted by the gender and residence area to ascertain the discrepancy, separately. Finally, using restricted cubic spline to find the non-linear association between them. Results Among 7,342 community older adults engaged by CHARLS in 2015, the incidence of possible sarcopenia and sarcopenia was 23.14 and 11.30%, separately. Sleep duration (≤6 h) [OR(95%CI) = 1.30(1.03-1.65), p < 0.05] and (≥8 h) [OR(95%CI) = 1.33(1.05-1.69), p < 0.05] were significantly linked with possible sarcopenia, while long sleep duration (≥8 h) [OR(95%CI) = 1.41(1.01-2.02), p < 0.05] was correlated strongly with sarcopenia. A non-linear relationship (U-shaped) between sarcopenia risk and sleep duration was found (p for non-linear = 0.009). Conclusions Our findings highlight the importance of sleep duration in the onset of sarcopenia and might assist older persons to maintain good sleeping habits.
Collapse
Affiliation(s)
- Xilin Peng
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Ruihao Zhou
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Congqi Liu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Xudong Chen
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan 610041, China
| | - Guo Chen
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Huang J, Wu T, Jiang YR, Zheng XQ, Wang H, Liu H, Wang H, Leng HJ, Fan DW, Yuan WQ, Song CL. β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture. Bone Res 2024; 12:18. [PMID: 38514644 PMCID: PMC10958005 DOI: 10.1038/s41413-024-00321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The autonomic nervous system plays a crucial role in regulating bone metabolism, with sympathetic activation stimulating bone resorption and inhibiting bone formation. We found that fractures lead to increased sympathetic tone, enhanced osteoclast resorption, decreased osteoblast formation, and thus hastened systemic bone loss in ovariectomized (OVX) mice. However, the combined administration of parathyroid hormone (PTH) and the β-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice. The effect of this treatment is superior to that of treatment with PTH or propranolol alone. In vitro, the sympathetic neurotransmitter norepinephrine (NE) suppressed PTH-induced osteoblast differentiation and mineralization, which was rescued by propranolol. Moreover, NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation, whereas these effects were reversed by propranolol. Furthermore, PTH increased the expression of the circadian clock gene Bmal1, which was inhibited by NE-βAR signaling. Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTH-stimulated osteoblast differentiation. Taken together, these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.
Collapse
Affiliation(s)
- Jie Huang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Tong Wu
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Xuan-Qi Zheng
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Huan Wang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Hao Liu
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
| | - Hong Wang
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Hui-Jie Leng
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Dong-Wei Fan
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Wan-Qiong Yuan
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China
| | - Chun-Li Song
- Department of Orthopedics, Peking University Third Hospital, 100191, Beijing, China.
- Beijing Key Laboratory of Spinal Disease, 100191, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, 100191, Beijing, China.
| |
Collapse
|
17
|
Zhang K, Mi F, Li X, Wang Z, Jiang F, Song E, Guo P, Lan X. Detection of genetic variation in bovine CRY1 gene and its associations with carcass traits. Anim Biotechnol 2023; 34:3387-3394. [PMID: 36448652 DOI: 10.1080/10495398.2022.2149547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The biological clock (also known as circadian clock) is closely related to growth and development, metabolism, and diseases in animals. As a part of the circadian clock, the cryptochrome circadian regulator 1 (CRY1) gene is involved in the regulation of biological processes such as osteogenesis, energy metabolism and cell proliferation, however, few studies have been reported on the relationship between this gene and animal carcass traits. Herein, a total of four insertion/deletion (InDel) loci within the CRY1 gene were detected in Shandong Black Cattle Genetic Resource (SDBCGR) population (n = 433). Among them, the P1-6-bp-del locus was polymorphic in population of interest. Moreover, the P1-6-bp-del locus showed two genotypes, with a higher insertion/insertion (II) genotype frequency (0.751) than insertion/deletion (ID) genotype frequency (0.249). Correlation analysis showed that the P1-6-bp-del locus polymorphisms were significantly associated with twenty carcass traits (e.g., slaughter weight, limb weight, and belly meat weight). Individuals with II genotype were significantly better than those with ID genotype for eighteen carcass traits. Therefore, the P1-6-bp-del locus of the CRY1 gene can be used as a molecular marker for beef cattle breeding.
Collapse
Affiliation(s)
- Kejing Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fang Mi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuelan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Enliang Song
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Guo
- College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Pang Y, Zhu S, Xu J, Su C, Wu B, Zhang C, Gao J. Myeloid Cells As a Promising Target for Brain-Bone Degenerative Diseases from a Metabolic Point of View. Adv Biol (Weinh) 2023; 7:e2200321. [PMID: 36750967 DOI: 10.1002/adbi.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Indexed: 02/09/2023]
Abstract
Brain and bone degenerative diseases such as Alzheimer's disease and osteoporosis are common in the aging population and lack efficient pharmacotherapies. Myeloid cells are a diverse group of mononuclear cells that plays important roles in development, immune defense, and tissue homeostasis. Aging drastically alters the expansion and function of myeloid cells, which might be a common pathogenesis of the brain-bone degenerative diseases. From this perspective, the role of myeloid cells in brain-bone degenerative diseases is discussed, with a particular focus on metabolic alterations in myeloid cells. Furthermore, targeting myeloid cells through metabolic regulation via drugs such as metformin and melatonin is proposed as a potential therapy for the clinical treatment of brain-bone diseases.
Collapse
Affiliation(s)
- Yidan Pang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600, Yishan Road, Shanghai, Shanghai, 200233, China
| | - Siyuan Zhu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600, Yishan Road, Shanghai, Shanghai, 200233, China
| | - Jun Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600, Yishan Road, Shanghai, Shanghai, 200233, China
| | - Cuimin Su
- Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian), No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, 362200, China
| | - Bo Wu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600, Yishan Road, Shanghai, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600, Yishan Road, Shanghai, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600, Yishan Road, Shanghai, Shanghai, 200233, China
- Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian), No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, 362200, China
| |
Collapse
|
19
|
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34:1677-1701. [PMID: 37393580 DOI: 10.1007/s00198-023-06836-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.
Collapse
Affiliation(s)
- Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Allaart LJH, Lech J, Macken AA, Kling A, Lafosse L, Lafosse T, van den Bekerom MPJ, Buijze GA. Biomodulating healing after arthroscopic rotator cuff repair: the protocol of a randomised proof of concept trial (BIOHACK). BMJ Open 2023; 13:e071078. [PMID: 37586862 PMCID: PMC10432644 DOI: 10.1136/bmjopen-2022-071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
PURPOSE/INTRODUCTION Over the last decades, there has been increasing interest in biological stimulation or bioaugmentation after rotator cuff repair. So far, there is no consensus on the appropriate composition of biologicals or which patients would benefit most, and moreover, these biologicals are often expensive. However, there are other, non-pharmacological strategies that are also believed to achieve biological stimulation. This randomised controlled trial evaluates the possible cumulative effect of pragmatic application of cryobiomodulation, photobiomodulation and electrobiomodulation-collectively called biomodulation-on the bone-to-tendon healing process after rotator cuff repair. METHODS In this randomised, controlled proof of concept study, 146 patients undergoing arthroscopic repair of a full thickness posterosuperior or anterosuperior rotator cuff tear will be 1:1 randomly assigned to either a control group or to the additional biomodulation protocol group. The adjuvant biomodulation protocol consists of seven self-applicable therapies and will be administered during the first 6 weeks after surgery. Primary outcome will be healing of the rotator cuff as evaluated by the Sugaya classification on MRI at 1-year postoperatively. ETHICS AND DISSEMINATION This study has been accepted by the National Ethical Review Board CPP Sud-Est IV in France and has been registered at Clinicaltrials.gov. The results of this study will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04618484.
Collapse
Affiliation(s)
- Laurens Jan Houterman Allaart
- Division of Orthopaedics and Trauma Surgery, Clinique Générale Annecy, Annecy, France
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG, Amsterdam, The Netherlands
| | - James Lech
- Radiology, Universiteit van Amsterdam, Amsterdam, The Netherlands
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Arno Alexander Macken
- Division of Orthopaedics and Trauma Surgery, Clinique Générale Annecy, Annecy, France
- Department of Orthopaedics and Sports Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Agathe Kling
- Division of Orthopaedics and Trauma Surgery, Clinique Générale Annecy, Annecy, France
| | - Laurent Lafosse
- Division of Orthopaedics and Trauma Surgery, Clinique Générale Annecy, Annecy, France
| | - Thibault Lafosse
- Division of Orthopaedics and Trauma Surgery, Clinique Générale Annecy, Annecy, France
| | - Michel P J van den Bekerom
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG, Amsterdam, The Netherlands
| | - Geert Alexander Buijze
- Division of Orthopaedics and Trauma Surgery, Clinique Générale Annecy, Annecy, France
- Department of Orthopedic Surgery, University of Amsterdam, Amsterdam, The Netherlands
- Department of Orthopedic Surgery, Montpellier University Medical Center, Lapeyronie Hospital, University of Montpellier, Montpellier, France
| |
Collapse
|
21
|
Jiang Y, Wang S, Lin W, Gu J, Li G, Shao Y. BMAL1 Promotes Valvular Interstitial Cells’ Osteogenic Differentiation through NF-κ B/AKT/MAPK Pathway. J Cardiovasc Dev Dis 2023; 10:jcdd10030110. [PMID: 36975874 PMCID: PMC10054744 DOI: 10.3390/jcdd10030110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Objectives: Calcific aortic valve disease (CAVD) is most common in the aging population and is without effective medical treatments. Brain and muscle ARNT-like 1 (BMAL1) is related to calcification. It has unique tissue-specific characteristics and plays different roles in different tissues’ calcification processes. The purpose of the present study is to explore the role of BMAL1 in CAVD. Methods: The protein levels of BMAL1 in normal and calcified human aortic valves and valvular interstitial cells (VICs) isolated from normal and calcified human aortic valves were checked. HVICs were cultured in osteogenic medium as an in vitro model, and BMAL1 expression and location were detected. TGF-β and RhoA/ROCK inhibitors and RhoA-siRNA were applied to detect the mechanism underlying the source of BMAL1 during HVICs’ osteogenic differentiation. ChIP was applied to check whether BMAL1 could directly interact with the runx2 primer CPG region, and the expression of key proteins involved in the TNF signaling pathway and NF-κ B pathway was tested after silencing BMAL1. Results: In this study, we found that BMAL1 expression was elevated in calcified human aortic valves and VICs isolated from calcified human aortic valves. Osteogenic medium could promote BMAL1 expression in HVICs and the knockdown of BMAL1 induced the inhibition of HVICs’ osteogenic differentiation. Furthermore, the osteogenic medium promoting BMAL1 expression could be blocked by TGF-β and RhoA/ROCK inhibitors and RhoA-siRNA. Meanwhile, BMAL1 could not bind with the runx2 primer CPG region directly, but knockdown of BMAL1 led to decreased levels of P-AKT, P-IκBα, P-p65 and P-JNK. Conclusions: Osteogenic medium could promote BMAL1 expression in HVICs through the TGF-β/RhoA/ROCK pathway. BMAL1 could not act as a transcription factor, but functioned through the NF-κ B/AKT/MAPK pathway to regulate the osteogenic differentiation of HVICs.
Collapse
Affiliation(s)
- Yefan Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing 210029, China
| | - Song Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing 210029, China
| | - Wenfeng Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing 210029, China
| | - Jiaxi Gu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing 210029, China
| | - Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No. 1277, Wuhan 430022, China
- Correspondence: (G.L.); (Y.S.); Tel.: +86-027-85351611 (G.L.); +86-025-68303574 (Y.S.)
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing 210029, China
- Correspondence: (G.L.); (Y.S.); Tel.: +86-027-85351611 (G.L.); +86-025-68303574 (Y.S.)
| |
Collapse
|
22
|
Juliana N, Azmi L, Effendy NM, Mohd Fahmi Teng NI, Abu IF, Abu Bakar NN, Azmani S, Yazit NAA, Kadiman S, Das S. Effect of Circadian Rhythm Disturbance on the Human Musculoskeletal System and the Importance of Nutritional Strategies. Nutrients 2023; 15:nu15030734. [PMID: 36771440 PMCID: PMC9920183 DOI: 10.3390/nu15030734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The circadian system in the human body responds to daily environmental changes to optimise behaviour according to the biological clock and also influences various physiological processes. The suprachiasmatic nuclei are located in the anterior hypothalamus of the brain, and they synchronise to the 24 h light/dark cycle. Human physiological functions are highly dependent on the regulation of the internal circadian clock. Skeletal muscles comprise the largest collection of peripheral clocks in the human body. Both central and peripheral clocks regulate the interaction between the musculoskeletal system and energy metabolism. The skeletal muscle circadian clock plays a vital role in lipid and glucose metabolism. The pathogenesis of osteoporosis is related to an alteration in the circadian rhythm. In the present review, we discuss the disturbance of the circadian rhythm and its resultant effect on the musculoskeletal system. We also discuss the nutritional strategies that are potentially effective in maintaining the system's homeostasis. Active collaborations between nutritionists and physiologists in the field of chronobiological and chrononutrition will further clarify these interactions. This review may be necessary for successful interventions in reducing morbidity and mortality resulting from musculoskeletal disturbances.
Collapse
Affiliation(s)
- Norsham Juliana
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
- Correspondence: ; Tel.: +60-13-331-1706
| | - Liyana Azmi
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Nadia Mohd Effendy
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | | | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Malaysia
| | - Nur Nabilah Abu Bakar
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Sahar Azmani
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Noor Anisah Abu Yazit
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Suhaini Kadiman
- Anaesthesia and Intensive Care Unit, National Heart Institute, Kuala Lumpur 50400, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
23
|
Qin Y, Chen ZH, Wu JJ, Zhang ZY, Yuan ZD, Guo DY, Chen MN, Li X, Yuan FL. Circadian clock genes as promising therapeutic targets for bone loss. Biomed Pharmacother 2023; 157:114019. [PMID: 36423544 DOI: 10.1016/j.biopha.2022.114019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
The circadian clock regulates many key physiological processes such as the sleep-wake cycle, hormone release, cardiovascular health, glucose metabolism and body temperature. Recent evidence has suggested a critical role of the circadian system in controlling bone metabolism. Here we review the connection between bone metabolism and the biological clock, and the roles of these mechanisms in bone loss. We also analyze the regulatory effects of clock-related genes on signaling pathways and transcription factors in osteoblasts and osteoclasts. Additionally, osteocytes and endothelial cells (ECs) regulated by the circadian clock are also discussed in our review. Furthermore, we also summarize the regulation of circadian clock genes by some novel modulators, which provides us with a new insight into a potential strategy to prevent and treat bone diseases such as osteoporosis by targeting circadian genes.
Collapse
Affiliation(s)
- Yi Qin
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhong-Hua Chen
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China.
| |
Collapse
|
24
|
Chen X, Yang J, Lv H, Che J, Wang J, Zhang B, Shang P. The potential benefits of melatonin in the prevention and treatment of bone loss in response to microgravity. ACTA ASTRONAUTICA 2023; 202:48-57. [DOI: 10.1016/j.actaastro.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
|
25
|
Chen X, Yang J, Lv H, Che J, Wang J, Zhang B, Shang P. The potential benefits of melatonin in the prevention and treatment of bone loss in response to microgravity. ACTA ASTRONAUTICA 2023; 202:48-57. [DOI: org/10.1016/j.actaastro.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
26
|
Printzi A, Mazurais D, Witten PE, Madec L, Gonzalez AA, Mialhe X, Zambonino-Infante JL, Koumoundouros G. Juvenile zebrafish (Danio rerio) are able to recover from lordosis. Sci Rep 2022; 12:21533. [PMID: 36513797 PMCID: PMC9748118 DOI: 10.1038/s41598-022-26112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Haemal lordosis, a frequent skeletal deformity in teleost fish, has long been correlated with increased mechanical loads induced by swimming activity. In the present study, we examine whether juvenile zebrafish can recover from haemal lordosis and explore the musculoskeletal mechanisms involved. Juveniles were subjected to a swimming challenge test (SCT) that induced severe haemal lordosis in 49% of the animals and then immediately transferred them to 0.0 total body lengths (TL) per second of water velocity for a week. The recovery from lordosis was examined by means of whole mount staining, histology and gene expression analysis. Results demonstrate that 80% of the lordotic zebrafish are capable of internal and external recovery within a week after the SCT. Recovered individuals presented normal shape of the vertebral centra, maintaining though distorted internal tissue organization. Through the transcriptomic analysis of the affected haemal regions, several processes related to chromosome organization, DNA replication, circadian clock and transcription regulation were enriched within genes significantly regulated behind this musculoskeletal recovery procedure. Genes especially involved in adipogenesis, bone remodeling and muscular regeneration were regulated. A remodeling tissue-repair hypothesis behind haemal lordosis recovery is raised. Limitations and future possibilities for zebrafish as a model organism to clarify mechanically driven musculoskeletal changes are discussed.
Collapse
Affiliation(s)
- A. Printzi
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece ,grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - D. Mazurais
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - P. E. Witten
- grid.5342.00000 0001 2069 7798Department of Biology, Gent University, Gent, Belgium
| | - L. Madec
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - A.-A. Gonzalez
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - X. Mialhe
- grid.121334.60000 0001 2097 0141MGX-Montpellier GenomiX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - J.-L. Zambonino-Infante
- grid.463763.30000 0004 0638 0577IFREMER, University of Brest, CNRS, IRD, LEMAR, 29280 Plouzané, France
| | - G. Koumoundouros
- grid.8127.c0000 0004 0576 3437Biology Department, University of Crete, Crete, Greece
| |
Collapse
|
27
|
Gholami F, Rasaei N, Samadi M, Yekaninejad MS, Keshavarz SA, Javdan G, Karimi Z, Mirzaei K. The relationship of genetic risk score with cardiometabolic risk factors: a cross-sectional study. BMC Cardiovasc Disord 2022; 22:459. [PMID: 36324080 PMCID: PMC9632045 DOI: 10.1186/s12872-022-02888-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background & aims For more than eight decades, cardiovascular disease (CVD) has remained the leading cause of death in the world. CVD risk factors are multifaceted, with genetics and lifestyle both playing a role. The aim of this study was to investigate the association between a genetic profile risk score for obesity GRS and cardio-metabolic risk factors in overweight and obese women. Methods The current cross-sectional study was conducted on 391 overweight and obese women. The genetic risk score was created by combining three single nucleotide polymorphisms [MC4R (rs17782313), CAV-1 (rs3807992), and Cry-1 (rs2287161)]. Anthropometric measurements, blood pressure, and some blood parameters were measured by standard protocols. Results A significant association between the GRS and some of cardiometabolic risk factors variables such as body mass index (β = 0. 49, 95%CI = 0.22 to 0.76, p < 0.001), waist circumference (β = 0. 86, 95%CI = 0.18 to 1.54, p = 0.01), body fat mass (β = 0. 82, 95%CI = 0.25 to 1.39, p = 0.005), %body fat (β = 0. 44, 95%CI = 0.06 to 0.82, p = 0.02), and hs-CRP (β = 0.46, 95% CI = 0.14 to 0.78, p = 0.005) was observed in crude model. After adjustment for confounding factors (age, BMI, and physical activity), a significant positive association was observed between BMI (p = 0.004), WC (p = 0.02), body fat mass (p = 0.01), %BF (p = 0.01), hs-CRP (p = 0.009), and GRS. In addition, we discovered a significant negative association between the GRS and BMC (= -0.02, 95%CI = -0.05 to -0.001, p = 0.04). But other variables did not show any significant association with GRS among obese and overweight women. Conclusion We found a significant positive association between GRS, including MC4R (rs17782313), CAV-1 (rs3807992), and Cry-1 (rs2287161) and cardiometabolic risk factors among overweight and obese Iranian women.
Collapse
Affiliation(s)
- Fatemeh Gholami
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P. O Box 6446, 14155 Tehran, Iran
| | - Niloufar Rasaei
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P. O Box 6446, 14155 Tehran, Iran
| | - Mahsa Samadi
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P. O Box 6446, 14155 Tehran, Iran
| | - Mir Saeid Yekaninejad
- grid.411705.60000 0001 0166 0922Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Ali Keshavarz
- grid.411705.60000 0001 0166 0922Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamali Javdan
- grid.412237.10000 0004 0385 452XFood Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Karimi
- grid.411705.60000 0001 0166 0922Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Khadijeh Mirzaei
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P. O Box 6446, 14155 Tehran, Iran ,grid.411705.60000 0001 0166 0922 Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Yang K, Qiu X, Cao L, Qiu S. The role of melatonin in the development of postmenopausal osteoporosis. Front Pharmacol 2022; 13:975181. [PMID: 36278157 PMCID: PMC9585202 DOI: 10.3389/fphar.2022.975181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Melatonin is an important endogenous hormone that modulates homeostasis in the microenvironment. Recent studies have indicated that serum melatonin levels are closely associated with the occurrence and development of osteoporosis in postmenopausal women. Exogenous melatonin could also improve bone mass and increase skeletal strength. To determine the underlying mechanisms of melatonin in the prevention and treatment of postmenopausal osteoporosis, we performed this review to analyze the role of melatonin in bone metabolism according to its physiological functions. Serum melatonin is related to bone mass, the measurement of which is a potential method for the diagnosis of osteoporosis. Melatonin has a direct effect on bone remodeling by promoting osteogenesis and suppressing osteoclastogenesis. Melatonin also regulates the biological rhythm of bone tissue, which benefits its osteogenic effect. Additionally, melatonin participates in the modulation of the bone microenvironment. Melatonin attenuates the damage induced by oxidative stress and inflammation on osteoblasts and prevents osteolysis from reactive oxygen species and inflammatory factors. As an alternative drug for osteoporosis, melatonin can improve the gut ecology, remodel microbiota composition, regulate substance absorption and maintain metabolic balance, all of which are beneficial to the health of bone structure. In conclusion, our review systematically demonstrates the effects of melatonin on bone metabolism. Based on the evidence in this review, melatonin will play a more important role in the diagnosis, prevention and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences Shenyang, Shenyang, Liaoning, China
| | - Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| |
Collapse
|
29
|
Parker L, Ang T, Morrison DJ, Lee NJ, Levinger I, Keske MA. Prior aerobic exercise mitigates the decrease in serum osteoglycin and lipocalin-2 following high-glucose mixed-nutrient meal ingestion in young men. Am J Physiol Endocrinol Metab 2022; 323:E319-E332. [PMID: 35767699 DOI: 10.1152/ajpendo.00025.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoglycin (OGN) and lipocalin-2 (LCN2) are hormones that can be secreted by bone and have been linked to glucose homeostasis in rodents. However, the endocrine role of these hormones in humans is contradictory and unclear. We examined the effects of exercise and meal ingestion on circulating serum OGN and LCN2 levels in eight healthy males {age: 28 [25, 30] years [median ± interquartile range (IQR)] and body mass index [BMI]: 24.3 [23.6, 25.5] kg/m2}. In a randomized crossover design, participants ingested a high-glucose (1.1 g glucose/kg body wt) mixed-nutrient meal (45% carbohydrate, 20% protein, and 35% fat) on a rest-control day and 3 and 24 h after aerobic cycling exercise (1 h at 70%-75% V̇o2peak). Acute aerobic exercise increased serum LCN2 levels immediately after exercise (∼61%), which remained elevated 3-h postexercise (∼55%). In contrast, serum OGN remained similar to baseline levels throughout the 3-h postexercise recovery period. The ingestion of a high-glucose mixed-nutrient meal led to a decrease in serum OGN at 90-min (approximately -17%) and 120-min postprandial (approximately -44%), and a decrease in LCN2 at 120-min postprandial (approximately -26%). Compared with the control meal, prior exercise elevated serum OGN and LCN2 levels at 120-min postprandial when the meal was ingested 3-h (OGN: ∼74% and LCN2: ∼68%) and 24-h postexercise (OGN: ∼56% and LCN2: ∼16%). Acute exercise increases serum LCN2 and attenuates the postprandial decrease in OGN and LCN2 following high-glucose mixed-nutrient meal ingestion. The potential endocrine role of circulating OGN and LCN2 in humans warrants further investigation.NEW & NOTEWORTHY We provide novel evidence that OGN and LCN2 decrease 120 min after ingesting a high-glucose mixed-nutrient meal in healthy adults. Acute aerobic exercise increases circulating LCN2 for up to 3-h postexercise, whereas circulating OGN remains similar to baseline. Despite differing postexercise responses, postprandial LCN2 and OGN are elevated when the high-glucose meal is ingested 3-h and 24-h postexercise. Findings support that OGN and LCN2 are dynamically linked to energy homeostasis in humans.
Collapse
Affiliation(s)
- Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Dale J Morrison
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicola J Lee
- Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Footscray, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, Victoria, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
30
|
Ma C, Yang C, Xie T, Dai W, Ma J. Meta-Analysis of Mechanism of Influence of CRY2 on the Differentiation of Mouse Osteoblast through the Regulation of Wnt/ Β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3727165. [PMID: 36046448 PMCID: PMC9420604 DOI: 10.1155/2022/3727165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022]
Abstract
Noncoding RNAs were discovered to control a variety of developmental mechanisms, including osteogenesis. According to emerging evidence, cryptochrome circadian-regulating (CRY) proteins have emerged as essential controllers of osteoblast differentiation. The linked processes, on the other hand, are still unknown. The specific process that underpins osteoblast differentiation and proliferation is yet unknown. This research gives a meta-analysis of CRY2's impact on mouse osteoblast differentiation via the control of the WNT/β-catenin signaling pathways. Western blot and quantitative real-time PCR were used to identify Cry2 expression levels, components in the osteoblast-associated signaling pathway, and osteoblast transcription markers. The osteogenic condition was measured utilizing alkaline phosphatase (ALP) and alizarin red (AR) staining, whereas cell growth rates were measured using CCK8 assays. An ectopic bone formation experiment was used to determine the osteogenic potential of osteoblasts. Cry2 stimulates the osteogenic development of mouse osteoblasts through canonical Wnt/β-catenin signaling, according to the findings.
Collapse
Affiliation(s)
- Chao Ma
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Chaojian Yang
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tong Xie
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenjuan Dai
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jun Ma
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| |
Collapse
|
31
|
Chen YD, Zhao RF, Zheng G, Ling FM, Li JR, Xu MY, Guo D, Zhang QL, Li S, Zhu LR. The association between disruption of the circadian rhythm and aggravation of colitis in mice. Gastroenterol Rep (Oxf) 2022; 10:goac028. [PMID: 35720196 PMCID: PMC9201969 DOI: 10.1093/gastro/goac028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/30/2022] [Accepted: 04/24/2022] [Indexed: 11/13/2022] Open
Abstract
Delayed recovery from ulcerative colitis is mainly due to impaired healing of the intestinal epithelium after inflammation. The circadian rhythm controls cell proliferation and energy metabolism. However, the role of circadian genes in inflammatory bowel disease is largely unknown. The purpose of this study was to investigate whether disrupting the circadian rhythm in mice can worsen colitis by altering mitochondrial energy metabolism. Mice in the experimental groups were under physiologic stress with an 8-h light shift jet-lag schedule every 3 days, whereas those in the control group were not. Subsequently, half of the mice in the control and jet-lagged groups were given dextran sodium sulfate (DSS) to induce colitis. Mice in each group were euthanized at zeitgeber time (ZT)0, ZT4, ZT8, ZT12, ZT16, and ZT20. To investigate the effects of jet lag on the mice, colon specimens were subjected to hematoxylin and eosin staining to analyse mRNA and protein expression of core circadian clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2, and Nr1d1). We analysed the mitochondrial morphology, adenosine triphosphate (ATP) levels, and the expression of dynamin-related protein 1 (Drp1) and ser637-phosphorylated (p)-Drp1, which are closely related to ATP production. We further investigated the effect of PER2 knock-down in the colon epithelial cells (CCD 841 CoN) by measuring ATP and cell proliferation levels. Disrupting the circadian rhythm changed the oscillation of clock genes in the colon of mice, altered the mitochondrial morphology of the colon specimens, decreased the expression of p-Drp1, reduced ATP production, and exacerbated inflammatory responses in mice with DSS-induced colitis. Additionally, silencing of PER2 in the colon epithelial cells reduced ATP production and cell proliferation. Disrupting the circadian rhythm in mice decreases mitochondrial energy metabolism in the colon and exacerbates symptoms of colitis.
Collapse
Affiliation(s)
- Yi-Dong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Rui-Feng Zhao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Gen Zheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Fang-Mei Ling
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jun-Rong Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ming-Yang Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Di Guo
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Qiu-Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Shuang Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Liang-Ru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| |
Collapse
|