1
|
Peng X, Li G, Zhao J, Liu H, Wu C, Su Z, Liu Z, Fan S, Chen Y, Wu Y, Liu W, Shen H, Zheng G. Promotion of quiescence and maintenance of function of mesenchymal stem cells on substrates with surface potential. Bioelectrochemistry 2025; 164:108920. [PMID: 39904300 DOI: 10.1016/j.bioelechem.2025.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
The widespread use of human mesenchymal stem cells(hMSCs) is impeded by functional loss during prolonged expansion. Although multiple approaches have been attempted to preserve hMSCs stemness, a suitable culture system remains to be modified. The interaction between electrical signals and stem cells is expected to better maintain the function of stem cells. However, it remains unclear whether the surface potential of substrates has the potential to preserve stem cell function during in vitro expansion. In our study, hMSCs cultured on materials with different surface potentials could be induced into a reversible quiescent state, and we demonstrated that quiescent hMSCs could be reactivated and transitioned back into the proliferation cell cycle. hMSCs cultured under appropriate potential displayed superior differentiation and proliferation abilities within the same generation compared to conventional conditions. These findings underscore the importance of surface potential as a critical physical factor regulating hMSCs stemness. Manipulating the surface potential of hMSCs culture substrates holds promise for optimising preservation and culture conditions, thereby enhancing their application in tissue repair and regeneration engineering.
Collapse
Affiliation(s)
- Xiaoshuai Peng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Guojian Li
- Department of Spine Orthopedics, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, PR China
| | - Jiu Zhao
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Huatao Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Changhua Wu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Zhidong Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Shuai Fan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yuanquan Chen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, PR China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| |
Collapse
|
2
|
Peng H, Chen Q, Ye L, Wang W. A Senescence-Associated Gene Signature for Prognostic Prediction and Therapeutic Targeting in Adrenocortical Carcinoma. Biomedicines 2025; 13:894. [PMID: 40299539 PMCID: PMC12025298 DOI: 10.3390/biomedicines13040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Cellular senescence plays a critical role in tumorigenesis, immune cell infiltration, and treatment response. Adrenocortical carcinoma (ACC) is a malignant tumor that lacks effective therapies. This study aimed to construct and validate a senescence-related gene signature as an independent prognostic predictor for ACC and explore its impact on the tumor microenvironment, immunotherapy, and chemotherapy response. Methods: Data were collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Using Kaplan-Meier survival analysis, LASSO penalized Cox regression and multivariable Cox regression, we identified a prognostic model with four senescence-related genes (HJURP, CDK1, FOXM1, and CHEK1). The model's prognostic value was validated through survival analysis, risk score curves, and receiver operating characteristic (ROC) curves. Tumor mutation burden was assessed with maftools, and the tumor microenvironment was analyzed using CIBERSORT and ESTIMATE. Immune and chemotherapeutic responses were assessed through Tumor Immune Dysfunction and Exclusion (TIDE) and OncoPredict. Results: The risk score derived from our model showed a strong association with overall survival (OS) in ACC patients (p < 0.001, HR = 2.478). Higher risk scores were correlated with more advanced tumor stages and a greater frequency of somatic mutations. Differentially expressed genes (DEGs) that were downregulated in the high-risk group were significantly enriched in immune-related pathways. Furthermore, high-risk patients were predicted to have reduced sensitivity to immunotherapy (p = 0.02). Bioinformatics analysis identified potential chemotherapeutic agents, including BI-2536 and MIM1, as more effective treatment options for high-risk patients. Conclusions: Our findings indicate that this prognostic model may serve as a valuable tool for predicting overall survival (OS) and treatment responses in ACC patients, including those receiving chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Hangya Peng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiujing Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
| |
Collapse
|
3
|
Wang H, Zhao B, Zhang J, Hu Q, Zhou L, Zhang Y, Cai Y, Qu Y, Jiang T, Zhang D. N4-Acetylcytidine-Mediated CD2BP2-DT Drives YBX1 Phase Separation to Stabilize CDK1 and Promote Breast Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411834. [PMID: 39976088 PMCID: PMC12005790 DOI: 10.1002/advs.202411834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in the initiation and progression of breast cancer. However, the specific mechanisms and biological functions of lncRNAs in breast cancer remain incompletely understood. Bioinformatics analysis identifies a novel lncRNA, CD2BP2-DT, that is overexpressed in breast cancer and correlates with adverse clinicopathological features and poor overall survival. Both in vivo and in vitro experiments demonstrate that CD2BP2-DT promotes proliferation of breast cancer cells. Mechanistically, NAT10 mediates the N4-acetylcytidine (ac4C) modification of CD2BP2-DT, enhancing its RNA stability and expression. More importantly, CD2BP2-DT enhances the stability of CDK1 mRNA by mediating YBX1 phase separation, thereby promoting the proliferation of breast cancer cells. In conclusion, the lncRNA CD2BP2-DT is identified as a crucial driver of breast cancer cell proliferation through the YBX1/CDK1 axis, highlighting its potential as a promising biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Bozhi Zhao
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Jiayu Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Qunyu Hu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Linlin Zhou
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yinghui Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yixin Cai
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yuansong Qu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Tao Jiang
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityInstitute of Digestive DiseasesXuzhou Medical UniversityXuzhou221002China
| | - Dongwei Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| |
Collapse
|
4
|
Wang Z, Yang Y, Yao FT, Zhang F, Lin KY, Diao HT, Zhao QY, Kong X, Si W, Xie YT, Song JL, Zeng LH, Wang CL, Xiong YT, Zou KK, Wang XM, Zhang XY, Wu H, Jiang WT, Bian Y, Yang BF. KLX ameliorates liver cancer progression by mediating ZBP1 transcription and ubiquitination and increasing ZBP1-induced PANoptosis. Acta Pharmacol Sin 2025:10.1038/s41401-025-01528-4. [PMID: 40148674 DOI: 10.1038/s41401-025-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Liver cancer is a highly aggressive malignancy with poor survival rates. Current treatments, including liver transplantation, immunotherapy, and gene therapy, are often limited by late-stage diagnosis and significant side effects, highlighting the urgent need for novel therapeutic agents. In this study, we evaluated the therapeutic potential of Kanglexin (KLX), a novel anthraquinone derivative, in the treatment of liver cancer. In vitro, KLX inhibited the proliferation and migration of HepG2 and Hep3B cells in a dose-dependent manner. Mechanistically, KLX upregulated Z-DNA binding protein 1 (ZBP1) expression, inducing PANoptosis by directly binding to ZBP1, altering its conformation, and reducing its affinity for the E3 ubiquitin ligase ring finger protein 180 (RNF180). This interaction decreased ZBP1 ubiquitination, thereby increasing its stability. Additionally, KLX upregulated the expression of the transcription factor homeobox D10 (HOXD10), which further increased ZBP1 expression. Elevated ZBP1 levels significantly suppressed liver cancer cell proliferation and migration, whereas the inhibitory effects of KLX were reversed upon ZBP1 knockdown. In a xenograft model, KLX significantly inhibited tumor growth with a lower toxicity than oxaliplatin (OXA). In conclusion, KLX promoted PANoptosis in liver cancer cells by upregulating ZBP1 and preventing its degradation, thereby inhibiting liver cancer progression and migration. These findings suggest that KLX is a promising therapeutic agent for liver cancer.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Fang-Ting Yao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ke-Ying Lin
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hong-Tao Diao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qiao-Yue Zhao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Kong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei Si
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ya-Ting Xie
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jing-Lun Song
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ling-Hua Zeng
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chun-Lei Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yu-Ting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Kun-Kun Zou
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Man Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin-Yue Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Han Wu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei-Tao Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Bao-Feng Yang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
褚 乔, 王 小, 续 佳, 彭 荟, 赵 裕, 张 静, 陆 国, 王 恺. Pulsatilla saponin D inhibits invasion and metastasis of triple-negative breast cancer cells through multiple targets and pathways. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:150-161. [PMID: 39819723 PMCID: PMC11744280 DOI: 10.12122/j.issn.1673-4254.2025.01.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES To explore the mechanism by which Pulsatilla saponin D (PSD) inhibits invasion and metastasis of triple-negative breast cancer (TNBC). METHODS The public databases were used to identify the potential targets of PSD and the invasion and metastasis targets of TNBC to obtain the intersection targets between PSD and TNBC. The "PSD-target-disease" interaction network was constructed and protein-protein interaction (PPI) analysis was performed to obtain the core targets, which were analyzed for KEGG pathway and GO functional enrichment. Molecular docking study of the core targets and PSD was performed, and the therapeutic effect and mechanism of PSD were verified using Transwell assay and Western blotting in cultured TNBC cells. RESULTS Network pharmacology analysis identified a total of 285 potential PSD targets and 26 drug-disease intersection core targets. GO analysis yielded 175 entries related to the binding of biomolecules (protein, DNA and RNA), enzyme activities, and regulation of gene transcription. KEGG analysis yielded 46 entries involving pathways in cancer, chemical carcinogenesis-receptor activation, microRNAs in cancer, chemical carcinogenesis-reactive oxygen species, PD-L1 expression and PD-1 checkpoint pathway in cancer. Molecular docking showed high binding affinities of PSD to MTOR, HDAC2, ABL1, CDK1, TLR4, TERT, PIK3R1, NFE2L2 and PTPN1. In cultured TNBC cells, treatment with PSD significantly inhibited cell invasion and migration and lowered the expressions of MMP2, MMP9, N-cadherin and the core proteins p-mTOR, ABL1, TERT, PTPN1, HDAC2, PIK3R1, CDK1, TLR4 as well as NFE2L2 expressionin the cell nuclei. CONCLUSIONS The inhibitory effects of PSD on TNBC invasion and metastasis are mediated by multiple targets and pathways.
Collapse
|
6
|
Chen Y, Wu X, Jiang Z, Li X. KAE ameliorates LPS-mediated acute lung injury by inhibiting PANoptosis through the intracellular DNA-cGAS-STING axis. Front Pharmacol 2025; 15:1461931. [PMID: 39840115 PMCID: PMC11747328 DOI: 10.3389/fphar.2024.1461931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Background Acute lung injury (ALI) is a severe condition characterized by inflammation, tissue damage, and persistent activation of the cyclic GMP-AMP (cGAS)-stimulator of interferon genes (STING) pathway, which exacerbates the production of pro-inflammatory mediators and promotes the progression of ALI. Specific inhibition of this pathway has been shown to alleviate ALI symptoms. Kaempferol-3-O-α-L-(4″-E-p-coumaroyl)-rhamnoside (KAE), an active compound found in the flowers of Angelica acutiloba Kitagawa, exhibits anti-inflammatory and antioxidant properties. This study aimed to investigate the molecular mechanisms through which KAE regulates the cGAS-STING pathway in the context of ALI. Methods ALI was induced using LPS. Lung damage and anti-inflammatory/antioxidant effects were assessed by H&E staining, lung edema index, and SOD, MDA, and ELISA assays. NO release and mitochondrial membrane potential (MMP) were measured by JC-1 and Griess methods. The impact of KAE on the cGAS-STING pathway and PANoptosis was analyzed using flow cytometry, Western blot, and immunofluorescence. Results KAE significantly alleviated lipopolysaccharide-induced pulmonary injury by reducing inflammatory cell infiltration, alleviating pulmonary edema, enhancing antioxidant capacity, and decreasing levels of inflammatory cytokines in mouse lung tissues. In both in vitro and in vivo analyses, KAE downregulated the expression of key components of the cGAS-STING pathway, including cGAS, STING, p-TBK1, and nuclear factor-κB. KAE also reduced the assembly and activation of the PANoptosome, thereby attenuating apoptosis, necroptosis, and pyroptosis. Additionally, KAE inhibited cGAS activation by restoring the MMP, which reduced the release of cytosolic DNA. Conclusion KAE improve ALI by inhibiting the release of cytosolic DNA and suppressing cGAS-STING pathway activation, thereby protecting cells from PANoptosis. Our findings provide valuable insights for the development and application of novel therapeutic strategies for ALI.
Collapse
Affiliation(s)
| | | | | | - Xuezheng Li
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, China
| |
Collapse
|
7
|
Zhao C, Lin S. PANoptosis in intestinal epithelium: its significance in inflammatory bowel disease and a potential novel therapeutic target for natural products. Front Immunol 2025; 15:1507065. [PMID: 39840043 PMCID: PMC11747037 DOI: 10.3389/fimmu.2024.1507065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount. Consequently, excessive IEC death advances intestinal permeability and as a consequence thereof the translocation of bacteria into the lamina propria, subsequently triggering an inflammatory response, which underpins the clinical disease trajectory of inflammatory bowel disease (IBD). A burgeoning body of evidence illustrates a landscape where IEC undergoes several the model of programmed cell death (PCD) in the pathophysiology and pathogenesis of IBD. Apoptosis, necroptosis, and pyroptosis represent the principal modalities of PCD with intricate specific pathways and molecules. Ample evidence has revealed substantial mechanistic convergence and intricate crosstalk among these three aforementioned forms of cell death, expanding the conceptualization of PANoptosis orchestrated by the PNAoptosome complex. This review provides a concise overview of the molecular mechanisms of apoptosis, necroptosis, and pyroptosis. Furthermore, based on the crosstalk between three cell deaths in IEC, this review details the current knowledge regarding PANoptosis in IEC and its regulation by natural products. Our objective is to broaden the comprehension of innovative molecular mechanisms underlying the pathogenesis of IBD and to furnish a foundation for developing more natural drugs in the treatment of IBD, benefiting both clinical practitioners and research workers.
Collapse
|
8
|
Zhang Y, Wang F, Zhang C, Yao F, Zhang B, Zhang Y, Sun X. FGF21 ameliorates diabetic nephropathy through CDK1-dependently regulating the cell cycle. Front Pharmacol 2025; 15:1500458. [PMID: 39830349 PMCID: PMC11739279 DOI: 10.3389/fphar.2024.1500458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Background Diabetic nephropathy (DN) is a prevalent global renal illness and one of the main causes of end-stage renal disease (ESRD). FGF21 has been shown to ameliorate diabetic nephropathy, and in addition FGF-21-treated mice impeded mitogenicity, whereas it is unclear whether FGF21 can influence DN progression by regulating the cell cycle in diabetic nephropathy. Methods In order to create a diabetic model, STZ injections were given to C57BL/6J mice for this investigation. Then, FGF21 was administered, and renal tissue examination and pathological observation were combined with an assessment of glomerular injury, inflammation, oxidative stress, and the fibrinogen system in mice following the administration of the intervention. Furthermore, we used db/db mice and FGF21 direct therapy for 8 weeks to investigate changes in fasting glucose and creatinine expression as well as pathological changes in glomeruli glycogen deposition, fibrosis, and nephrin expression. To investigate the mechanism of action of FGF21 in the treatment of glycolytic kidney, transcriptome sequencing of renal tissues and KEGG pathway enrichment analysis of differential genes were performed. Results The study's findings demonstrated that FGF21 intervention increased clotting time, decreased oxidative stress and inflammation, and avoided thrombosis in addition to considerably improving glomerular filtration damage. After 8 weeks of FGF21 treatment, glomerular glycogen deposition, fibrosis, and renin expression decreased in db/db mice. Moreover, there was a notable reduction of creatinine and fasting blood glucose levels. Additionally, the CDK1 gene, a key player in controlling the cell cycle, was discovered through examination of the transcriptome sequencing data. It was also shown that FGF21 dramatically reduces the expression of CDK1, which may help diabetic nephropathy by averting mitotic catastrophe and changing the renal cell cycle. Conclusion In short, FGF21 improved the development of diabetic nephropathy in diabetic nephropathy-affected animals by reducing glomerular filtration damage, inflammation, and oxidative stress, inhibiting the formation of thrombus, and controlling the cell cycle through CDK1.
Collapse
Affiliation(s)
- Yudie Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chongyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Yao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yongping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of efficacy evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Mishra S, Dey AA, Kesavardhana S. Z-Nucleic Acid Sensing and Activation of ZBP1 in Cellular Physiology and Disease Pathogenesis. Immunol Rev 2025; 329:e13437. [PMID: 39748135 DOI: 10.1111/imr.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation. The studies on ZBP1 spurred an understanding of the role of Z-form RNA and DNA in cellular and physiological functions. In particular, short viral genomic segments, endogenous retroviral elements, and 3'UTR regions are likely sources of Z-RNAs that orchestrate ZBP1 functions. Recent seminal studies identify an intriguing association of ZBP1 with adenosine deaminase acting on RNA-1 (ADAR1), and cyclic GMP-AMP synthase (cGAS) in regulating aberrant nucleic acid sensing, chronic inflammation, and cancer. Thus, ZBP1 is an attractive target to aid the development of specific therapeutic regimes for disease biology. Here, we discuss the role of ZBP1 in Z-RNA sensing, activation of programmed cell death, and inflammation. Also, we discuss how ZBP1 coordinates intracellular perturbations in homeostasis, and Z-nucleic acid formation to regulate chronic diseases and cancer.
Collapse
Affiliation(s)
- Sanchita Mishra
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ayushi Amin Dey
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sannula Kesavardhana
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Li S, Xiao S, Situ Y. Apolipoprotein C1 and apoprotein E as potential therapeutic and prognostic targets for adrenocortical carcinoma. Cancer Biomark 2025; 42:18758592241308440. [PMID: 40109215 DOI: 10.1177/18758592241308440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundApolipoprotein C1 (APOC1) and Apoprotein E (APOE) play important roles in lipid transport and metabolism. In recent years, APOC1 and APOE have been shown to play key roles in the occurrence and development of various cancers. However, the expression levels, gene regulatory networks, prognostic values, and target predictions of APOC1 and APOE in adrenocortical carcinoma (ACC) remain unclear.MethodsVarious bioinformatics analysis methods were used, including gene expression profiling interactive analysis, the University of Alabama at Birmingham cancer data analysis portal, biomarker exploration of solid tumors software, the BioPortal for Cancer Genomics, search tool for the retrieval of interacting genes/proteins, gene multiple association network integration algorithm, Metascape, transcriptional regulatory relationships unraveled by sentence-based text-mining, LinkedOmics, and genomics of drug sensitivity in cancer analysis.ResultsAPOC1 and APOE expression were strongly downregulated in patients with ACC. APOC1 and APOE expression levels were lower in male patients with ACC than those in female patients. Furthermore, APOC1 and APOE expression levels affected the prognosis of patients with ACC. The main functions of APOC1 and its altered neighboring genes (ANG) were organophosphate ester transport, rRNA processing, and positive regulation of cytokine production. Cytolysis, protein ubiquitination, and histone modification were the main functions of APOE and its ANGs. The transcription factor E2F1, tumor protein p53, miR-182, miR-493, Erb-B2 receptor tyrosine kinase 2, and cyclin dependent kinase 1 were key regulatory targets of APOC1, APOE, and the ANGs. APOC1 and APOE expression in patients with ACC were positively associated with immune cell infiltration. Furthermore, anti-programmed cell death protein 1 immunotherapy strongly downregulated the expression of APOC1 in patients with ACC. Both pilaralisib and elesclomol strongly inhibited SW13 cell growth.ConclusionsThis study preliminarily clarified that APOC1 and APOE might be potential therapeutic and prognostic targets for ACC, and identified new targets and treatment strategies for ACC.
Collapse
Affiliation(s)
- Shaojin Li
- Clinical laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Shuixiu Xiao
- Department of Gynecology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yongli Situ
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Deng B, Ke B, Tian Q, Gao Y, Zhai Q, Zhang W. Targeting AURKA with multifunctional nanoparticles in CRPC therapy. J Nanobiotechnology 2024; 22:803. [PMID: 39734237 DOI: 10.1186/s12951-024-03070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/11/2024] [Indexed: 12/31/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) presents significant therapeutic challenges due to its aggressive nature and poor prognosis. Targeting Aurora-A kinase (AURKA) has shown promise in cancer treatment. This study investigates the efficacy of ART-T cell membrane-encapsulated AMS@AD (CM-AMS@AD) nanoparticles (NPs) in a photothermal-chemotherapy-immunotherapy combination for CRPC. Bioinformatics analysis of the Cancer Genome Atlas-prostate adenocarcinoma (TCGA-PRAD) dataset revealed overexpression of AURKA in PCa, correlating with poor clinical outcomes. Single-cell RNA sequencing data from the GEO database showed a significant reduction in immune cells in CRPC. Experimentally, T cell membrane-biomimetic NPs loaded with the AURKA inhibitor Alisertib and chemotherapy drug DTX were synthesized and characterized by dynamic light scattering and transmission electron microscopy, showing good stability and uniformity (average diameter: 158 nm). In vitro studies demonstrated that these NPs inhibited CRPC cell proliferation, increased the G2/M cell population, and elevated apoptosis, confirmed by γH2AX expression. In vivo, CM-AMS@AD NPs accumulated in tumor tissues, significantly slowed tumor growth, decreased proliferation, increased apoptosis, and improved the immune environment, enhancing dendritic cell (DC) maturation and increasing CD8 + /CD4 + ratios. These findings suggest that CM-AMS@AD NPs offer a promising triple-combination therapy for CRPC, integrating photothermal, chemotherapy, and immunotherapy, with significant potential for future clinical applications.
Collapse
Affiliation(s)
- Bin Deng
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Science and Technology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Binghu Ke
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Qixing Tian
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Yukui Gao
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
| | - Qiliang Zhai
- Department of Urology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China.
| | - Wenqiang Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
| |
Collapse
|
12
|
Cui Z, Li Y, Bi Y, Li W, Piao J, Ren X. PANoptosis: A new era for anti-cancer strategies. Life Sci 2024; 359:123241. [PMID: 39549938 DOI: 10.1016/j.lfs.2024.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Cancer cells possess an extraordinary ability to dodge cell death through various pathways, granting them a form of immortality-a key obstacle in oncotherapy. Thus, it's vital to unravel the intricate mechanisms behind newly discovered types of cell death that drive tumor suppression, going beyond apoptosis alone. The emergence of PANoptosis, a form of cell death intertwining necroptosis, pyroptosis, and apoptosis, offers a fresh perspective, integrating these pathways into one cohesive process. When cells detect damage signals, they assemble PANoptosome complexes that disrupt their balance, trigger immune responses, and lead to their eventual collapse. PANoptosis has been associated with multiple cellular pathways, including ferroptosis. Mitochondrial dysfunction also plays a critical role in sparking and advancing PANoptosis. In this review, we map out the molecular machinery and regulatory web controlling PANoptosis. We explore cutting-edge research and future trends in PANoptosis-centered tumor therapies, spotlighting promising innovations that could amplify cancer treatment effectiveness through harnessing this multifaceted cell death pathway. The development of nanomedicines and nanomaterials provides solutions to the therapeutic challenges of clinical drugs. Developing novel tumor nano-PANoptosis inducers by leveraging the advantages of nanomedicine is of research value. Traditional Chinese medicine (TCM) treatment is characterized by multiple targets, and it has distinct advantages in triggering PANoptosis through multiple pathways. Additionally, photodynamic Therapy (PDT) may offer new insights into promoting PANoptosis in tumor cells by increasing oxidative stress and reactive oxygen species levels. These will establish a solid theoretical groundwork for the development of integrated treatment methodologies.
Collapse
Affiliation(s)
- Ziheng Cui
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yuan Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yao Bi
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Wenjing Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China; Department of Anesthesia, Affiliated Hospital of Yanbian University, Yanji, China
| | - Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Xiangshan Ren
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China; Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China.
| |
Collapse
|
13
|
Li JR, Li LY, Zhang HX, Zhong MQ, Zou ZM. Atramacronoid A induces the PANoptosis-like cell death of human breast cancer cells through the CASP-3/PARP-GSDMD-MLKL pathways. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1475-1488. [PMID: 38958645 DOI: 10.1080/10286020.2024.2368841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Breast cancer is the most common malignant tumor and a major cause of mortality among women worldwide. Atramacronoid A (AM-A) is a unique natural sesquiterpene lactone isolated from the rhizome of Atractylodes macrocephala Koidz (known as Baizhu in Chinese). Our study demonstrated that AM-A triggers a specific form of cell death resembling PANoptosis-like cell death. Further analysis indicated that AM-A-induced PANoptosis-like cell death is associated with the CASP-3/PARP-GSDMD-MLKL pathways, which are mediated by mitochondrial dysfunction. These results suggest the potential of AM-A as a lead compound and offer insights for the development of therapeutic agents for breast cancer from natural products.
Collapse
Affiliation(s)
- Jing-Rong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ling-Yu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hai-Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ming-Qin Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| |
Collapse
|
14
|
Zhang X, Tang B, Luo J, Yang Y, Weng Q, Fang S, Zhao Z, Tu J, Chen M, Ji J. Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope. Mol Cancer 2024; 23:255. [PMID: 39543600 PMCID: PMC11566504 DOI: 10.1186/s12943-024-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Bufu Tang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinhua Luo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yang Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
15
|
Cheng X, Zeng T, Xu Y, Xiong Y. The emerging role of PANoptosis in viral infections disease. Cell Signal 2024; 125:111497. [PMID: 39489200 DOI: 10.1016/j.cellsig.2024.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
PANoptosis is a distinct inflammatory cell death mechanism that involves interactions between pyroptosis, apoptosis, and necroptosis. It can be regulated by diverse PANoptosome complexes built by integrating components from various cell death modalities. There is a rising interest in PANoptosis' process and functions. Viral infection is an important trigger of PANoptosis. Viruses invade host cells through their unique mechanisms and utilize host cell resources for replication and proliferation. In this process, viruses interfere with the normal physiological functions of host cells, including cell death mechanisms. A variety of viruses, such as influenza A virus (IAV), herpes simplex virus 1 (HSV1) and coronaviruses, have been found to induce PANoptosis in host cells. Given the importance of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and activation, and outlines the multifaceted roles of PANoptosis in viral diseases, including potential therapeutic targets. We also talk about key principles and significant concerns for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is critical for discovering new treatment targets and methods.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Taoyuan Zeng
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yongai Xiong
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
16
|
Zhao T, Zhang X, Liu X, Jiang X, Chen S, Li H, Ji H, Wang S, Liang Q, Ni S, Du M, Liu L. Characterizing PANoptosis gene signature in prognosis and chemosensitivity of colorectal cancer. J Gastrointest Oncol 2024; 15:2129-2144. [PMID: 39554569 PMCID: PMC11565111 DOI: 10.21037/jgo-24-245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 11/19/2024] Open
Abstract
Background PANoptosis is a cell death pathway involved in pyroptosis, apoptosis and necrosis, and plays a key role in the development of malignant tumors. However, the molecular signature of PANoptosis in colorectal cancer (CRC) prognosis has not been thoroughly explored. The present study aimed to develop a novel prognostic model based on PANoptosis-related genes in CRC. Methods We initially included transcriptome data of 404 CRC samples from The Cancer Genome Atlas (TCGA) cohort and identified differentially expressed genes related to PANoptosis. We then employed Cox, least absolute shrinkage and selection operator (LASSO) regression, and Random Forest methods to determine the prognostic value and constructed a PANoptosis prognostic model, followed by the validation on both internal (TCGA) and external datasets [Nanjing Colorectal Cancer (NJCRC) and Gene Expression Omnibus (GEO), n=635]. We performed immune infiltration analysis and gene set enrichment analysis to reveal biological processes and pathways against differential risk score. Ultimately, we carried out drug sensitivity analysis to predict the response of CRC patients to diverse treatment strategies. Results We constructed a predictive model based on four PANoptosis-related genes (TIMP1, CDKN2A, CAMK2B, and TLR3), with a high performance [area under the curve (AUC)1-year =0.702, AUC3-year =0.725, AUC5-year =0.668] and being an independent prognostic factor in predicting the prognosis of CRC patients. Notably, colorectal tumor with high PANoptosis risk score performed higher levels of macrophage infiltration and immune scores, but a greater reduction of Tumor Microenvironment Score (TMEscore) and DNA replication. Particularly, patients in high-risk group exhibited higher sensitivity to fluorouracil, oxaliplatin and lapatinib compared to the low-risk group. Conclusions This study highlights the prognostic potential of PANoptosis-related features in CRC, demonstrating their role as key biomarkers significantly associated with patient survival and aiding in the identification of high-risk patients, thereby advancing immunotherapy approaches.
Collapse
Affiliation(s)
- Tingyu Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingyu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiqin Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongsheng Ji
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sumeng Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Ni
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Liu K, Wang M, Li D, Duc Duong NT, Liu Y, Ma J, Xin K, Zhou Z. PANoptosis in autoimmune diseases interplay between apoptosis, necrosis, and pyroptosis. Front Immunol 2024; 15:1502855. [PMID: 39544942 PMCID: PMC11560468 DOI: 10.3389/fimmu.2024.1502855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
PANoptosis is a newly identified inflammatory programmed cell death (PCD) that involves the interplay of apoptosis, necrosis, and pyroptosis. However, its overall biological effects cannot be attributed to any one type of PCD alone. PANoptosis is regulated by a signaling cascade triggered by the recognition of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) by various sensors. This triggers the assembly of the PANoptosome, which integrates key components from other PCD pathways via adapters and ultimately activates downstream execution molecules, resulting in cell death with necrotic, apoptotic, and pyroptotic features. Autoimmune diseases are characterized by reduced immune tolerance to self-antigens, leading to abnormal immune responses, often accompanied by systemic chronic inflammation. Consequently, PANoptosis, as a unique innate immune-inflammatory PCD pathway, has significant pathophysiological relevance to inflammation and autoimmunity. However, most previous research on PANoptosis has focused on tumors and infectious diseases, leaving its activation and role in autoimmune diseases unclear. This review briefly outlines the characteristics of PANoptosis and summarizes several newly identified PANoptosome complexes, their activation mechanisms, and key components. We also explored the dual role of PANoptosis in diseases and potential therapeutic approaches targeting PANoptosis. Additionally, we review the existing evidence for PANoptosis in several autoimmune diseases and explore the potential regulatory mechanisms involved.
Collapse
Affiliation(s)
- Kangnan Liu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mi Wang
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dongdong Li
- Oncology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | | | - Yawei Liu
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Junfu Ma
- Rheumatology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | - Kai Xin
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zipeng Zhou
- Rheumatology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| |
Collapse
|
18
|
Yue D, Ren C, Li H, Liu X. Identification of a novel PANoptosis-related gene signature for predicting the prognosis in clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e39874. [PMID: 39331898 PMCID: PMC11441883 DOI: 10.1097/md.0000000000039874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
PANoptosis has been shown to play an important role in tumorigenesis and gain more attention. Yet, the prognostic significance of PANoptosis-related genes has not been investigated more in clear cell renal cell carcinoma (ccRCC). The aim of this research was designed to identify and create a signature of PANoptosis-related genes which was expected to predict prognosis of ccRCC more effectively. The transcriptome data and clinical information were collected from The Cancer Genome Atlas database and the Gene Expression Omnibus database. Optimal differentially expressed PANoptosis-related genes, which were closely associated with prognosis and employed to construct a risk score, were extracted by univariate Cox analysis, least absolute shrinkage and selection operator Cox regression and multivariate Cox analysis. We performed Kaplan-Meier survival analysis and time-dependent receiver operating characteristic curves to complete this process. By adopting univariate and multivariate analysis, the constructed risk score was assessed to verify whether it could be taken as an independent contributor for prognosis. Moreover, we created a nomogram in order to predict overall survival (OS) of ccRCC. Five differentially expressed PANoptosis-related genes were screened out and used to construct a risk score. Our results showed that ccRCC patients with high risk score had a poor prognosis and shorter OS. The results of Kaplan-Meier curves and the area under the receiver operating characteristic curves of 1-, 3-, and 5-year OS indicated that the prediction performance was satisfactory. Additionally, the risk model could be taken as an independent prognostic factor in training and validation cohorts. The nomogram exhibited excellent reliability in predicting OS, which was validated by calibration curves. We identified 5 PANoptosis-related genes, which were used to construct a risk score and a nomogram for prognostic prediction with reliable predictive capability. The present study may provide new potential therapeutic targets and precise treatment strategies for ccRCC.
Collapse
Affiliation(s)
- Dezhi Yue
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Congzhe Ren
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hu Li
- Department of Urology, Shanxian Central Hospital, Heze, Shandong, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Teotia V, Jha P, Chopra M. Discovery of Potential Inhibitors of CDK1 by Integrating Pharmacophore-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation Studies, and Evaluation of Their Inhibitory Activity. ACS OMEGA 2024; 9:39873-39892. [PMID: 39346877 PMCID: PMC11425824 DOI: 10.1021/acsomega.4c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
The ability of CDK1 to compensate for the absence of other cell cycle CDKs poses a great challenge to treat cancers that overexpress these proteins. Despite several studies focusing on the area, there are no FDA-approved drugs selectively targeting CDK1. Here, the study aimed to develop potential CDK1 selective inhibitors through drug repurposing and leveraging the structural insights provided by the hit molecules generated. Approximately 280,000 compounds from DrugBank, Selleckchem, Otava and an in-house library were screened initially based on fit values using 3D QSAR pharmacophores built for CDK1 and subsequently through Lipinski, ADMET, and TOPKAT filters. 10,310 hits were investigated for docking into the binding site of CDK1 determined using the crystal structure of human CDK1 in complex with NU6102. The best 55 hits with better docking scores were further analyzed, and 12 hits were selected for 100 ns MD simulations followed by binding energy calculations using the MM-PBSA method. Finally, 10 hit molecules were tested in an in vitro CDK1 Kinase inhibition assay. Out of these, 3 hits showed significant CDK1 inhibitory potential with IC50 < 5 μM. These results indicate these compounds can be used to develop subtype-selective CDK1 inhibitors with better efficacy and reduced toxicities in the future.
Collapse
Affiliation(s)
- Vineeta Teotia
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Prakash Jha
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Madhu Chopra
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
20
|
Shi YJ, Sheng KW, Zhao HN, Liu C, Wang H. Toll-Like Receptor 2 Deficiency Exacerbates Dextran Sodium Sulfate-Induced Intestinal Injury through Marinifilaceae-Dependent Attenuation of Cell Cycle Signaling. FRONT BIOSCI-LANDMRK 2024; 29:338. [PMID: 39344335 DOI: 10.31083/j.fbl2909338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is an intestinal disorder marked by chronic, recurring inflammation, yet its underlying mechanisms have not been fully elucidated. METHODS The current research dealt with examining the biological impacts of toll-like receptor 2 (TLR2) on dextran sulfate sodium (DSS)-triggered inflammation in the intestines of wild-type (WT) and TLR2-knockout (TLR2-KO) colitis mouse models. To elucidate the protective function of TLR2 in DSS-triggered colitis, RNA-sequencing (RNA-Seq) was carried out to compare the global gene expression data in the gut of WT and TLR2-KO mice. Further, 16S rRNA gene sequencing revealed notable variations in gut microbiota composition between WT and TLR2-KO colitis mice. RESULTS It was revealed that TLR2-KO mice exhibited increased susceptibility to DSS-triggered colitis. RNA-Seq results demonstrated that cell cycle pathway-related genes were notably downregulated in TLR2-KO colitis mice (enrichment score = 30, p < 0.001). 16S rRNA gene sequencing revealed that in comparison to the WT colitis mice, the relative abundance of Marinifilacea (p = 0.006), Rikenellacea (p = 0.005), Desulfovibrionaceae (p = 0.045), Tannerellaceae (p = 0.038), Ruminococcaceae (p = 0.003), Clostridia (p = 0.027), and Mycoplasmataceae (p = 0.0009) was significantly increased at the family level in the gut of TLR2-KO colitis mice. In addition, microbiome diversity-transcriptome collaboration analysis highlighted that the relative abundance of Marinifilaceae was negatively linked to the expression of cell cycle signaling-related genes (p values were all less than 0.001). CONCLUSION Based on these findings, we concluded that TLR2-KO exacerbates DSS-triggered intestinal injury by mitigating cell cycle signaling in a Marinifilaceae-dependent manner.
Collapse
Affiliation(s)
- Yun-Jie Shi
- Department of Colorectal Surgery, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| | - Kai-Wen Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| | - Hai-Nan Zhao
- Department of Radiology Intervention, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433 Shanghai, China
| | - Hao Wang
- Department of Colorectal Surgery, The First Affiliated Hospital (Changhai Hospital), Naval Medical University, 200433 Shanghai, China
| |
Collapse
|
21
|
Lin X, He Y, Liu Y, Zhou H, Xu X, Xu J, Zhou K. CDK1 promotes the phosphorylation of KIFC1 to regulate the tumorgenicity of endometrial carcinoma. J Gynecol Oncol 2024; 35:e68. [PMID: 38456590 PMCID: PMC11390247 DOI: 10.3802/jgo.2024.35.e68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE This study aims to clarify the mechanical action of cyclin-dependent protein kinase 1 (CDK1) in the development of endometrial carcinoma (EMCA), which may be associated with the phosphorylation of kinesin family member C1 (KIFC1) and further activate the PI3K/AKT pathway. METHODS The protein and gene expression of CDK1 in EMCA tissues and tumor cell lines were evaluated by western blot, quantitative polymerase chain reaction, and immunohistochemistry staining. Next, Cell Counting Kit-8 and colony formation assay detected cell survival and proliferation. Cell migration and invasion were measured by Transwell assay. Cell apoptosis and cell cycle were tested by flow cytometry. Immunofluorescence staining of γH2AX was used to evaluate DNA damage, respectively. Subsequently, a co-immunoprecipitation assay was used to detect the interaction between CDK1 and KIFC1. The phosphorylated protein of KIFC1 and PI3K/AKT was detected by western blot. Finally, the effect of CDK1 on the tumor formation of EMCA was evaluated in a nude mouse xenograft model. RESULTS CDK1 was highly expressed in EMCA tumor cell lines and tissues, which contributed to cell survival, proliferation, invasion, and migration, inhibited cell apoptosis, and induced DNA damage of EMCA cells dependent on the phosphorylation of KIFC1. Moreover, the CDK1-KIFC1 axis further activated PI3K/AKT pathway. Finally, CDK1 knockdown repressed tumor formation of EMCA in vivo. CONCLUSION We report that increased CDK1 promotes tumor progression and identified it as a potential prognostic marker and therapeutic target of EMCA.
Collapse
Affiliation(s)
- Xi Lin
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yingying He
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yiming Liu
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Huihao Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaomin Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jingui Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kening Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
22
|
He J, Zhu X, Xu K, Li Y, Zhou J. Network toxicological and molecular docking to investigate the mechanisms of toxicity of agricultural chemical Thiabendazole. CHEMOSPHERE 2024; 363:142711. [PMID: 38964723 DOI: 10.1016/j.chemosphere.2024.142711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Food safety is closely linked to human health. Thiabendazole is widely used as a fungicide and deodorant on agricultural products like vegetables and fruits to prevent fungal infections during transport and storage. This study aims to investigate the toxicity and potential mechanisms of Thiabendazole using novel network toxicology and molecular docking techniques. First, the ADMETlab2.0 and ADMETsar databases, along with literature, predicted Thiabendazole's potential to induce cancer and liver damage. Disease target libraries were constructed using GeneCards and TCMIP databases, while Thiabendazole target libraries were constructed using Swiss Target Prediction and TCMIP databases. The Venn database identified potential targets associated with Thiabendazole-induced cancer and liver injury. Protein-protein interaction (PPI) networks were derived from the STRING database, and gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways were obtained from the DAVID database. Molecular docking assessed the binding affinity between Thiabendazole and core targets. The study revealed 29 potential targets for Thiabendazole-induced cancer and 30 potential targets for liver injury. PPI identified 5 core targets for Thiabendazole-induced cancers and 4 core targets for induced liver injury. KEGG analysis indicated that Thiabendazole might induce gastric and prostate cancer via cyclin-dependent kinase 2 (CDK2) and epidermal growth factor receptor (EGFR) targets, and liver injury through the same targets, with the p53 signaling pathway being central. GO analysis indicated that Thiabendazole-induced cancers and liver injuries were related to mitotic cell cycle G2/M transition and DNA replication. Molecular docking showed stable binding of Thiabendazole with core targets including CDK1, CDK2, EGFR, and checkpoint kinase 1 (CHEK1). These findings suggest Thiabendazole may affect the G2/M transition of the mitotic cell cycle through the p53 signaling pathway, potentially inducing cancer and liver injury. This study provides a theoretical basis for understanding the potential molecular mechanisms underlying Thiabendazole toxicity, aiding in the prevention and treatment of related diseases. Additionally, the network toxicology approach accelerates the elucidation of toxic pathways for uncharacterized agricultural chemicals.
Collapse
Affiliation(s)
- Junhui He
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China; Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Naning, 530022, China.
| | - Xiufang Zhu
- School of Material Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442000, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Ye Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA
| | - Juying Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
23
|
He W, Zhang J, Wen S, Li Y, Shen L, Zhou T, Wen Q, Fan Y. Epigenetic identification of LTBP4 as a putative tumor suppressor in breast cancer. Epigenomics 2024; 16:999-1012. [PMID: 39193795 PMCID: PMC11404579 DOI: 10.1080/17501911.2024.2388017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Aim: To explore the LTBP4's expression, prognostic significance and molecular mechanism of action in breast cancer (BC).Methods: On the basis of omics datasets and experiments, we conducted a synthetical analysis of LTBP4 in BC.Results & conclusion: LTBP4 was downregulated in BC with high promoter methylation and low genetic alteration. DNA methylation was negatively associated with LTBP4 mRNA expression. Higher LTBP4 associated with better survival. LTBP4 was enrichment in extracellular matrix receptor interactions, cell adhesion molecules, cell cycle and MAPK pathway. LTBP4 expression and methylation were positively and negatively associated with tumor infiltrating immune cells, respectively. In conclusion, LTBP4 is a putative tumor suppressor in BC, which expression is regulated by DNA methylation and relates with prognosis.
Collapse
Affiliation(s)
- Wenfeng He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, PR China
| | - Jingheng Zhang
- Department of Oncology, The People’s Hospital of Luzhou, 646000, Luzhou, PR China
| | - Siyuan Wen
- Faculty of Clinical Medicine, Southwest Medical University, 646000, Luzhou, PR China
| | - Ying Li
- Faculty of Clinical Medicine, Southwest Medical University, 646000, Luzhou, PR China
| | - Lin Shen
- Faculty of Clinical Medicine, Southwest Medical University, 646000, Luzhou, PR China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, PR China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, PR China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, PR China
| |
Collapse
|
24
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
25
|
Yin X, Zhang H, Wang J, Bian Y, Jia Q, Yang Z, Shan C. lncRNA FLJ20021 regulates CDK1-mediated PANoptosis in a ZBP1-dependent manner to increase the sensitivity of laryngeal cancer-resistant cells to cisplatin. Discov Oncol 2024; 15:265. [PMID: 38967843 PMCID: PMC11226695 DOI: 10.1007/s12672-024-01134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
In this study, we investigated the role of the newly discovered lncRNA FLJ20021 in laryngeal cancer (LC) and its resistance to cisplatin treatment. We initially observed elevated lncRNA FLJ20021 levels in cisplatin-resistant LC cells (Hep-2/R). To explore its function, we transfected lncRNA FLJ20021 and cyclin-dependent kinase 1 (CDK1) into Hep-2/R cells, assessing their impact on cisplatin sensitivity and PANoptosis. Silencing lncRNA FLJ20021 effectively reduced cisplatin resistance and induced PANoptosis in Hep-2/R cells. Mechanistically, lncRNA FLJ20021 primarily localized in the nucleus and interacted with CDK1 mRNA, thereby enhancing its transcriptional stability. CDK1, in turn, promoted panapoptosis in a ZBP1-dependent manner, which helped overcome cisplatin resistance in Hep-2/R cells. This study suggests that targeting lncRNA FLJ20021 can be a promising approach to combat cisplatin resistance in laryngeal cancer by regulating CDK1 and promoting PANoptosis via the ZBP1 pathway. These findings open up possibilities for lncRNA-based therapies in the context of laryngeal cancer.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Haizhong Zhang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Jingmiao Wang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Yanrui Bian
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Qiaojing Jia
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Zhichao Yang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Chunguang Shan
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
26
|
Gao L, Shay C, Teng Y. Cell death shapes cancer immunity: spotlighting PANoptosis. J Exp Clin Cancer Res 2024; 43:168. [PMID: 38877579 PMCID: PMC11179218 DOI: 10.1186/s13046-024-03089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.
Collapse
Affiliation(s)
- Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
27
|
Song Q, Fan Y, Zhang H, Wang N. Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death. Cytokine Growth Factor Rev 2024; 77:15-29. [PMID: 38548490 DOI: 10.1016/j.cytogfr.2024.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024]
Abstract
Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (e.g., the production of IFN-I and pro-inflammatory cytokines) and -independent (e.g., the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Yuhang Fan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| |
Collapse
|
28
|
Liu Z, Sun L, Peng X, Zhu J, Wu C, Zhu W, Huang C, Zhu Z. PANoptosis subtypes predict prognosis and immune efficacy in gastric cancer. Apoptosis 2024; 29:799-815. [PMID: 38347337 DOI: 10.1007/s10495-023-01931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 04/28/2024]
Abstract
PANoptosis is a form of inflammatory programmed cell death that is regulated by the PANoptosome. This PANoptosis possesses key characteristics of pyroptosis, apoptosis, and necroptosis, yet cannot be fully explained by any of these cell death modes. The unique nature of this cell death mechanism has garnered significant interest. However, the specific role of PANoptosis-associated features in gastric cancer (GC) is still uncertain. Patients were categorized into different PAN subtypes based on the expression of genes related to the PANoptosome. We conducted a systematic analysis to investigate the variations in prognosis and tumor microenvironment (TME) among these subtypes. Furthermore, we developed a risk score, called PANoptosis-related risk score (PANS), which is constructed from genes associated with the PANoptosis. We comprehensively analyzed the correlation between PANS and GC prognosis, TME, immunotherapy efficacy and chemotherapeutic drug sensitivity. Additionally, we performed in vitro experiments to validate the impact of Keratin 7 (KRT7) on GC. We identified two PAN subtypes (PANcluster A and B). PANoptosome genes were highly expressed in PANcluster A. PANcluster A has the characteristics of favorable prognosis, abundant infiltration of anti-tumor lymphocytes, and sensitivity to immunotherapy, thus it was categorized as an immune-inflammatory type. Meanwhile, our constructed PANS can effectively predict the prognosis and immune efficacy of GC. Patients with low PANS have a good prognosis, and have the characteristics of high tumor mutation load (TMB), high microsatellite instability (MSI), low tumor purity and sensitivity to immunotherapy. In addition, PANS can also identify suitable populations for different chemotherapy drugs. Finally, we confirmed that KRT7 is highly expressed in GC. Knocking down the expression of KRT7 significantly weakens the proliferation and migration abilities of GC cells. The models based on PANoptosis signature help to identify the TME features of GC and can effectively predict the prognosis and immune efficacy of GC. Furthermore, the experimental verification results of KRT7 provide theoretical support for anti-tumor treatment.
Collapse
Affiliation(s)
- Zitao Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liang Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Changlei Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wenjie Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
29
|
Wei L, Lv Q, Wang Q, Zhu Y, Ding F. Potential molecular mechanisms of Huangqin Tang for liver cancer treatment by network pharmacology and molecular dynamics simulations. Comput Methods Biomech Biomed Engin 2024:1-13. [PMID: 38785131 DOI: 10.1080/10255842.2024.2353641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE This study aims to investigate the mechanism of Huangqin Tang in treating liver cancer. METHODS Active ingredients and corresponding targets of Huangqin Tang were obtained from the Traditional Chinese Medicine Systems Pharmacology Database. Differentially expressed genes in liver cancer were identified from mRNA expression data. A protein-protein interaction (PPI) network was constructed using differentially expressed genes and Huangqin Tang targets. Random walk with restart (RWR) analysis was performed on the PPI network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted. A drug-active ingredient-gene interaction network was established, and molecular docking and molecular dynamics simulations were performed. Finally, the stability of binding between CDK1 and oroxylin was tested according to cellular thermal shift assay (CETSA). RESULTS 160 active ingredients, 239 targets, and 1093 differentially expressed genes were identified. RWR analysis identified 10 potential targets for liver cancer. Enrichment analysis revealed protein kinase regulator activity and Steroid hormone biosynthesis as significant pathways. Molecular docking suggested a stable complex between oroxylin A and CDK1. CETSA demonstrated that the combination of oroxylin A and CDK1 increased the stability of CDK1, and the combination efficiency was high. CONCLUSION Huangqin Tang may treat liver cancer by targeting CDK1 with oroxylin A. Protein kinase regulator activity and Steroid hormone biosynthesis pathways may play a role in liver cancer treatment with Huangqin Tang. This study provides insight into the mechanistic basis of Huangqin Tang for liver cancer treatment.
Collapse
Affiliation(s)
- Liliang Wei
- Department of Traditional Chinese Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Qiuqiong Lv
- Department of Clinical Laboratory, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Qiong Wang
- Department of Oncology, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Yibo Zhu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Feng Ding
- Department of Hepatic Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
30
|
Xia H, Lin J, Wang Y, Yu J, Wang H, Cheng C, Yang Y, Bian T, Wu Y, Liu Q. Stenotrophomonas maltophilia contributes to smoking-related emphysema through IRF1-triggered PANoptosis of alveolar epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123913. [PMID: 38582189 DOI: 10.1016/j.envpol.2024.123913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Cigarette smoke (CS), the main source of indoor air pollution and the primary risk factor for respiratory diseases, contains chemicals that can perturb microbiota through antibiotic effects. Although smoking induces a disturbance of microbiota in the lower respiratory tract, whether and how it contributes to initiation or promotion of emphysema are not well clarified. Here, we demonstrated an aberrant microbiome in lung tissue of patients with smoking-related COPD. We found that Stenotrophomonas maltophilia (S. maltophilia) was expanded in lung tissue of patients with smoking-related COPD. We revealed that S. maltophilia drives PANoptosis in alveolar epithelial cells and represses formation of alveolar organoids through IRF1 (interferon regulatory factor 1). Mechanistically, IRF1 accelerated transcription of ZBP1 (Z-DNA Binding Protein 1) in S. maltophilia-infected alveolar epithelial cells. Elevated ZBP1 served as a component of the PANoptosome, which triggered PANoptosis in these cells. By using of alveolar organoids infected by S. maltophilia, we found that targeting of IRF1 mitigated S. maltophilia-induced injury of these organoids. Moreover, the expansion of S. maltophilia and the expression of IRF1 negatively correlated with the progression of emphysema. Thus, the present study provides insights into the mechanism of lung dysbiosis in smoking-related COPD, and presents a potential target for mitigation of COPD progression.
Collapse
Affiliation(s)
- Haibo Xia
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jinyan Yu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tao Bian
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Yan Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Qizhan Liu
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
31
|
Huang Y, Chen D, Bai Y, Zhang Y, Zheng Z, Fu Q, Yi B, Jiang Y, Zhang Z, Zhu J. ESCO2's oncogenic role in human tumors: a pan-cancer analysis and experimental validation. BMC Cancer 2024; 24:452. [PMID: 38605349 PMCID: PMC11007995 DOI: 10.1186/s12885-024-12213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2) is involved in the mitotic S-phase adhesins acetylation and is responsible for bridging two sister chromatids. However, present ESCO2 cancer research is limited to a few cancers. No systematic pan-cancer analysis has been conducted to investigate its role in diagnosis, prognosis, and effector function. METHODS We thoroughly examined the ESCO2 carcinogenesis in pan-cancer by combining public databases such as The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx), UALCAN and Tumor Immune Single-cell Hub (TISCH). The analysis includes differential expression analysis, survival analysis, cellular effector function, gene mutation, single cell analysis, and tumor immune cell infiltration. Furthermore, we confirmed ESCO2's impacts on clear cell renal cell carcinoma (ccRCC) cells' proliferative and invasive capacities in vitro. RESULTS In our study, 30 of 33 cancer types exhibited considerably greater levels of ESCO2 expression in tumor tissue using TCGA and GTEx databases, whereas acute myeloid leukemia (LAML) exhibited significantly lower levels. Kaplan-Meier survival analyses in adrenocortical carcinoma (ACC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), mesothelioma (MESO), and pancreatic adenocarcinoma (PAAD) demonstrated that tumor patients with high ESCO2 expression have short survival periods. However, in thymoma (THYM), colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ), ESCO2 was a favorable prognostic factor. Moreover, ESCO2 expression positively correlates with tumor stage and tumor size in several cancers, including LIHC, KIRC, KIRP and LUAD. Function analysis revealed that ESCO2 participates in mitosis, cell cycle, DNA damage repair, and other processes. CDK1 was identified as a downstream gene regulated by ESCO2. Furthermore, ESCO2 might also be implicated in immune cell infiltration. Finally, ESCO2'S knockdown significantly inhibited the A498 and T24 cells' proliferation, invasion, and migration. CONCLUSIONS In conclusion, ESCO2 is a possible pan-cancer biomarker and oncogene that can reliably predict the prognosis of cancer patients. ESCO2 was also implicated in the cell cycle and proliferation regulation. In a nutshell, ESCO2 is a therapeutically viable and dependable target.
Collapse
Affiliation(s)
- Yue Huang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dapeng Chen
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300192, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Zhiwen Zheng
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qingfeng Fu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bocun Yi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuchen Jiang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
32
|
Hao Y, Xie F, He J, Gu C, Zhao Y, Luo W, Song X, Shen J, Yu L, Han Z, He J. PLA inhibits TNF-α-induced PANoptosis of prostate cancer cells through metabolic reprogramming. Int J Biochem Cell Biol 2024; 169:106554. [PMID: 38408537 DOI: 10.1016/j.biocel.2024.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Previous studies have shown that phenyllactic acid (alpha-Hydroxyhydrocinnamic acid, 2-Hydroxy-3-phenylpropionic acid, PLA), a type of organic acid metabolite, has excellent diagnostic efficacy when used to differentiate between prostate cancer, benign prostatic hyperplasia, and prostatitis. This research aims to explore the molecular mechanism by which PLA influences the PANoptosis of prostate cancer (PCa) cell lines. First, we found that PLA was detected in all prostate cancer cell lines (PC-3, PC-3 M, DU145, LNCAP). Further experiments showed that the addition of PLA to prostate cancer cells could promote ATP generation, enhance cysteine desulfurase (NFS1) expression, and reduce tumor necrosis factor alpha (TNF-α) levels, thereby inhibiting apoptosis in prostate cancer cells. Notably, overexpression of NFS1 can inhibit the binding of TNF-α to serpin mRNA binding protein 1 (SERBP1), suggesting that NFS1 competes with TNF-α for binding to SERBP1. Knockdown of SERBP1 significantly reduced the level of small ubiquity-related modifier (SUMO) modification of TNF-α. This suggests that NFS1 reduces the SUMO modification of TNF-α by competing with SERBP1, thereby reducing the expression and stability of TNF-α and ultimately inhibiting apoptosis in prostate cancer cell lines. In conclusion, PLA inhibits TNF-α induced panapoptosis of prostate cancer cells through metabolic reprogramming, providing a new idea for targeted treatment of prostate cancer.
Collapse
Affiliation(s)
- Yinghui Hao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Fangmei Xie
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jieyi He
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chenqiong Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Zhao
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Xiaoyu Song
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Li Yu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Zeping Han
- Central Laboratory of Panyu Central Hospital, Guangzhou, China.
| | - Jinhua He
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China; Central Laboratory of Panyu Central Hospital, Guangzhou, China; Rehabilitation Medicine Institute of Panyu District, Guangzhou, China.
| |
Collapse
|
33
|
Ren Y, Liang H, Huang Y, Miao Y, Li R, Qiang J, Wu L, Qi J, Li Y, Xia Y, Huang L, Wang S, Kong X, Zhou Y, Zhang Q, Zhu G. Key candidate genes and pathways in T lymphoblastic leukemia/lymphoma identified by bioinformatics and serological analyses. Front Immunol 2024; 15:1341255. [PMID: 38464517 PMCID: PMC10920334 DOI: 10.3389/fimmu.2024.1341255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL)/T-cell lymphoblastic lymphoma (T-LBL) is an uncommon but highly aggressive hematological malignancy. It has high recurrence and mortality rates and is challenging to treat. This study conducted bioinformatics analyses, compared genetic expression profiles of healthy controls with patients having T-ALL/T-LBL, and verified the results through serological indicators. Data were acquired from the GSE48558 dataset from Gene Expression Omnibus (GEO). T-ALL patients and normal T cells-related differentially expressed genes (DEGs) were investigated using the online analysis tool GEO2R in GEO, identifying 78 upregulated and 130 downregulated genes. Gene Ontology (GO) and protein-protein interaction (PPI) network analyses of the top 10 DEGs showed enrichment in pathways linked to abnormal mitotic cell cycles, chromosomal instability, dysfunction of inflammatory mediators, and functional defects in T-cells, natural killer (NK) cells, and immune checkpoints. The DEGs were then validated by examining blood indices in samples obtained from patients, comparing the T-ALL/T-LBL group with the control group. Significant differences were observed in the levels of various blood components between T-ALL and T-LBL patients. These components include neutrophils, lymphocyte percentage, hemoglobin (HGB), total protein, globulin, erythropoietin (EPO) levels, thrombin time (TT), D-dimer (DD), and C-reactive protein (CRP). Additionally, there were significant differences in peripheral blood leukocyte count, absolute lymphocyte count, creatinine, cholesterol, low-density lipoprotein, folate, and thrombin times. The genes and pathways associated with T-LBL/T-ALL were identified, and peripheral blood HGB, EPO, TT, DD, and CRP were key molecular markers. This will assist the diagnosis of T-ALL/T-LBL, with applications for differential diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yansong Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yali Huang
- Clinical Laboratory of Zhengning County People's Hospital, Qingyang, Gansu, China
| | - Yuyang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ruihua Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Junlian Qiang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Lihong Wu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jinfeng Qi
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ying Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Yonghui Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lunhui Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shoulei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaodong Kong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
34
|
Chen H, Li J, Pan X, Hu Z, Cai J, Xia Z, Qi N, Liao S, Spritzer Z, Bai Y, Sun M. A novel avian intestinal epithelial cell line: its characterization and exploration as an in vitro infection culture model for Eimeria species. Parasit Vectors 2024; 17:25. [PMID: 38243250 PMCID: PMC10799501 DOI: 10.1186/s13071-023-06090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/10/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The gastrointestinal epithelium plays an important role in directing recognition by the immune system, and epithelial cells provide the host's front line of defense against microorganisms. However, it is difficult to cultivate avian intestinal epithelial cells in vitro for lengthy periods, and the lack of available cell lines limits the research on avian intestinal diseases and nutritional regulation. Chicken coccidiosis is a serious intestinal disease that causes significant economic losses in the poultry industry. In vitro, some cell line models are beneficial for the development of Eimeria species; however, only partial reproduction can be achieved. Therefore, we sought to develop a new model with both the natural host and epithelial cell phenotypes. METHODS In this study, we use the SV40 large T antigen (SV40T) gene to generate an immortalized cell line. Single-cell screening technology was used to sort positive cell clusters with epithelial characteristics for passage. Polymerase chain reaction (PCR) identification, immunofluorescence detection, and bulk RNA sequencing analysis and validation were used to check the expression of epithelial cell markers and characterize the avian intestinal epithelial cell line (AIEC). AIECs were infected with sporozoites, and their ability to support the in vitro endogenous development of Eimeria tenella was assessed. RESULTS This novel AIEC consistently expressed intestinal epithelial markers. Transcriptome assays revealed the upregulation of genes associated with proliferation and downregulation of genes associated with apoptosis. We sought to compare E. tenella infection between an existing fibroblast cell line (DF-1) and several passages of AIEC and found that the invasion efficiency was significantly increased relative to that of chicken fibroblast cell lines. CONCLUSIONS An AIEC will serve as a better in vitro research model, especially in the study of Eimeria species development and the mechanisms of parasite-host interactions. Using AIEC helps us understand the involvement of intestinal epithelial cells in the digestive tract and the immune defense of the chickens, which will contribute to the epithelial innate defense against microbial infection in the gastrointestinal tract.
Collapse
Affiliation(s)
- Huifang Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoting Pan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhichao Hu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Jianfeng Cai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zijie Xia
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zachary Spritzer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinshan Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
35
|
Pandeya A, Kanneganti TD. Therapeutic potential of PANoptosis: innate sensors, inflammasomes, and RIPKs in PANoptosomes. Trends Mol Med 2024; 30:74-88. [PMID: 37977994 PMCID: PMC10842719 DOI: 10.1016/j.molmed.2023.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
The innate immune system initiates cell death pathways in response to pathogens and cellular stress. Cell death can be either non-lytic (apoptosis) or lytic (PANoptosis, pyroptosis, and necroptosis). PANoptosis has been identified as an inflammatory, lytic cell death pathway driven by caspases and RIPKs that is regulated by PANoptosome complexes, making it distinct from other cell death pathways. Several PANoptosome complexes (including ZBP1-, AIM2-, RIPK1-, and NLRP12-PANoptosomes) have been characterized to date. Furthermore, PANoptosis is implicated in infectious and inflammatory diseases, cancers, and homeostatic perturbations. Therefore, targeting its molecular components offers significant potential for therapeutic development. This review covers PANoptosomes and their assembly, PANoptosome-mediated cell death mechanisms, and ongoing progress in developing therapeutics that target PANoptosis.
Collapse
Affiliation(s)
- Ankit Pandeya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
36
|
Ocansey DKW, Qian F, Cai P, Ocansey S, Amoah S, Qian Y, Mao F. Current evidence and therapeutic implication of PANoptosis in cancer. Theranostics 2024; 14:640-661. [PMID: 38169587 PMCID: PMC10758053 DOI: 10.7150/thno.91814] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Regulated cell death (RCD) is considered a critical pathway in cancer therapy, contributing to eliminating cancer cells and influencing treatment outcomes. The application of RCD in cancer treatment is marked by its potential in targeted therapy and immunotherapy. As a type of RCD, PANoptosis has emerged as a unique form of programmed cell death (PCD) characterized by features of pyroptosis, apoptosis, and necroptosis but cannot be fully explained by any of these pathways alone. It is regulated by a multi-protein complex called the PANoptosome. As a relatively new concept first described in 2019, PANoptosis has been shown to play a role in many diseases, including cancer, infection, and inflammation. This study reviews the application of PCD in cancer, particularly the emergence and implication of PANoptosis in developing therapeutic strategies for cancer. Studies have shown that the characterization of PANoptosis patterns in cancer can predict survival and response to immunotherapy and chemotherapy, highlighting the potential for PANoptosis to be used as a therapeutic target in cancer treatment. It also plays a role in limiting the spread of cancer cells. PANoptosis allows for the elimination of cancer cells by multiple cell death pathways and has the potential to address various challenges in cancer treatment, including drug resistance and immune evasion. Moreover, active investigation of the mechanisms and potential therapeutic agents that can induce PANoptosis in cancer cells is likely to yield effective cancer treatments and improve patient outcomes. Research on PANoptosis is still ongoing, but it is a rapidly evolving field with the potential to lead to new treatments for various diseases, including cancer.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, Jiangsu, P.R. China
- Directorate of University Health Services, University of Cape Coast, Cape Coast CC0959347, Central Region, Ghana
| | - Fei Qian
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, Jiangsu, P.R. China
| | - Peipei Cai
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, Jiangsu, P.R. China
| | - Stephen Ocansey
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Central Region, Ghana
| | - Samuel Amoah
- Directorate of University Health Services, University of Cape Coast, Cape Coast CC0959347, Central Region, Ghana
| | - Yingchen Qian
- Department of Pathology, Nanjing Jiangning Hospital, Nanjing 211100, Jiangsu, P.R. China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, Jiangsu, P.R. China
| |
Collapse
|
37
|
Yıldırım MR, Kırbaş OK, Abdik H, Şahin F, Avşar Abdik E. The emerging role of breast cancer derived extracellular vesicles-mediated intercellular communication in ovarian cancer progression and metastasis. Med Oncol 2023; 41:30. [PMID: 38148465 DOI: 10.1007/s12032-023-02285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Breast cancer is one of the most occurring cancer types in women worldwide and metastasizes to several organs such as bone, lungs, liver, brain, and ovaries. Extracellular vesicles (EVs) mediate intercellular signaling which has a profound effect on tumor development and metastasis. Recent developments in the field of EVs provide an opportunity to investigate the roles of EVs released from tumor cells in metastasis. In this study, we compared the effects of metastatic breast cancer-derived EVs on both nonluteinized granulosa HGrC1 and ovarian cancer OVCAR-3 cells in terms of proliferation, invasion, apoptosis, and gene expression levels. EVs were isolated from the culture medium of metastatic breast cancer cell line MDA-MB-231 by ultracentrifugation. Cell proliferation, apoptosis, cell cycle, invasion, and cellular uptake analysis were performed to clarify the roles of tumor-derived EVs in both cells. 6.85 × 108 nanoparticles of BCD-EVs were markedly increased cell proliferation as well as invasion capacity. Exposing the cells with BCD-EVs for 24 h, resulted in an accumulation of both cells in G2/M phase as determined by flow cytometry. The apoptosis assay results were consistent with cell proliferation and cell cycle results. The uptake of the BCD-EVs was efficiently internalized by both cells. In addition, marked variations in fatty acid composition between cells were observed. BCD-EVs appeared new fatty acids in HGrC1. Besides, BCD-EVs upregulated epithelial-mesenchymal transition (EMT) and proliferation-related genes. In conclusion, an environment of tumor-derived EVs changes the cellular phenotype of cancer and noncancerous cells and may lead to tumor progression and metastasis.
Collapse
Affiliation(s)
- Melis Rahime Yıldırım
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University, 34303, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Department of Genomics, Faculty of Aquatic Sciences, Istanbul University, 34134, Istanbul, Turkey.
| |
Collapse
|
38
|
Wang L, Zhu Y, Zhang L, Guo L, Wang X, Pan Z, Jiang X, Wu F, He G. Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death Dis 2023; 14:851. [PMID: 38129399 PMCID: PMC10739961 DOI: 10.1038/s41419-023-06370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Pyroptosis, apoptosis, and necroptosis are mainly programmed cell death (PCD) pathways for host defense and homeostasis. PANoptosis is a newly distinct inflammatory PCD pathway that is uniquely regulated by multifaceted PANoptosome complexes and highlights significant crosstalk and coordination among pyroptosis (P), apoptosis (A), and/or necroptosis(N). Although some studies have focused on the possible role of PANpoptosis in diseases, the pathogenesis of PANoptosis is complex and underestimated. Furthermore, the progress of PANoptosis and related agonists or inhibitors in disorders has not yet been thoroughly discussed. In this perspective, we provide perspectives on PANoptosome and PANoptosis in the context of diverse pathological conditions and human diseases. The treatment targeting on PANoptosis is also summarized. In conclusion, PANoptosis is involved in plenty of disorders including but not limited to microbial infections, cancers, acute lung injury/acute respiratory distress syndrome (ALI/ARDS), ischemia-reperfusion, and organic failure. PANoptosis seems to be a double-edged sword in diverse conditions, as PANoptosis induces a negative impact on treatment and prognosis in disorders like COVID-19 and ALI/ARDS, while PANoptosis provides host protection from HSV1 or Francisella novicida infection, and kills cancer cells and suppresses tumor growth in colorectal cancer, adrenocortical carcinoma, and other cancers. Compounds and endogenous molecules focused on PANoptosis are promising therapeutic strategies, which can act on PANoptosomes-associated members to regulate PANoptosis. More researches on PANoptosis are needed to better understand the pathology of human conditions and develop better treatment.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yanghui Zhu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Linghong Guo
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Fengbo Wu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Gu He
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
39
|
Wei JB, Zeng XC, Ji KR, Zhang LY, Chen XM. Identification of Key Genes and Related Drugs of Adrenocortical Carcinoma by Integrated Bioinformatics Analysis. Horm Metab Res 2023. [PMID: 38109896 DOI: 10.1055/a-2209-0771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Adrenocortical carcinoma (ACC) is a malignant carcinoma with an extremely poor prognosis, and its pathogenesis remains to be understood to date, necessitating further investigation. This study aims to discover biomarkers and potential therapeutic agents for ACC through bioinformatics, enhancing clinical diagnosis and treatment strategies. Differentially expressed genes (DEGs) between ACC and normal adrenal cortex were screened out from the GSE19750 and GSE90713 datasets available in the GEO database. An online Venn diagram tool was utilized to identify the common DEGs between the two datasets. The identified DEGs were subjected to functional assessment, pathway enrichment, and identification of hub genes by performing the protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The differences in the expressions of hub genes between ACC and normal adrenal cortex were validated at the GEPIA2 website, and the association of these genes with the overall patient survival was also assessed. Finally, on the QuartataWeb website, drugs related to the identified hub genes were determined. A total of 114 DEGs, 10 hub genes, and 69 known drugs that could interact with these genes were identified. The GO and KEGG analyses revealed a close association of the identified DEGs with cellular signal transduction. The 10 hub genes identified were overexpressed in ACC, in addition to being significantly associated with adverse prognosis in ACC. Three genes and the associated known drugs were identified as potential targets for ACC treatment.
Collapse
Affiliation(s)
- Jian-Bin Wei
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiao-Chun Zeng
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kui-Rong Ji
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Ling-Yi Zhang
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Xiao-Min Chen
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Xiong Y. The emerging role of PANoptosis in cancer treatment. Biomed Pharmacother 2023; 168:115696. [PMID: 37837884 DOI: 10.1016/j.biopha.2023.115696] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
Programmed cell death (PCD) is a key mechanism for the study of anticancer drugs and has a significant impact on the development and management of cancer. A growing amount of data indicates that different kinds of PCD, particularly pyroptosis, apoptosis, and necroptosis, interact closely. Recent research has revealed the existence of the distinct inflammatory PCD modality known as PANoptosis, which is controlled by complex PANoptosome complexes built by combining elements from different PCD pathways. No single PCD route is sufficient to explain all of the physiologic effects seen in PANoptosis. Numerous studies have demonstrated that PANoptosis can successfully stop cancer cells from growing, proliferating, and developing drug resistance. As a result, it has changed the focus of targeted anticancer therapy. In this review, we outlined the molecular processes of PANoptosis activation and modulation as well as the mechanisms of innate immune cell death. In order to provide a theoretical foundation for the development of drugs targeting PANoptosis as an anti-cancer target, we also highlight the PANoptosomes discovered to date and give an overview of the implications of PANoptosis in cancer treatment.
Collapse
Affiliation(s)
- Yongai Xiong
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province, and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International, Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
41
|
Zhu M, Liu D, Liu G, Zhang M, Pan F. Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules 2023; 13:1715. [PMID: 38136586 PMCID: PMC10741419 DOI: 10.3390/biom13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) is a complex disease and the cause of one of the highest cancer-related mortalities in men worldwide. Annually, more than 1.2 million new cases are diagnosed globally, accounting for 7% of newly diagnosed cancers in men. Programmed cell death (PCD) plays an essential role in removing infected, functionally dispensable, or potentially neoplastic cells. Apoptosis is the canonical form of PCD with no inflammatory responses elicited, and the close relationship between apoptosis and PCa has been well studied. Necroptosis and pyroptosis are two lytic forms of PCD that result in the release of intracellular contents, which induce inflammatory responses. An increasing number of studies have confirmed that necroptosis and pyroptosis are also closely related to the occurrence and progression of PCa. Recently, a novel form of PCD named PANoptosis, which is a combination of apoptosis, necroptosis, and pyroptosis, revealed the attached connection among them and may be a promising target for PCa. Apoptosis, necroptosis, pyroptosis, and PANoptosis are good examples to better understand the mechanism underlying PCD in PCa. This review aims to summarize the emerging roles and therapeutic potential of apoptosis, necroptosis, pyroptosis, and PANoptosis in PCa.
Collapse
Affiliation(s)
- Minggang Zhu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Guoqiang Liu
- Urology Department of Guangzhou First People’s Hospital, Guangzhou 510000, China;
| | - Mingrui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| |
Collapse
|
42
|
Yin M, Wang Y, Ren X, Han M, Li S, Liang R, Wang G, Gang X. Identification of key genes and pathways in adrenocortical carcinoma: evidence from bioinformatic analysis. Front Endocrinol (Lausanne) 2023; 14:1250033. [PMID: 38053725 PMCID: PMC10694291 DOI: 10.3389/fendo.2023.1250033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with poor prognosis. The disease originates from the cortex of adrenal gland and lacks effective treatment. Efforts have been made to elucidate the pathogenesis of ACC, but the molecular mechanisms remain elusive. To identify key genes and pathways in ACC, the expression profiles of GSE12368, GSE90713 and GSE143383 were downloaded from the Gene Expression Omnibus (GEO) database. After screening differentially expressed genes (DEGs) in each microarray dataset on the basis of cut-off, we identified 206 DEGs, consisting of 72 up-regulated and 134 down-regulated genes in three datasets. Function enrichment analyses of DEGs were performed by DAVID online database and the results revealed that the DEGs were mainly enriched in cell cycle, cell cycle process, mitotic cell cycle, response to oxygen-containing compound, progesterone-mediated oocyte maturation, p53 signaling pathway. The STRING database was used to construct the protein-protein interaction (PPI) network, and modules analysis was performed using Cytoscape. Finally, we filtered out eight hub genes, including CDK1, CCNA2, CCNB1, TOP2A, MAD2L1, BIRC5, BUB1 and AURKA. Biological process analysis showed that these hub genes were significantly enriched in nuclear division, mitosis, M phase of mitotic cell cycle and cell cycle process. Violin plot, Kaplan-Meier curve and stage plot of these hub genes confirmed the reliability of the results. In conclusion, the results in this study provided reliable key genes and pathways for ACC, which will be useful for ACC mechanisms, diagnosis and candidate targeted treatment.
Collapse
Affiliation(s)
- Mengsha Yin
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Ruishuang Liang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Zhang C, Xia J, Liu X, Li Z, Gao T, Zhou T, Hu K. Identifying prognostic genes related PANoptosis in lung adenocarcinoma and developing prediction model based on bioinformatics analysis. Sci Rep 2023; 13:17956. [PMID: 37864090 PMCID: PMC10589340 DOI: 10.1038/s41598-023-45005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023] Open
Abstract
Cell death-related genes indicate prognosis in cancer patients. PANoptosis is a newly observed form of cell death that researchers have linked to cancer cell death and antitumor immunity. Even so, its significance in lung adenocarcinomas (LUADs) has yet to be elucidated. We extracted and analyzed data on mRNA gene expression and clinical information from public databases in a systematic manner. These data were utilized to construct a reliable risk prediction model for six regulators of PANoptosis. The Gene Expression Omnibus (GEO) database validated six genes with risk characteristics. The prognosis of LUAD patients could be accurately estimated by the six-gene-based model: NLR family CARD domain-containing protein 4 (NLRC4), FAS-associated death domain protein (FADD), Tumor necrosis factor receptor type 1-associated DEATH domain protein (TRADD), Receptor-interacting serine/threonine-protein kinase 1 (RIPK1), Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), and Mixed lineage kinase domain-like protein (MLKL). Group of higher risk and Cluster 2 indicated a poor prognosis as well as the reduced expression of immune infiltrate molecules and human leukocyte antigen. Distinct expression of PANoptosis-related genes (PRGs) in lung cancer cells was verified using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we evaluated the relationship between PRGs and somatic mutations, tumor immune dysfunction exclusion, tumor stemness indices, and immune infiltration. Using the risk signature, we conducted analyses including nomogram construction, stratification, prediction of small-molecule drug response, somatic mutations, and chemotherapeutic response.
Collapse
Affiliation(s)
- Chi Zhang
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangnan Xia
- College of Pharmacy, Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Xiujuan Liu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zexing Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tangke Gao
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Zhou
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
44
|
Zhang X, Wu W, Li X, He F, Zhang L. SPAG5 promotes the proliferation, migration, invasion, and epithelial-mesenchymal transformation of colorectal cancer cells by activating the PI3K/AKT signaling pathway. CHINESE J PHYSIOL 2023; 66:365-371. [PMID: 37929348 DOI: 10.4103/cjop.cjop-d-22-00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Colorectal cancer (CRC) is a cancer that occurs in the rectum or colon with a high incidence. Sperm-associated antigen 5 (SPAG5), a gene that regulates cell division, has been observed highly expressed in a variety of cancers, but its role in CRC is unclear. This study aimed to investigate the regulatory role of SPAG5 in CRC. The expression of SPAG5 in multiple cancers and normal tissues was predicted by The Cancer Genome Atlas and Tumor Immune Estimation Resource, and the expression of SPAG5 in human normal intestinal epithelial cells NCM460 and human CRC cell lines Caco2, HT29, SW480, and LOVO was verified by western blotting (WB). The effects of silencing SPAG5 on cell viability, proliferation, and apoptosis were then investigated by cell counting kit-8, WB, and flow cytometry. The effects of silencing SPAG5 on cell migration and invasion were investigated by scratch assay and transwell assay. Finally, the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and AKT in cells were detected by WB. The results showed that SPAG5 was highly expressed in CRC and was verified by WB. Silencing of SPAG5 inhibited cell viability and proliferation and increased the cell apoptosis rate. Furthermore, both cell invasion and migration abilities were suppressed by the low expression of SPAG5. Finally, WB results found that the phosphorylation levels of PI3K and AKT were reduced after SPAG5 silencing. In summary, the results showed that SPAG5 can promote the proliferation and invasion of CRC cells by targeting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xuelian Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Weiyu Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaohui Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng He
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lei Zhang
- Department of Traditional Chinese Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
45
|
Maelfait J, Rehwinkel J. The Z-nucleic acid sensor ZBP1 in health and disease. J Exp Med 2023; 220:e20221156. [PMID: 37450010 PMCID: PMC10347765 DOI: 10.1084/jem.20221156] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Nucleic acid sensing is a central process in the immune system, with far-reaching roles in antiviral defense, autoinflammation, and cancer. Z-DNA binding protein 1 (ZBP1) is a sensor for double-stranded DNA and RNA helices in the unusual left-handed Z conformation termed Z-DNA and Z-RNA. Recent research established ZBP1 as a key upstream regulator of cell death and proinflammatory signaling. Recognition of Z-DNA/RNA by ZBP1 promotes host resistance to viral infection but can also drive detrimental autoinflammation. Additionally, ZBP1 has interesting roles in cancer and other disease settings and is emerging as an attractive target for therapy.
Collapse
Affiliation(s)
- Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Huang R, Guo L, Chen C, Xiang Y, Li G, Zheng J, Wu Y, Yuan X, Zhou J, Gao W, Xiang S. System analysis identifies UBE2C as a novel oncogene target for adrenocortical carcinoma. PLoS One 2023; 18:e0289418. [PMID: 37535572 PMCID: PMC10399895 DOI: 10.1371/journal.pone.0289418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Ubiquitin Conjugating Enzyme 2C (UBE2C) is an emerging target gene for tumor progression. However, the tumorigenic effect and mechanism of UBE2C in adrenocortical carcinoma (ACC) remains unclear. Systematic investigation of the tumorigenic effect of UBE2C may help in understanding its prognostic value in adrenocortical carcinoma. First, we exploited the intersection on DFS-related genes, OS-related genes, highly expressed genes in adrenocortical carcinoma as well as differentially expressed genes (DEGs) between tumor and normal, and then obtained 20 candidate genes. UBE2C was identified to be the most significant DEG between tumor and normal. It is confirmed that high expression of UBE2C was strongly associated with poor prognosis in patients with ACC by analyzing RNA-seq data of ACC obtained from the Cancer Genome Atlas (TCGA) database implemented by ACLBI Web-based Tools. UBE2C expression could also promote m6A modification and stemness in ACC. We found that UBE2C expression is positively associated with the expression of CDC20, CDK1, and CCNA2 using ACLBI Web-based Tools, indicated the hyperactive cell cycle progression present in ACC with high UBE2C expression. In addition, UBE2C knockdown could significantly inhibit the proliferation, migration, invasion, EMT of adrenocortical carcinoma cells as well as the cell cycle progression in vitro. Notably, pan-cancer analysis also identified UBE2C as an oncogene in various tumors. Taken together, UBE2C was strongly associated with poor prognosis of patients with ACC by promoting cell cycle progression and EMT. This study provides a new theoretical basis for the development of UBE2C as a molecular target for the treatment of ACC.
Collapse
Affiliation(s)
- Renlun Huang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lang Guo
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine Affiliated Hubei Hospital of Chinese Medicine, Wuhan, Hubei, China
| | - Chiwei Chen
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuyang Xiang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Second Clinical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Guohao Li
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine Affiliated Hubei Hospital of Chinese Medicine, Wuhan, Hubei, China
| | - Jieyan Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yanping Wu
- First Clinical College and Affiliated Hospital, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Xiu Yuan
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianfu Zhou
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenxi Gao
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine Affiliated Hubei Hospital of Chinese Medicine, Wuhan, Hubei, China
| | - Songtao Xiang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
47
|
Huang Y, Fan Y, Zhao Z, Zhang X, Tucker K, Staley A, Suo H, Sun W, Shen X, Deng B, Pierce SR, West L, Yin Y, Emanuele MJ, Zhou C, Bae-Jump V. Inhibition of CDK1 by RO-3306 Exhibits Anti-Tumorigenic Effects in Ovarian Cancer Cells and a Transgenic Mouse Model of Ovarian Cancer. Int J Mol Sci 2023; 24:12375. [PMID: 37569750 PMCID: PMC10418904 DOI: 10.3390/ijms241512375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy of the reproductive organs in the United States. Cyclin-dependent kinase 1 (CDK1) is an important cell cycle regulatory protein that specifically controls the G2/M phase transition of the cell cycle. RO-3306 is a selective, ATP-competitive, and cell-permeable CDK1 inhibitor that shows potent anti-tumor activity in multiple pre-clinical models. In this study, we investigated the effect of CDK1 expression on the prognosis of patients with ovarian cancer and the anti-tumorigenic effect of RO-3306 in both ovarian cancer cell lines and a genetically engineered mouse model of high-grade serous ovarian cancer (KpB model). In 147 patients with epithelial ovarian cancer, the overexpression of CDK1 was significantly associated with poor prognosis compared with a low expression group. RO-3306 significantly inhibited cellular proliferation, induced apoptosis, caused cellular stress, and reduced cell migration. The treatment of KpB mice with RO-3306 for four weeks showed a significant decrease in tumor weight under obese and lean conditions without obvious side effects. Overall, our results demonstrate that the inhibition of CDK1 activity by RO-3306 effectively reduces cell proliferation and tumor growth, providing biological evidence for future clinical trials of CDK1 inhibitors in ovarian cancer.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400044, China;
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Yali Fan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Ziyi Zhao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Xin Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Katherine Tucker
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Allison Staley
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Hongyan Suo
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Xiaochang Shen
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Boer Deng
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100054, China
| | - Stuart R. Pierce
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Lindsay West
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
| | - Michael J. Emanuele
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.F.); (Z.Z.); (X.Z.); (K.T.); (A.S.); (H.S.); (W.S.); (X.S.); (B.D.); (S.R.P.); (L.W.); (Y.Y.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
48
|
Xiong X, Song Q, Jing M, Yan W. Identification of PANoptosis-Based Prognostic Signature for Predicting Efficacy of Immunotherapy and Chemotherapy in Hepatocellular Carcinoma. Genet Res (Camb) 2023; 2023:6879022. [PMID: 37313428 PMCID: PMC10260314 DOI: 10.1155/2023/6879022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Background PANoptosis has been a research hotspot, but the role of PANoptosis in hepatocellular carcinoma (HCC) remains widely unknown. Drug resistance and low response rate are the main limitations of chemotherapy and immunotherapy in HCC. Thus, construction of a prognostic signature to predict prognosis and recognize ideal patients for corresponding chemotherapy and immunotherapy is necessary. Method The mRNA expression data of HCC patients was collected from TCGA database. Through LASSO and Cox regression, we developed a prognostic signature based on PANoptosis-related genes. KM analysis and ROC curve were implemented to evaluate the prognostic efficacy of this signature, and ICGC and GEO database were used as external validation cohorts. The immune cell infiltration, immune status, and IC50 of chemotherapeutic drugs were compared among different risk subgroups. The relationships between the signature and the efficacy of ICI therapy, sorafenib treatment, and transcatheter arterial chemoembolization (TACE) therapy were investigated. Result A 3-gene prognostic signature was constructed which divided the patients into low- and high-risk subgroups. Low-risk patients had better prognosis, and the risk score was proved to be an independent predictor of overall survival (OS), which had a well predictive effect. Patients in high-risk population had more immunosuppressive cells (Tregs, M0 macrophages, and MDSCs), higher TIDE score and TP53 mutation rate, and elevated activity of base excision repair (BER) pathways. Patients with low risk benefited more from ICI, TACE, and sorafenib therapy. The predictive value of the risk score was comparable with TIDE and MSI for OS under ICI therapy. The risk score could be a biomarker to predict the response to ICI, TACE, and sorafenib therapy. Conclusion The novel signature based on PANoptosis is a promising biomarker to distinguish the prognosis predict the benefit of ICI, TACE, and sorafenib therapy, and forecast the response to them.
Collapse
Affiliation(s)
- Xiaofeng Xiong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Wang W, Zhou Q, Lan L, Xu X. PANoptosis-related prognostic signature predicts overall survival of cutaneous melanoma and provides insights into immune infiltration landscape. Sci Rep 2023; 13:8449. [PMID: 37231081 DOI: 10.1038/s41598-023-35462-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Cutaneous melanoma (CM) is a highly malignant tumor originating from melanocytes, and its metastasis and recurrence are the major causes of death in CM patients. PANoptosis is a newly defined inflammatory programmed cell death that crosstalk pyroptosis, apoptosis, and necroptosis. PANoptosis participates in the regulation of tumor progression, especially the expression of PANoptosis related genes (PARGs). Although pyroptosis, apoptosis, and necroptosis have received attention in CM, respectively, the link between them remains elusive. Therefore, this study aimed to investigate the potential regulatory role of PANoptosis and PARGs in CM and the relationship among PANoptosis, PARGs and tumor immunity. We identified 3 PARGs associated with prognosis in CM patients by The Cancer Genome Atlas. Risk model and nomogram were established. Enrichment analysis of differentially expressed genes indicated that CM was immune-related. Subsequent analyses indicated that prognosis-related PARGs were associated with immune scores and infiltration of immune cells in CM patients. In addition, immunotherapy and drug sensitivity results indicated an association between prognosis-related PARGs and drug resistance in CM patients. In conclusion, PARGs play a key role in the progression of tumors in CM patients. PARGs can be used not only for risk assessment and OS prediction in CM patients, but also reflect the immune landscape of CM patients, which can provide a novel reference for individualized tumor treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacy, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Road 38, Hangzhou, 310009, People's Republic of China
| | - Qingde Zhou
- Department of Pharmacy, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Road 38, Hangzhou, 310009, People's Republic of China
| | - Lan Lan
- Department of Dermatology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Road 38, Hangzhou, 310009, People's Republic of China
| | - Xinchang Xu
- Department of Pharmacy, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Road 38, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
50
|
Wang XB, Luo T, Lu SL, Lu HZ, Zhao TY, Jiang ZJ, Liu XY, Zhao C, Li LQ, Chen J. Circular RNA hsa_circ_0005218 promotes the early recurrence of hepatocellular carcinoma by targeting the miR-31-5p/CDK1 pathway. Heliyon 2023; 9:e14816. [PMID: 37035389 PMCID: PMC10073894 DOI: 10.1016/j.heliyon.2023.e14816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
Increasing evidence has manifested that circular RNAs (circRNAs) exhibited critical function in regulating various signaling pathways related to hepatocellular carcinoma (HCC) recurrence. However, the role and mechanism of the circRNAs in the HCC early recurrence remain elusive. In this study, high-throughput RNA-sequencing (RNA-seq) analysis was conducted to identify the expression profile of circRNAs in HCC tissues and circ_0005218 was identified as one circRNA that significantly up-regulated in early recurrent HCC tissues. And patients with high expression of circ_0005218 showed worsen overall survival (OS) and disease-free survival (DFS). Moreover, the promotion effects of circ_0005218 on HCC cells in term of proliferation, invasion and metastasis were confirmed both in vitro and vivo by gain- and loss-of function assays. In addition, dual-luciferase reporter assays showed that circ_0005218 could competitively bind to micro-RNA (miR)-31-5p. Furthermore, we showed that suppression of CDK1 by miR-31-5p could be partially rescued by up-regulating circ_0005218. Taken together, the present study indicates that circ_0005218 absorbed miR-31-5p as a sponge to weaken its suppression on CDK1 expression, and thus boost HCC cell invasion and migration, which would act as a potential biomarker to predict the HCC early recurrence and as a new therapeutic target for treatment of HCC.
Collapse
Affiliation(s)
- Xiao-bo Wang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tao Luo
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shao-long Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hua-ze Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tai-yun Zhao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, China
| | - Zhi-jun Jiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xin-yu Liu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chang Zhao
- Department of Interventional Therapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Le-qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Corresponding author. Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021 China.
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Corresponding author. Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021 China.
| |
Collapse
|