1
|
Dong H, Haraldsson H, Leach J, Zhou A, Ballweber M, Zhu C, Xuan Y, Wang Z, Hope M, Epstein FH, Ge L, Saloner D, Tseng E, Mitsouras D. In Vivo Quantification of Ascending Thoracic Aortic Aneurysm Wall Stretch Using MRI: Relationship to Repair Threshold Diameter and Ex Vivo Wall Failure Behavior. J Biomech Eng 2024; 146:121009. [PMID: 39225677 DOI: 10.1115/1.4066430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/04/2024] [Indexed: 09/04/2024]
Abstract
Ascending thoracic aortic aneurysms (aTAAs) can lead to life-threatening dissection and rupture. Recent studies have highlighted aTAA mechanical properties as relevant factors associated with progression. The aim of this study was to quantify in vivo aortic wall stretch in healthy participants and aTAA patients using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Moreover, aTAA wall stretch between surgical and nonsurgical patients was investigated. Finally, DENSE measurements were compared to reference-standard mechanical testing on aTAA specimens from surgical repairs. In total, 18 subjects were recruited, six healthy participants and 12 aTAA patients, for this prospective study. Electrocardiogram-gated DENSE imaging was performed to measure systole-diastole wall stretch, as well as the ratio of aTAA stretch to unaffected descending thoracic aorta stretch. Free-breathing and breath-hold DENSE protocols were used. Uniaxial tensile testing-measured indices were correlated to DENSE measurements in five harvested specimens. in vivo aortic wall stretch was significantly lower in aTAA compared to healthy subjects (1.75±1.44% versus 5.28±1.92%, respectively, P = 0.0004). There was no correlation between stretch and maximum aTAA diameter (P = 0.56). The ratio of aTAA to unaffected thoracic aorta wall stretch was significantly lower in surgical candidates compared to nonsurgical candidates (0.993±0.011 versus 1.017±0.016, respectively, P = 0.0442). Finally, in vivo aTAA wall stretch correlated to wall failure stress and peak modulus of the intima (P = 0.017 and P = 0.034, respectively), while the stretch ratio correlated to whole-wall thickness failure stretch and stress (P = 0.013 and P = 0.040, respectively). Aortic DENSE has the potential to assess differences in aTAA mechanical properties and progressions.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Henrik Haraldsson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Joseph Leach
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Ang Zhou
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Megan Ballweber
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Chengcheng Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Yue Xuan
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94121; Department of Cardiac Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Zhongjie Wang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94121; Department of Cardiac Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Michael Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Liang Ge
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94121; Department of Cardiac Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Elaine Tseng
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94121; Department of Cardiac Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| | - Dimitrios Mitsouras
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, CA 94121; Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA 94121
| |
Collapse
|
2
|
Shahbad R, Kamenskiy A, Razian SA, Jadidi M, Desyatova A. Effects of age, elastin density, and glycosaminoglycan accumulation on the delamination strength of human thoracic and abdominal aortas. Acta Biomater 2024; 189:413-426. [PMID: 39396627 DOI: 10.1016/j.actbio.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Aortic dissection is a life-threatening condition caused by layer separation. Despite extensive research, the relationship between the aortic wall's structural integrity and dissection risk remains unclear. Glycosaminoglycan (GAG) accumulation and elastin loss are suspected to play significant roles. We investigated how age-related changes in aortic structure affect dissection susceptibility. Peeling tests were performed on longitudinal and circumferential thoracic (TA) and abdominal aortic (AA) strips from 35 donors aged 13-76 years (mean 38 ± 15 years, 34 % female). GAG, elastin, collagen, and smooth muscle cell (SMC) contents were assessed using bidirectional histology. Young TAs resisted longitudinal peeling better than circumferential, with delamination strengths of 65.4 mN/mm and 44.2 mN/mm, respectively. Delamination strength decreased with age in both directions, more rapidly longitudinally, equalizing at ∼20-25 mN/mm in older TAs. Delamination strength in AAs was 22 % higher than in TAs. No sex differences were observed. GAG density increased, while elastin density decreased by 2.5 % and 4 % per decade, respectively. Collagen density did not change with age, while SMC density decreased circumferentially. GAGs partially mediated the reduction in longitudinal delamination strength due to aging, while circumferential strength reduction was not mediated by changes in either GAG or elastin densities. This study explains why aortic dissections are more common in TAs, especially in older individuals, and why they typically propagate spirally. TAs exhibit lower delamination strength compared to AAs and experience strength reduction with age, a phenomenon linked to increased GAG accumulation and elastin loss. These findings enhance our understanding of the pathophysiological mechanisms behind aortic dissection. STATEMENT OF SIGNIFICANCE: This work explores the age-dependent relationships between delamination strength in human aortas and wall structural content. We investigated 35 human aortas from donors aged 13 to 76 years, providing new insights into the biomechanical and histological factors that influence aortic dissection risk. Our findings elucidate how variations in elastin, glycosaminoglycan, collagen, and smooth muscle cell densities impact the structural integrity of the aorta, contributing significantly to the understanding of aortic dissection mechanisms.
Collapse
Affiliation(s)
- Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | |
Collapse
|
3
|
Dong H, Leach JR, Kao E, Zhou A, Chitiboi T, Zhu C, Ballweber M, Jiang F, Lee YJ, Iannuzzi J, Gasper W, Saloner D, Hope MD, Mitsouras D. Measurement of Abdominal Aortic Aneurysm Strain Using MR Deformable Image Registration: Accuracy and Relationship to Recent Aneurysm Progression. Invest Radiol 2024; 59:425-432. [PMID: 37855728 PMCID: PMC11026303 DOI: 10.1097/rli.0000000000001035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND Management of asymptomatic abdominal aortic aneurysm (AAA) based on maximum aneurysm diameter and growth rate fails to preempt many ruptures. Assessment of aortic wall biomechanical properties may improve assessment of progression and rupture risk. This study aimed to assess the accuracy of AAA wall strain measured by cine magnetic resonance imaging (MRI) deformable image registration (MR strain) and investigate its relationship with recent AAA progression. METHODS The MR strain accuracy was evaluated in silico against ground truth strain in 54 synthetic MRIs generated from a finite element model simulation of an AAA patient's abdomen for different aortic pulse pressures, tissue motions, signal intensity variations, and image noise. Evaluation included bias with 95% confidence interval (CI) and correlation analysis. Association of MR strain with AAA growth rate was assessed in 25 consecutive patients with >6 months of prior surveillance, for whom cine balanced steady-state free-precession imaging was acquired at the level of the AAA as well as the proximal, normal-caliber aorta. Univariate and multivariate regressions were used to associate growth rate with clinical variables, maximum AAA diameter (D max ), and peak circumferential MR strain through the cardiac cycle. The MR strain interoperator variability was assessed using bias with 95% CI, intraclass correlation coefficient, and coefficient of variation. RESULTS In silico experiments revealed an MR strain bias of 0.48% ± 0.42% and a slope of correlation to ground truth strain of 0.963. In vivo, AAA MR strain (1.2% ± 0.6%) was highly reproducible (bias ± 95% CI, 0.03% ± 0.31%; intraclass correlation coefficient, 97.8%; coefficient of variation, 7.14%) and was lower than in the nonaneurysmal aorta (2.4% ± 1.7%). D max ( β = 0.087) and MR strain ( β = -1.563) were both associated with AAA growth rate. The MR strain remained an independent factor associated with growth rate ( β = -0.904) after controlling for D max . CONCLUSIONS Deformable image registration analysis can accurately measure the circumferential strain of the AAA wall from standard cine MRI and may offer patient-specific insight regarding AAA progression.
Collapse
Affiliation(s)
- Huiming Dong
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (H.D., J.L., E.K., A.Z., C.Z., M.B., Y.J.L., D.S., M.H., D.M.); Vascular Imaging Research Center, San Francisco Veteran Affairs Medical Center, San Francisco, CA (H.D., J.L., E.K., A.Z., C.Z., M.B., D.S., M.H., D.M.); Siemens Healthineers (T.C.); Department of Radiology, University of Washington, Seattle, WA (C.Z.); Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA (F.J.); Department of Surgery, University of California, San Francisco, San Francisco, CA (J.I., W. G.); and Department of Vascular Surgery, San Francisco Veteran Affairs Medical Center, San Francisco, CA (J.I., W.G.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bracamonte J, Truong U, Wilson J, Soares J. Correction of phase offset errors and quantification of background noise, signal-to-noise ratio, and encoded-displacement uncertainty on DENSE MRI for kinematics of the descending thoracic and abdominal aorta. Magn Reson Imaging 2024; 106:91-103. [PMID: 38092083 PMCID: PMC10842810 DOI: 10.1016/j.mri.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Displacement encoding with stimulated echoes (DENSE) MRI is a phase contrast technique that allows the encoding of tissue displacement into the phase of the magnetic resonance signal. Recent developments in this technique allow the imaging of relatively thin structures such as the aortic wall. Quantifying background noise associated to DENSE MRI is required to assess the uncertainty of derived displacement measurements and for the design and implementation of adequate noise-reduction techniques. Although noise and error management of cardiac DENSE MRI has been previously studied, developments for aortic applications are scarce. Herein, we evaluate the noise and uncertainty of DENSE MRI scans at three different locations along the descending aorta: the distal aortic arch (DAA), the descending thoracic aorta (DTA), and infrarenal abdominal aorta (IAA). Additionally, we analyze three datasets from in vitro validation experiments with polyvinyl alcohol phantoms. We implement and evaluate the effectiveness of an offset-error correction algorithm and noise filtering techniques on DENSE MRI for aortic motion applications. Our results show that the phase signal of pixels composing the static background was normally distributed, centered on average at 0.003 ± 0.02 rad and - 0.02 ± 0.024 rad for each phase directions, suggesting that background noise is random, isotropic, and DENSE MRI has little offset errors. However, background signal noise significantly increased with elapsed time of the cardiac cycle; and was spatially heterogeneous consistently increased towards the anterior space. Background noise showed no significant differences between the 3 aortic locations and the in vitro experiments. However, SNR depended on the displacement of the region of interest, in consequence it was found significantly larger at DAA (16.7 ± 8.5, p = 0.003) and DTA (15.4 ± 7.6, p = 0.008) than at the IAA (8.0 ± 4.1), but not significantly different than the SNR of in vitro experiments (8.0 ± 3.7), and had an overall average of 13 ± 7. The applied methods significantly reduced the offset error and effect of noise on the estimation of encoded displacements. Finally, this analysis suggests that the implemented DENSE MRI protocol is adequate to assess the motion of healthy human aortas. However, the relative effect of noise increased considerably on the analysis of an ageing or diseased aortas with impaired mobility, calling for further analyses on pathologically stiffened aortas.
Collapse
Affiliation(s)
- Johane Bracamonte
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Uyen Truong
- Department of Pediatrics, Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - John Wilson
- Department of Biomedical Engineering and Pauley Heart Center, Virginia Commonwealth University, VA, USA
| | - Joao Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Hegner A, Cebull HL, Gámez AJ, Blase C, Goergen CJ, Wittek A. Biomechanical characterization of tissue types in murine dissecting aneurysms based on histology and 4D ultrasound-derived strain. Biomech Model Mechanobiol 2023; 22:1773-1788. [PMID: 37707685 PMCID: PMC10511389 DOI: 10.1007/s10237-023-01759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
Abdominal aortic aneurysm disease is the local enlargement of the aorta, typically in the infrarenal section, causing up to 200,000 deaths/year. In vivo information to characterize the individual elastic properties of the aneurysm wall in terms of rupture risk is lacking. We used a method that combines 4D ultrasound and direct deformation estimation to compute in vivo 3D Green-Lagrange strain in murine angiotensin II-induced dissecting aortic aneurysms, a commonly used mouse model. After euthanasia, histological staining of cross-sectional sections along the aorta was performed in areas where in vivo strains had previously been measured. The histological sections were segmented into intact and fragmented elastin, thrombus with and without red blood cells, and outer vessel wall including the adventitia. Meshes were then created from the individual contours based on the histological segmentations. The isolated contours of the outer wall and lumen from both imaging modalities were registered individually using a coherent point drift algorithm. 2D finite element models were generated from the meshes, and the displacements from the registration were used as displacement boundaries of the lumen and wall contours. Based on the resulting deformed contours, the strains recorded were grouped according to segmented tissue regions. Strains were highest in areas containing intact elastin without thrombus attachment. Strains in areas with intact elastin and thrombus attachment, as well as areas with disrupted elastin, were significantly lower. Strains in thrombus regions with red blood cells were significantly higher compared to thrombus regions without. We then compared this analysis to statistical distribution indices and found that the results of each aligned, elucidating the relationship between vessel strain and structural changes. This work demonstrates the possibility of advancing in vivo assessments to a microstructural level ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Achim Hegner
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cadiz, Cadiz, Spain
| | - Hannah L. Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, USA
| | - Antonio J. Gámez
- Department of Mechanical Engineering and Industrial Design, School of Engineering, University of Cadiz, Cadiz, Spain
| | - Christopher Blase
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
- Cell and Vascular Mechanics, Goethe University, Frankfurt am Main, Germany
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| | - Andreas Wittek
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Ganizada BH, Reesink KD, Parikh S, Ramaekers MJFG, Akbulut AC, Saraber PJMH, Debeij GP, Jaminon AM, Natour E, Lorusso R, Wildberger JE, Mees B, Schurink GW, Jacobs MJ, Cleutjens J, Krapels I, Gombert A, Maessen JG, Accord R, Delhaas T, Schalla S, Schurgers LJ, Bidar E. The Maastricht Acquisition Platform for Studying Mechanisms of Cell-Matrix Crosstalk (MAPEX): An Interdisciplinary and Systems Approach towards Understanding Thoracic Aortic Disease. Biomedicines 2023; 11:2095. [PMID: 37626592 PMCID: PMC10452257 DOI: 10.3390/biomedicines11082095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Current management guidelines for ascending thoracic aortic aneurysms (aTAA) recommend intervention once ascending or sinus diameter reaches 5-5.5 cm or shows a growth rate of >0.5 cm/year estimated from echo/CT/MRI. However, many aTAA dissections (aTAAD) occur in vessels with diameters below the surgical intervention threshold of <55 mm. Moreover, during aTAA repair surgeons observe and experience considerable variations in tissue strength, thickness, and stiffness that appear not fully explained by patient risk factors. To improve the understanding of aTAA pathophysiology, we established a multi-disciplinary research infrastructure: The Maastricht acquisition platform for studying mechanisms of tissue-cell crosstalk (MAPEX). The explicit scientific focus of the platform is on the dynamic interactions between vascular smooth muscle cells and extracellular matrix (i.e., cell-matrix crosstalk), which play an essential role in aortic wall mechanical homeostasis. Accordingly, we consider pathophysiological influences of wall shear stress, wall stress, and smooth muscle cell phenotypic diversity and modulation. Co-registrations of hemodynamics and deep phenotyping at the histological and cell biology level are key innovations of our platform and are critical for understanding aneurysm formation and dissection at a fundamental level. The MAPEX platform enables the interpretation of the data in a well-defined clinical context and therefore has real potential for narrowing existing knowledge gaps. A better understanding of aortic mechanical homeostasis and its derangement may ultimately improve diagnostic and prognostic possibilities to identify and treat symptomatic and asymptomatic patients with existing and developing aneurysms.
Collapse
Affiliation(s)
- Berta H. Ganizada
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Koen D. Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Shaiv Parikh
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Mitch J. F. G. Ramaekers
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Asim C. Akbulut
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Stem Cell Research University Maastricht Facility, 6229 ER Maastricht, The Netherlands
| | - Pepijn J. M. H. Saraber
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Gijs P. Debeij
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - MUMC-TAA Student Team
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Armand M. Jaminon
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Ehsan Natour
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Roberto Lorusso
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Barend Mees
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Geert Willem Schurink
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Michael J. Jacobs
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Jack Cleutjens
- Department of Pathology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Ingrid Krapels
- Department of Clinical Genetics, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Alexander Gombert
- Department of Vascular Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Jos G. Maessen
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Diseases, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Simon Schalla
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
| | - Leon J. Schurgers
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands
- Stem Cell Research University Maastricht Facility, 6229 ER Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Elham Bidar
- Departments of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), 6229 ER Maastricht, The Netherlands; (B.H.G.)
| |
Collapse
|
7
|
Celi S, Gasparotti E, Capellini K, Bardi F, Scarpolini MA, Cavaliere C, Cademartiri F, Vignali E. An image-based approach for the estimation of arterial local stiffness in vivo. Front Bioeng Biotechnol 2023; 11:1096196. [PMID: 36793441 PMCID: PMC9923115 DOI: 10.3389/fbioe.2023.1096196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The analysis of mechanobiology of arterial tissues remains an important topic of research for cardiovascular pathologies evaluation. In the current state of the art, the gold standard to characterize the tissue mechanical behavior is represented by experimental tests, requiring the harvesting of ex-vivo specimens. In recent years though, image-based techniques for the in vivo estimation of arterial tissue stiffness were presented. The aim of this study is to define a new approach to provide local distribution of arterial stiffness, estimated as the linearized Young's Modulus, based on the knowledge of in vivo patient-specific imaging data. In particular, the strain and stress are estimated with sectional contour length ratios and a Laplace hypothesis/inverse engineering approach, respectively, and then used to calculate the Young's Modulus. After describing the method, this was validated by using a set of Finite Element simulations as input. In particular, idealized cylinder and elbow shapes plus a single patient-specific geometry were simulated. Different stiffness distributions were tested for the simulated patient-specific case. After the validation from Finite Element data, the method was then applied to patient-specific ECG-gated Computed Tomography data by also introducing a mesh morphing approach to map the aortic surface along the cardiac phases. The validation process revealed satisfactory results. In the simulated patient-specific case, root mean square percentage errors below 10% for the homogeneous distribution and below 20% for proximal/distal distribution of stiffness. The method was then successfully used on the three ECG-gated patient-specific cases. The resulting distributions of stiffness exhibited significant heterogeneity, nevertheless the resulting Young's moduli were always contained within the 1-3 MPa range, which is in line with literature.
Collapse
Affiliation(s)
- Simona Celi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy,*Correspondence: Simona Celi,
| | - Emanuele Gasparotti
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy
| | - Katia Capellini
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy
| | - Francesco Bardi
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy,Mines Saint-Etienne, Universit’e de Lyon, INSERM, SaInBioSE U1059, Lyon, France
| | - Martino Andrea Scarpolini
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy,Dipartimento di Ingegneria Industriale, Università “Tor Vergata”, Roma, Italy
| | | | | | - Emanuele Vignali
- BioCardioLab, UOC Bioingegneria, Fondazione Toscana G Monasterio, Massa, Italy
| |
Collapse
|
8
|
Tijmes FS, Karur GR. Imaging of Heritable Thoracic Aortic Disease. Semin Roentgenol 2022; 57:364-379. [DOI: 10.1053/j.ro.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/11/2022]
|
9
|
Bracamonte JH, Wilson JS, Soares JS. Quantification of the heterogeneous effect of static and dynamic perivascular structures on patient-specific local aortic wall mechanics using inverse finite element modeling and DENSE MRI. J Biomech 2022; 138:111119. [PMID: 35576631 PMCID: PMC9536506 DOI: 10.1016/j.jbiomech.2022.111119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022]
Abstract
Recent studies have highlighted the relevance of perivascular interactions on aortic wall mechanics. Most of the approaches assume static perivascular structures; however, the beating heart dynamically displaces the neighboring aorta. We develop a model to account for the effect of periaortic interactions due to static and dynamic structures by prescribing a moving elastic foundation boundary condition (EFBC) embedded into an inverse finite element algorithm using in vivo displacements from 2D displacement encoding with stimulated echoes (DENSE) MRI as target data. We applied this method at three different locations of interest, the distal aortic arch (DAA), descending thoracic aorta (DTA), and infrarenal abdominal aorta (IAA) for a total of 27 cases in healthy humans. The model reproduces the target diastole-to-systole deformation and bulk displacement of the aortic wall with median displacement errors below 0.5mm. The EFBC showed good agreement with the location of anatomical features and was consistent among individuals of similar characteristics. Results show that an energy source acting on the adventitia is required to reproduce the displacements measured at the vicinity of the heart, but not at the abdomen. The average adventitial load as a percentage of the luminal pulse-pressure was found to increase with age and to decrease along the descending aorta, from 61% at the DAA to 37% at the DTA, and 30% at the IAA. This approach offers a patient-specific method to estimate in vivo adventitial loads and aortic wall stiffness, which can bring a better understanding of normal and pathological in vivo aortic function.
Collapse
Affiliation(s)
- Johane H Bracamonte
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States.
| | - John S Wilson
- Department of Biomedical Engineering & Pauley Heart Center, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, United States.
| | - Joao S Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States.
| |
Collapse
|
10
|
Wang Y, Gong M. Evaluation of aortic biomechanics in patients with aortic disease via imaging: A review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:458-466. [PMID: 34669189 DOI: 10.1002/jcu.23087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
As a bridge between the heart and the arteries, the aorta plays an important role in the cardiovascular system. The morbidity and mortality of aortic disease are extremely high, which is a serious threat to human life. The biomechanical abnormality of the aorta is an important factor of a series of pathological changes in the aortic wall. At present, there are many imaging methods to evaluate the biomechanics of the aorta, which will benefit to the early diagnosis and treatment of aortic disease. In this review, we describe the application of various imaging methods and parameters in aortic disease.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Cardiovascular Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Min Gong
- Department of Cardiovascular Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Bracamonte JH, Saunders SK, Wilson JS, Truong UT, Soares JS. Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications. APPLIED SCIENCES-BASEL 2022; 12:3954. [PMID: 36911244 PMCID: PMC10004130 DOI: 10.3390/app12083954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inverse modeling approaches in cardiovascular medicine are a collection of methodologies that can provide non-invasive patient-specific estimations of tissue properties, mechanical loads, and other mechanics-based risk factors using medical imaging as inputs. Its incorporation into clinical practice has the potential to improve diagnosis and treatment planning with low associated risks and costs. These methods have become available for medical applications mainly due to the continuing development of image-based kinematic techniques, the maturity of the associated theories describing cardiovascular function, and recent progress in computer science, modeling, and simulation engineering. Inverse method applications are multidisciplinary, requiring tailored solutions to the available clinical data, pathology of interest, and available computational resources. Herein, we review biomechanical modeling and simulation principles, methods of solving inverse problems, and techniques for image-based kinematic analysis. In the final section, the major advances in inverse modeling of human cardiovascular mechanics since its early development in the early 2000s are reviewed with emphasis on method-specific descriptions, results, and conclusions. We draw selected studies on healthy and diseased hearts, aortas, and pulmonary arteries achieved through the incorporation of tissue mechanics, hemodynamics, and fluid-structure interaction methods paired with patient-specific data acquired with medical imaging in inverse modeling approaches.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sarah K. Saunders
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - John S. Wilson
- Department of Biomedical Engineering and Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Uyen T. Truong
- Department of Pediatrics, School of Medicine, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Joao S. Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| |
Collapse
|
12
|
Li T, Liu X, Sun H, Ning H, Yang J, Ma C. Assessment of the Global and Regional Circumferential Strain of Abdominal Aortic Aneurysm with Different Size by Speckle-Tracking Echocardiography. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2619-2627. [PMID: 33555036 DOI: 10.1002/jum.15651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES We aimed to use speckle-tracking echocardiography (STE) to quantify circumferential aortic strain of abdominal aortic aneurysms (AAA) with different size. METHODS A total of 87 AAA patients were included. The morphological variables, including aortic maximum diameter (MD), end systolic area (ESA), end diastolic area (EDA), and thickness and area of intraluminal thrombus (ILT), were measured by ultrasound. STE was applied to calculate circumferential strain (CS) at 6 equally divided segments of the aorta at MD. We evaluated the mean value of peak strain along the 6 segments as global circumferential strain (GCS). RESULTS Large AAA (≥5.5 cm) patients had higher MD, ESA, EDA, AAA length, ILT thickness, and area, but lower fractional area change, GCS, and segmental CSs than small AAA (<5.5 cm) subjects (all P < .05). Compared with AAA <4.5 cm group, AAA patients ≥4.5 cm possessed increased MD, ESA, EDA, AAA length, ILT thickness, and area, which results were also reflected in the comparison between AAA <6.5 and ≥6.5 cm group. In small AAA patients, GCS and regional strains in CS1, CS3, and CS5 segments were lower in AAA subjects ≥4.5 cm than those <4.5 cm (all P<.05). However, no significant differences in the GCS and regional CS between ≥6.5 and <6.5 cm group were found. Correlation analysis revealed a significant negative association of GCS with MD, ESA, and EDA, even after adjusting the potential confounding factors (all P < .05). CONCLUSIONS Our findings may yield insight into the structural strain characteristics of AAA wall with different size, which adds the benefit of using simple echocardiography-derived biomechanics to stratify AAA patients.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Xiaozheng Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Haiyang Sun
- Department of Ultrasound, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Hongxia Ning
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Wilson JS, Islam M, Oshinski JN. In Vitro Validation of Regional Circumferential Strain Assessment in a Phantom Aortic Model Using Cine Displacement Encoding With Stimulated Echoes MRI. J Magn Reson Imaging 2021; 55:1773-1784. [PMID: 34704637 DOI: 10.1002/jmri.27972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A novel application of cine Displacement ENcoding with Stimulated Echoes Magnetic Resonance Imaging (DENSE MRI) has recently been described to assess regional heterogeneities in circumferential strain around the aortic wall in vivo; however, validation is first required for successful clinical translation. PURPOSE To validate the quantification of regional circumferential strain around the wall of an aortic phantom using DENSE MRI. STUDY TYPE In vitro phantom study. POPULATION Three polyvinyl alcohol aortic phantoms with eight axially oriented nitinol wires embedded evenly around the walls. FIELD STRENGTH/SEQUENCE 3 T; gradient-echo aortic DENSE MRI with spiral cine readout, gradient-echo phase-contrast MRI (PCMR) with Cartesian cine readout. ASSESSMENT Phantoms were connected to a pulsatile flow loop and peak DENSE-derived regional circumferential Green strains at 16 equally spaced sectors around the wall were assessed according to previously published algorithms. "True" regional circumferential strains were calculated by manually tracking displacements of the nitinol wires by two independent observers. Normalized circumferential strains (NCS) were calculated by dividing regional strains by the mean strain. Finally, DENSE-derived regional strain was corrected by multiplying regional DENSE NCS by the mean strain calculated from the diameter change on the PCMR. STATISTICAL TESTS One-sample t-test, Paired-sample t-test, and analysis of variance with Bonferroni correction, coefficient of variation (CoV), Bland-Altman analysis; P < 0.05 was considered statistically significant. RESULTS Aortic DENSE MRI significantly overestimated circumferential strain compared to the wire-tracking method (mean difference and SD 0.030 ± 0.014, CoV 0.31). However, NCS demonstrated good agreement between DENSE and wire-tracking data (mean difference 0.000 ± 0.172, CoV 0.15). After correcting the DENSE-derived regional strain, the mean difference in regional circumferential strain between DENSE and wire-tracking was significantly reduced to 0.006 ± 0.008, and the CoV was reduced to 0.18. DATA CONCLUSION For aortic phantoms with mild spatial heterogeneity in circumferential strain, the previously published aortic DENSE MRI technique successfully assessed the regional NCS distribution but overestimated the mean strain. This overestimation is correctable by computing a more accurate mean circumferential strain using a separate cine scan. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- John S Wilson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Muhammad Islam
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - John N Oshinski
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA.,Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Expression gradient of metalloproteinases and their inhibitors from proximal to distal segments of abdominal aortic aneurysm. J Appl Genet 2021; 62:499-506. [PMID: 34091862 PMCID: PMC8357691 DOI: 10.1007/s13353-021-00642-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/15/2021] [Accepted: 05/26/2021] [Indexed: 11/14/2022]
Abstract
Abdominal aortic aneurysm refers to abnormal, asymmetric distension of the infrarenal aortic wall due to pathological remodelling of the extracellular matrix. The distribution of enzymes remodelling the extracellular matrix and their expression patterns in the affected tissue are largely unknown. The goal of this work was to investigate the expression profiles of 20 selected genes coding for metalloproteinases and their inhibitors in the proximal to the distal direction of the abdominal aortic aneurysm. RNA samples were purified from four lengthwise fragments of aneurysm and border tissue obtained from 29 patients. The quantities of selected mRNAs were determined by real-time PCR to reveal the expression patterns. The genes of interest encode collagenases (MMP1, MMP8, MMP13), gelatinases (MMP2, MMP9), stromelysins (MMP3, MMP7, MMP10, MMP11, MMP12), membrane-type MMPs (MMP14, MMP15, MMP16), tissue inhibitors of metalloproteinases (TIMP1, TIMP2, TIMP3, TIMP4), and ADAMTS proteinases (ADAMTS1, ADAMTS8, and ADAMTS13). It was found that MMP, TIMP, and ADAMTS are expressed in all parts of the aneurysm with different patterns. A developed aneurysm has such a disturbed expression of the main participants in extracellular matrix remodelling that it is difficult to infer the causes of the disorder development. MMP12 secreted by macrophages at the onset of inflammation may initiate extracellular matrix remodelling, which, if not controlled, initiates a feedback loop leading to aneurysm formation.
Collapse
|
15
|
Perez-Casares A, Dionne A, Gauvreau K, Prakash A. Rapid ascending aorta stiffening in bicuspid aortic valve on serial cardiovascular magnetic resonance evaluation: comparison with connective tissue disorders. J Cardiovasc Magn Reson 2021; 23:11. [PMID: 33618720 PMCID: PMC7898767 DOI: 10.1186/s12968-021-00716-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aortic stiffness has been shown to be abnormal in patients with bicuspid aortic valve (BAV), and is considered a component of the aortopathy associated with this condition. Progressive aortic stiffening associated with aging has been previously described in normal adults. However, it is not known if aging related aortic stiffening occurs at the same rate in BAV patients. We determined the longitudinal rate of decline in segmental distensibility in BAV patients using serial cardiovascular magnetic resonance (CMR) studies, and compared to previously published results from a group of patients with connective tissue disorders (CTD). METHODS A retrospective review of CMR and clinical data on children and adults with BAV (n = 49, 73% male; 23 ± 11 years) with at least two CMRs (total 98 examinations) over a median follow-up of 4.1 years (range 1-9 years) was performed to measure aortic distensibility at the ascending (AAo) and descending aorta (DAo). Longitudinal changes in aortic stiffness were assessed using linear mixed-effects modeling. The comparison group of CTD patients had a similar age and gender profile (n = 50, 64% male; 20.6 ± 12 years). RESULTS Compared to CTD patients, BAV patients had a more distensible AAo early in life but showed a steeper decline in distensibility on serial examinations [mean 10-year decline in AAo distensibility (× 10-3 mmHg-1) 2.4 in BAV vs 1.3 in CTD, p = 0.005]. In contrast, the DAo was more distensible in BAV patients throughout the age spectrum, and DAo distensibility declined with aging at a rate similar to CTD patients [mean 10 year decline in DAo distensibility (× 10-3 mmHg-1) 0.3 in BAV vs 0.4 in CTD, p = 0.58]. CONCLUSIONS On serial CMR measurements, AAo distensibility declined at significantly steeper rate in BAV patients compared to a comparison group with CTDs, while DAo distensibility declined at similar rates in both groups. These findings offer new mechanistic insights into the differing pathogenesis of the aortopathy seen in BAV and CTD patients.
Collapse
Affiliation(s)
| | - Audrey Dionne
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kimberlee Gauvreau
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Ashwin Prakash
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Derwich W, Wittek A, Hegner A, Fritzen CP, Blase C, Schmitz-Rixen T. Comparison of Abdominal Aortic Aneurysm Sac and Neck Wall Motion with 4D Ultrasound Imaging. Eur J Vasc Endovasc Surg 2020; 60:539-547. [DOI: 10.1016/j.ejvs.2020.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/28/2022]
|
17
|
Komnenov D, Levanovich PE, Perecki N, Chung CS, Rossi NF. Aortic Stiffness and Diastolic Dysfunction in Sprague Dawley Rats Consuming Short-Term Fructose Plus High Salt Diet. Integr Blood Press Control 2020; 13:111-124. [PMID: 33061560 PMCID: PMC7532309 DOI: 10.2147/ibpc.s257205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/13/2020] [Indexed: 01/13/2023] Open
Abstract
Introduction High fructose and salt consumption continues to be prevalent in western society. Existing studies show that a rat model reflecting a diet of fructose and salt consumed by the upper 20th percentile of the human population results in salt-sensitive hypertension mitigated by treatment with an antioxidant. We hypothesized that dietary fructose, rather than glucose, combined with high salt leads to aortic stiffening and decreased renal artery compliance. We also expect that daily supplementation with the antioxidant, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (+T; Tempol), will ameliorate the increase in mean arterial pressure (MAP) and vascular changes. Methods Male Sprague Dawley rats were studied with either 20% fructose or 20% glucose in the drinking water and normal salt (0.4%) or high salt (4%) in the chow resulting in four dietary groups: fructose normal Fru+NS or high salt (Fru+HS) or glucose with normal (Glu+NS) or high salt (Glu+HS). Tempol (+T) was added to the drinking water in half of the rats in each group for 3 weeks. Results MAP was significantly elevated and the glucose:insulin ratio was depressed in the Fru+HS. Both parameters were normalized in Fru+HS+T. Plasma renin activity (PRA) and kidney tissue angiotensin II (Ang II) were not suppressed in the high salt groups. Pulse wave velocity (PWV), radial ascending strain, and distensibility coefficient of the ascending aorta were significantly decreased in Fru+HS rats and improved in the Fru+HS+T rats. No differences occurred in left ventricular systolic function, but the ratio of early (E) to late (A) transmitral filling velocities was decreased and renal resistive index (RRI) was higher in Fru+HS rats; antioxidant treatment did not change these indices. Discussion Thus, short-term consumption of high fructose plus high salt diet by rats results in modest hypertension, insulin resistance, diminished aortic and renal artery compliance, and left ventricular diastolic dysfunction. Antioxidant treatment ameliorates the blood pressure, insulin resistance and aortic stiffness, but not renal artery stiffness and left ventricular diastolic dysfunction.
Collapse
Affiliation(s)
- Dragana Komnenov
- Department of Internal Medicine, Division of Nephrology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter E Levanovich
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Natalia Perecki
- Department of Internal Medicine, Division of Nephrology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Charles S Chung
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noreen F Rossi
- Department of Internal Medicine, Division of Nephrology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Research and Development, John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| |
Collapse
|
18
|
Nwotchouang BST, Eppelheimer MS, Biswas D, Pahlavian SH, Zhong X, Oshinski JN, Barrow DL, Amini R, Loth F. Accuracy of cardiac-induced brain motion measurement using displacement-encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI): A phantom study. Magn Reson Med 2020; 85:1237-1247. [PMID: 32869349 DOI: 10.1002/mrm.28490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The goal of this study was to determine the accuracy of displacement-encoding with stimulated echoes (DENSE) MRI in a tissue motion phantom with displacements representative of those observed in human brain tissue. METHODS The phantom was comprised of a plastic shaft rotated at a constant speed. The rotational motion was converted to a vertical displacement through a camshaft. The phantom generated repeatable cyclical displacement waveforms with a peak displacement ranging from 92 µm to 1.04 mm at 1-Hz frequency. The surface displacement of the tissue was obtained using a laser Doppler vibrometer (LDV) before and after the DENSE MRI scans to check for repeatability. The accuracy of DENSE MRI displacement was assessed by comparing the laser Doppler vibrometer and DENSE MRI waveforms. RESULTS Laser Doppler vibrometer measurements of the tissue motion demonstrated excellent cycle-to-cycle repeatability with a maximum root mean square error of 9 µm between the ensemble-averaged displacement waveform and the individual waveforms over 180 cycles. The maximum difference between DENSE MRI and the laser Doppler vibrometer waveforms ranged from 15 to 50 µm. Additionally, the peak-to-peak difference between the 2 waveforms ranged from 1 to 18 µm. CONCLUSION Using a tissue phantom undergoing cyclical motion, we demonstrated the percent accuracy of DENSE MRI to measure displacement similar to that observed for in vivo cardiac-induced brain tissue.
Collapse
Affiliation(s)
| | - Maggie S Eppelheimer
- Conquer Chiari Research Center, Department of Biomedical Engineering, The University of Akron, Akron, Ohio, USA
| | - Dipankar Biswas
- Fluids and Structure (FaST) Laboratory, Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Soroush Heidari Pahlavian
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | | | - John N Oshinski
- Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Francis Loth
- Conquer Chiari Research Center, Department of Biomedical Engineering, The University of Akron, Akron, Ohio, USA.,Department of Mechanical Engineering, The University of Akron, Akron, Ohio, USA
| |
Collapse
|