1
|
Yu JB, Hong C, Ren XW, Guo W, Chen YF, Ji J, Zhang XY, Sun XL. FTY720 Modulating Microglia-Mediated Cholesterol Recycling via TREM2 Promotes Remyelination Following Ischemic Damage. Stroke 2025. [PMID: 40260538 DOI: 10.1161/strokeaha.124.049745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Following ischemic white matter damage, microglia are responsible for phagocytosing and degrading cholesterol-rich myelin debris, storing them as lipid droplets. However, our understanding of how microglia process this engulfed material remains limited. Our previous findings identified FTY720 as a high-affinity ligand for microglial TREM2 (triggering receptor expressed on myeloid cells 2). Therefore, we aimed to reveal the role of FTY720 targeting TREM2 in regulating microglial cholesterol metabolism during remyelination. METHODS Chronic ischemic white matter damage was induced by bilateral carotid artery stenosis in male wild-type and TREM2-/- mice. FTY720 was administered daily via intraperitoneal injection for 28 days following bilateral carotid artery stenosis surgery. Cognitive function, white matter integrity, accumulation of cholesterol and lipid droplets in microglia, and oligodendrocyte differentiation were evaluated using behavioral tests, transmission electron microscopy, immunofluorescence, and biochemical analyses. In vitro coculture systems were used to evaluate cholesterol transfer and remyelination efficacy. RESULTS FTY720 significantly alleviated cognitive deficits and promoted remyelination in bilateral carotid artery stenosis mice, as evidenced by enhanced performance in the Morris water maze and reduced demyelination observed via transmission electron microscopy and immunofluorescence. This therapeutic effect was absent in TREM2-/- bilateral carotid artery stenosis mice. Mechanistically, FTY720 promoted the redistribution of ABCA1 (ATP-binding cassette transporter A1) from lysosomes to the cell membrane in microglia via TREM2, which facilitated cholesterol efflux and reduced the accumulation of intracellular cholesterol and lipid droplets. Additionally, in vitro coculture experiments revealed that FTY720 enhanced cholesterol transfer from microglia to oligodendrocytes through TREM2, thereby promoting oligodendrocyte myelination. CONCLUSIONS Our study suggested that FTY720 regulated the recycling of myelin-derived cholesterol from microglia through TREM2, supplying cholesterol to oligodendrocytes and supporting remyelination, thus offering a novel therapeutic target for ischemic white matter damage.
Collapse
Affiliation(s)
- Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Chen Hong
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Xue-Wei Ren
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Wei Guo
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Ye-Fan Chen
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, China (X.-L.S.)
| |
Collapse
|
2
|
Niazy AA, Lambarte RNA, Sumague TS, Vigilla MGB, Bin Shwish NM, Kamalan R, Daeab EK, Aljehani NM. FTY720 Reduces the Biomass of Biofilms in Pseudomonas aeruginosa in a Dose-Dependent Manner. Antibiotics (Basel) 2024; 13:621. [PMID: 39061303 PMCID: PMC11273553 DOI: 10.3390/antibiotics13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa, a nosocomial pathogen, has strong biofilm capabilities, representing the main source of infection in the human body. Repurposing existing drugs has been explored as an alternative strategy to combat emerging antibiotic-resistant pathogens. Fingolimod hydrochloride (FTY720), an immunomodulatory drug for multiple sclerosis, has shown promising antimicrobial effects against some ESKAPE pathogens. Therefore, the effects of FTY720 on the biofilm capabilities of Pseudomonas aeruginosa were investigated in this study. It was determined that FTY720 inhibited the growth of P. aeruginosa PAO1 at 100 µM. The significant reduction in PAO1 cell viability was observed to be dose-dependent. Additional cytotoxicity analysis on human cell lines showed that FTY720 significantly reduced viabilities at sub-inhibitory concentrations of 25-50 µM. Microtiter assays and confocal analysis confirmed reductions in biofilm mass and thickness and the cell survivability ratio in the presence of FTY720. Similarly, virulence production and biofilm-related gene expression (rhlA, rhlB, pilA, pilI, fliC, fliD and algR) were determined. The results demonstrate that pigment production was affected and quantitative real-time PCR analysis showed a variable degree of reduced gene expression in response to FTY720 at 12.5-50 µM. These findings suggest that FTY720 could be repurposed as an alternative antibiofilm agent against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Rhodanne Nicole A. Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Terrence S. Sumague
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Mary Grace B. Vigilla
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Najla M. Bin Shwish
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.); (N.M.B.S.)
| | - Ranan Kamalan
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eid Khulaif Daeab
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Nami M. Aljehani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
3
|
Cheng Y, Javonillo DI, Pachow C, Scarfone VM, Fernandez K, Walsh CM, Green KN, Lane TE. Ablation of microglia following infection of the central nervous system with a neurotropic murine coronavirus infection leads to increased demyelination and impaired remyelination. J Neuroimmunol 2023; 381:578133. [PMID: 37352687 PMCID: PMC11840753 DOI: 10.1016/j.jneuroim.2023.578133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Intracranial inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia are the resident immune cell of the central nervous system (CNS) and are considered important in regulating events associated with neuroinflammation as well as influencing both white matter damage and remyelination. To better understand mechanisms by which microglia contribute to these immune-mediated events, JHMV-infected mice with established demyelination were treated with the small molecular inhibitor of colony stimulating factor 1 receptor (CSF1R), PLX5622, to deplete microglia. Treatment with PLX5622 did not affect viral replication within the CNS yet the severity of demyelination was increased and remyelination impaired compared to control mice. Gene expression analysis revealed that targeting microglia resulted in altered expression of genes associated with immune cell activation and phagocytosis of myelin debris. These findings indicate that microglia are not critical in viral surveillance in persistently JHMV-infected mice yet restrict white matter damage and remyelination, in part, by influencing phagocytosis of myelin debris.
Collapse
Affiliation(s)
- Yuting Cheng
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Dominic Ibarra Javonillo
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Collin Pachow
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Vanessa M Scarfone
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine 92697, USA
| | - Kellie Fernandez
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Kim N Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697, USA
| | - Thomas E Lane
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA; Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697, USA; Center for Virus Research, University of California, Irvine 92697, USA.
| |
Collapse
|
4
|
Skinner DD, Syage AR, Olivarria GM, Stone C, Hoglin B, Lane TE. Sustained Infiltration of Neutrophils Into the CNS Results in Increased Demyelination in a Viral-Induced Model of Multiple Sclerosis. Front Immunol 2022; 13:931388. [PMID: 36248905 PMCID: PMC9562915 DOI: 10.3389/fimmu.2022.931388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.
Collapse
Affiliation(s)
- Dominic D. Skinner
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Amber R. Syage
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Gema M. Olivarria
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Colleen Stone
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Bailey Hoglin
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Center for Virus Research, University of California Irvine, Irvine, CA, United States,*Correspondence: Thomas E. Lane,
| |
Collapse
|
5
|
Wang H, Zhang J, Lu Z, Dai W, Ma C, Xiang Y, Zhang Y. Identification of potential therapeutic targets and mechanisms of COVID-19 through network analysis and screening of chemicals and herbal ingredients. Brief Bioinform 2022; 23:bbab373. [PMID: 34505138 PMCID: PMC8499921 DOI: 10.1093/bib/bbab373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
After experiencing the COVID-19 pandemic, it is widely acknowledged that a rapid drug repurposing method is highly needed. A series of useful drug repurposing tools have been developed based on data-driven modeling and network pharmacology. Based on the disease module, we identified several hub proteins that play important roles in the onset and development of the COVID-19, which are potential targets for repositioning approved drugs. Moreover, different network distance metrics were applied to quantify the relationship between drug targets and COVID-19 disease targets in the protein-protein-interaction (PPI) network and predict COVID-19 therapeutic effects of bioactive herbal ingredients and chemicals. Furthermore, the tentative mechanisms of candidates were illustrated through molecular docking and gene enrichment analysis. We obtained 15 chemical and 15 herbal ingredient candidates and found that different drugs may play different roles in the process of virus invasion and the onset and development of the COVID-19 disease. Given pandemic outbreaks, our method has an undeniable immense advantage in the feasibility analysis of drug repurposing or drug screening, especially in the analysis of herbal ingredients.
Collapse
Affiliation(s)
- Hong Wang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Engineering Research Center for Clinical Big-data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China
| | - Jingqing Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Zhigang Lu
- Department of Neurology, The First People's Hospital of Jingmen affiliated to Hubei Minzu University, Jingmen, 448000, China
| | - Weina Dai
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chuanjiang Ma
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Xiang
- Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Yonghong Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Engineering Research Center for Clinical Big-data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
6
|
Hu ZW, Zhou LQ, Yang S, Chen M, Yu HH, Tao R, Wu LJ, Wang W, Zhang Q, Qin C, Tian DS. FTY720 Modulates Microglia Toward Anti-inflammatory Phenotype by Suppressing Autophagy via STAT1 Pathway. Cell Mol Neurobiol 2021; 41:353-364. [PMID: 32342246 PMCID: PMC11448578 DOI: 10.1007/s10571-020-00856-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/18/2020] [Indexed: 02/01/2023]
Abstract
Since microglia-associated neuroinflammation plays a pivotal role in the progression of white matter diseases, modulating microglial activation has been suggested as a potential therapeutic strategy. Here, we investigated the anti-inflammatory effects of fingolimod (FTY720) on microglia and analyzed the crosstalk between microglia autophagy and neuroinflammation. Lipopolysaccharide (LPS)-induced primary cultured microglia model was established. Microglial phenotypes were assessed by Western blot, quantitative real-time polymerase chain reaction (RT-PCR) and flow cytometry. Autophagy was evaluated by immunofluorescence, MDC staining and Western blot. Rapamycin was used to investigate the role of autophagic process in regulating microglial phenotypes. The signaling markers were screened by RT-PCR and Western blot. FTY720 shifted microglial phenotype from pro-inflammatory state to anti-inflammatory state and inhibited microglial autophagy under lipopolysaccharide (LPS) treatment. Rapamycin reversed the effect of FTY720 on phenotype transformation of microglia. The results of mechanism studies have shown that FTY720 notably repressed LPS-induced STAT1 activity, which was reactivated by rapamycin. Our research suggested that FTY720 could significantly transform pro-inflammatory microglia into anti-inflammatory microglia by suppressing autophagy via STAT1.
Collapse
Affiliation(s)
- Zi-Wei Hu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Han Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ran Tao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Schøller AS, Nazerai L, Christensen JP, Thomsen AR. Functionally Competent, PD-1 + CD8 + Trm Cells Populate the Brain Following Local Antigen Encounter. Front Immunol 2021; 11:595707. [PMID: 33603737 PMCID: PMC7884456 DOI: 10.3389/fimmu.2020.595707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of programmed cell death-1 receptor (PD-1) has traditionally been linked to T-cell exhaustion, as signaling via PD-1 dampens the functionality of T-cells upon repetitive antigen exposures during chronic infections. However, resent findings pointing to the involvement of PD-1 both in T-cell survival and in restraining immunopathology, challenge the concept of PD-1 solely as marker for T-cell exhaustion. Tissue resident memory T cells (Trms) hold unique effector qualities, but within a delicate organ like the CNS, these protective abilities could potentially be harmful. In contrast to their counterparts in many other tissues, brain derived CD8+ Trms have been found to uniformly and chronically express PD-1. In this study we utilized a recently established model system for generating CNS Trms in order to improve our understanding regarding the role of PD-1 expression by Trms inside the CNS. By intracerebral (i.c.) inoculation with a non-replicating adeno-viral vector, we induced a PD-1hi CD8+ T cell memory population within the CNS. We found that PD-1 expression lowered the severity of clinical disease associated with the i.c. inoculation. Furthermore, high levels of PD-L1 expression were found on the infiltrating monocytes and macrophages as well as on the resident microglia, oligodendrocytes and astrocytes during the acute phase of the response. Additionally, we showed that the intensity of PD-1 expression correlates with local antigen encounter and found that PD-1 expression was associated with decreased CD8+ T cell memory formation in the CNS despite an increased number of infiltrating CD8+ T cells. Most importantly, our experiments revealed that despite expression of PD-1 and several additional markers linked to T-cell exhaustion, Tim-3, Lag-3 and CD39, the cells did not show signs of limited effector capacity. Collectively, these results endorse the increasing amount of evidence pointing to an immune-modifying role for PD-1 expression within the CNS, a mechanism we found to correlate with local antigen exposure.
Collapse
Affiliation(s)
| | | | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Syage AR, Ekiz HA, Skinner DD, Stone C, O'Connell RM, Lane TE. Single-Cell RNA Sequencing Reveals the Diversity of the Immunological Landscape following Central Nervous System Infection by a Murine Coronavirus. J Virol 2020; 94:e01295-20. [PMID: 32999036 PMCID: PMC7925182 DOI: 10.1128/jvi.01295-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023] Open
Abstract
Intracranial (i.c.) infection of susceptible C57BL/6 mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) (a member of the Coronaviridae family) results in acute encephalomyelitis and viral persistence associated with an immune-mediated demyelinating disease. The present study was undertaken to better understand the molecular pathways evoked during innate and adaptive immune responses as well as the chronic demyelinating stage of disease in response to JHMV infection of the central nervous system (CNS). Using single-cell RNA sequencing analysis (scRNAseq) on flow-sorted CD45-positive (CD45+) cells enriched from brains and spinal cords of experimental mice, we demonstrate the heterogeneity of the immune response as determined by the presence of unique molecular signatures and pathways involved in effective antiviral host defense. Furthermore, we identify potential genes involved in contributing to demyelination as well as remyelination being expressed by both microglia and macrophages. Collectively, these findings emphasize the diversity of the immune responses and molecular networks at defined stages following viral infection of the CNS.IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the molecular signatures of immune cells within the CNS at defined times following infection with a neuroadapted murine coronavirus using scRNAseq. This approach has revealed that the immunological landscape is diverse, with numerous immune cell subsets expressing distinct mRNA expression profiles that are, in part, dictated by the stage of infection. In addition, these findings reveal new insight into cellular pathways contributing to control of viral replication as well as to neurologic disease.
Collapse
Affiliation(s)
- Amber R Syage
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - H Atakan Ekiz
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Colleen Stone
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Ryan M O'Connell
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Mangale V, Syage AR, Ekiz HA, Skinner DD, Cheng Y, Stone CL, Brown RM, O'Connell RM, Green KN, Lane TE. Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Glia 2020; 68:2345-2360. [PMID: 32449994 PMCID: PMC7280614 DOI: 10.1002/glia.23844] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.
Collapse
Affiliation(s)
- Vrushali Mangale
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Amber R. Syage
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - H. Atakan Ekiz
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Dominic D. Skinner
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Yuting Cheng
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Colleen L. Stone
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - R. Marshall Brown
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Ryan M. O'Connell
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Kim N. Green
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
10
|
Murta V, Villarreal A, Ramos AJ. Severe Acute Respiratory Syndrome Coronavirus 2 Impact on the Central Nervous System: Are Astrocytes and Microglia Main Players or Merely Bystanders? ASN Neuro 2020; 12:1759091420954960. [PMID: 32878468 PMCID: PMC7476346 DOI: 10.1177/1759091420954960] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With confirmed coronavirus disease 2019 (COVID-19) cases surpassing the 18 million mark around the globe, there is an imperative need to gain comprehensive understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are associated with respiratory or intestinal symptoms, reports of neurological signs and symptoms are increasing. The etiology of these neurological manifestations remains obscure, and probably involves several direct pathways, not excluding the direct entry of the virus to the central nervous system (CNS) through the olfactory epithelium, circumventricular organs, or disrupted blood–brain barrier. Furthermore, neuroinflammation might occur in response to the strong systemic cytokine storm described for COVID-19, or due to dysregulation of the CNS rennin-angiotensin system. Descriptions of neurological manifestations in patients in the previous coronavirus (CoV) outbreaks have been numerous for the SARS-CoV and lesser for Middle East respiratory syndrome coronavirus (MERS-CoV). Strong evidence from patients and experimental models suggests that some human variants of CoV have the ability to reach the CNS and that neurons, astrocytes, and/or microglia can be target cells for CoV. A growing body of evidence shows that astrocytes and microglia have a major role in neuroinflammation, responding to local CNS inflammation and/or to disbalanced peripheral inflammation. This is another potential mechanism for SARS-CoV-2 damage to the CNS. In this comprehensive review, we will summarize the known neurological manifestations of SARS-CoV-2, SARS-CoV and MERS-CoV; explore the potential role for astrocytes and microglia in the infection and neuroinflammation; and compare them with the previously described human and animal CoV that showed neurotropism to propose possible underlying mechanisms.
Collapse
Affiliation(s)
- Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alberto J Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
11
|
Wang Y, Zhou S, Han Z, Yin D, Luo Y, Tian Y, Wang Z, Zhang J. Fingolimod administration improves neurological functions of mice with subarachnoid hemorrhage. Neurosci Lett 2020; 736:135250. [PMID: 32673690 DOI: 10.1016/j.neulet.2020.135250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE To investigate the brain protective effects of fingolimod on inflammatory response of SAH mice. METHODS We utilized an endovascular mouse perforation model of SAH. Mice were divided into three groups: sham group, SAH group and SAH + Fingolimod group. Mice received either saline or fingolimod (1 mg/kg) intraperitoneally 2 h after sham surgery or SAH. The modified neurological severity score (mNSS) and Morris water maze were respectively used to evaluate the influence of nerve function. Evens blue (EB) extravasation was used to detect the permeability of blood-brain barrier, and water content in brain tissue was also detected. Flow cytometry, ELISA kits and western blotting were used to detect inflammatory factors in brain tissue. RESULTS The results showed that compared with SAH group, after treatment, the delay time of locating the hidden platform was shorter. The mNSS results showed that fingolimod improved the behavior of SAH mice. In addition, fingolimod could reduce the water content in brain. Flow cytometry results showed that after 3 d of treatment, fingolimod significantly increased Treg cells and down-regulated NK cells. Western blotting results showed fingolimod inhibited the expression of inflammatory cytokines in brain tissue. ELISA kit results showed that fingolimod could down-regulate IL-6 and TNF-α and up-regulate IL-10 and TGF-β1 in serum. CONCLUSIONS Fingolimod could regulate the inflammatory response to alleviate SAH-induced brain damage and promote neurological recovery, which provides a new therapeutic strategy for SAH treatment.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, China.
| | - Shuai Zhou
- Department of ICU, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Zhenfeng Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, China
| | - Dongpei Yin
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, China
| | - Yuanbo Luo
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, China
| | - Ye Tian
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, China.
| |
Collapse
|
12
|
Abstract
Purpose of Review The outbreak of the novel coronavirus disease 2019 (COVID-19) has emerged to be the biggest global health threat worldwide, which has now infected over 1.7 million people and claimed more than 100,000 lives around the world. Under these unprecedented circumstances, there are no well-established guidelines for cancer patients. Recent Findings The risk for serious disease and death in COVID-19 cases increases with advancing age and presence of comorbid health conditions. Since the emergence of the first case in Wuhan, China, in December 2019, tremendous research efforts have been underway to understand the mechanisms of infectivity and transmissibility of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a fatal virus responsible for abysmal survival outcomes. To minimize the mortality rate, it becomes prudent to identify symptoms promptly and employ treatments appropriately. Even though no cure has been established, multiple clinical trials are underway to determine the most optimal strategy. Managing cancer patients under these circumstances is rather challenging, given their vulnerable status and the aggressive nature of their underlying disease. Summary In this comprehensive review, we discuss the impact of COVID-19 on health and the immune system of those affected, reviewing the latest treatment approaches and ongoing clinical trials. Additionally, we discuss challenges faced while treating cancer patients and propose potential approaches to manage this vulnerable population during this pandemic.
Collapse
|
13
|
Marro BS, Skinner DD, Cheng Y, Grist JJ, Dickey LL, Eckman E, Stone C, Liu L, Ransohoff RM, Lane TE. Disrupted CXCR2 Signaling in Oligodendroglia Lineage Cells Enhances Myelin Repair in a Viral Model of Multiple Sclerosis. J Virol 2019; 93:e00240-19. [PMID: 31243125 PMCID: PMC6714798 DOI: 10.1128/jvi.00240-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022] Open
Abstract
CXCR2 is a chemokine receptor expressed on oligodendroglia that has been implicated in the pathogenesis of neuroinflammatory demyelinating diseases as well as enhancement of the migration, proliferation, and myelin production by oligodendroglia. Using an inducible proteolipid protein (Plp) promoter-driven Cre-loxP recombination system, we were able to assess how timed ablation of Cxcr2 in oligodendroglia affected disease following intracranial infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV). Generation of Plp-Cre-ER(T)::Cxcr2flox/flox transgenic mice (termed Cxcr2-CKO mice) allows for Cxcr2 to be silenced in oligodendrocytes in adult mice following treatment with tamoxifen. Ablation of oligodendroglia Cxcr2 did not influence clinical severity in response to intracranial infection with JHMV. Infiltration of activated T cells or myeloid cells into the central nervous system (CNS) was not affected, nor was the ability to control viral infection. In addition, the severity of demyelination was similar between tamoxifen-treated mice and vehicle-treated controls. Notably, deletion of Cxcr2 resulted in increased remyelination, as assessed by g-ratio (the ratio of the inner axonal diameter to the total outer fiber diameter) calculation, compared to that in vehicle-treated control mice. Collectively, our findings argue that CXCR2 signaling in oligodendroglia is dispensable with regard to contributing to neuroinflammation, but its deletion enhances remyelination in a preclinical model of the human demyelinating disease multiple sclerosis (MS).IMPORTANCE Signaling through the chemokine receptor CXCR2 in oligodendroglia is important for developmental myelination in rodents, while chemical inhibition or nonspecific genetic deletion of CXCR2 appears to augment myelin repair in animal models of the human demyelinating disease multiple sclerosis (MS). To better understand the biology of CXCR2 signaling on oligodendroglia, we generated transgenic mice in which Cxcr2 is selectively ablated in oligodendroglia upon treatment with tamoxifen. Using a viral model of neuroinflammation and demyelination, we demonstrate that genetic silencing of CXCR2 on oligodendroglia did not affect clinical disease, neuroinflammation, or demyelination, yet there was increased remyelination. These findings support and extend previous findings suggesting that targeting CXCR2 may offer a therapeutic avenue for enhancing remyelination in patients with demyelinating diseases.
Collapse
Affiliation(s)
- Brett S Marro
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yuting Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jonathan J Grist
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laura L Dickey
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Emily Eckman
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Colleen Stone
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Liping Liu
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard M Ransohoff
- Department of Cell Biology, Harvard University School of Medicine, Boston, Massachusetts, USA
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Immunology, Inflammation & Infectious Disease Initiative, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Brown DG, Soto R, Yandamuri S, Stone C, Dickey L, Gomes-Neto JC, Pastuzyn ED, Bell R, Petersen C, Buhrke K, Fujinami RS, O'Connell RM, Stephens WZ, Shepherd JD, Lane TE, Round JL. The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. eLife 2019; 8:e47117. [PMID: 31309928 PMCID: PMC6634972 DOI: 10.7554/elife.47117] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022] Open
Abstract
Symbiotic microbes impact the function and development of the central nervous system (CNS); however, little is known about the contribution of the microbiota during viral-induced neurologic damage. We identify that commensals aid in host defense following infection with a neurotropic virus through enhancing microglia function. Germfree mice or animals that receive antibiotics are unable to control viral replication within the brain leading to increased paralysis. Microglia derived from germfree or antibiotic-treated animals cannot stimulate viral-specific immunity and microglia depletion leads to worsened demyelination. Oral administration of toll-like receptor (TLR) ligands to virally infected germfree mice limits neurologic damage. Homeostatic activation of microglia is dependent on intrinsic signaling through TLR4, as disruption of TLR4 within microglia, but not the entire CNS (excluding microglia), leads to increased viral-induced clinical disease. This work demonstrates that gut immune-stimulatory products can influence microglia function to prevent CNS damage following viral infection.
Collapse
Affiliation(s)
- D Garrett Brown
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Raymond Soto
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Soumya Yandamuri
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Colleen Stone
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Laura Dickey
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Joao Carlos Gomes-Neto
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Elissa D Pastuzyn
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Charisse Petersen
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Kaitlin Buhrke
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Robert S Fujinami
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Ryan M O'Connell
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - W Zac Stephens
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Jason D Shepherd
- Department of NeurobiologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Thomas E Lane
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - June L Round
- Department of Pathology, Division of Microbiology and ImmunologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
15
|
Kim H, Dickey L, Stone C, Jafek JL, Lane TE, Tantin D. T cell-selective deletion of Oct1 protects animals from autoimmune neuroinflammation while maintaining neurotropic pathogen response. J Neuroinflammation 2019; 16:133. [PMID: 31266507 PMCID: PMC6607600 DOI: 10.1186/s12974-019-1523-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Treatments for autoimmune diseases aim to dampen autoreactivity while preserving normal immune function. In CD4+ T cells, the transcription factor Oct1/Pou2f1 is a dispensable transcription factor for T cell development and response to primary infection, but promotes expression of target genes, including Il2 and Ifng, under conditions of antigen reencounter. As a result, they are more strongly expressed upon secondary stimulation. Such repeated antigen encounters occur in memory recall responses, in autoimmunity where self-antigen can be recognized multiple times, and in chronic infection where foreign antigen is persistent. Based on these previous findings, we hypothesized that Oct1 loss would protect animals from autoimmunity but maintain normal responses to pathogens in the CNS. OBJECTIVE We used a conditional mouse Oct1 (Pou2f1) allele and a CD4-Cre driver to determine the effect of T cell-specific Oct1 loss on autoimmune- and viral-induced neuroinflammation using an autoantigen-driven EAE model of autoimmunity and a JHMV model of viral infection. RESULTS Oct1 conditional deletion mitigated clinical scores and reduced infiltrating T cells and cytokine production in the EAE model. Consistently, Oct1-deficient CD4+ T cells stimulated in vitro showed increased expression of markers associated with T cell anergy, particularly in the absence of co-stimulatory signals. In contrast, anti-viral T cell effector functions are intact in the absence of Oct1, with no changes in neuroinflammation, infiltrating T cells or cytokine production. CONCLUSION Our findings uncover a significant difference between the effect of Oct1 loss on autoimmune and anti-pathogen responses, which potentially could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Heejoo Kim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Laura Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Colleen Stone
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Jillian L. Jafek
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Thomas E. Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
16
|
Mangale V, McIntyre LL, Walsh CM, Loring JF, Lane TE. Promoting remyelination through cell transplantation therapies in a model of viral-induced neurodegenerative disease. Dev Dyn 2018; 248:43-52. [PMID: 30067309 DOI: 10.1002/dvdy.24658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Several United States Food and Drug Administration-approved therapies exist that impede activated lymphocytes from entering the CNS thereby limiting new lesion formation in patients with relapse-remitting forms of MS. However, a significant challenge within the field of MS research is to develop effective and sustained therapies that allow for axonal protection and remyelination. In recent years, there has been increasing evidence that some kinds of stem cells and their derivatives seem to be able to mute neuroinflammation as well as promote remyelination and axonal integrity. Intracranial infection of mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in immune-mediated demyelination and axonopathy, making this an excellent model to interrogate the therapeutic potential of stem cell derivatives in evoking remyelination. This review provides a succinct overview of our recent findings using intraspinal injection of mouse CNS neural progenitor cells and human neural precursors into JHMV-infected mice. JHMV-infected mice receiving these cells display extensive remyelination associated with axonal sparing. In addition, we discuss possible mechanisms associated with sustained clinical recovery. Developmental Dynamics 248:43-52, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vrushali Mangale
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laura L McIntyre
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Center, University of California, Irvine, California
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Center, University of California, Irvine, California
| | - Jeanne F Loring
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Immunology, Inflammation, and Infectious Disease Initiative, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Severe aseptic temporal lobe encephalitis on fingolimod. Mult Scler Relat Disord 2018; 23:4-6. [DOI: 10.1016/j.msard.2018.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 11/24/2022]
|
18
|
Teo TH, Chan YH, Lee WWL, Lum FM, Amrun SN, Her Z, Rajarethinam R, Merits A, Rötzschke O, Rénia L, Ng LFP. Fingolimod treatment abrogates chikungunya virus-induced arthralgia. Sci Transl Med 2018; 9:9/375/eaal1333. [PMID: 28148838 DOI: 10.1126/scitranslmed.aal1333] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/30/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022]
Abstract
Chikungunya virus (CHIKV) is one of the many rheumatic arthropod-borne alphaviruses responsible for debilitating joint inflammation in humans. Despite the severity in many endemic regions, clinically approved intervention targeting the virus remains unavailable. CD4+ T cells have been shown to mediate CHIKV-induced joint inflammation in mice. We demonstrate here that transfer of splenic CD4+ T cells from virus-infected C57BL/6 mice into virus-infected T cell receptor-deficient (TCR-/-) mice recapitulated severe joint pathology including inflammation, vascular leakages, subcutaneous edema, and skeletal muscle necrosis. Proteome-wide screening identified dominant CD4+ T cell epitopes in nsP1 and E2 viral antigens. Transfer of nsP1- or E2-specific primary CD4+ T cell lines into CHIKV-infected TCR-/- recipients led to severe joint inflammation and vascular leakage. This pathogenic role of virus-specific CD4+ T cells in CHIKV infections led to the assessment of clinically approved T cell-suppressive drugs for disease intervention. Although drugs targeting interleukin-2 pathway were ineffective, treatment with fingolimod, an agonist of sphingosine 1-phosphate receptor, successfully abrogated joint pathology in CHIKV-infected animals by blocking the migration of CD4+ T cells into the joints without any effect on viral replication. These results set the stage for further clinical evaluation of fingolimod in the treatment of CHIKV-induced joint pathologies.
Collapse
Affiliation(s)
- Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Wendy W L Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Zhisheng Her
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | | | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, U.K
| |
Collapse
|
19
|
Qin C, Fan WH, Liu Q, Shang K, Murugan M, Wu LJ, Wang W, Tian DS. Fingolimod Protects Against Ischemic White Matter Damage by Modulating Microglia Toward M2 Polarization via STAT3 Pathway. Stroke 2017; 48:3336-3346. [PMID: 29114096 DOI: 10.1161/strokeaha.117.018505] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE White matter (WM) ischemic injury, a major neuropathological feature of cerebral small vessel diseases, is an important cause of vascular cognitive impairment in later life. The pathogenesis of demyelination after WM ischemic damage are often accompanied by microglial activation. Fingolimod (FTY720) was approved for the treatment of multiple sclerosis for its immunosuppression property. In this study, we evaluated the neuroprotective potential of FTY720 in a WM ischemia model. METHODS Chronic WM ischemic injury model was induced by bilateral carotid artery stenosis. Cognitive function, WM integrity, microglial activation, and potential pathway involved in microglial polarization were assessed after bilateral carotid artery stenosis. RESULTS Disruption of WM integrity was characterized by demyelination in the corpus callosum and disorganization of Ranvier nodes using Luxol fast blue staining, immunofluorescence staining, and electron microscopy. In addition, radial maze test demonstrated that working memory performance was decreased at 1-month post-bilateral carotid artery stenosis-induced injury. Interestingly, FTY720 could reduce cognitive decline and ameliorate the disruption of WM integrity. Mechanistically, cerebral hypoperfusion induced microglial activation, production of associated proinflammatory cytokines, and priming of microglial polarization toward the M1 phenotype, whereas FTY720 attenuated microglia-mediated neuroinflammation after WM ischemia and promoted oligodendrocytogenesis by shifting microglia toward M2 polarization. FTY720's effect on microglial M2 polarization was largely suppressed by selective signal transducer and activator of transcription 3 (STAT3) blockade in vitro, revealing that FTY720-enabled shift of microglia from M1 to M2 polarization state was possibly mediated by STAT3 signaling. CONCLUSIONS Our study suggested that FTY720 might be a potential therapeutic drug targeting brain inflammation by skewing microglia toward M2 polarization after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Chuan Qin
- From the Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.Q., W.-H.F., Q.L., K.S., W.W., D.-S.T.); Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, China (W.-H.F.); Department of Neurology, Mayo Clinic, Rochester, MN (M.M., L.-J.W.); and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (M.M., L.-J.W.)
| | - Wen-Hui Fan
- From the Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.Q., W.-H.F., Q.L., K.S., W.W., D.-S.T.); Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, China (W.-H.F.); Department of Neurology, Mayo Clinic, Rochester, MN (M.M., L.-J.W.); and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (M.M., L.-J.W.)
| | - Qian Liu
- From the Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.Q., W.-H.F., Q.L., K.S., W.W., D.-S.T.); Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, China (W.-H.F.); Department of Neurology, Mayo Clinic, Rochester, MN (M.M., L.-J.W.); and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (M.M., L.-J.W.)
| | - Ke Shang
- From the Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.Q., W.-H.F., Q.L., K.S., W.W., D.-S.T.); Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, China (W.-H.F.); Department of Neurology, Mayo Clinic, Rochester, MN (M.M., L.-J.W.); and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (M.M., L.-J.W.)
| | - Madhuvika Murugan
- From the Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.Q., W.-H.F., Q.L., K.S., W.W., D.-S.T.); Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, China (W.-H.F.); Department of Neurology, Mayo Clinic, Rochester, MN (M.M., L.-J.W.); and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (M.M., L.-J.W.)
| | - Long-Jun Wu
- From the Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.Q., W.-H.F., Q.L., K.S., W.W., D.-S.T.); Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, China (W.-H.F.); Department of Neurology, Mayo Clinic, Rochester, MN (M.M., L.-J.W.); and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (M.M., L.-J.W.)
| | - Wei Wang
- From the Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.Q., W.-H.F., Q.L., K.S., W.W., D.-S.T.); Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, China (W.-H.F.); Department of Neurology, Mayo Clinic, Rochester, MN (M.M., L.-J.W.); and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (M.M., L.-J.W.)
| | - Dai-Shi Tian
- From the Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.Q., W.-H.F., Q.L., K.S., W.W., D.-S.T.); Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, China (W.-H.F.); Department of Neurology, Mayo Clinic, Rochester, MN (M.M., L.-J.W.); and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ (M.M., L.-J.W.).
| |
Collapse
|
20
|
Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol 2017; 133:223-244. [PMID: 27766432 PMCID: PMC5250666 DOI: 10.1007/s00401-016-1631-4] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
One of the most frequent statements, provided in different variations in the introduction of experimental studies on multiple sclerosis (MS), is that "Multiple sclerosis is a demyelinating autoimmune disease and experimental autoimmune encephalomyelitis (EAE) is a suitable model to study its pathogenesis". However, so far, no single experimental model covers the entire spectrum of the clinical, pathological, or immunological features of the disease. Many different models are available, which proved to be highly useful for studying different aspects of inflammation, demyelination, remyelination, and neurodegeneration in the central nervous system. However, the relevance of results from such models for MS pathogenesis has to be critically validated. Current EAE models are mainly based on inflammation, induced by auto-reactive CD4+ T-cells, and these models reflect important aspects of MS. However, pathological data and results from clinical trials in MS indicate that CD8+ T-cells and B-lymphocytes may play an important role in propagating inflammation and tissue damage in established MS. Viral models may reflect key features of MS-like inflammatory demyelination, but are difficult to use due to their very complex pathogenesis, involving direct virus-induced and immune-mediated mechanisms. Furthermore, evidence for a role of viruses in MS pathogenesis is indirect and limited, and an MS-specific virus infection has not been identified so far. Toxic models are highly useful to unravel mechanisms of de- and remyelination, but do not reflect other important aspects of MS pathology and pathogenesis. For all these reasons, it is important to select the right experimental model to answer specific questions in MS research.
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| | - Monika Bradl
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| |
Collapse
|
21
|
Altered T cell phenotypes associated with clinical relapse of multiple sclerosis patients receiving fingolimod therapy. Sci Rep 2016; 6:35314. [PMID: 27752051 PMCID: PMC5082790 DOI: 10.1038/srep35314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a T cell-mediated autoimmune disease. Fingolimod, a highly effective disease-modifying drug for MS, retains CCR7+ central memory T cells in which autoaggressive T cells putatively exist, in secondary lymphoid organs, although relapse may still occur in some patients. Here, we analyzed the T cell phenotypes of fingolimod-treated, fingolimod-untreated patients, and healthy subjects. The frequency of CD56+ T cells and granzyme B-, perforin-, and Fas ligand-positive T cells significantly increased during fingolimod treatment. Each T cell subpopulation further increased during relapse. Interestingly, T cells from fingolimod-treated patients exhibited interferon-γ biased production, and more myelin basic protein-reactive cells was noted in CD56+ than in CD56− T cells. It is likely that the altered T cell phenotypes play a role in MS relapse in fingolimod-treated patients. Further clinical studies are necessary to investigate whether altered T cell phenotypes are a biomarker for relapse under fingolimod therapy.
Collapse
|
22
|
Dickey LL, Worne CL, Glover JL, Lane TE, O’Connell RM. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. J Neuroinflammation 2016; 13:240. [PMID: 27604627 PMCID: PMC5015201 DOI: 10.1186/s12974-016-0699-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/20/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are noncoding RNAs that modulate cellular gene expression, primarily at the post-transcriptional level. We sought to examine the functional role of miR-155 in a model of viral-induced neuroinflammation. METHODS Acute encephalomyelitis and immune-mediated demyelination were induced by intracranial injection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) into C57BL/6 miR-155 (+/+) wildtype (WT) mice or miR-155 (-/-) mice. Morbidity and mortality, viral load and immune cell accumulation in the CNS, and spinal cord demyelination were assessed at defined points post-infection. T cells harvested from infected mice were used to examine cytolytic activity, cytokine activity, and expression of certain chemokine receptors. To determine the impact of miR-155 on trafficking, T cells from infected WT or miR-155 (-/-) mice were adoptively transferred into RAG1 (-/-) mice, and T cell accumulation into the CNS was assessed using flow cytometry. Statistical significance was determined using the Mantel-Cox log-rank test or Student's T tests. RESULTS Compared to WT mice, JHMV-infected miR-155 (-/-) mice developed exacerbated disease concomitant with increased morbidity/mortality and an inability to control viral replication within the CNS. In corroboration with increased susceptibility to disease, miR-155 (-/-) mice had diminished CD8(+) T cell responses in terms of numbers, cytolytic activity, IFN-γ secretion, and homing to the CNS that corresponded with reduced expression of the chemokine receptor CXCR3. Both IFN-γ secretion and trafficking were impaired in miR-155 (-/-) , virus-specific CD4(+) T cells; however, expression of the chemokine homing receptors analyzed on CD4(+) cells was not affected. Except for very early during infection, there were not significant differences in macrophage infiltration into the CNS between WT and miR-155 (-/-) JHMV-infected mice, and the severity of demyelination was similar at 14 days p.i. between WT and miR-155 (-/-) JHMV-infected mice. CONCLUSIONS These findings support a novel role for miR-155 in host defense in a model of viral-induced encephalomyelitis. Specifically, miR-155 enhances antiviral T cell responses including cytokine secretion, cytolytic activity, and homing to the CNS in response to viral infection. Further, miR-155 can play either a host-protective or host-damaging role during neuroinflammation depending on the disease trigger.
Collapse
Affiliation(s)
- Laura L. Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Colleen L. Worne
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Jessica L. Glover
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Thomas E. Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Ryan M. O’Connell
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
23
|
Blanc CA, Grist JJ, Rosen H, Sears-Kraxberger I, Steward O, Lane TE. Sphingosine-1-phosphate receptor antagonism enhances proliferation and migration of engrafted neural progenitor cells in a model of viral-induced demyelination. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2819-32. [PMID: 26435414 DOI: 10.1016/j.ajpath.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 01/12/2023]
Abstract
The oral drug FTY720 affects sphingosine-1-phosphate (S1P) signaling on targeted cells that bear the S1P receptors S1P1, S1P3, S1P4, and S1P5. We examined the effect of FTY720 treatment on the biology of mouse neural progenitor cells (NPCs) after transplantation in a viral model of demyelination. Intracerebral infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in an acute encephalomyelitis, followed by demyelination similar in pathology to the human demyelinating disease, multiple sclerosis. We have previously reported that intraspinal transplantation of mouse NPCs into JHMV-infected animals resulted in selective colonization of demyelinated lesions, preferential differentiation into oligodendroglia accompanied by axonal preservation, and increased remyelination. Cultured NPCs expressed transcripts for S1P receptors S1P1, S1P2, S1P3, S1P4, and S1P5. FTY720 treatment of cultured NPCs resulted in increased mitogen-activated protein kinase phosphorylation and migration after exposure to the chemokine CXCL12. Administration of FTY720 to JHMV-infected mice resulted in enhanced migration and increased proliferation of transplanted NPCs after spinal cord engraftment. FTY720 treatment did not improve clinical disease, diminish neuroinflammation or the severity of demyelination, nor increase remyelination. These findings argue that FTY720 treatment selectively increases NPC proliferation and migration but does not either improve clinical outcome or enhance remyelination after transplantation into animals in which immune-mediated demyelination is initiated by the viral infection of the central nervous system.
Collapse
Affiliation(s)
- Caroline A Blanc
- Department of Molecular Biology and Biochemistry, Reeve-Irvine Research Center Irvine School of Medicine, University of California, Irvine, California
| | - Jonathan J Grist
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hugh Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California
| | - Ilse Sears-Kraxberger
- Departments of Anatomy and Neurobiology and Neurobiology and Behavior, Reeve-Irvine Research Center Irvine School of Medicine, University of California, Irvine, California
| | - Oswald Steward
- Departments of Anatomy and Neurobiology and Neurobiology and Behavior, Reeve-Irvine Research Center Irvine School of Medicine, University of California, Irvine, California
| | - Thomas E Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
24
|
Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol 2016; 279:243-260. [PMID: 26980486 DOI: 10.1016/j.expneurol.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Abstract
Fingolimod (FTY720) is a new generation oral treatment for multiple sclerosis (MS). So far, FTY720 was mainly considered to target trafficking of immune cells but not brain cells such as neurons. Herein, we analyzed FTY720's potential to directly alter neuronal function. In CNS neurons, we identified a FTY720 governed gene expression response. FTY720 upregulated immediate early genes (IEGs) encoding for neuronal activity associated transcription factors such as c-Fos, FosB, Egr1 and Egr2 and induced actin cytoskeleton associated genes (actin isoforms, tropomyosin, calponin). Stimulation of primary neurons with FTY720 enhanced neurite growth and altered growth cone morphology. In accordance, FTY720 enhanced axon regeneration in mice upon facial nerve axotomy. We identified components of a FTY720 engaged signaling cascade including S1P receptors, G12/13G-proteins, RhoA-GTPases and the transcription factors SRF/MRTF. In summary, we uncovered a broader cellular and therapeutic operation mode of FTY720, suggesting beneficial FTY720 effects also on CNS neurons during MS therapy and for treatment of other neurodegenerative diseases requiring neuroprotective and neurorestorative processes.
Collapse
Affiliation(s)
- Sofia Anastasiadou
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
25
|
Marro BS, Grist JJ, Lane TE. Inducible Expression of CXCL1 within the Central Nervous System Amplifies Viral-Induced Demyelination. THE JOURNAL OF IMMUNOLOGY 2016; 196:1855-64. [PMID: 26773148 DOI: 10.4049/jimmunol.1501802] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022]
Abstract
The functional role of the ELR(+) chemokine CXCL1 in host defense and disease following infection of the CNS with the neurotropic JHM strain of mouse hepatitis virus (JHMV) was examined. Mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells were generated and this allowed for selectively increasing CNS expression of CXCL1 in response to JHMV infection and evaluating the effects on neuroinflammation, control of viral replication, and demyelination. Inducible expression of CNS-derived CXCL1 resulted in increased levels of CXCL1 protein within the serum, brain, and spinal cord that correlated with increased frequency of Ly6G(+)CD11b(+) neutrophils present within the CNS. Elevated levels of CXCL1 did not influence the generation of virus-specific T cells, and there was no difference in control of JHMV replication compared with control mice, indicating that T cell infiltration into the CNS is CXCL1-independent. Sustained CXCL1 expression within the CNS resulted in increased mortality that correlated with elevated neutrophil infiltration, diminished numbers of mature oligodendrocytes, and an increase in the severity of demyelination. Neutrophil ablation in CXCL1-transgenic mice reduced the severity of demyelination in mice, arguing for a role for these cells in white matter damage. Collectively, these findings illustrate that sustained CXCL1 expression amplifies the severity of white matter damage and that neutrophils can contribute to this process in a model of viral-induced neurologic disease.
Collapse
Affiliation(s)
- Brett S Marro
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine CA 92697; and
| | - Jonathan J Grist
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Thomas E Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|