1
|
Kordi R, Andrews TJ, Hicar MD. Infections, genetics, and Alzheimer's disease: Exploring the pathogenic factors for innovative therapies. Virology 2025; 607:110523. [PMID: 40174330 DOI: 10.1016/j.virol.2025.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that creates a significant global health challenge and profoundly affects patients and their families. Recent research has highlighted the critical role of microorganisms, particularly viral infections, in the pathogenesis of AD. The involvement of viral infections in AD pathogenesis is predominantly attributed to their ability to induce neuroinflammation and amyloid beta (Aβ) deposition in the brain. The extant research exploring the relationship between viruses and AD has focused largely on Herpesviridae family. Traces of Herpesviruses, such as Herpes Simplex Virus-1 and Epstein Barr Virus, have been found in the brains of patients with AD. These viruses are thought to contribute to the disease progression by triggering chronic inflammatory responses in the brain. They can remain dormant in the brain, and become reactivated due to stress, a secondary viral infection, or immune-senescence in older adults. This review focuses on the association between Herpesviridae and bacterial infections with AD. We explore the genetic factors that might regulate viral illness and discuss clinical trials investigating antiviral and anti-inflammatory agents as possible therapeutic strategies to mitigate cognitive decline in patients with AD. In summary, understanding the interplay between infections, genetic factors, and AD pathogenesis may pave the way for novel therapeutic approaches, facilitating better management and possibly even prevent this debilitating disease.
Collapse
Affiliation(s)
- Ramesh Kordi
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Ted J Andrews
- Department of Pediatrics, Division of Developmental Pediatrics and Rehabilitation, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mark D Hicar
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
2
|
Dai X, Liang R, Dai M, Li X, Zhao W. Smoking Impacts Alzheimer's Disease Progression Through Oral Microbiota Modulation. Mol Neurobiol 2025; 62:19-44. [PMID: 38795302 DOI: 10.1007/s12035-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Alzheimer's disease (AD) is an important public health challenge with a limited understanding of its pathogenesis. Smoking is a significant modifiable risk factor for AD progression, and its specific mechanism is often interpreted from a toxicological perspective. However, microbial infections also contribute to AD, with oral microbiota playing a crucial role in its progression. Notably, smoking alters the ecological structure and pathogenicity of the oral microbiota. Currently, there is no systematic review or summary of the relationship between these three factors; thus, understanding this association can help in the development of new treatments. This review summarizes the connections between smoking, AD, and oral microbiota from existing research. It also explores how smoking affects the occurrence and development of AD through oral microbiota, and examines treatments for oral microbiota that delay the progression of AD. Furthermore, this review emphasizes the potential of the oral microbiota to act as a biomarker for AD. Finally, it considers the feasibility of probiotics and oral antibacterial therapy to expand treatment methods for AD.
Collapse
Affiliation(s)
- Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manqiong Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Dhanawat M, Malik G, Wilson K, Gupta S, Gupta N, Sardana S. The Gut Microbiota-Brain Axis: A New Frontier in Alzheimer's Disease Pathology. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:7-20. [PMID: 38967078 DOI: 10.2174/0118715273302508240613114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024]
Abstract
Dr. Aloysius Alzheimer, a German neuropathologist and psychiatrist, recognized the primary instance of Alzheimer's disease (AD) for a millennium, and this ailment, along with its related dementias, remains a severe overall community issue related to health. Nearly fifty million individuals worldwide suffer from dementia, with Alzheimer's illness contributing to between 60 and 70% of the instances, estimated through the World Health Organization. In addition, 82 million individuals are anticipated to be affected by the global dementia epidemic by 2030 and 152 million by 2050. Furthermore, age, environmental circumstances, and inherited variables all increase the likelihood of acquiring neurodegenerative illnesses. Most recent pharmacological treatments are found in original hypotheses of disease, which include cholinergic (drugs that show affective cholinergic system availability) as well as amyloid-accumulation (a single drug is an antagonist receptor of Nmethyl D-aspartate). In 2020, the FDA provided approval on anti-amyloid drugs. According to mounting scientific data, this gut microbiota affects healthy physiological homeostasis and has a role in the etiology of conditions that range between obesity and neurodegenerative disorders like Alzheimer's. The microbiota-gut-brain axis might facilitate interconnection among gut microbes as well as the central nervous system (CNS). Interaction among the microbiota-gut system as well as the brain occurs through the "two-way" microbiota-gut-brain axis. Along this axis, the stomach as well as the brain develop physiologically and take on their final forms. This contact is constant and is mediated by numerous microbiota-derived products. The gut microbiota, for instance, can act as non-genetic markers to set a threshold for maintaining homeostasis or getting ill. The scientific community has conducted research and found that bowel dysbiosis and gastrointestinal tract dysregulation frequently occur in Alzheimer's disease (AD) patients. In this review, the effects of the microbiota- gut-brain axis on AD pathogenesis will be discussed.
Collapse
Affiliation(s)
- Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram 122413, India
| | - Garima Malik
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Kashish Wilson
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Sumeet Gupta
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nidhi Gupta
- Department of Pharmaceutics, M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Satish Sardana
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
4
|
Subedi L, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Crother TR. Chlamydia pneumoniae in Alzheimer's disease pathology. Front Neurosci 2024; 18:1393293. [PMID: 38770241 PMCID: PMC11102982 DOI: 10.3389/fnins.2024.1393293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
While recent advances in diagnostics and therapeutics offer promising new approaches for Alzheimer's disease (AD) diagnosis and treatment, there is still an unmet need for an effective remedy, suggesting new avenues of research are required. Besides many plausible etiologies for AD pathogenesis, mounting evidence supports a possible role for microbial infections. Various microbes have been identified in the postmortem brain tissues of human AD patients. Among bacterial pathogens in AD, Chlamydia pneumoniae (Cp) has been well characterized in human AD brains and is a leading candidate for an infectious involvement. However, no definitive studies have been performed proving or disproving Cp's role as a causative or accelerating agent in AD pathology and cognitive decline. In this review, we discuss recent updates for the role of Cp in human AD brains as well as experimental models of AD. Furthermore, based on the current literature, we have compiled a list of potential mechanistic pathways which may connect Cp with AD pathology.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
5
|
Phuna ZX, Madhavan P. A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease. Int J Neurosci 2023; 133:1071-1089. [PMID: 35282779 DOI: 10.1080/00207454.2022.2045290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
6
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
7
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
9
|
Li X, Qin H, Li T. Advances in the study of the relationship between Alzheimer's disease and the gastrointestinal microbiome. IBRAIN 2022; 8:465-475. [PMID: 37786585 PMCID: PMC10528962 DOI: 10.1002/ibra.12065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/04/2023]
Abstract
There are many trillions of bacteria in the gastrointestinal microbiome (GM). Their ecological dysregulation can contribute to the development of certain neurodegenerative diseases, including Alzheimer's disease (AD). AD is common dementia and its incidence is increasing year by year. However, the relationship between GM and AD is unclear. Therefore, this review discusses the relationship between GM and AD, elaborates on the possible factors that can affect this relationship through the inflammation of the brain induced by blood-brain damage and accumulation of amyloid deposit, and proposes feasible ways to treat AD through GM-related substances, such as probiotics, Mega-3, and gut hormones, including their shortcomings as well.
Collapse
Affiliation(s)
- Xin‐Yan Li
- Southwest Medical UniversityLuzhouSichuanChina
| | - Hao‐Yue Qin
- Southwest Medical UniversityLuzhouSichuanChina
| | - Ting‐Ting Li
- Department of Anesthesiology, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
- Department of Anestheiology, West China Tianfu HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infections. Front Immunol 2022; 13:907804. [PMID: 36052093 PMCID: PMC9425114 DOI: 10.3389/fimmu.2022.907804] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, United States
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| |
Collapse
|
11
|
Chlamydia pneumoniae Interferes with Macrophage Differentiation and Cell Cycle Regulation to Promote Its Replication. Cell Microbiol 2022. [DOI: 10.1155/2022/9854449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlamydia pneumoniae is a ubiquitous intracellular bacterium which infects humans via the respiratory route. The tendency of C. pneumoniae to persist in monocytes and macrophages is well known, but the underlying host-chlamydial interactions remain elusive. In this work, we have described changes in macrophage intracellular signaling pathways induced by C. pneumoniae infection. Label-free quantitative proteome analysis and pathway analysis tools were used to identify changes in human THP-1-derived macrophages upon C. pneumoniae CV6 infection. At 48-h postinfection, pathways associated to nuclear factor κB (NF-κB) regulation were stressed, while negative regulation on cell cycle control was prominent at both 48 h and 72 h. Upregulation of S100A8 and S100A9 calcium binding proteins, osteopontin, and purine nucleoside hydrolase, laccase domain containing protein 1 (LACC1) underlined the proinflammatory consequences of the infection, while elevated NF-κB2 levels in infected macrophages indicates interaction with the noncanonical NF-κB pathway. Infection-induced alteration of cell cycle control was obvious by the downregulation of mini chromosome maintenance (MCM) proteins MCM2-7, and the significance of host cell cycle regulation for C. pneumoniae replication was demonstrated by the ability of a cyclin-dependent kinase (CDK) 4/6 inhibitor Palbociclib to promote C. pneumoniae replication and infectious progeny production. The infection was found to suppress retinoblastoma expression in the macrophages in both protein and mRNA levels, and this change was reverted by treatment with a histone deacetylase inhibitor. The epigenetic suppression of retinoblastoma, along with upregulation of S100A8 and S100A9, indicate host cell changes associated with myeloid-derived suppressor cell (MDSC) phenotype.
Collapse
|
12
|
Zhan X, Hakoupian M, Jin LW, Sharp FR. Lipopolysaccharide, Identified Using an Antibody and by PAS Staining, Is Associated With Corpora amylacea and White Matter Injury in Alzheimer's Disease and Aging Brain. Front Aging Neurosci 2021; 13:705594. [PMID: 34899263 PMCID: PMC8652352 DOI: 10.3389/fnagi.2021.705594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Corpora amylacea (CA) increase in number and size with aging. Their origins and functions remain unknown. Previously, we found that Alzheimer's disease (AD) brains have more CA in the periventricular white matter (PVWM) compared to aging controls. In addition, CA is associated with neurodegeneration as indicated by colocalization of degraded myelin basic protein (dMBP) with periodic acid-Schiff (PAS), a CA marker. We also found that bacterial lipopolysaccharide is present in aging brains, with more LPS in AD compared with controls. Periodic acid-Schiff staining is used to identify CA by virtue of their high polysaccharide content. Despite the growing knowledge of CA as a contributor to AD pathology, the molecules that contribute to the polysaccharides in CA are not known. Notably, lipopolysaccharides (LPS) are important cell-surface polysaccharides found in all Gram-negative bacteria. However, it is unknown whether PAS could detect LPS, whether the LPS found in aging brains contribute to the polysaccharide found in CA, and whether LPS associate with myelin injury. In this study, we found that aging brains had a myelin deficit zone (MDZ) adjacent to the ventricles in PVWM. The MDZ contained vesicles, most of which were CA. LPS and dMBP levels were higher in AD than in control brains. LPS was colocalized with dMBP in the vesicles/CA, linking white matter injury with a bacterial pro-inflammatory molecule. The vesicles also contained oxidized fibers, C-reactive protein, NG2, and GALC, markers of oligodendrocyte precursor cells (OPCs) and oligodendrocyte cells (OLs), respectively. The vesicles/CA were surrounded by dense astrocyte processes in control and AD brains. LPS was co-localized with CA by double staining of PAS with LPS in aging brains. The relationship of LPS with PAS staining was confirmed by PAS staining of purified LPS on nitrocellulose membranes. These findings reveal that LPS is one of the polysaccharides found in CA which can be stained with PAS. In addition, vesicles/CA are associated with oxidized and damaged myelin. The LPS in these vesicles/CA may have contributed to this oxidative myelin damage and may have contributed to oxidative stress to OPCs and OLs which could impair the ability to repair damaged myelin in AD and control brains.
Collapse
Affiliation(s)
- Xinhua Zhan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Marisa Hakoupian
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Lee-Way Jin
- Department of Pathology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Frank R Sharp
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
13
|
Kaya-Tilki E, Dikmen M. Neuroprotective effects of some epigenetic modifying drugs' on Chlamydia pneumoniae-induced neuroinflammation: A novel model. PLoS One 2021; 16:e0260633. [PMID: 34847172 PMCID: PMC8631675 DOI: 10.1371/journal.pone.0260633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/14/2021] [Indexed: 12/02/2022] Open
Abstract
Chlamydia pneumoniae (Cpn) is a gram-negative intracellular pathogen that causes a variety of pulmonary diseases, and there is growing evidence that it may play a role in Alzheimer's disease (AD) pathogenesis. Cpn can interact functionally with host histones, altering the host's epigenetic regulatory system by introducing bacterial products into the host tissue and inducing a persistent inflammatory response. Because Cpn is difficult to propagate, isolate, and detect, a modified LPS-like neuroinflammation model was established using lyophilized cell free supernatant (CFS) obtained from infected cell cultures, and the effects of CFS were compared to LPS. The neuroprotective effects of Trichostatin A (TSA), givinostat, and RG108, which are effective on epigenetic mechanisms, and the antibiotic rifampin, were studied in this newly introduced model and in the presence of amyloid beta (Aβ) 1-42. The neuroprotective effects of the drugs, as well as the effects of CFS and LPS, were evaluated in Aβ-induced neurotoxicity using a real-time cell analysis system, total ROS, and apoptotic impact. TSA, RG108, givinostat, and rifampin all demonstrated neuroprotective effects in both this novel model and Aβ-induced neurotoxicity. The findings are expected to provide early evidence on neuroprotective actions against Cpn-induced neuroinflammation and Aβ-induced neurotoxicity, which could represent a new treatment option for AD, for which there are currently few treatment options.
Collapse
Affiliation(s)
- Elif Kaya-Tilki
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Miriş Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
14
|
Deidda G, Biazzo M. Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Front Neurosci 2021; 15:753915. [PMID: 34712115 PMCID: PMC8545893 DOI: 10.3389/fnins.2021.753915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Brain physiological functions or pathological dysfunctions do surely depend on the activity of both neuronal and non-neuronal populations. Nevertheless, over the last decades, compelling and fast accumulating evidence showed that the brain is not alone. Indeed, the so-called "gut brain," composed of the microbial populations living in the gut, forms a symbiotic superorganism weighing as the human brain and strongly communicating with the latter via the gut-brain axis. The gut brain does exert a control on brain (dys)functions and it will eventually become a promising valuable therapeutic target for a number of brain pathologies. In the present review, we will first describe the role of gut microbiota in normal brain physiology from neurodevelopment till adulthood, and thereafter we will discuss evidence from the literature showing how gut microbiota alterations are a signature in a number of brain pathologies ranging from neurodevelopmental to neurodegenerative disorders, and how pre/probiotic supplement interventions aimed to correct the altered dysbiosis in pathological conditions may represent a valuable future therapeutic strategy.
Collapse
Affiliation(s)
- Gabriele Deidda
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| |
Collapse
|
15
|
Ou H, Chien WC, Chung CH, Chang HA, Kao YC, Wu PC, Tzeng NS. Association Between Antibiotic Treatment of Chlamydia pneumoniae and Reduced Risk of Alzheimer Dementia: A Nationwide Cohort Study in Taiwan. Front Aging Neurosci 2021; 13:701899. [PMID: 34489674 PMCID: PMC8416516 DOI: 10.3389/fnagi.2021.701899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Chlamydia pneumoniae (CPn) is a common community-acquired pneumonia. In the literature, CPn infection is demonstrated to exhibit an association with Alzheimer dementia (AD). We executed the present nationwide, population-based research with the goal of probing the association of CPn infection and antibiotic therapy with AD risk. Methods: We conducted a cohort study using a database extracted from Taiwan's National Health Insurance Research Database (NHIRD). All medical conditions for each enrolled individuals were categorized using the International Classification of Diseases, ninth Revision classifications. Hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between CPn pneumonia-associated hospitalizations and AD were estimated using Fine and Gray's survival analysis and adjusted for comorbidities. The effects of the antibiotics on the HRs for AD in the patients with CPn pneumonia-associated hospitalization were also analyzed. Results: Our analyses included 6,628 individuals, including 1,657 CPn-infected patients, as well as 4,971 controls matched by age, index date, and sex (1:3). In this study, patients hospitalized for CPn pneumonia exhibited a significantly higher AD risk (adjusted HR = 1.599, 95% CI = 1.284-1.971, p < 0.001). We also noted an association of macrolide use (≥15 days) and fluoroquinolone use (≥15 days) with decreased AD risk. Conclusions: We determined CPn pneumonia to be associated with a relatively high AD risk. The result in this study confirmed the findings from previous literatures, by using a large, nationwide, population-based database. Appropriate macrolide and fluoroquinolone treatment may attenuate this risk.
Collapse
Affiliation(s)
- Hsun Ou
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Tri-Service General Hospital, Song-Shan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Chuan Wu
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
16
|
Haran JP, McCormick BA. Aging, Frailty, and the Microbiome-How Dysbiosis Influences Human Aging and Disease. Gastroenterology 2021; 160:507-523. [PMID: 33307030 PMCID: PMC7856216 DOI: 10.1053/j.gastro.2020.09.060] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gut microbiome is a collection of bacteria, protozoa, fungi, and viruses that coexist in our bodies and are essential in protective, metabolic, and physiologic functions of human health. Gut dysbiosis has traditionally been linked to increased risk of infection, but imbalances within the intestinal microbial community structure that correlate with untoward inflammatory responses are increasingly recognized as being involved in disease processes that affect many organ systems in the body. Furthermore, it is becoming more apparent that the connection between gut dysbiosis and age-related diseases may lie in how the gut microbiome communicates with both the intestinal mucosa and the systemic immune system, given that these networks have a common interconnection to frailty. We therefore discuss recent advances in our understanding of the important role the microbiome plays in aging and how this knowledge opens the door for potential novel therapeutics aimed at shaping a less dysbiotic microbiome to prevent or treat age-related diseases.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine; Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts.
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
17
|
Giuffrè M, Moretti R, Campisciano G, da Silveira ABM, Monda VM, Comar M, Di Bella S, Antonello RM, Luzzati R, Crocè LS. You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. J Clin Med 2020; 9:3705. [PMID: 33218203 PMCID: PMC7699249 DOI: 10.3390/jcm9113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian organisms form intimate interfaces with commensal and pathogenic gut microorganisms. Increasing evidence suggests a close interaction between gut microorganisms and the enteric nervous system (ENS), as the first interface to the central nervous system. Each microorganism can exert a different effect on the ENS, including phenotypical neuronal changes or the induction of chemical transmitters that interact with ENS neurons. Some pathogenic bacteria take advantage of the ENS to create a more suitable environment for their growth or to promote the effects of their toxins. In addition, some commensal bacteria can affect the central nervous system (CNS) by locally interacting with the ENS. From the current knowledge emerges an interesting field that may shape future concepts on the pathogen-host synergic interaction. The aim of this narrative review is to report the current findings regarding the inter-relationships between bacteria, viruses, and parasites and the ENS.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Giuseppina Campisciano
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | | | | | - Manola Comar
- Department of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (G.C.); (M.C.)
| | - Stefano Di Bella
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberta Maria Antonello
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Roberto Luzzati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
| | - Lory Saveria Crocè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (R.M); (R.M.A.); (R.L.); (L.S.C.)
- Italian Liver Foundation, 34129 Trieste, Italy
| |
Collapse
|
18
|
Noe CR, Noe-Letschnig M, Handschuh P, Noe CA, Lanzenberger R. Dysfunction of the Blood-Brain Barrier-A Key Step in Neurodegeneration and Dementia. Front Aging Neurosci 2020; 12:185. [PMID: 32848697 PMCID: PMC7396716 DOI: 10.3389/fnagi.2020.00185] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium in the brain is an essential part of the blood-brain-barrier (BBB) because of its very tight structure to secure a functional and molecular separation of the brain from the rest of the body and to protect neurons from pathogens and toxins. Impaired transport of metabolites across the BBB due to its increasing dysfunction affects brain health and cognitive functioning, thus providing a starting point of neurodegenerative diseases. The term “cerebral metabolic syndrome” is proposed to highlight the importance of lifestyle factors in neurodegeneration and to describe the impact of increasing BBB dysfunction on neurodegeneration and dementia, especially in elderly patients. If untreated, the cerebral metabolic syndrome may evolve into dementia. Due to the high energy demand of the brain, impaired glucose transport across the BBB via glucose transporters as GLUT1 renders the brain increasingly susceptible to neurodegeneration. Apoptotic processes are further supported by the lack of essential metabolites of the phosphocholine synthesis. In Alzheimer’s disease (AD), inflammatory and infectious processes at the BBB increase the dysfunction and might be pace-making events. At this point, the potentially highly relevant role of the thrombocytic amyloid precursor protein (APP) in endothelial inflammation of the BBB is discussed. Chronic inflammatory processes of the BBB transmitted to an increasing number of brain areas might cause a lasting build-up of spreading, pore-forming β-amyloid fragments explaining the dramatic progression of the disease. In the view of the essential requirement of an early diagnosis to investigate and implement causal therapeutic strategies against dementia, brain imaging methods are of great importance. Therefore, status and opportunities in the field of diagnostic imaging of the living human brain will be portrayed, comprising diverse techniques such as positron emissions tomography (PET) and functional magnetic resonance imaging (fMRI) to uncover the patterns of atrophy, protein deposits, hypometabolism, and molecular as well as functional alterations in AD.
Collapse
Affiliation(s)
- Christian R Noe
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Patricia Handschuh
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Anna Noe
- Department of Otorhinolaryngology, University Clinic St. Poelten, St. Poelten, Austria
| | - Rupert Lanzenberger
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Balin BJ, Hudson AP. Perspectives on the Intracellular Bacterium Chlamydia pneumoniae in Late-Onset Dementia. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00146-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Purpose of Review
Chronic diseases remain a daunting challenge for clinicians and researchers alike. While difficult to completely understand, most chronic diseases, including late-onset dementias, are thought to arise as an interplay between host genetic factors and environmental insults. One of the most diverse and ubiquitous environmental insults centers on infectious agents. Associations of infectious agents with late-onset dementia have taken on heightened importance, including our investigations of infection by the intracellular respiratory bacterium, Chlamydia pneumoniae (Cpn), in late-onset dementia of the Alzheimer’s type.
Recent Findings
Over the last two decades, the relationship of this infection to pathogenesis in late-onset dementia has become much clearer. This clarity has resulted from applying contemporary molecular genetic, biochemical, immunochemical, and cell culture techniques to analysis of human brains, animal models, and relevant in vitro cell culture systems. Data from these studies, taken in aggregate form, now can be applied to evaluation of proof of concept for causation of this infection with late-onset disease. In this evaluation, modifications to the original Koch postulates can be useful for elucidating causation.
Summary
All such relevant studies are outlined and summarized in this review, and they demonstrate the utility of applying modified Koch postulates to the etiology of late-onset dementia of the Alzheimer’s type. Regardless, it is clear that even with strong observational evidence, in combination with application of modifications of Koch’s postulates, we will not be able to conclusively state that Cpn infection is causative for disease pathogenesis in late-onset dementia. Moreover, this conclusion obtains as well for the putative causation of this condition by other pathogens, including herpes simplex virus type 1, Borrelia burgdorferi, and Porphyromonas gingivalis.
Collapse
|
20
|
Vorobyev SV, Shalepo KV, Spasibova EV, Savicheva AM, Grigor’ev AN. Infectious agents as a risk factor for Alzheimer’s disease. JOURNAL INFECTOLOGY 2020. [DOI: 10.22625/2072-6732-2020-12-1-5-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive disorders are one of the relevant problems of modern clinical medicine. This is due to both their high frequency of occurrence and significant negative impact, which has a violation of higher cortical functions on the quality of life of patients due to the deterioration of their social communication, as well as reducing the effectiveness of professional and household functions. The main cause of cognitive disorders is Alzheimer’s disease. At the same time, according to statistical studies, a significant increase in the incidence of the number of persons in the human population as a whole suffering from this pathology is predicted. At the heart of Alzheimer’s disease is a complex of pathobiochemical changes leading to synaptic dysfunction, accompanied by the development of atrophic changes in certain areas of the brain, against which a specific clinical picture is formed. The earliest and most important manifestation of Alzheimer’s disease is memory impairment for current events, which are subsequently joined by a number of other symptoms. The literature describes certain risk factors that contribute to the development of the disease, among which a certain place is occupied by infectious pathology. However, this aspect remains largely outside the traditional study of the pathogenesis of Alzheimer’s disease. In the review the analysis of the results of modern studies confirm the possible involvement of infections in the development of dementia of Alzheimer’s type.
Collapse
Affiliation(s)
| | | | - E. V. Spasibova
- Saint-Petersburg State Pediatric Medical University; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
| | - A. M. Savicheva
- Saint-Petersburg State Pediatric Medical University; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
| | - A. N. Grigor’ev
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
| |
Collapse
|
21
|
Kortesoja M, Trofin RE, Hanski L. A platform for studying the transfer of Chlamydia pneumoniae infection between respiratory epithelium and phagocytes. J Microbiol Methods 2020; 171:105857. [PMID: 32006529 DOI: 10.1016/j.mimet.2020.105857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
The obligate intracellular bacterium, Chlamydia pneumoniae, has been identified as a risk factor for several chronic inflammatory diseases in addition to respiratory tract infections. The dissemination of C. pneumoniae from respiratory tract to secondary sites of infection occurs via infected monocyte / macrophage line cells, in which C. pneumoniae can persist as an antibiotic-refractory phenotype. To allow more detailed studies on the epithelium-monocyte/macrophage transition of the infection, new in vitro bioassays are needed. To this end, a coculture system with human continuous cell lines was established. Respiratory epithelial HL cells were infected with C. pneumoniae and THP-1 monocytes were added into the cultures at 67 h post infection. After a 5 h coculture, THP-1 cells were collected with a biotinylated HLA antibody and streptavidin-coated magnetic beads and C. pneumoniae genome copy numbers in THP-1 determined by quantitative PCR. The assay was optimized for cell densities, incubation time, THP-1 separation technique and buffer composition, and its robustness was demonstrated by a Z' value of 0.6. The mitogen-activated protein kinase (MAPK) inhibitors: SP600125 (JNK inhibitor), SB203580 (p38 inhibitor) and FR180204 (ERK inhibitor) suppressed the transfer of C. pneumoniae from HL to THP-1 cells, making them suitable positive controls for the assay. Based on analysis of separate steps of the process, the MAPK inhibitors suppress the bacterial entry to THP-1 cells. The transfer of C. pneumoniae from epithelium to phagocytes represents a crucial step in the establishment of persistent infections by this pathogen, and the presented methods enables future studies to block this process by therapeutic means.
Collapse
Affiliation(s)
- Maarit Kortesoja
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Raluca Elena Trofin
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland; Faculty of Pharmacy, University of Bucharest, Bulevardul Regina Elisabeta 4-12, 030018 Bucharest, Romania
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland.
| |
Collapse
|
22
|
Woods JJ, Skelding KA, Martin KL, Aryal R, Sontag E, Johnstone DM, Horvat JC, Hansbro PM, Milward EA. Assessment of evidence for or against contributions of Chlamydia pneumoniae infections to Alzheimer's disease etiology. Brain Behav Immun 2020; 83:22-32. [PMID: 31626972 DOI: 10.1016/j.bbi.2019.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease, the most common form of dementia, was first formally described in 1907 yet its etiology has remained elusive. Recent proposals that Aβ peptide may be part of the brain immune response have revived longstanding contention about the possibility of causal relationships between brain pathogens and Alzheimer's disease. Research has focused on infectious pathogens that may colonize the brain such as herpes simplex type I. Some researchers have proposed the respiratory bacteria Chlamydia pneumoniae may also be implicated in Alzheimer's disease, however this remains controversial. This review aims to provide a balanced overview of the current evidence and its limitations and future approaches that may resolve controversies. We discuss the evidence from in vitro, animal and human studies proposed to implicate Chlamydia pneumoniae in Alzheimer's disease and other neurological conditions, the potential mechanisms by which the bacterium may contribute to pathogenesis and limitations of previous studies that may explain the inconsistencies in the literature.
Collapse
Affiliation(s)
- Jason J Woods
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Kathryn A Skelding
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia
| | - Kristy L Martin
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia; Discipline of Physiology and Bosch Institute, Anderson Stuart Building F13, University of Sydney, NSW 2006, Australia
| | - Ritambhara Aryal
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia
| | - Daniel M Johnstone
- Discipline of Physiology and Bosch Institute, Anderson Stuart Building F13, University of Sydney, NSW 2006, Australia
| | - Jay C Horvat
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights NSW 2305, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights NSW 2305, Australia; Centre for Inflammation, Centenary Institute, Camperdown NSW 2050, Australia; Centre for Inflammation, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia
| |
Collapse
|
23
|
Patrick KL, Bell SL, Weindel CG, Watson RO. Exploring the "Multiple-Hit Hypothesis" of Neurodegenerative Disease: Bacterial Infection Comes Up to Bat. Front Cell Infect Microbiol 2019; 9:138. [PMID: 31192157 PMCID: PMC6546885 DOI: 10.3389/fcimb.2019.00138] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Despite major strides in personalized genomics, it remains poorly understood why neurodegenerative diseases occur in only a fraction of individuals with a genetic predisposition and conversely, why individuals with no genetic risk of a disorder develop one. Chronic diseases like Alzheimer's, Parkinson's, and Multiple sclerosis are speculated to result from a combination of genetic and environmental factors, a concept commonly referred to as the “multiple hit hypothesis.” A number of bacterial infections have been linked to increased risk of neurodegeneration, and in some cases, clearance of bacterial pathogens has been correlated with amelioration of central nervous system (CNS) deficits. Additionally, mutations in several genes known to contribute to CNS disorders like Parkinson's Disease have repeatedly been implicated in susceptibility to intracellular bacterial infection. Recent data has begun to demonstrate roles for these genes (PARK2, PINK1, and LRRK2) in modulating innate immune outcomes, suggesting that immune dysregulation may play an even more important role in neurodegeneration than previously appreciated. This review will broadly explore the connections between bacterial infection, immune dysregulation, and CNS disorders. Understanding this interplay and how bacterial pathogenesis contributes to the “multiple-hit hypothesis” of neurodegeneration will be crucial to develop therapeutics to effectively treat both neurodegeneration and infection.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
24
|
Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation 2019; 16:53. [PMID: 30823925 PMCID: PMC6397457 DOI: 10.1186/s12974-019-1434-3] [Citation(s) in RCA: 460] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Development of central nervous system (CNS) is regulated by both intrinsic and peripheral signals. Previous studies have suggested that environmental factors affect neurological activities under both physiological and pathological conditions. Although there is anatomical separation, emerging evidence has indicated the existence of bidirectional interaction between gut microbiota, i.e., (diverse microorganisms colonizing human intestine), and brain. The cross-talk between gut microbiota and brain may have crucial impact during basic neurogenerative processes, in neurodegenerative disorders and tumors of CNS. In this review, we discuss the biological interplay between gut-brain axis, and further explore how this communication may be dysregulated in neurological diseases. Further, we highlight new insights in modification of gut microbiota composition, which may emerge as a promising therapeutic approach to treat CNS disorders.
Collapse
Affiliation(s)
- Qianquan Ma
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA. .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Al-Atrache Z, Lopez DB, Hingley ST, Appelt DM. Astrocytes infected with Chlamydia pneumoniae demonstrate altered expression and activity of secretases involved in the generation of β-amyloid found in Alzheimer disease. BMC Neurosci 2019; 20:6. [PMID: 30786875 PMCID: PMC6383264 DOI: 10.1186/s12868-019-0489-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background Epidemiologic studies strongly suggest that the pathophysiology of late-onset Alzheimer disease (AD) versus early-onset AD has environmental rather than genetic causes, thus revealing potentially novel therapeutic targets to limit disease progression. Several studies supporting the “pathogen hypothesis” of AD demonstrate a strong association between pathogens and the production of β-amyloid, the pathologic hallmark of AD. Although the mechanism of pathogen-induced neurodegeneration of AD remains unclear, astrocytes, a key player of the CNS innate immune response and producer/metabolizer of β-amyloid, have been implicated. We hypothesized that Chlamydia pneumoniae infection of human astrocytes alters the expression of the amyloid precursor protein (APP)-processing secretases, ADAM10, BACE1, and PSEN1, to promote β-amyloid formation. Utilizing immunofluorescent microscopy, molecular, and biochemical approaches, these studies explore the role of an intracellular respiratory pathogen, Chlamydia pneumoniae, as an environmental trigger for AD pathology. Human astrocytoma cells in vitro were infected with Chlamydia pneumoniae over the course of 6–72 h. The gene and protein expression, as well as the enzymatic activity of non-amyloidogenic (ADAM10), and pro-amyloidogenic (BACE1 and PSEN1) secretases were qualitatively and quantitatively assessed. In addition, the formation of toxic amyloid products as an outcome of pro-amyloidogenic APP processing was evaluated through various modalities. Results Chlamydia pneumoniae infection of human astrocytoma cells promoted the transcriptional upregulation of numerous genes implicated in host neuroinflammation, lipid homeostasis, microtubule function, and APP processing. Relative to that of uninfected astrocytes, BACE1 and PSEN1 protein levels were enhanced by nearly twofold at 48–72 h post-Chlamydia pneumoniae infection. The processing of APP in Chlamydia pneumoniae-infected astrocytes favors the pro-amyloidogenic pathway, as demonstrated by an increase in enzymatic activity of BACE1, while that of ADAM10 was decreased. Fluorescence intensity of β-amyloid and ELISA-quantified levels of soluble-APP by products revealed temporally similar increases, confirming a BACE1/PSEN1-mediated processing of APP. Conclusions Our findings suggest that Chlamydia pneumoniae infection of human astrocytes promotes the pro-amyloidogenic pathway of APP processing through the upregulation of expression and activity of β-secretase, upregulated expression of γ-secretase, and decreased activity of α-secretase. These effects of astrocyte infection provide evidence for a direct link between Chlamydia pneumoniae and AD pathology. Electronic supplementary material The online version of this article (10.1186/s12868-019-0489-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zein Al-Atrache
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Danielle B Lopez
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Susan T Hingley
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Denah M Appelt
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
26
|
Balin BJ, Hammond CJ, Little CS, Hingley ST, Al-Atrache Z, Appelt DM, Whittum-Hudson JA, Hudson AP. Chlamydia pneumoniae: An Etiologic Agent for Late-Onset Dementia. Front Aging Neurosci 2018; 10:302. [PMID: 30356749 PMCID: PMC6189393 DOI: 10.3389/fnagi.2018.00302] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
The disease known as late-onset Alzheimer's disease is a neurodegenerative condition recognized as the single most commonform of senile dementia. The condition is sporadic and has been attributed to neuronal damage and loss, both of which have been linked to the accumulation of protein deposits in the brain. Significant progress has been made over the past two decades regarding our overall understanding of the apparently pathogenic entities that arise in the affected brain, both for early-onset disease, which constitutes approximately 5% of all cases, as well as late-onset disease, which constitutes the remainder of cases. Observable neuropathology includes: neurofibrillary tangles, neuropil threads, neuritic senile plaques and often deposits of amyloid around the cerebrovasculature. Although many studies have provided a relatively detailed knowledge of these putatively pathogenic entities, understanding of the events that initiate and support the biological processes generating them and the subsequent observable neuropathology and neurodegeneration remain limited. This is especially true in the case of late-onset disease. Although early-onset Alzheimer's disease has been shown conclusively to have genetic roots, the detailed etiologic initiation of late-onset disease without such genetic origins has remained elusive. Over the last 15 years, current and ongoing work has implicated infection in the etiology and pathogenesis of late-onset dementia. Infectious agents reported to be associated with disease initiation are various, including several viruses and pathogenic bacterial species. We have reported extensively regarding an association between late-onset disease and infection with the intracellular bacterial pathogen Chlamydia pneumoniae. In this article, we review previously published data and recent results that support involvement of this unusual respiratory pathogen in disease induction and development. We further suggest several areas for future research that should elucidate details relating to those processes, and we argue for a change in the designation of the disease based on increased understanding of its clinical attributes.
Collapse
Affiliation(s)
- Brian J Balin
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Christine J Hammond
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Christopher Scott Little
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Susan T Hingley
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Zein Al-Atrache
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Denah M Appelt
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Judith A Whittum-Hudson
- Department of Biochemistry, Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alan P Hudson
- Department of Biochemistry, Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
27
|
Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE. Role of Microbes in the Development of Alzheimer's Disease: State of the Art - An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet 2018; 9:362. [PMID: 30250480 PMCID: PMC6139345 DOI: 10.3389/fgene.2018.00362] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
This article reviews research results and ideas presented at a special symposium at the International Association of Gerontology and Geriatrics (IAGG) Congress held in July 2017 in San Francisco. Five researchers presented their results related to infection and Alzheimer's disease (AD). Prof. Itzhaki presented her work on the role of viruses, specifically HSV-1, in the pathogenesis of AD. She maintains that although it is true that most people harbor HSV-1 infection, either latent or active, nonetheless aspects of herpes infection can play a role in the pathogenesis of AD, based on extensive experimental evidence from AD brains and infected cell cultures. Dr. Miklossy presented research on the high prevalence of bacterial infections that correlate with AD, specifically spirochete infections, which have been known for a century to be a significant cause of dementia (e.g., in syphilis). She demonstrated how spirochetes drive senile plaque formation, which are in fact biofilms. Prof. Balin then described the involvement of brain tissue infection by the Chlamydia pneumoniae bacterium, with its potential to use the innate immune system in its spread, and its initiation of tissue damage characteristic of AD. Prof. Fülöp described the role of AD-associated amyloid beta (Aβ) peptide as an antibacterial, antifungal and antiviral innate immune effector produced in reaction to microorganisms that attack the brain. Prof. Barron put forward the novel hypothesis that, according to her experiments, there is strong sequence-specific binding between the AD-associated Aβ and another ubiquitous and important human innate immune effector, the cathelicidin peptide LL-37. Given this binding, LL-37 expression in the brain will decrease Aβ deposition via formation of non-toxic, soluble Aβ/LL-37 complexes. Therefore, a chronic underexpression of LL-37 could be the factor that simultaneously permits chronic infections in brain tissue and allows for pathological accumulation of Aβ. This first-of-its-kind symposium opened the way for a paradigm shift in studying the pathogenesis of AD, from the "amyloid cascade hypothesis," which so far has been quite unsuccessful, to a new "infection hypothesis," or perhaps more broadly, "innate immune system dysregulation hypothesis," which may well permit and lead to the discovery of new treatments for AD patients.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ruth F. Itzhaki
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Brian J. Balin
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Judith Miklossy
- International Alzheimer Research Centre, Prevention Alzheimer International Foundation, Martigny-Croix, Switzerland
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
28
|
Doulberis M, Kotronis G, Thomann R, Polyzos SA, Boziki M, Gialamprinou D, Deretzi G, Katsinelos P, Kountouras J. Review: Impact of Helicobacter pylori on Alzheimer's disease: What do we know so far? Helicobacter 2018; 23. [PMID: 29181894 DOI: 10.1111/hel.12454] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori has changed radically gastroenterologic world, offering a new concept in patients' management. Over time, more medical data gave rise to diverse distant, extragastric manifestations and interactions of the "new" discovered bacterium. Special interest appeared within the field of neurodegenerative diseases and particularly Alzheimer's disease, as the latter and Helicobacter pylori infection are associated with a large public health burden and Alzheimer's disease ranks as the leading cause of disability. However, the relationship between Helicobacter pylori infection and Alzheimer's disease remains uncertain. METHODS We performed a narrative review regarding a possible connection between Helicobacter pylori and Alzheimer's disease. All accessible relevant (pre)clinical studies written in English were included. Both affected pathologies were briefly analyzed, and relevant studies are discussed, trying to focus on the possible pathogenetic role of this bacterium in Alzheimer's disease. RESULTS Data stemming from both epidemiologic studies and animal experiments seem to be rather encouraging, tending to confirm the hypothesis that Helicobacter pylori infection might influence the course of Alzheimer's disease pleiotropically. Possible main mechanisms may include the bacterium's access to the brain via the oral-nasal-olfactory pathway or by circulating monocytes (infected with Helicobacter pylori due to defective autophagy) through disrupted blood-brain barrier, thereby possibly triggering neurodegeneration. CONCLUSIONS Current data suggest that Helicobacter pylori infection might influence the pathophysiology of Alzheimer's disease. However, further large-scale randomized controlled trials are mandatory to clarify a possible favorable effect of Helicobacter pylori eradication on Alzheimer's disease pathophysiology, before the recommendation of short-term and cost-effective therapeutic regimens against Helicobacter pylori-related Alzheimer's disease.
Collapse
Affiliation(s)
- Michael Doulberis
- Department of Internal Medicine, Bürgerspital Hospital, Solothurn, Switzerland
| | - Georgios Kotronis
- Department of Internal Medicine, Agios Pavlos General Hospital, Thessaloniki, Macedonia, Greece
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Hospital, Solothurn, Switzerland
| | - Stergios A Polyzos
- Department of Internal Medicine, Ippokration Hospital, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Marina Boziki
- Department of Internal Medicine, Ippokration Hospital, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Dimitra Gialamprinou
- Department of Pediatrics, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Multiple Sclerosis Unit, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Ippokration Hospital, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Ippokration Hospital, Second Medical Clinic, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| |
Collapse
|
29
|
Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein Cell 2017; 8:90-102. [PMID: 27866330 PMCID: PMC5291774 DOI: 10.1007/s13238-016-0338-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
Dementia is a comprehensive category of brain diseases that is great enough to affect a person's daily functioning. The most common type of dementia is Alzheimer's disease, which makes most of cases. New researches indicate that gastrointestinal tract microbiota are directly linked to dementia pathogenesis through triggering metabolic diseases and low-grade inflammation progress. A novel strategy is proposed for the management of these disorders and as an adjuvant for psychiatric treatment of dementia and other related diseases through modulation of the microbiota (e.g. with the use of probiotics).
Collapse
Affiliation(s)
- Rashad Alkasir
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Li
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Jin
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Attainted Hospital College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Kalayci F, Ozdemir A, Saribas S, Yuksel P, Ergin S, Kuskucu AM, Poyraz CA, Balcioglu I, Alpay N, Kurt A, Sezgin Z, Kocak BT, Icel RS, Can G, Tokman HB, Kocazeybek B. The relationship of Chlamydophila pneumoniae with schizophrenia: The role of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in this relationship. Rev Argent Microbiol 2017; 49:39-49. [PMID: 28256360 DOI: 10.1016/j.ram.2016.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022] Open
Abstract
Several pathogens have been suspected of playing a role in the pathogenesis of schizophrenia. Chronic inflammation has been proposed to occur as a result of persistent infection caused by Chlamydophila pneumoniae cells that reside in brain endothelial cells for many years. It was recently hypothesized that brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) may play prominent roles in the development of schizophrenia. NT-3 and BDNF levels have been suggested to change in response to various manifestations of infection. Therefore, we aimed to elucidate the roles of BDNF and NT3 in the schizophrenia-C. pneumoniae infection relationship. RT-PCR, immunofluorescence and ELISA methods were used. Fifty patients suffering from schizophrenia and 35 healthy individuals were included as the patient group (PG) and the healthy control group (HCG), respectively. We detected persistent infection in 14 of the 50 individuals in the PG and in 1 of the 35 individuals in the HCG. A significant difference was found between the two groups (p<0.05). Twenty-two individuals in the PG and 13 in the HCG showed seropositivity for past C. pneumoniae infection, and no difference was observed between the groups (p>0.05). C. pneumoniae DNA was not detected in any group. A significant difference in NT-3 levels was observed between the groups, with very low levels in the PG (p<0.001). A significant difference in BDNF levels was also found, with lower levels in the PG (p<0.05). The mean serum NT-3 level was higher in the PG cases with C. pneumoniae seropositivity than in seronegative cases; however, this difference was not statistically significant (p>0.05). In conclusion, we suggest that NT-3 levels during persistent C. pneumoniae infection may play a role in this relationship.
Collapse
Affiliation(s)
- Fatma Kalayci
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Armagan Ozdemir
- T.C. Health Ministry Bakirkoy Mental Health and Neurology Training and Research Hospital Psychiatry Clinic, Istanbul, Turkey
| | - Suat Saribas
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Pelin Yuksel
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Sevgi Ergin
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Ali Mert Kuskucu
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Cana Aksoy Poyraz
- Istanbul University, Cerrahpasa Medical Faculty, Department of Psychiatry, Istanbul, Turkey
| | - Ibrahim Balcioglu
- Istanbul University, Cerrahpasa Medical Faculty, Department of Psychiatry, Istanbul, Turkey
| | - Nihat Alpay
- T.C. Health Ministry Bakirkoy Mental Health and Neurology Training and Research Hospital Psychiatry Clinic, Istanbul, Turkey
| | - Aykut Kurt
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Zeynep Sezgin
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Biochemistry, Istanbul, Turkey
| | - Banu Tufan Kocak
- T.C. Health Ministry Erenkoy Mental Health and Neurology Training and Research Hospital, Istanbul, Turkey
| | - Rana Sucu Icel
- T.C. Health Ministry, Sisli Etfal Education and Research Hospital, Department of Blood Center, Istanbul, Turkey
| | - Gunay Can
- Istanbul University, Cerrahpasa Medical Faculty, Department of Public Health, Istanbul, Turkey
| | - Hrisi Bahar Tokman
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Bekir Kocazeybek
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey.
| |
Collapse
|
31
|
Abstract
Dementia is a comprehensive category of brain diseases that is great enough to affect a person's daily functioning. The most common type of dementia is Alzheimer's disease, which makes most of cases. New researches indicate that gastrointestinal tract microbiota are directly linked to dementia pathogenesis through triggering metabolic diseases and low-grade inflammation progress. A novel strategy is proposed for the management of these disorders and as an adjuvant for psychiatric treatment of dementia and other related diseases through modulation of the microbiota (e.g. with the use of probiotics).
Collapse
Affiliation(s)
- Rashad Alkasir
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Li
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Jin
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Attainted Hospital College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Maheshwari P, Eslick GD. Bacterial Infection Increases the Risk of Alzheimer’s Disease: An Evidence-Based Assessment. J Alzheimers Dis 2016. [DOI: 10.3233/jad-160362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer's disease? J Oral Microbiol 2015; 7:29143. [PMID: 26385886 PMCID: PMC4575419 DOI: 10.3402/jom.v7.29143] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/21/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a scourge of longevity that will drain enormous resources from public health budgets in the future. Currently, there is no diagnostic biomarker and/or treatment for this most common form of dementia in humans. AD can be of early familial-onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. Inflammation may be caused by a local central nervous system insult and/or by peripheral infections. Numerous microorganisms are suspected in AD brains ranging from bacteria (mainly oral and non-oral Treponema species), viruses (herpes simplex type I), and yeasts (Candida species). A causal relationship between periodontal pathogens and non-oral Treponema species of bacteria has been proposed via the amyloid-beta and inflammatory links. Periodontitis constitutes a peripheral oral infection that can provide the brain with intact bacteria and virulence factors and inflammatory mediators due to daily, transient bacteremias. If and when genetic risk factors meet environmental risk factors in the brain, disease is expressed, in which neurocognition may be impacted, leading to the development of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic treatment for AD, there is an initial need to solve the etiological puzzle contributing to its pathogenesis. This review therefore addresses oral infection as the plausible etiology of late-onset AD (LOAD).
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway;
| | - Sim K Singhrao
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|