1
|
Huang X, Zhang Z, Wang Z, Luo T, Yang M, Guo X, Du X, Ma T, Zhang Y. Targeting NF-kappaB-inducing kinase shapes B-cell homeostasis in myasthenia gravis. J Neuroinflammation 2025; 22:17. [PMID: 39856699 PMCID: PMC11759451 DOI: 10.1186/s12974-025-03342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND B cell immune dysregulation plays a critical role in myasthenia gravis (MG). However, targeted B-cell therapy such as rituximab may result in long-term peripheral B cell clearance and allow for the survival of plasma cells, contributing to frequent infections and relapses. Therefore, we aimed to identify potential novel therapeutic targets that preserve part of B cell function while inhibiting antibody-secreting cells (ASCs). METHODS The transcriptome of sorted CD19+B cells obtained from MG patients in active and remission state was performed by RNA sequencing. The hallmark gene NF-kappaB-inducing kinase (NIK/MAP3K14) associated with NF-κB and TNF signaling was identified, and the expression levels of NIK in CD19+B cells, CD4+T cells and serum from new-onset MG patients and controls were validated by flow cytometry, qPCR and ELISA. In vitro and in vivo, the effects of NIK inhibitor (B022) on the function of CD19+B cells and CD4+T cells were detected under the MG PBMCs, sorted B cells and experimental autoimmune MG (EAMG) rat model, respectively. RESULTS The expression levels of NIK were upregulated in CD19+B cells, CD4+T cells and serum from new-onset MG patients. Notably, increased serum NIK levels were positively correlated with disease severity and decreased with disease remission. NIK inhibitor B022 significantly reduced B-cell activation, proliferation, ASCs differentiation and pathogenic function, as well as CD4+T cell activation and Th17 cells differentiation in vitro. Intraperitoneal injection of B022 ameliorated the severity of EAMG rats, and reduced proportion of pathogenic B and T cell subsets, antibody levels and postsynaptic membrane damage. CONCLUSIONS Targeting NIK with small molecule kinase inhibitors can effectively shape B cell homeostasis, and exhibit protective effects in the EAMG rat model, which may be an effective novel treatment strategy for MG.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Zhouyi Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Tiancheng Luo
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Mingjin Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Xinyan Guo
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Tianyu Ma
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Zhang Y, Wen Z, Chen M, Xia C, Cai F, Chu L. Nonlinear relationship between circulating natural killer cell count and 1-year relapse rates in myasthenia gravis: a retrospective cohort study. PeerJ 2024; 12:e18562. [PMID: 39655331 PMCID: PMC11627074 DOI: 10.7717/peerj.18562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Background The relapse rate in myasthenia gravis (MG) is high, and promising therapies have emerged; however, identifying potential predictive factors for relapse remains a challenge. This study aimed to explore the association between circulating natural killer (NK) cell levels and the risk of recurrence in MG. Methods This retrospective cohort study included 265 patients with MG whose data were included in the Neurology Department of the Affiliated Hospital of Guizhou Medical University database between March 2015 and March 2022. Data from electronic medical records were collected, which included the patients' circulating NK cell count (exposure variable) and demographic/clinical characteristics (covariates). The primary outcome was the 1-year MG recurrence rate. Results The study revealed a non-linear relationship between peripheral NK cell count and MG recurrence, with an inflection point at 5.38. Below this threshold, the risk of recurrence was low with higher NK cell counts (relative risk (RR): 0.23, 95% confidence interval (CI) [0.11-0.490]); above this threshold, no significant association was observed (RR: 1.43, 95% CI [0.62-3.34]). Furthermore, the NK cell proportion showed no significant linear or non-linear association with MG recurrence risk (RR: 0.84, 95% CI [0.57-1.2]). Conclusion This study provides epidemiological evidence of a potential association between peripheral NK cell count and MG recurrence risk, suggesting an immunoregulatory protective effect within a specific NK cell count range. These findings may inform more personalized MG treatment strategies, warranting further validation in larger and more diverse cohorts.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiguo Wen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Meiqiu Chen
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Cong Xia
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Fang Cai
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Zhang Q, Han X, Bi Z, Yang M, Lin J, Li Z, Zhang M, Bu B. Exhausted signature and regulatory network of NK cells in myasthenia gravis. Front Immunol 2024; 15:1397916. [PMID: 39346912 PMCID: PMC11427316 DOI: 10.3389/fimmu.2024.1397916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction NK cells are dysfunctional in myasthenia gravis (MG), but the mechanism is unclear. This study aims to measure associations and underlying mechanisms between the NK cells and the development of MG. Methods Twenty healthy controls (HCs) and 53 MG patients who did not receive glucocorticoids and immunosuppressants were collected. According to the Myasthenia Gravis Foundation of America (MGFA) classification, MG patients were categorized into MGFA I group (n = 18) and MGFA II-IV group (n = 35). Flow cytometry, cell sorting, ELISA, mRNA-sequencing, RT-qPCR, western blot, and cell culture experiments were performed to evaluate the regulatory mechanism of exhausted NK cells. Results Peripheral NK cells in MGFA II-IV patients exhibit exhausted phenotypes than HCs, marked by the dramatic loss of total NK cells, CD56dimCD16- NK cells, elevated PD1 expression, reduced NKG2D expression, impaired cytotoxic activity (perforin, granzyme B, CD107a) and cytokine secretion (IFN-γ). Plasma IL-6 and IL-21 are elevated in MG patients and mainly derived from the aberrant expansion of monocytes and Tfh cells, respectively. IL-6/IL-21 cooperatively induced NK-cell exhausted signature via upregulating SOCS2 and inhibiting the phosphorylation of STAT5. SOCS2 siRNA and IL-2 supplement attenuated the IL-6/IL-21-mediated alteration of NK-cell phenotypes and function. Discussion Inhibition of IL-6/IL-21/SOCS2/STAT5 pathway and recovery of NK-cell ability to inhibit autoimmunity may be a new direction in the treatment of MG.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Han
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuajin Bi
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Graham LV, Khakoo SI, Blunt MD. NK Cells in the Lymph Nodes and Their Role in Anti-Tumour Immunity. Biomedicines 2024; 12:1667. [PMID: 39200132 PMCID: PMC11351147 DOI: 10.3390/biomedicines12081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The lymph nodes are vital to enable adaptive immune responses to infection. Natural killer (NK) cells are cytotoxic lymphocytes that directly kill cancer cells and modulate the activation of other immune cells during anti-tumour immune response. NK cells in the lymph nodes are involved in the regulation of T-cell and B-cell populations and the clearance of viral infections. In solid tumours, lymph nodes are a frequent site of metastasis and immune cell priming, whilst in haematological malignancies, tumour cells can proliferate in the lymph nodes. Thus, lymph nodes are an important site in anti-tumour immunity and therapy resistance. It is therefore crucial to identify strategies to increase recruitment and overcome suppression of NK cells in the lymph node microenvironment to improve tumour clearance. In this review, we summarise the literature interrogating NK cell phenotype and function in the lymph nodes in the context of infection and cancer and evaluate both current and potential strategies to mobilise and activate NK cells within the lymph nodes of cancer patients.
Collapse
Affiliation(s)
| | | | - Matthew D. Blunt
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
5
|
Zhang Q, Lin J, Yang M, Li Z, Zhang M, Bu B. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed Pharmacother 2024; 173:116371. [PMID: 38430631 DOI: 10.1016/j.biopha.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Jalalvand M, Beigmohammadi F, Soltani S, Ehsan S, Rajabkhah S, Madreseh E, Akhtari M, Jamshidi A, Farhadi E, Mahmoudi M, Nafissi S. The investigation of killer-cell immunoglobulin-like receptors (KIRs) and their HLA ligands in Iranian patients with myasthenia gravis. Clin Neurol Neurosurg 2024; 238:108171. [PMID: 38422742 DOI: 10.1016/j.clineuro.2024.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Myasthenia gravis (MG) is a disabling disease with the underlying pathophysiology of auto-antibodies attacking the postsynaptic acetylcholine receptors of neuromuscular junctions causing muscle weakness. Natural killer (NK) cells are innate immune cells that play an important regulative role in immune responses. The human killer-cell immunoglobulin-like receptors (KIRs) family is one of the receptors on NK cells that can either activate or inhibit NK cells. This study aimed to assess the possible role of KIR and their human leukocyte antigen (HLA) ligand genes susceptibility to MG in Iranian patients. METHOD One hundred and sixty-three patients with MG diagnosis based on the presence of clinical symptoms and laboratory tests and 400 healthy volunteers were studied. We used the polymerase chain reaction (PCR) technique for genotyping 15 KIRs and 5 HLA genes. RESULTS The results demonstrated that there was no significant difference in the frequency of KIR genes and inhibitory KIR genotypes between controls and patients. In MG patients, HLA-C1Asn80 was significantly less frequent than in matched controls. The frequency of HLA genotype number 7 was significantly lower in MG cases, compared to the controls. Analysis of activating KIR genotypes showed that genotype number 10 was significantly less frequent in MG cases than in matched controls. CONCLUSION Our results suggest that the presence HLA-C1Asn80 might play a protective role against the pathogenesis of MG. The significantly decreased prevalence of one activating KIR genotype and one of the HLA genotypes in MG cases suggest that these genotypes can reduce the risk of MG development. To specifically reveal the impact of KIR and HLA in MG, more studies are required.
Collapse
Affiliation(s)
- Mobina Jalalvand
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Ehsan
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahebeh Rajabkhah
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Madreseh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ge M, Yang C, Li T, Du T, Zhang P, Li X, Dou Y, Duan R. Circulating CXCR5 + natural killer cells are expanded in patients with myasthenia gravis. Clin Transl Immunology 2023; 12:e1450. [PMID: 37223338 PMCID: PMC10202622 DOI: 10.1002/cti2.1450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/18/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Objectives Myasthenia gravis (MG) is a classic autoantibody-mediated disease in which pathogenic antibodies target postsynaptic membrane components, causing fluctuating skeletal muscle weakness and fatigue. Natural killer (NK) cells are heterogeneous lymphocytes that have gained increasing attention owing to their potential roles in autoimmune disorders. This study will investigate the relationship between the distinct NK cell subsets and MG pathogenesis. Methods A total of 33 MG patients and 19 healthy controls were enrolled in the present study. Circulating NK cells, their subtypes and follicular helper T cells were analysed by flow cytometry. Serum acetylcholine receptor (AChR) antibody levels were determined by ELISA. The role of NK cells in the regulation of B cells was verified using a co-culture assay. Results Myasthenia gravis patients with acute exacerbations had a reduced number of total NK cells, CD56dim NK cells and IFN-γ-secreting NK cells in the peripheral blood, while CXCR5+ NK cells were significantly elevated. CXCR5+ NK cells expressed a higher level of ICOS and PD-1 and a lower level of IFN-γ than those in CXCR5- NK cells and were positively correlated with Tfh cell and AChR antibody levels. In vitro experiments demonstrated that NK cells suppressed plasmablast differentiation while promoting CD80 and PD-L1 expression on B cells in an IFN-γ-dependent manner. Furthermore, CXCR5- NK cells inhibited plasmablast differentiation, while CXCR5+ NK cells could more efficiently promote B cell proliferation. Conclusion These results reveal that CXCR5+ NK cells exhibit distinct phenotypes and functions compared with CXCR5- NK cells and might participate in the pathogenesis of MG.
Collapse
Affiliation(s)
- Meng‐Ru Ge
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Department of Neurology, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanChina
| | - Chun‐Lin Yang
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| | - Tao Li
- Department of Neurology, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanChina
| | - Tong Du
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| | - Peng Zhang
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| | - Xiao‐Li Li
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| | - Ying‐Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese MedicineJinanChina
| | - Rui‐Sheng Duan
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Department of Neurology, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| |
Collapse
|
8
|
Wei X, Niu X. T follicular helper cells in autoimmune diseases. J Autoimmun 2023; 134:102976. [PMID: 36525939 DOI: 10.1016/j.jaut.2022.102976] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells with the phenotype of mainly expressing surface molecules C-X-C motif chemokine receptor type 5 (CXCR5), inducible co-stimulator (ICOS), secreting cytokine interleukin-21 (IL-21) and requiring the transcription factor B cell lymphoma 6 (BCL-6) have been recently defined as a new subset of CD4+ T cells. They exist in germinal centers (GCs) of lymphoid organs and in peripheral blood. With the ability to promote B cell development, GC formation and antibody production, Tfh cells play critical roles in the pathogenesis of many autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), etc. The aberrant proliferation and function of Tfh cells will cause the pathological process like autoantibody production and tissue injury. In this paper, we review the recent advances in Tfh cell biology and their roles in autoimmune diseases, with a mention of their use as therapeutic targets, which will shed more light on the pathogenesis and treatment of certain autoimmune diseases.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China; Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China.
| |
Collapse
|
9
|
Song J, Zhao R, Yan C, Luo S, Xi J, Ding P, Li L, Hu W, Zhao C. A Targeted Complement Inhibitor CRIg/FH Protects Against Experimental Autoimmune Myasthenia Gravis in Rats via Immune Modulation. Front Immunol 2022; 13:746068. [PMID: 35154091 PMCID: PMC8825366 DOI: 10.3389/fimmu.2022.746068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody-induced complement activation may cause injury of the neuromuscular junction (NMJ) and is thus considered as a primary pathogenic factor in human myasthenia gravis (MG) and animal models of experimental autoimmune myasthenia gravis (EAMG). In this study, we tested whether CRIg/FH, a targeted complement inhibitor, could attenuate NMJ injury in rat MG models. We first demonstrated that CRIg/FH could inhibit complement-dependent cytotoxicity on human rhabdomyosarcoma TE671 cells induced by MG patient-derived IgG in vitro. Furthermore, we investigated the therapeutic effect of CRIg/FH in a passive and an active EAMG rodent model. In both models, administration of CRIg/FH could significantly reduce the complement-mediated end-plate damage and suppress the development of EAMG. In the active EAMG model, we also found that CRIg/FH treatment remarkably reduced the serum concentration of autoantibodies and of the cytokines including IFN-γ, IL-2, IL-6, and IL-17, and upregulated the percentage of Treg cells in the spleen, which was further verified in vitro. Therefore, our findings indicate that CRIg/FH may hold the potential for the treatment of MG via immune modulation.
Collapse
Affiliation(s)
- Jie Song
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Rui Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
10
|
Zhang P, Yang CL, Du T, Liu YD, Ge MR, Li H, Liu RT, Wang CC, Dou YC, Duan RS. Diabetes mellitus exacerbates experimental autoimmune myasthenia gravis via modulating both adaptive and innate immunity. J Neuroinflammation 2021; 18:244. [PMID: 34702288 PMCID: PMC8549151 DOI: 10.1186/s12974-021-02298-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/17/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a common concomitant disease of late-onset myasthenia gravis (MG). However, the impacts of DM on the progression of late-onset MG were unclear. METHODS In this study, we examined the immune response in experimental autoimmune myasthenia gravis (EAMG) rats with DM or not. The phenotype and function of the spleen and lymph nodes were determined by flow cytometry. The serum antibodies, Tfh cells, and germinal center B cells were determined by ELISA and flow cytometry. The roles of advanced glycation end products (AGEs) in regulating Tfh cells were further explored in vitro by co-culture assays. RESULTS Our results indicated clinical scores of EAMG rats were worse in diabetes rats compared to control, which was due to the increased production of anti-R97-116 antibody and antibody-secreting cells. Furthermore, diabetes induced a significant upregulation of Tfh cells and the subtypes of Tfh1 and Tfh17 cells to provide assistance for antibody production. The total percentages of B cells were increased with an activated statue of improved expression of costimulatory molecules CD80 and CD86. We found CD4+ T-cell differentiation was shifted from Treg cells towards Th1/Th17 in the DM+EAMG group compared to the EAMG group. In addition, in innate immunity, diabetic EAMG rats displayed more CXCR5 expression on NK cells. However, the expression of CXCR5 on NKT cells was down-regulated with the increased percentages of NKT cells in the DM+EAMG group. Ex vivo studies further indicated that Tfh cells were upregulated by AGEs instead of hyperglycemia. The upregulation was mediated by the existence of B cells, the mechanism of which might be attributed the elevated molecule CD40 on B cells. CONCLUSIONS Diabetes promoted both adaptive and innate immunity and exacerbated clinical symptoms in EAMG rats. Considering the effect of diabetes, therapy in reducing blood glucose levels in MG patients might improve clinical efficacy through suppressing the both innate and adaptive immune responses. Additional studies are needed to confirm the effect of glucose or AGEs reduction to seek treatment for MG.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Yu-Dong Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Meng-Ru Ge
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Ru-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Cong-Cong Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China. .,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China. .,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China.
| |
Collapse
|
11
|
Rascle P, Jacquelin B, Petitdemange C, Contreras V, Planchais C, Lazzerini M, Dereuddre-Bosquet N, Le Grand R, Mouquet H, Huot N, Müller-Trutwin M. NK-B cell cross talk induces CXCR5 expression on natural killer cells. iScience 2021; 24:103109. [PMID: 34622162 PMCID: PMC8479784 DOI: 10.1016/j.isci.2021.103109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023] Open
Abstract
B cell follicles (BCFs) in lymph nodes (LNs) are generally exempt of CD8+ T and NK cells. African green monkeys (AGMs), a natural host of simian immunodeficiency virus (SIV), display NK cell-mediated viral control in BCF. NK cell migration into BCF in chronically SIVagm-infected AGM is associated with CXCR5+ NK cells. We aimed to identify the mechanism leading to CXCR5 expression on NK cells. We show that CXCR5+ NK cells in LN were induced following SIVagm infection. CXCR5+ NK cells accumulated preferentially in BCF with proliferating B cells. Autologous NK-B cell co-cultures in transwell chambers induced CXCR5+ NK cells. Transcriptome analysis of CXCR5+ NK cells revealed expression of bcl6 and IL6R. IL-6 induced CXCR5 on AGM and human NK cells. IL6 mRNA was detected in LN at higher levels during SIVagm than SIVmac infection and often produced by plasma cells. Our study reveals a mechanism of B cell-dependent NK cell regulation. IL-6 can induce CXCR5 on NK cells CXCR5+ NK cells expressed high levels of bcl6 and IL6R More IL-6+ plasmablast/plasma cells in lymph nodes in SIVagm than SIVmac infection B cells participate in the regulation of NK cell migration into BCF
Collapse
Affiliation(s)
- Philippe Rascle
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Béatrice Jacquelin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Caroline Petitdemange
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Vanessa Contreras
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Cyril Planchais
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Marie Lazzerini
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Roger Le Grand
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Nicolas Huot
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
12
|
Ma Q, Chen Y, Qin Q, Guo F, Wang YS, Li D. CXCL13 expression in mouse 4T1 breast cancer microenvironment elicits antitumor immune response by regulating immune cell infiltration. PRECISION CLINICAL MEDICINE 2021; 4:155-167. [PMID: 35693216 PMCID: PMC8982548 DOI: 10.1093/pcmedi/pbab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer type and the leading cause of cancer-related deaths among women worldwide. Previous studies have reported contradictory performance of chemokine CXC motif ligand 13 (CXCL13) in breast cancer. In this study, The Cancer Genome Atlas database analysis revealed that CXCL13 was overexpressed in various human cancers including breast carcinoma, and associated with good clinical prognosis in breast cancer. Flow cytometry detection also found upregulated intracellular CXCL13 expression in human breast cancer cell lines. To explore the possible role of CXCL13 in the breast cancer microenvironment, mouse triple negative breast cancer (TNBC) was lentivirally transfected to stably overexpress mouse CXCL13 (4T1-CXCL13). Both parental 4T1 and 4T1-CXCL13 strains showed no in vitro or in vivo endogenous cell surface CXCR5 expression. In immune-competent BALB/c mice, the in vivo tumor growth of 4T1-CXCL13 was significantly inhibited and even completely eradicated, accompanied with increased infiltrations of CD4+, CD8+ T lymphocytes and CD11b+CD11c+ DCs. Further investigations showed that CXCL13 expression in the 4T1 tumor microenvironment elicited long-term antitumor immune memory, and rejection of distal parental tumor. The antitumor activity of CXCL13 was remarkedly impaired in BALB/cA-nu nude mice, or in BALB/c mice with CD8+ T lymphocyte or NK cell depletion. Our investigation indicated that CXCL13 expression in TNBC triggered effective antitumor immunity by chemoattracting immune cell infiltrations and could be considered as a novel prognostic marker for TNBC.
Collapse
Affiliation(s)
- Qizhi Ma
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Qin
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fuchun Guo
- Institute of Drug Clinical Trial, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong-sheng Wang
- Institute of Drug Clinical Trial, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Liu RT, Li W, Guo D, Yang CL, Ding J, Xu JX, Duan RS. Natural killer cells promote the differentiation of follicular helper T cells instead of inducing apoptosis in myasthenia gravis. Int Immunopharmacol 2021; 98:107880. [PMID: 34174703 DOI: 10.1016/j.intimp.2021.107880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Recent evidence has shown that natural killer (NK) cells have an immunoregulatory function in the pathogenesis of myasthenia gravis (MG). In this study, the phenotype and function of NK cell subsets in peripheral blood of new-onset MG (N-MG) and stable MG (S-MG) patients were explored. Circulating CD56dim and CD56bright NK cells were increased and decreased, respectively, in patients with N-MG and S-MG compared with healthy control (HC). Moreover, all circulating NK cell subsets from N-MG patients showed significantly lower expression of activating receptor NKG2D and production of Interferon (IFN) -γ than that from HC. The killing effects of NK cells on CD4+ T cells and Tfh cells were impaired in MG patients, whereas, they promoted the differentiation and activation of Tfh cells. These data indicated that the immune-regulation of NK cells on CD4+ T cells and Tfh cells in MG patients was abnormal, which may contribute to the immune-pathological mechanism of MG.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China; Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, PR China
| | - Wei Li
- The Neurosurgical Department, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, PR China
| | - Dong Guo
- Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, PR China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Jie Ding
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Jian-Xin Xu
- Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China; Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China.
| |
Collapse
|
14
|
Zhao R, Luo S, Zhao C. The role of innate immunity in myasthenia gravis. Autoimmun Rev 2021; 20:102800. [PMID: 33722749 DOI: 10.1016/j.autrev.2021.102800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Myasthenia gravis (MG) is a T cell-driven, B cell-mediated and autoantibody-dependent autoimmune disorder against neuromuscular junctions (NMJ). Accumulated evidence has emerged regarding the role of innate immunity in the pathogenesis of MG. In this review, we proposed two hypothesis underlying the pathological mechanism. In the context of gene predisposition, on the one hand, Toll-like receptors (TLRs) pathways were initiated by viral infection in the thymus with MG to generate chemokines and pro-inflammatory cytokines such as Type I interferon (IFN), which facilitate the thymus to function as a tertiary lymphoid organ (TLO). On the another hand, the antibodies against acetylcholine receptors (AChR) generated by thymus then activated the classical pathways on thymus and neuromuscular junction (NMJ). Futher, we also highlight the role of innate immune cells in the pathogenic response. Finally, we provide some future perspectives in developing new therapeutic approaches particularly targeting the innate immunity for MG.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China.
| |
Collapse
|
15
|
Gianchecchi E, Delfino DV, Fierabracci A. Natural Killer Cells: Potential Biomarkers and Therapeutic Target in Autoimmune Diseases? Front Immunol 2021; 12:616853. [PMID: 33679757 PMCID: PMC7933577 DOI: 10.3389/fimmu.2021.616853] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Siena, Italy
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Domenico V. Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
16
|
Klöß S, Dehmel S, Braun A, Parnham MJ, Köhl U, Schiffmann S. From Cancer to Immune-Mediated Diseases and Tolerance Induction: Lessons Learned From Immune Oncology and Classical Anti-cancer Treatment. Front Immunol 2020; 11:1423. [PMID: 32733473 PMCID: PMC7360838 DOI: 10.3389/fimmu.2020.01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
Success in cancer treatment over the last four decades has ranged from improvements in classical drug therapy to immune oncology. Anti-cancer drugs have also often proven beneficial for the treatment of inflammatory and autoimmune diseases. In this review, we report on challenging examples that bridge between treatment of cancer and immune-mediated diseases, addressing mechanisms and experimental models as well as clinical investigations. Patient-derived tumor xenograft (PDX) (humanized) mouse models represent useful tools for preclinical evaluation of new therapies and biomarker identification. However, new developments using human ex vivo approaches modeling cancer, for example in microfluidic human organs-on-chips, promise to identify key molecular, cellular and immunological features of human cancer progression in a fully human setting. Classical drugs which bridge the gap, for instance, include cytotoxic drugs, proteasome inhibitors, PI3K/mTOR inhibitors and metabolic inhibitors. Biologicals developed for cancer therapy have also shown efficacy in the treatment of autoimmune diseases. In immune oncology, redirected chimeric antigen receptor (CAR) T cells have achieved spectacular remissions in refractory B cell leukemia and lymphoma and are currently under development for tolerance induction using cell-based therapies such as CAR Tregs or NK cells. Finally, a brief outline will be given of the lessons learned from bridging cancer and autoimmune diseases as well as tolerance induction.
Collapse
Affiliation(s)
- Stephan Klöß
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Susanne Schiffmann
- Institute of Clinical Pharmacology, University Hospital Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| |
Collapse
|
17
|
Muthalagu N, Monteverde T, Raffo-Iraolagoitia X, Wiesheu R, Whyte D, Hedley A, Laing S, Kruspig B, Upstill-Goddard R, Shaw R, Neidler S, Rink C, Karim SA, Gyuraszova K, Nixon C, Clark W, Biankin AV, Carlin LM, Coffelt SB, Sansom OJ, Morton JP, Murphy DJ. Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discov 2020; 10:872-887. [PMID: 32200350 PMCID: PMC7611248 DOI: 10.1158/2159-8290.cd-19-0620] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
MYC is implicated in the development and progression of pancreatic cancer, yet the precise level of MYC deregulation required to contribute to tumor development has been difficult to define. We used modestly elevated expression of human MYC, driven from the Rosa26 locus, to investigate the pancreatic phenotypes arising in mice from an approximation of MYC trisomy. We show that this level of MYC alone suffices to drive pancreatic neuroendocrine tumors, and to accelerate progression of KRAS-initiated precursor lesions to metastatic pancreatic ductal adenocarcinoma (PDAC). Our phenotype exposed suppression of the type I interferon (IFN) pathway by the combined actions of MYC and KRAS, and we present evidence of repressive MYC-MIZ1 complexes binding directly to the promoters of the genes encodiing the type I IFN regulators IRF5, IRF7, STAT1, and STAT2. Derepression of IFN regulator genes allows pancreatic tumor infiltration by B and natural killer (NK) cells, resulting in increased survival. SIGNIFICANCE: We define herein a novel mechanism of evasion of NK cell-mediated immunity through the combined actions of endogenously expressed mutant KRAS and modestly deregulated expression of MYC, via suppression of the type I IFN pathway. Restoration of IFN signaling may improve outcomes for patients with PDAC.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
| | - Tiziana Monteverde
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - Robert Wiesheu
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Declan Whyte
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Sarah Laing
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Björn Kruspig
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rosanna Upstill-Goddard
- Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Robin Shaw
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Sarah Neidler
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Curtis Rink
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Saadia A Karim
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Katarina Gyuraszova
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - William Clark
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Andrew V Biankin
- Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Leo M Carlin
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Seth B Coffelt
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Daniel J Murphy
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|