1
|
Zhang L, Lv T, Hou P, Jin Y, Jia F. Sirt5-mediated polarization and metabolic reprogramming of macrophage sustain brain function following ischemic stroke. Brain Res 2025; 1857:149613. [PMID: 40180144 DOI: 10.1016/j.brainres.2025.149613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/16/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Ischemic stroke has become the leading cause of morbidity and mortality in adults. Reperfusion may initiate inflammatory response and cause damage to brain. Macrophage is supposed to be the major contributor of neuroinflammation and immune response. Hypersuccinylation correlates with neuropathological process post cerebral ischemia, rendering the possibility of functional role of succinylation in regulating recovery from injury. Here we reported that ischemic stroke causes upregulation of global protein succinylation dramatically. Mechanically, Sirt5 expression is repressed upon ischemic stroke, which exerts a crucial role in orchestrating global protein succinylation level. Furthermore, deficiency of Sirt5 enhances infiltration, M1 polarization and metabolic programming of macrophage in response to stroke via succinylation of Pkm2. Physiologically, depletion of Sirt5 enlarges damage region of brain during stroke. Utilization of Sirt5 agonist resveratrol efficiently ameliorates the destructive effects induced by stroke, thereby supporting recovery from brain injury. Our study not only reveal a heretofore unrecognized mechanism underlying the relation between stroke and protein succinylation, but also shed light on clinical potential for management of stroke injury via targeting protein succinylation.
Collapse
Affiliation(s)
- Linfeng Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Lv
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pinpin Hou
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Jin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Feng Jia
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zang H, Ji X, Yao W, Wan L, Zhang C, Zhu C, Liu T. Role of efferocytosis in chronic pain -- From molecular perspective. Neurobiol Dis 2025; 207:106857. [PMID: 40015655 DOI: 10.1016/j.nbd.2025.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
The complex nature of pain pathophysiology complicates the establishment of objective diagnostic criteria and targeted treatments. The heterogeneous manifestations of pain stemming from various primary diseases contribute to the complexity and diversity of underlying mechanisms, leading to challenges in treatment efficacy and undesirable side effects. Recent evidence suggests the presence of apoptotic cells at injury sites, the distal dorsal root ganglia (DRG), spinal cord, and certain brain regions, indicating a potential link between the ineffective clearance of dead cells and debris and pain persistence. This review highlights recent research findings indicating that efferocytosis plays a significant yet often overlooked role in lesion expansion while also representing a potentially reversible impairment that could be targeted therapeutically to mitigate chronic pain progression. We examine recent advances into how efferocytosis, a process by which phagocytes clear apoptotic cells without triggering inflammation, influences pain initiation and intensity in both human diseases and animal models. This review summarizes that efferocytosis contributes to pain progression from the perspective of defective and inefficient efferocytosis and its subsequent secondary necrocytosis, cascade inflammatory response, and the shift of phenotypic plasticity and metabolism. Additionally, we investigate the roles of newly discovered genetic alterations or modifications in biological signaling pathways in pain development and chronicity, providing insights into innovative treatment strategies that modulate efferocytosis, which are promising candidates and potential avenues for further research in pain management and prevention.
Collapse
Affiliation(s)
- Hu Zang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenlong Yao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Wan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Zhu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Tongtong Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Li D, Pan L, Chen M, Zhang X, Jiang Z. TREM2 protects against LPS-induced murine acute lung injury through suppressing macrophage ferroptosis. Int Immunopharmacol 2025; 150:114247. [PMID: 39946766 DOI: 10.1016/j.intimp.2025.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor, majorly expressed by granulocytes, monocytes and macrophages. We in this study showed that TREM2 was downregulated in the lipopolysaccharide (LPS)-treated macrophages and murine acute lung injury (ALI) through activation of p38 MAPK and STAT6 signaling. Over-expression of TREM2 reduced the expression of DNAX-activation protein 12 (DAP12), pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), Malondialdehyde (MDA) and hemosiderin accumulation in LPS-treated macrophages. Knockdown of TREM2 expression elevated the expression of IL-6, reactive oxygen species (ROS), lactate dehydrogenases (LDH) and hemosiderin accumulation. Intratracheal adoptive transfer of TREM2-overexpressing macrophages effectively suppressed the lung inflammation and pro-inflammatory cytokine expression in murine ALI. While downregulation of TREM2 enhanced the lung inflammation in the lung tissues of murine ALI. Therefore, TREM2/DAP12 axis is involved in macrophage ferroptosis and attenuation of murine ALI. TREM2 would be a novel therapeutic target in murine ALI and patients with acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Linyue Pan
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Mengjie Chen
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xiaoju Zhang
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Liu C, Zhou X. TREM2 Impairs Glycolysis to Interrupt Microglial M1 Polarization and Inflammation via JAK2/STAT3 Axis. Cell Biochem Biophys 2025; 83:879-891. [PMID: 39240442 DOI: 10.1007/s12013-024-01520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Cerebral ischemia/reperfusion injury (IRI) is a primary pathophysiological basis of ischemic stroke, a dreadful cerebrovascular event carrying substantial disability and lethality. Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane glycoprotein that has been notified as a protective factor for cerebral ischemic stroke. On this basis, the paper is thereby goaled to interpret the probable activity and downstream mechanism of TREM2 against cerebral IRI. Cerebral IRI was simulated in murine microglial BV2 cells under oxygen-glucose deprivation and reperfusion (OGD/R) conditions. Western blotting ascertained the expressions of TREM2 and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) axis-associated proteins. ELISA and RT-qPCR assayed the secretion of inflammatory cytokines. Immunofluorescence and western blotting estimated macrophage polarization. Glycolysis activation was measured through evaluating lactic acid and extracellular acidification rate (ECAR). RT-qPCR and western blotting examined the expressions of glycolytic genes. TREM2 was abnormally expressed and JAK2/STAT3 axis was aberrantly activated in BV2 cells in response to OGD/R. Elevation of TREM2 repressed the inflammatory reaction and glycolysis, inhibited the JAK2/STAT3 axis, whereas promoted M1-to-M2 polarization in OGD/R-injured BV2 cells. Upregulated TREM2 inactivated the glycolytic pathway to relieve OGD/R-induced inflammatory injury and M1 macrophage polarization. Besides, STAT3 activator, colivelin, aggravated the glycolysis, inflammatory injury and drove M1-like macrophage polarization in TREM2-overexpressing BV2 cells exposed to OGD/R. Collectively, TREM2 might produce anti-inflammatory potential in cerebral IRI, which might dependent on the inactivation of glycolytic pathway via intermediating the JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Chanyuan Liu
- Psychiatric Ward 1, Wuhan Wuchang Hospital, Wuhan, 430061, Hubei, China
| | - Xueying Zhou
- Department of Psychiatry, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China.
| |
Collapse
|
5
|
Wang S, Cao C, Peng D. The various roles of TREM2 in cardiovascular disease. Front Immunol 2025; 16:1462508. [PMID: 40083551 PMCID: PMC11903262 DOI: 10.3389/fimmu.2025.1462508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a transmembrane immune receptor that is expressed mainly on macrophages. As a pathology-induced immune signaling hub, TREM2 senses tissue damage and activates immune remodeling in response. Previous studies have predominantly focused on the TREM2 signaling pathway in Alzheimer's disease, metabolic syndrome, and cancer. Recent research has indicated that TREM2 signaling is also activated in various cardiovascular diseases. In this review, we summarize the current understanding and the unanswered questions regarding the role of TREM2 signaling in mediating the metabolism and function of macrophages in atherosclerosis and various models of heart failure. In the context of atherosclerosis, TREM2 signaling promotes foam cell formation and is crucial for maintaining macrophage survival and plaque stability through efferocytosis and cholesterol efflux. Recent studies on myocardial infarction, sepsis-induced cardiomyopathy, and hypertensive heart failure also implicated the protective role of TREM2 signaling in cardiac macrophages through efferocytosis and paracrine functions. Additionally, we discuss the clinical significance of elevated soluble TREM2 (sTREM2) in cardiovascular disease and propose potential therapies targeting TREM2. The overall aim of this review is to highlight the various roles of TREM2 in cardiovascular diseases and to provide a framework for therapeutic strategies targeting TREM2.
Collapse
Affiliation(s)
| | | | - Daoquan Peng
- Second Xiangya Hospital of Central South University, Cardiovascular Medicine, Changsha, China
| |
Collapse
|
6
|
Zhang P, Watari K, Karin M. Innate immune cells link dietary cues to normal and abnormal metabolic regulation. Nat Immunol 2025; 26:29-41. [PMID: 39747429 PMCID: PMC12040443 DOI: 10.1038/s41590-024-02037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
A slew of common metabolic disorders, including type 2 diabetes, metabolic dysfunction-associated steatotic liver disease and steatohepatitis, are exponentially increasing in our sedentary and overfed society. While macronutrients directly impact metabolism and bioenergetics, new evidence implicates immune cells as critical sensors of nutritional cues and important regulators of metabolic homeostasis. A deeper interrogation of the intricate and multipartite interactions between dietary components, immune cells and metabolically active tissues is needed for a better understanding of metabolic regulation and development of new treatments for common metabolic diseases. Responding to macronutrients and micronutrients, immune cells play pivotal roles in interorgan communication between the microbiota, small intestine, metabolically active cells including hepatocytes and adipocytes, and the brain, which controls feeding behavior and energy expenditure. This Review focuses on the response of myeloid cells and innate lymphocytes to dietary cues, their cross-regulatory interactions and roles in normal and aberrant metabolic control.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kosuke Watari
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Gao L, Manaenko A, Zeng F, Li J, Liu L, Xie R, Zhang X, Zhang JH, Mei Q, Tang J, Hu Q. Efferocytosis: A new therapeutic target for stroke. Chin Med J (Engl) 2024; 137:2843-2850. [PMID: 39528491 DOI: 10.1097/cm9.0000000000003363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 11/16/2024] Open
Abstract
ABSTRACT Efferocytosis refers to the process that phagocytes recognize and remove the apoptotic cells, which is essential for maintaining tissue homeostasis both in physiological and pathological conditions. Numerous studies have demonstrated that efferocytosis can prevent secondary necrosis and proinflammatory factor release, leading to the resolution of inflammation and tissue immunological tolerance in numerous diseases such as stroke. Stroke is a leading cause of death and morbidity for adults worldwide. Persistent inflammation triggered by the dead cells or cell debris is a major contributor to post-stroke brain damage. Effective efferocytosis might be an efficient strategy to minimize inflammation and restore brain homeostasis for neuronal regeneration and function recovery. In this review, we will discuss the phagocytes in the brain, the molecular mechanisms underlying efferocytosis, the role of efferocytosis in inflammation resolution, and the potential therapeutic applications targeting efferocytosis in stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Anatol Manaenko
- Clinical Neuroanatomy, Department of Neurology, School of Medicine, Ulm University, Ulm 89081, Germany
| | - Feng Zeng
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jingchen Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lele Liu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ruichuan Xie
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai 200127, China
| |
Collapse
|
8
|
Zhang B, Zou Y, Yuan Z, Jiang K, Zhang Z, Chen S, Zhou X, Wu Q, Zhang X. Efferocytosis: the resolution of inflammation in cardiovascular and cerebrovascular disease. Front Immunol 2024; 15:1485222. [PMID: 39660125 PMCID: PMC11628373 DOI: 10.3389/fimmu.2024.1485222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases have surpassed cancer as significant global health challenges, which mainly include atherosclerosis, myocardial infarction, hemorrhagic stroke and ischemia stroke. The inflammatory response immediately following these diseases profoundly impacts patient prognosis and recovery. Efficient resolution of inflammation is crucial not only for halting the inflammatory process but also for restoring tissue homeostasis. Efferocytosis, the phagocytic clearance of dying cells by phagocytes, especially microglia and macrophages, plays a critical role in this resolution process. Upon tissue injury, phagocytes are recruited to the site of damage where they engulf and clear dying cells through efferocytosis. Efferocytosis suppresses the secretion of pro-inflammatory cytokines, stimulates the production of anti-inflammatory cytokines, modulates the phenotype of microglia and macrophages, accelerates the resolution of inflammation, and promotes tissue repair. It involves three main stages: recognition, engulfment, and degradation of dying cells. Optimal removal of apoptotic cargo by phagocytes requires finely tuned machinery and associated modifications. Key molecules in efferocytosis, such as 'Find-me signals', 'Eat-me signals', and 'Don't eat-me signals', have been shown to enhance efferocytosis following cardiovascular and cerebrovascular diseases. Moreover, various additional molecules, pathways, and mitochondrial metabolic processes have been identified to enhance prognosis and outcomes via efferocytosis in diverse experimental models. Impaired efferocytosis can lead to inflammation-associated pathologies and prolonged recovery periods. Therefore, this review consolidates current understanding of efferocytosis mechanisms and its application in cardiovascular and cerebrovascular diseases, proposing future research directions.
Collapse
Affiliation(s)
- Bingtao Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Zou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zixuan Yuan
- Department of Neurosurgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Jiang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhaoxiang Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shujuan Chen
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Telemaco Contreras Colmenares M, de Oliveira Matos A, Henrique Dos Santos Dantas P, Rodrigues do Carmo Neto J, Silva-Sales M, Sales-Campos H. Unveiling the impact of TREM-2 + Macrophages in metabolic disorders. Cell Immunol 2024; 405-406:104882. [PMID: 39369473 DOI: 10.1016/j.cellimm.2024.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Triggering Receptor Expressed on Myeloid cells 2 (TREM-2) has been widely known by its anti-inflammatory activity. It can be activated in response to microbes and tissue damage, leading to phagocytosis, autophagy, cell polarization and migration, counter inflammation, and tissue repair. So far, the receptor has been largely explored in neurodegenerative disorders, however, a growing number of studies have been investigating its contribution in different pathological conditions, including metabolic diseases, in which (resident) macrophages play a crucial role. In this regard, TREM-2 + macrophages have been implicated in the onset and development of obesity, atherosclerosis, and fibrotic liver disease. These macrophages can be detected in the brain, white adipose tissue, liver, and vascular endothelium. In this review we discuss how different murine models have been demonstrating the ability of such cells to contribute to tissue and body homeostasis by phagocytosing cellular debris and lipid structures, besides contributing to lipid homeostasis in metabolic diseases. Therefore, understanding the role of TREM-2 in metabolic disorders is crucial to expand our current knowledge concerning their immunopathology as well as to foster the development of more targeted therapies to treat such conditions.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | | | | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | |
Collapse
|
10
|
Wang Y, Lin S, Chen L, Li M, Zhu Z, Zhuang Z, Cai M, Zhang H, Xing C, Li W, Yang R. Mitochondrial components transferred by MSC-derived exosomes promoted bone regeneration under high salt microenvironment via DRP1/Wnt signaling. NANO RESEARCH 2024; 17:8301-8315. [DOI: 10.1007/s12274-024-6758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 03/10/2025]
|
11
|
Jiao L, Luo X, Xu Y, Sun T, Lei X, Song X, Ying B. Emerging concepts of migrasome: An up-and-coming organelle from biology to the clinic. FASEB J 2024; 38:e23811. [PMID: 39031505 DOI: 10.1096/fj.202400503rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Since the migrasome concept was first proposed in 2015, extensive research has been conducted on these novel organelles, which grow on retracted fibers at the posterior end of migrating cells. Recently, molecular markers, biological functions, and clinical values based on the initial formation mechanism of migrasomes have emerged. Additionally, researchers are recognizing the significant role that migrasomes play in the pathological and diagnostic processes of clinical diseases. In this review, we summarize recent advances in the biology and clinical application of migrasomes and provide a comprehensive view of the prospective challenges surrounding their clinical application.
Collapse
Affiliation(s)
- Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxing Lei
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Chen J, Zhang Q, Xu W, Li Z, Chen X, Luo Q, Wang D, Peng L. Baicalein upregulates macrophage TREM2 expression via TrKB-CREB1 pathway to attenuate acute inflammatory injury in acute-on-chronic liver failure. Int Immunopharmacol 2024; 139:112685. [PMID: 39047449 DOI: 10.1016/j.intimp.2024.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Acute-on-chronic liver failure (ACLF) is a syndrome characterized by a high short-term mortality rate, and effective interventions are still lacking. This study aims to investigate whether the small molecule baicalein can mitigate ACLF and elucidate the molecular mechanisms. METHODS The ACLF mouse model was induced through chronic liver injury using carbon tetrachloride, followed by acute inflammation induction with lipopolysaccharide (LPS). Baicalein was administered through intraperitoneal injection to explore its therapeutic effects. In vitro experiments utilized the iBMDM macrophage cell line to investigate the underlying mechanisms. Peripheral blood was collected from clinical ACLF patients for validation. RESULTS In the LPS-induced ACLF mouse model, baicalein demonstrated a significant reduction in acute inflammation and liver damage, as evidenced by histopathological evaluation, liver function analysis, and inflammatory marker measurements. Transcriptomic analysis, coupled with molecular biology experiments, uncovered that baicalein exerts its effects in ACLF by activating the TrKB-CREB1 signaling axis to upregulate the surface expression of the TREM2 receptor on macrophages. This promotes M2 macrophage polarization and activates efferocytosis, thereby inhibiting inflammation and alleviating liver damage. Furthermore, we observed a substantial negative correlation between postoperative peripheral blood plasma soluble TREM2 (sTREM2) levels and inflammation, as well as adverse outcomes in clinical ACLF patients. CONCLUSION Baicalein plays a protective role in ACLF by enhancing the surface expression of the TREM2 receptor on macrophages, leading to the suppression of inflammation, mitigation of liver damage, and a reduction in mortality. Additionally, plasma sTREM2 emerges as a critical indicator for predicting adverse outcomes in ACLF patients.
Collapse
Affiliation(s)
- Jia Chen
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiongchi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Orthopedics, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wenxiong Xu
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhipeng Li
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiyao Chen
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiumin Luo
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Orthopedics, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Liang Peng
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Tang J, Jin Y, Jia F, Lv T, Manaenko A, Zhang LF, Zhang Z, Qi X, Xue Y, Zhao B, Zhang X, Zhang JH, Lu J, Hu Q. Gas6 Promotes Microglia Efferocytosis and Suppresses Inflammation Through Activating Axl/Rac1 Signaling in Subarachnoid Hemorrhage Mice. Transl Stroke Res 2023; 14:955-969. [PMID: 36324028 DOI: 10.1007/s12975-022-01099-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is characterized by rapid development of neuron apoptosis and dysregulated inflammatory response. Microglia efferocytosis plays a critical role in the clearance of apoptotic cells, attenuation of inflammation, and minimizing brain injury in various pathological conditions. Here, using a mouse SAH model, we aim to investigate whether microglia efferocytosis is involved in post-SAH inflammation and to determine the underlying signaling pathway. We hypothesized that TAM receptors and their ligands regulate this process. To prove our hypothesis, the expression and cellular location of TAM (Tyro3, Axl, and Mertk) receptors and their ligands growth arrest-specific 6 (Gas6) and Protein S (ProS1) were examined by PCR, western blots, and fluorescence immunostaining. Thirty minutes after SAH, mice received an intraventricular injection of recombinant Gas6 (rGas6) or recombinant ProS1 (rPros1) and underwent evaluations of inflammatory mediator expression, neurological deficits, and blood-brain barrier integrity at 24 h. Microglia efferocytosis of apoptotic neurons was analyzed in vivo and in vitro. The potential mechanism was determined by inhibiting or knocking down TAM receptors and Rac1 by specific inhibitors or siRNA. SAH induced upregulation of Axl and its ligand Gas6. The administration of rGas6 but not rPros1 promoted microglia efferocytosis, alleviated inflammation, and ameliorated SAH-induced BBB breakdown and neurological deficits. The beneficial effects of rGas6 were arrogated by inhibiting or knocking down Axl and Rac1. We concluded that rGas6 attenuated the development of early brain injury in mice after SAH by facilitating microglia efferocytosis and preventing inflammatory response, which is partly dependent on activation of Axl and Rac1.
Collapse
Affiliation(s)
- Junjia Tang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yichao Jin
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Feng Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zeyu Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xin Qi
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yajun Xue
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Bin Zhao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
14
|
Hu M, Li T, Ma X, Liu S, Li C, Huang Z, Lin Y, Wu R, Wang S, Lu D, Lu T, Men X, Shen S, Huang H, Liu Y, Song K, Jian B, Jiang Y, Qiu W, Liu Q, Lu Z, Cai W. Macrophage lineage cells-derived migrasomes activate complement-dependent blood-brain barrier damage in cerebral amyloid angiopathy mouse model. Nat Commun 2023; 14:3945. [PMID: 37402721 DOI: 10.1038/s41467-023-39693-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Accumulation of amyloid beta protein (Aβ) in brain vessels damages blood brain barrier (BBB) integrity in cerebral amyloid angiopathy (CAA). Macrophage lineage cells scavenge Aβ and produce disease-modifying mediators. Herein, we report that Aβ40-induced macrophage-derived migrasomes are sticky to blood vessels in skin biopsy samples from CAA patients and brain tissue from CAA mouse models (Tg-SwDI/B and 5xFAD mice). We show that CD5L is packed in migrasomes and docked to blood vessels, and that enrichment of CD5L impairs the resistance to complement activation. Increased migrasome-producing capacity of macrophages and membrane attack complex (MAC) in blood are associated with disease severity in both patients and Tg-SwDI/B mice. Of note, complement inhibitory treatment protects against migrasomes-mediated blood-brain barrier injury in Tg-SwDI/B mice. We thus propose that macrophage-derived migrasomes and the consequent complement activation are potential biomarkers and therapeutic targets in CAA.
Collapse
Affiliation(s)
- Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510630, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaomeng Ma
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhenchao Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yinyao Lin
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ruizhen Wu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuejiao Men
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Kangyu Song
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Banghao Jian
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Jiang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Qiu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510630, China.
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
15
|
Han S, Li X, Xia N, Zhang Y, Yu W, Li J, Jiao C, Wang Z, Pu L. Myeloid Trem2 Dynamically Regulates the Induction and Resolution of Hepatic Ischemia-Reperfusion Injury Inflammation. Int J Mol Sci 2023; 24:ijms24076348. [PMID: 37047321 PMCID: PMC10094065 DOI: 10.3390/ijms24076348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Trem2, a transmembrane protein that is simultaneously expressed in both bone marrow-derived and embryonic-derived liver-resident macrophages, plays a complex role in liver inflammation. The unique role of myeloid Trem2 in hepatic ischemia-reperfusion (IR) injury is not precisely understood. Our study showed that in the early stage of inflammation induction after IR, Deletion of myeloid Trem2 inhibited the induction of iNOS, MCP-1, and CXCL1/2, alleviated the accumulation of neutrophils and mitochondrial damage, and simultaneously decreased ROS formation. However, when inflammatory monocyte-macrophages gradually evolved into CD11bhiLy6Clow pro-resolution macrophages through a phenotypic switch, the story of Trem2 took a turn. Myeloid Trem2 in pro-resolution macrophages promotes phagocytosis of IR-accumulated apoptotic cells by controlling Rac1-related actin polymerization, thereby actively promoting the resolution of inflammation. This effect may be exercised to regulate the Cox2/PGE2 axis by Trem2, alone or synergistically with MerTK/Arg1. Importantly, when myeloid Trem2 was over-expressed, the phenotypic transition of monocytes from a pro-inflammatory to a resolution type was accelerated, whereas knockdown of myeloid Trem2 resulted in delayed upregulation of CX3CR1. Collectively, our findings suggest that myeloid Trem2 is involved in the cascade of IR inflammation in a two-sided capacity, with complex and heterogeneous roles at different stages, not only contributing to our understanding of sterile inflammatory immunity but also to better explore the regulatory strategies and intrinsic requirements of targeting Trem2 in the event of sterile liver injury.
Collapse
|
16
|
Lin Y, Zhan Z, Hu M, Li H, Zhang B, Wu R, Tan S, Shan Y, Lu Z, Qin B. Inhibition of interaction between ROCK1 and Rubicon restores autophagy in endothelial cells and attenuates brain injury after prolonged ischemia. J Neurochem 2023; 164:172-192. [PMID: 36334306 DOI: 10.1111/jnc.15721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Acute ischemic stroke (AIS) induces cerebral endothelial cell death resulting in the breakdown of the blood-brain barrier (BBB). Endothelial cell autophagy acts as a protective mechanism against cell death. Autophagy is activated in the very early stages of ischemic stroke and declines after prolonged ischemia. Previous studies have shown that Rubicon can inhibit autophagy. The current study aimed to investigate whether continuous long-term ischemia can inhibit autophagy in endothelial cells after ischemic stroke by regulating the function of Rubicon and its underlying mechanism. Wild-type male C57BL/6J mice were subjected to transient middle cerebral artery occlusion (tMCAO). ROCK1, ROCK2, and NOX2 inhibitors were injected into male mice 1 h before the onset of tMCAO. Disease severity and BBB permeability were evaluated. bEnd.3 cells were cultured in vitro and subjected to oxygen-glucose deprivation (OGD). bEnd.3 cells were pretreated with or without ROCK1, ROCK2, or NOX2 inhibitors overnight and then subjected to OGD. Cell viability and permeability were also evaluated. The expression of Rubicon, ROCK1, and autophagy-related proteins were analyzed. Increased BBB permeability was correlated with Rubicon expression in tMCAO mice and Rubicon was upregulated in endothelial cells subjected to OGD. Autophagy was inhibited in endothelial cells after long-term OGD treatment and knockdown of Rubicon expression restored autophagy and viability in endothelial cells subjected to 6-h OGD. ROCK1 inhibition decreased the interaction between Beclin1 and Rubicon and restored cell viability and autophagy suppressed by 6-h OGD treatment in endothelial cells. Additionally, ROCK1 inhibition suppressed Rubicon, attenuated BBB disruption, and brain injury induced by prolonged ischemia in 6-h tMCAO mice. Prolonged ischemia induced the death of brain endothelial cells and the breakdown of the BBB, thus aggravating brain injury by increasing the interaction of ROCK1 and Rubicon with Beclin1 while inhibiting canonical autophagy. Inhibition of ROCK1 signaling in endothelial cells could be a promising therapeutic strategy to prolong the therapeutic time window in AIS.
Collapse
Affiliation(s)
- Yinyao Lin
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zexin Zhan
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haiyan Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruizhen Wu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Sha Tan
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yilong Shan
- Department of Rehabilitation Medicine, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bing Qin
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Zhang Z, Lv M, Zhou X, Cui Y. Roles of peripheral immune cells in the recovery of neurological function after ischemic stroke. Front Cell Neurosci 2022; 16:1013905. [PMID: 36339825 PMCID: PMC9634819 DOI: 10.3389/fncel.2022.1013905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 10/15/2023] Open
Abstract
Stroke is a leading cause of mortality and long-term disability worldwide, with limited spontaneous repair processes occurring after injury. Immune cells are involved in multiple aspects of ischemic stroke, from early damage processes to late recovery-related events. Compared with the substantial advances that have been made in elucidating how immune cells modulate acute ischemic injury, the understanding of the impact of the immune system on functional recovery is limited. In this review, we summarized the mechanisms of brain repair after ischemic stroke from both the neuronal and non-neuronal perspectives, and we review advances in understanding of the effects on functional recovery after ischemic stroke mediated by infiltrated peripheral innate and adaptive immune cells, immune cell-released cytokines and cell-cell interactions. We also highlight studies that advance our understanding of the mechanisms underlying functional recovery mediated by peripheral immune cells after ischemia. Insights into these processes will shed light on the double-edged role of infiltrated peripheral immune cells in functional recovery after ischemic stroke and provide clues for new therapies for improving neurological function.
Collapse
Affiliation(s)
- Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
18
|
Chen F, Hu W, Chen S, Si A, Zhang Y, Ma J. Stroke mortality attributable to high red meat intake in China and South Korea: An age-period-cohort and joinpoint analysis. Front Nutr 2022; 9:921592. [PMID: 36313118 PMCID: PMC9614311 DOI: 10.3389/fnut.2022.921592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
The high intake of red meat is well recognized as a major health concern worldwide. It has been recognized as a risk factor for several non-communicable chronic diseases, including stroke. However, previously published studies have not performed a comprehensive analysis of the long-time trend of stroke mortality attributable to high red meat intake in China and South Korea, two countries with similar dietary patterns and changing trends. Therefore, this study aimed to reveal the influence of age, time period, and birth cohort on long-term trends of stroke mortality attributable to high red meat intake and relative gender differences in China and South Korea. Data were obtained from the Global Burden of Disease 2019 database. The age–period–cohort model was used to estimate the effect of age, time period, and birth cohort. The average and annual percent changes were estimated using the joinpoint regression analysis. Results indicated that the overall attributable age-standardized mortality rates of stroke in China decreased by 1.0% (P < 0.05) for female and 0.1% (P > 0.05) for male individuals, compared with a decrease of 4.9% for female and 3.7% for male individuals in South Korea (both P < 0.05). Age–period–cohort analysis revealed that the attributable stroke mortality decreased along with the time period, and increased along with age. Significant gender differences were observed, male individuals in both countries were at higher risk than their female counterparts, especially in China. Joinpoint analysis suggested that the attributable stroke mortality for both genders in South Korea and female individuals in China showed a decreasing trend, while it is stable for male individuals in China. Although prominent reductions were observed during the past decades, the attributable stroke mortality risk in China and South Korea is still high. Our findings indicate that controlling the intake of red meat may be a cost-effective strategy to reduce stroke mortality risk and the corresponding disease burden, especially for Chinese male individuals.
Collapse
Affiliation(s)
- Fangyao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China,Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weiwei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shiyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Aima Si
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuxiang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jiaojiao Ma
- Department of Neurology, Xi’an Gaoxin Hospital, Xi’an, Shaanxi, China,*Correspondence: Jiaojiao Ma,
| |
Collapse
|
19
|
The Role of Diet in Regulation of Macrophages Functioning. Biomedicines 2022; 10:biomedicines10092087. [PMID: 36140188 PMCID: PMC9495355 DOI: 10.3390/biomedicines10092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The great importance of diet for health and high life-expectancy is established. The impact of nutrients on immune system is a point of growing research interest. Recent studies have found pro- and anti-inflammatory properties of some diet patterns and nutrients that can be used from the bench to the bedside for chronic low-grade inflammatory status correction. In this regard, the assessment of potential effects of nutrition on macrophage differentiation, proliferation, and functioning in health and disease is highly demanded. In this review, we present current data on the effects of nutrients on the macrophage functioning.
Collapse
|
20
|
Burl RB, Rondini EA, Wei H, Pique-Regi R, Granneman JG. Deconstructing cold-induced brown adipocyte neogenesis in mice. eLife 2022; 11:e80167. [PMID: 35848799 PMCID: PMC9348851 DOI: 10.7554/elife.80167] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Cold exposure triggers neogenesis in classic interscapular brown adipose tissue (iBAT) that involves activation of β1-adrenergic receptors, proliferation of PDGFRA+ adipose tissue stromal cells (ASCs), and recruitment of immune cells whose phenotypes are presently unknown. Single-cell RNA-sequencing (scRNA-seq) in mice identified three ASC subpopulations that occupied distinct tissue locations. Of these, interstitial ASC1 were found to be direct precursors of new brown adipocytes (BAs). Surprisingly, knockout of β1-adrenergic receptors in ASCs did not prevent cold-induced neogenesis, whereas pharmacological activation of the β3-adrenergic receptor on BAs was sufficient, suggesting that signals derived from mature BAs indirectly trigger ASC proliferation and differentiation. In this regard, cold exposure induced the delayed appearance of multiple macrophage and dendritic cell populations whose recruitment strongly correlated with the onset and magnitude of neogenesis across diverse experimental conditions. High-resolution immunofluorescence and single-molecule fluorescence in situ hybridization demonstrated that cold-induced neogenesis involves dynamic interactions between ASC1 and recruited immune cells that occur on the micrometer scale in distinct tissue regions. Our results indicate that neogenesis is not a reflexive response of progenitors to β-adrenergic signaling, but rather is a complex adaptive response to elevated metabolic demand within brown adipocytes.
Collapse
Affiliation(s)
- Rayanne B Burl
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Elizabeth Ann Rondini
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Center for Integrative Metabolic and Endocrine Research, Wayne State UniversityDetroitUnited States
| | - Hongguang Wei
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Center for Integrative Metabolic and Endocrine Research, Wayne State UniversityDetroitUnited States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Center for Integrative Metabolic and Endocrine Research, Wayne State UniversityDetroitUnited States
| |
Collapse
|
21
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Li X, Alu A, Wei Y, Wei X, Luo M. The modulatory effect of high salt on immune cells and related diseases. Cell Prolif 2022; 55:e13250. [PMID: 35747936 PMCID: PMC9436908 DOI: 10.1111/cpr.13250] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The adverse effect of excessive salt intake has been recognized in decades. Researchers have mainly focused on the association between salt intake and hypertension. However, studies in recent years have proposed the existence of extra-renal sodium storage and provided insight into the immunomodulatory function of sodium. OBJECTIVES In this review, we discuss the modulatory effects of high salt on various innate and adaptive immune cells and immune-regulated diseases. METHODS We identified papers through electronic searches of PubMed database from inception to March 2022. RESULTS An increasing body of evidence has demonstrated that high salt can modulate the differentiation, activation and function of multiple immune cells. Furthermore, a high-salt diet can increase tissue sodium concentrations and influence the immune responses in microenvironments, thereby affecting the development of immune-regulated diseases, including hypertension, multiple sclerosis, cancer and infections. These findings provide a novel mechanism for the pathology of certain diseases and indicate that salt might serve as a target or potential therapeutic agent in different disease contexts. CONCLUSION High salt has a profound impact on the differentiation, activation and function of multiple immune cells. Additionally, an HSD can modulate the development of various immune-regulated diseases.
Collapse
Affiliation(s)
- Xian Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Ma WY, Wang SS, Wu QL, Zhou X, Chu SF, Chen NH. The versatile role of TREM2 in regulating of microglia fate in the ischemic stroke. Int Immunopharmacol 2022; 109:108733. [PMID: 35525233 DOI: 10.1016/j.intimp.2022.108733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are the earliest activated and the longest lasting immune cells after stroke, and they participate in almost all the pathological reactions after stroke. However, their regulatory mechanism has not been fully elucidated. Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor that is mainly expressed in microglia of the central nervous system. The receptor plays an important role in regulating microglia energy metabolism and phenotypic transformation. At present, TREM2 has been developed as a potential target for AD, coronary atherosclerosis and other diseases. However, TREM2 does not provide a systematic summary of the functional transformation and intrinsic molecular mechanisms of microglia after stroke. In this paper, we have summarized the functional changes of TREM2 in microglia after stroke in recent years, and found that TREM2 has important effects on energy metabolism, phagocytosis and anti-inflammatory function of microglia after stroke, suggesting that TREM2 is a potential therapeutic target for the treatment of stroke.
Collapse
Affiliation(s)
- Wen-Yu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing-Lin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|