1
|
Jin R, Zhang L. AI applications in HIV research: advances and future directions. Front Microbiol 2025; 16:1541942. [PMID: 40051479 PMCID: PMC11882587 DOI: 10.3389/fmicb.2025.1541942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
With the increasing application of artificial intelligence (AI) in medical research, studies on the human immunodeficiency virus type 1(HIV-1) and acquired immunodeficiency syndrome (AIDS) have become more in-depth. Integrating AI with technologies like single-cell sequencing enables precise biomarker identification and improved therapeutic targeting. This review aims to explore the advancements in AI technologies and their applications across various facets of HIV research, including viral mechanisms, diagnostic innovations, therapeutic strategies, and prevention efforts. Despite challenges like data limitations and model interpretability, AI holds significant potential in advancing HIV-1 management and contributing to global health goals.
Collapse
Affiliation(s)
- Ruyi Jin
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, China Medical University, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, Shenyang, China
| | - Li Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Immunodermatology, China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, China Medical University, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, Shenyang, China
| |
Collapse
|
2
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Cao Q, Zeng W, Nie J, Ye Y, Chen Y. The protective effects of apelin-13 in HIV-1 tat- induced macrophage infiltration and BBB impairment. Tissue Barriers 2024:2392361. [PMID: 39264117 DOI: 10.1080/21688370.2024.2392361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Impairment of the blood - brain barrier (BBB) and subsequent inflammatory responses contribute to the development of human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND). Apelin-13, the most abundant member of the apelin family, acts as the ligand of the angiotensin receptor-like 1 (APJ). However, its pharmacological function in HAND and its underlying mechanism are unknown. In the current study, we report that the presence of HIV-1 Tat reduced the levels of Apelin-13 and APJ in the cortex tissue of mice. Importantly, Apelin-13 preserved BBB integrity against HIV-1 Tat in mice by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. Interestingly, increased macrophage infiltration, indicated by elevated CD68-positive staining was observed in the cortex after stimulation with HIV-1, which was mitigated by the administration of Apelin-13. Correspondingly, Apelin-13 reduced the expression of monocyte chemoattractant protein-1; (MCP-1). An in vitro two-chamber and two-cell trans-well assay demonstrated that HIV-1 Tat challenge significantly promoted macrophage migration, which was notably attenuated by the introduction of Apelin-13. Accordingly, treatment with Apelin-13 restored the HIV-1 Tat-induced reduction of occludin and ZO-1, while preventing the upregulation of MCP-1 in human brain microvascular endothelial cells (HBMVECs). Our results suggest that Apelin-13 may reduce macrophage infiltration into brain tissues and mitigate BBB dysfunction in patients with HAND.
Collapse
Affiliation(s)
- Qi Cao
- First Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Wei Zeng
- Department of Emergency, Chongqing Public Health Medical Center, Chongqing, China
| | - Jingmin Nie
- First Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yongjun Ye
- Department of General Surgery, Chongqing Public Health Medical Center, Chongqing, China
| | - Yanchao Chen
- Department of General Internal Medicine, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
4
|
Zeeb M, Pasin C, Cavassini M, Bieler-Aeschlimann M, Frischknecht P, Kusejko K, Fellay J, Blanquart F, Metzner KJ, Neumann K, Jörimann L, Tschumi J, Bernasconi E, Huber M, Kovari H, Leuzinger K, Notter J, Perreau M, Rauch A, Ramette A, Stöckle M, Yerly S, Günthard HF, Kouyos RD. Self-reported neurocognitive complaints in the Swiss HIV Cohort Study: a viral genome-wide association study. Brain Commun 2024; 6:fcae188. [PMID: 38961872 PMCID: PMC11220509 DOI: 10.1093/braincomms/fcae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
People with HIV may report neurocognitive complaints, with or without associated neurocognitive impairment, varying between individuals and populations. While the HIV genome could play a major role, large systematic viral genome-wide screens to date are lacking. The Swiss HIV Cohort Study biannually enquires neurocognitive complaints. We quantified broad-sense heritability estimates using partial 'pol' sequences from the Swiss HIV Cohort Study resistance database and performed a viral near full-length genome-wide association study for the longitudinal area under the curve of neurocognitive complaints. We performed all analysis (i) restricted to HIV Subtype B and (ii) including all HIV subtypes. From 8547 people with HIV with neurocognitive complaints, we obtained 6966 partial 'pol' sequences and 2334 near full-length HIV sequences. Broad-sense heritability estimates for presence of memory loss complaints ranged between 1% and 17% (Subtype B restricted 1-22%) and increased with the stringency of the phylogenetic distance thresholds. The genome-wide association study revealed one amino acid (Env L641E), after adjusting for multiple testing, positively associated with memory loss complaints (P = 4.3 * 10-6). Other identified mutations, while insignificant after adjusting for multiple testing, were reported in other smaller studies (Tat T64N, Env *291S). We present the first HIV genome-wide association study analysis of neurocognitive complaints and report a first estimate for the heritability of neurocognitive complaints through HIV. Moreover, we could identify one mutation significantly associated with the presence of memory loss complaints. Our findings indicate that neurocognitive complaints are polygenetic and highlight advantages of a whole genome approach for pathogenicity determination.
Collapse
Affiliation(s)
- Marius Zeeb
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Chloé Pasin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Mélanie Bieler-Aeschlimann
- Division of Infectious Diseases, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Paul Frischknecht
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jacques Fellay
- Division of Infectious Diseases, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - François Blanquart
- Centre interdisciplinaire de recherche en biologie, Collége de France, 75231 Paris, France
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lisa Jörimann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jasmin Tschumi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale, 6500 Lugano, Switzerland
- Division of Infectious Diseases, University of Geneva and University of Southern Switzerland, 6900 Lugano, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Helen Kovari
- Center for Infectious Diseases, Klinik im Park, 8027 Zurich, Switzerland
| | - Karoline Leuzinger
- Division Infection Diagnostics, Department Biomedicine, University of Basel, 4001 Basel Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Julia Notter
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Matthieu Perreau
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases and Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| | - Marcel Stöckle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Sabine Yerly
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, University of Geneva, 1205 Geneva, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Peng X, Zhu B. Machine learning identified genetic features associated with HIV sequences in the monocytes. Chin Med J (Engl) 2023; 136:3002-3004. [PMID: 38018159 PMCID: PMC10752474 DOI: 10.1097/cm9.0000000000002932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 11/30/2023] Open
Affiliation(s)
- Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
6
|
Peng X, Zhu B. Different features identified by machine learning associated with the HIV compartmentalization in semen. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105224. [PMID: 35081465 DOI: 10.1016/j.meegid.2022.105224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Genetic compartmentalization in semen has been observed in previous studies. However, genetic signatures associated with compartmentalization in semen are only beginning to be explored. A total of 2071 partial HIV env sequences for paired blood and semen specimens were collected from 42 persons with HIV (24 for subtype B, 18 for subtype C). The HIV sequences datasets of subtype B and C were then divided to compartmentalization group and no-compartmentalization group by using the genetic compartmentalization tests. These datasets were used to construct a machine learning (ML) metadataset. AAIndex metrics were adopted as quantitative measures of the biophysicochemical properties of each amino acid. Five algorithm tests were applied, all of which are implemented in the caret package. For Subtype B, the accuracy for the compartmentalization group is 0.87 (range: 0.80-0.92), 0.69 (range: 0.58-0.79) for the no-compartmentlization group. The similar results were also showed in subtype C. The accuracy for the compartmentalization group is 0.74 (range: 0.64-0.83), 0.50 (range: 0.39-0.61) for the no-compartmentlization. The model identified six env features most significant in distinguishing between proviruses in blood and semen in subtype B and C. These features are related to CD4 binding, glycosylation sites and coreceptor selection, which further associated with the viral compartmentalization in semen. In summary, we describe a machine learning model that distinguishes semen-tropic virus based on env sequences and identify six different important features. These ML approach and models can help us better understand the semen-tropic virus phenotype, and therefore its reservoir component, guiding a new study direction toward eradication of the HIV reservoir.
Collapse
Affiliation(s)
- Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China.
| |
Collapse
|
7
|
Grabowska K, Harwood E, Ciborowski P. HIV and Proteomics: What We Have Learned from High Throughput Studies. Proteomics Clin Appl 2021; 15:e2000040. [PMID: 32978881 PMCID: PMC7900993 DOI: 10.1002/prca.202000040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/04/2020] [Indexed: 12/17/2022]
Abstract
The accelerated development of technology over the last three decades has driven biological sciences to high-throughput profiling experiments, now broadly referred to as systems biology. The unprecedented improvement of analytical instrumentation has opened new avenues for more complex experimental designs and expands the knowledge in genomics, proteomics, and other omics fields. Despite the collective efforts of hundreds of researchers, gleaning all the expected information from omics experiments is still quite far. This paper summarizes what has been learned from high-throughput proteomics studies thus far, and what is believed should be done to reveal even more valuable information from such studies. It is drawn from the background in using proteomics to study human immunodeficiency virus 1 infection of macrophages and/or T cells, but it is believed that some conclusions will be more broadly applicable.
Collapse
Affiliation(s)
- Kinga Grabowska
- Laboratory of Virus Molecular BiologyIntercollegiate Faculty of BiotechnologyUniversity of GdanskGdansk80‐307Poland
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| | - Emma Harwood
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| |
Collapse
|
8
|
Paul RH, Cho KS, Belden AC, Mellins CA, Malee KM, Robbins RN, Salminen LE, Kerr SJ, Adhikari B, Garcia-Egan PM, Sophonphan J, Aurpibul L, Thongpibul K, Kosalaraksa P, Kanjanavanit S, Ngampiyaskul C, Wongsawat J, Vonthanak S, Suwanlerk T, Valcour VG, Preston-Campbell RN, Bolzenious JD, Robb ML, Ananworanich J, Puthanakit T. Machine-learning classification of neurocognitive performance in children with perinatal HIV initiating de novo antiretroviral therapy. AIDS 2020; 34:737-748. [PMID: 31895148 PMCID: PMC7072001 DOI: 10.1097/qad.0000000000002471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To develop a predictive model of neurocognitive trajectories in children with perinatal HIV (pHIV). DESIGN Machine learning analysis of baseline and longitudinal predictors derived from clinical measures utilized in pediatric HIV. METHODS Two hundred and eighty-five children (ages 2-14 years at baseline; Mage = 6.4 years) with pHIV in Southeast Asia underwent neurocognitive assessment at study enrollment and twice annually thereafter for an average of 5.4 years. Neurocognitive slopes were modeled to establish two subgroups [above (n = 145) and below average (n = 140) trajectories). Gradient-boosted multivariate regressions (GBM) with five-fold cross validation were conducted to examine baseline (pre-ART) and longitudinal predictive features derived from demographic, HIV disease, immune, mental health, and physical health indices (i.e. complete blood count [CBC]). RESULTS The baseline GBM established a classifier of neurocognitive group designation with an average AUC of 79% built from HIV disease severity and immune markers. GBM analysis of longitudinal predictors with and without interactions improved the average AUC to 87 and 90%, respectively. Mental health problems and hematocrit levels also emerged as salient features in the longitudinal models, with novel interactions between mental health problems and both CD4 cell count and hematocrit levels. Average AUCs derived from each GBM model were higher than results obtained using logistic regression. CONCLUSION Our findings support the feasibility of machine learning to identify children with pHIV at risk for suboptimal neurocognitive development. Results also suggest that interactions between HIV disease and mental health problems are early antecedents to neurocognitive difficulties in later childhood among youth with pHIV.
Collapse
Affiliation(s)
- Robert H Paul
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Kyu S Cho
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Andrew C Belden
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Claude A Mellins
- HIV Center for Clinical and Behavioral Studies, New York State Psychiatric Institute, and Columbia University, New York
| | - Kathleen M Malee
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Reuben N Robbins
- HIV Center for Clinical and Behavioral Studies, New York State Psychiatric Institute, and Columbia University, New York
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, California, USA
| | - Stephen J Kerr
- HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Center
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Badri Adhikari
- Department of Mathematics and Computer Science, University of Missouri-St. Louis, Missouri, USA
| | - Paola M Garcia-Egan
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Jiratchaya Sophonphan
- HIV Center for Clinical and Behavioral Studies, New York State Psychiatric Institute, and Columbia University, New York
| | | | - Kulvadee Thongpibul
- Department of Psychology, Faculty of Humanities, Chiang Mai University, Chiang Mai
| | - Pope Kosalaraksa
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen
| | | | | | - Jurai Wongsawat
- Bamrasnaradura Infectious Diseases Institute, Nonthaburi, Thailand
| | | | - Tulathip Suwanlerk
- HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Center
- TREAT Asia, amfAR - The Foundation for AIDS Research, Bangkok, Thailand
| | - Victor G Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California
| | | | - Jacob D Bolzenious
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Global Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Thanyawee Puthanakit
- HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Center
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
New Potential Axes of HIV Neuropathogenesis with Relevance to Biomarkers and Treatment. Curr Top Behav Neurosci 2020; 50:3-39. [PMID: 32040843 DOI: 10.1007/7854_2019_126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) affect approximately half of people living with HIV despite viral suppression with antiretroviral therapies and represent a major cause of morbidity. HAND affects activities of daily living including driving, using the Internet and, importantly, maintaining drug adherence. Whilst viral suppression with antiretroviral therapies (ART) has reduced the incidence of severe dementia, mild neurocognitive impairments continue to remain prevalent. The neuropathogenesis of HAND in the context of viral suppression remains ill-defined, but underlying neuroinflammation is likely central and driven by a combination of chronic intermittent low-level replication of whole virus or viral components, latent HIV infection, peripheral inflammation possibly from a disturbed gut microbiome or chronic cellular dysfunction in the central nervous system. HAND is optimally diagnosed by clinical assessment with imaging and neuropsychological testing, which can be difficult to perform in resource-limited settings. Thus, the identification of biomarkers of disease is a key focus of the field. In this chapter, recent advances in the pathogenesis of HAND and biomarkers that may aid its diagnosis and treatment will be discussed.
Collapse
|
10
|
Motati DR, Uredi D, Watkins EB. The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review. Curr Top Med Chem 2019; 19:1650-1675. [PMID: 31424369 DOI: 10.2174/1568026619666190717163959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
11
|
NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology. Cell Mol Immunol 2019; 17:283-299. [PMID: 31320730 DOI: 10.1038/s41423-019-0260-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) envelope protein gp120 is the major contributor to the pathogenesis of HIV-associated neurocognitive disorder (HAND). Neuroinflammation plays a pivotal role in gp120-induced neuropathology, but how gp120 triggers neuroinflammatory processes and subsequent neuronal death remains unknown. Here, we provide evidence that NLRP3 is required for gp120-induced neuroinflammation and neuropathy. Our results showed that gp120-induced NLRP3-dependent pyroptosis and IL-1β production in microglia. Inhibition of microglial NLRP3 inflammasome activation alleviated gp120-mediated neuroinflammatory factor release and neuronal injury. Importantly, we showed that chronic administration of MCC950, a novel selective NLRP3 inhibitor, to gp120 transgenic mice not only attenuated neuroinflammation and neuronal death but also promoted neuronal regeneration and restored the impaired neurocognitive function. In conclusion, our data revealed that the NLRP3 inflammasome is important for gp120-induced neuroinflammation and neuropathology and suggest that NLRP3 is a potential novel target for the treatment of HAND.
Collapse
|
12
|
Zipeto D, Serena M, Mutascio S, Parolini F, Diani E, Guizzardi E, Muraro V, Lattuada E, Rizzardo S, Malena M, Lanzafame M, Malerba G, Romanelli MG, Tamburin S, Gibellini D. HIV-1-Associated Neurocognitive Disorders: Is HLA-C Binding Stability to β 2-Microglobulin a Missing Piece of the Pathogenetic Puzzle? Front Neurol 2018; 9:791. [PMID: 30298049 PMCID: PMC6160745 DOI: 10.3389/fneur.2018.00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023] Open
Abstract
AIDS dementia complex (ADC) and HIV-associated neurocognitive disorders (HAND) are complications of HIV-1 infection. Viral infections are risk factors for the development of neurodegenerative disorders. Aging is associated with low-grade inflammation in the brain, i.e., the inflammaging. The molecular mechanisms linking immunosenescence, inflammaging and the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease, are largely unknown. ADC and HAND share some pathological features with AD and may offer some hints on the relationship between viral infections, neuroinflammation, and neurodegeneration. β2-microglobulin (β2m) is an important pro-aging factor that interferes with neurogenesis and worsens cognitive functions. Several studies published in the 80-90s reported high levels of β2m in the cerebrospinal fluid of patients with ADC. High levels of β2m have also been detected in AD. Inflammatory diseases in elderly people are associated with polymorphisms of the MHC-I locus encoding HLA molecules that, by associating with β2m, contribute to cellular immunity. We recently reported that HLA-C, no longer associated with β2m, is incorporated into HIV-1 virions, determining an increase in viral infectivity. We also documented the presence of HLA-C variants more or less stably linked to β2m. These observations led us to hypothesize that some variants of HLA-C, in the presence of viral infections, could determine a greater release and accumulation of β2m, which in turn, may be involved in triggering and/or sustaining neuroinflammation. ADC is the most severe form of HAND. To explore the role of HLA-C in ADC pathogenesis, we analyzed the frequency of HLA-C variants with unstable binding to β2m in a group of patients with ADC. We found a higher frequency of unstable HLA-C alleles in ADC patients, and none of them was harboring stable HLA-C alleles in homozygosis. Our data suggest that the role of HLA-C variants in ADC/HAND pathogenesis deserves further studies. If confirmed in a larger number of samples, this finding may have practical implication for a personalized medicine approach and for developing new therapies to prevent HAND. The exploration of HLA-C variants as risk factors for AD and other neurodegenerative disorders may be a promising field of study.
Collapse
Affiliation(s)
- Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Simona Mutascio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Erica Diani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | | | | | | | - Marina Malena
- U.O.S. Infectious Diseases, AULSS 9 Scaligera, Verona, Italy
| | | | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Gibellini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|