1
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Shabangu CS, Su WH, Li CY, Yu ML, Dai CY, Huang JF, Chuang WL, Wang SC. Systematic integration of molecular and clinical approaches in HCV-induced hepatocellular carcinoma. J Transl Med 2024; 22:268. [PMID: 38475805 PMCID: PMC10935926 DOI: 10.1186/s12967-024-04925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a crucial role in gene expression and regulation, with dysregulation of miRNA function linked to various diseases, including hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC). There is still a gap in understanding the regulatory relationship between miRNAs and mRNAs in HCV-HCC. This study aimed to investigate the function and effects of persistent HCV-induced miRNA expression on gene regulation in HCC. METHODS MiRNA array data were used to identify differentially expressed miRNAs and their targets, and miRNAs were analyzed via DIANA for KEGG pathways, gene ontology (GO) functional enrichment, and Ingenuity Pathways Analysis (IPA) for hepatotoxicity, canonical pathways, associated network functions, and interactive networks. RESULTS Seventeen miRNAs in L-HCV and 9 miRNAs in S-HCV were differentially expressed, and 5 miRNAs in L-HCV and 5 miRNAs in S-HCV were significantly expressed in liver hepatocellular carcinoma (LIHC) tumors. Grouped miRNA survival analysis showed that L-HCV miRNAs were associated with survival in LIHC, and miRNA‒mRNA targets regulated viral carcinogenesis and cell cycle alteration through cancer pathways in LIHC. MiRNA-regulated RCN1 was suppressed through miRNA-oncogene interactions, and suppression of RCN1 inhibited invasion and migration in HCC. CONCLUSION Persistent HCV infection induced the expression of miRNAs that act as tumor suppressors by inhibiting oncogenes in HCC. RCN1 was suppressed while miRNAs were upregulated, demonstrating an inverse relationship. Therefore, hsa-miR-215-5p, hsa-miR-10b-5p, hsa-let-7a-5p and their target RCN1 may be ideal biomarkers for monitoring HCV-HCC progression.
Collapse
Affiliation(s)
- Ciniso Sylvester Shabangu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wen-Hsiu Su
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Yen Dai
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jee-Fu Huang
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wan-Long Chuang
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Javorsky A, Humbert PO, Kvansakul M. Viral manipulation of cell polarity signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119536. [PMID: 37437846 DOI: 10.1016/j.bbamcr.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.
Collapse
Affiliation(s)
- Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
4
|
Zou C, Tan H, Zeng J, Liu M, Zhang G, Zheng Y, Zhang Z. Hepatitis C virus nonstructural protein 4B induces lipogenesis via the Hippo pathway. Arch Virol 2023; 168:113. [PMID: 36920600 PMCID: PMC10017664 DOI: 10.1007/s00705-023-05743-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Hepatitis C virus (HCV) infection causes abnormal lipid metabolism in hepatocytes, which leads to hepatic steatosis and even hepatocellular carcinoma. HCV nonstructural protein 4B (NS4B) has been reported to induce lipogenesis, but the underlying mechanism is unclear. In this study, western blots were performed to investigate the effect of NS4B protein levels on key effectors of the Hippo and AKT signaling pathways. Yes-associated protein (YAP) and moesin-ezrin-radixin-like protein (Merlin) are effectors of the Hippo pathway. NS4B downregulated Merlin and phosphorylated YAP (p-YAP) protein expression while increasing the expression of the key AKT pathway proteins p-AKT and NF-κB. By observing the levels of AKT pathway proteins when Merlin was overexpressed or silenced, it was determined that Merlin mediates the AKT pathway. We suggest that HCV NS4B may mediate the AKT signaling pathway by inhibiting the Hippo pathway. Lipid droplets were observed in Huh7.5 cells overexpressing NS4B, and they increased significantly in number when Merlin was silenced. Overexpression of NS4B and Merlin silencing enhanced the expression of sterol regulatory element binding proteins (SREBPs), which have been demonstrated to be key regulatory factors controlling fatty acid synthesis. NS4B and Merlin silencing also enhanced the in vitro proliferative capacity of hepatocellular carcinoma cells. In conclusion, NS4B induces lipogenesis via the effect of the Hippo-YAP pathway on the AKT signaling pathway and thereby plays a significant role in the pathogenesis of HCV-associated diseases.
Collapse
Affiliation(s)
- Chen Zou
- Department of Pathology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China. .,Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China.
| | - Hongxi Tan
- Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China
| | - Jun Zeng
- Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China
| | - Minqi Liu
- Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China
| | - Guangping Zhang
- Huadu District People's Hospital of Guangzhou, Guangzhou, 510600, China
| | - Yi Zheng
- Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China
| | - Zhanfeng Zhang
- Department of Laboratory Science, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510600, China.
| |
Collapse
|
5
|
Viral subversion of the cell polarity regulator Scribble. Biochem Soc Trans 2023; 51:415-426. [PMID: 36606695 PMCID: PMC9987997 DOI: 10.1042/bst20221067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
Scribble is a scaffolding protein that regulates key events such as cell polarity, tumorigenesis and neuronal signalling. Scribble belongs to the LAP family which comprise of 16 Leucine Rich Repeats (LRR) at the N-terminus, two LAP Specific Domains (LAPSD) and four PSD-95/Discs-large/ZO-1 (PDZ) domains at the C-terminus. The four PDZ domains have been shown to be key for a range of protein-protein interactions and have been identified to be crucial mediators for the vast majority of Scribble interactions, particularly via PDZ Binding Motifs (PBMs) often found at the C-terminus of interacting proteins. Dysregulation of Scribble is associated with poor prognosis in viral infections due to subversion of multiple cell signalling pathways by viral effector proteins. Here, we review the molecular details of the interplay between Scribble and viral effector proteins that provide insight into the potential modes of regulation of Scribble mediated polarity signalling.
Collapse
|
6
|
Yang L, Wang ZA, Geng R, Deng H, Niu S, Zuo H, Weng S, He J, Xu X. White Spot Syndrome Virus (WSSV) Inhibits Hippo Signaling and Activates Yki To Promote Its Infection in Penaeus vannamei. Microbiol Spectr 2023; 11:e0236322. [PMID: 36475933 PMCID: PMC9927087 DOI: 10.1128/spectrum.02363-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is a serious threat to shrimp aquaculture, especially Pacific white shrimp, Penaeus vannamei, the most farmed shrimp in the world. Activation of the Hippo-Yki signaling pathway, characterized by the intracellular Hippo-Wts kinase cascade reactions and the phosphorylation and cytoplasmic retention of Yki, is widely involved in various life activities. The current work established the fundamental structure and signal transduction profile of the Hippo-Yki pathway in P. vannamei and further investigated its role in viral infection. We demonstrated that WSSV promoted the dephosphorylation and nuclear translocation of Yki, suggesting that Hippo signaling is impaired and Yki is activated after WSSV infection in shrimp. In vivo, Yki gene silencing suppressed WSSV infection, while Hippo and Wts silencing promoted it, indicating a positive role of Hippo signaling in antiviral response. Further analyses showed that Yki suppressed Dorsal pathway activation and inhibited hemocyte apoptosis in WSSV-infected shrimp, while Hippo and Wts showed opposite effects, which contributed to the role of Hippo signaling in WSSV infection. Therefore, the current study suggests that WSSV annexes Yki to favor its infection in shrimp by inhibiting Hippo signaling. IMPORTANCE White spot syndrome virus (WSSV) is one of the most harmful viral pathogens to shrimp. The pathological mechanism of WSSV infection remains unclear to date. The Hippo-Yki signaling pathway is important for various biological processes and is extensively involved in mammalian immunity, but little is known about its role in infectious diseases in invertebrates. Based on revealing the fundamental structure of the shrimp Hippo pathway, this study investigated its implication in the pathogenesis of WSSV disease. We demonstrated that WSSV enhanced Yki activation by inhibiting Hippo signaling in shrimp. The activated Yki promoted WSSV infection by inhibiting hemocyte apoptosis and suppressing the activation of Dorsal, an NF-κB family member in shrimp that is critical for regulating antiviral response. Therefore, this study suggests that WSSV can hijack the Hippo-Yki signaling pathway to favor its infection in shrimp.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Heredia-Torres TG, Rincón-Sánchez AR, Lozano-Sepúlveda SA, Galan-Huerta K, Arellanos-Soto D, García-Hernández M, Garza-Juarez ADJ, Rivas-Estilla AM. Unraveling the Molecular Mechanisms Involved in HCV-Induced Carcinogenesis. Viruses 2022; 14:2762. [PMID: 36560766 PMCID: PMC9786602 DOI: 10.3390/v14122762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer induced by a viral infection is among the leading causes of cancer. Hepatitis C Virus (HCV) is a hepatotropic oncogenic positive-sense RNA virus that leads to chronic infection, exposing the liver to a continuous process of damage and regeneration and promoting hepatocarcinogenesis. The virus promotes the development of carcinogenesis through indirect and direct molecular mechanisms such as chronic inflammation, oxidative stress, steatosis, genetic alterations, epithelial-mesenchymal transition, proliferation, and apoptosis, among others. Recently, direct-acting antivirals (DAAs) showed sustained virologic response in 95% of cases. Nevertheless, patients treated with DAAs have reported an unexpected increase in the early incidence of Hepatocellular carcinoma (HCC). Studies suggest that HCV induces epigenetic regulation through non-coding RNAs, DNA methylation, and chromatin remodeling, which modify gene expressions and induce genomic instability related to HCC development that persists with the infection's clearance. The need for a better understanding of the molecular mechanisms associated with the development of carcinogenesis is evident. The aim of this review was to unravel the molecular pathways involved in the development of carcinogenesis before, during, and after the viral infection's resolution, and how these pathways were regulated by the virus, to find control points that can be used as potential therapeutic targets.
Collapse
Affiliation(s)
- Tania Guadalupe Heredia-Torres
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Ana Rosa Rincón-Sánchez
- IBMMTG, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, Mexico
| | - Sonia Amelia Lozano-Sepúlveda
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Kame Galan-Huerta
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Daniel Arellanos-Soto
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Marisela García-Hernández
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Aurora de Jesús Garza-Juarez
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Ana María Rivas-Estilla
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| |
Collapse
|
8
|
Kim M, Kim M, Salloum S, Qian T, Wong LP, Xu M, Lee Y, Shroff SG, Sadreyev RI, Corey KE, Baumert TF, Hoshida Y, Chung RT. Atorvastatin favorably modulates a clinical hepatocellular carcinoma risk gene signature. Hepatol Commun 2022; 6:2581-2593. [PMID: 35712812 PMCID: PMC9426409 DOI: 10.1002/hep4.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Lipophilic but not hydrophilic statins have been shown to be associated with reduced risk for hepatocellular carcinoma (HCC) in patients with chronic viral hepatitis. We investigated differential actions of lipophilic and hydrophilic statins and their ability to modulate a clinical prognostic liver signature (PLS) predicting HCC risk in patients with liver disease. Hepatitis C virus (HCV)-infected Huh7.5.1 cells, recently developed as a model to screen HCC chemopreventive agents, were treated with lipophilic statins (atorvastatin and simvastatin) and hydrophilic statins (rosuvastatin and pravastatin), and then analyzed by RNA sequencing and PLS. Lipophilic statins, particularly atorvastatin, more significantly suppressed the HCV-induced high-risk pattern of PLS and genes in YAP and AKT pathway implicated in fibrogenesis and carcinogenesis, compared with the hydrophilic statins. While atorvastatin inhibited YAP activation through the mevalonate pathway, the distinctive AKT inhibition of atorvastatin was mediated by stabilizing truncated retinoid X receptor alpha, which has been known to enhance AKT activation, representing a target for HCC chemoprevention. In addition, atorvastatin modulated the high-risk PLS in an in vitro model of nonalcoholic fatty liver disease (NAFLD). Conclusion: Atorvastatin distinctively inhibits YAP and AKT activation, which are biologically implicated in HCC development, and attenuates a high-risk PLS in an in vitro model of HCV infection and NAFLD. These findings suggest that atorvastatin is the most potent statin to reduce HCC risk in patients with viral and metabolic liver diseases.
Collapse
Affiliation(s)
- Myung‐Ho Kim
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Mi‐Young Kim
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
- Department of GastroenterologyCHA Bundang Medical CenterCHA University School of MedicineSeongnamSouth Korea
- Department of Gastroenterology, Chaum Life CenterCHA University School of MedicineSeoulSouth Korea
| | - Shadi Salloum
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Tongqi Qian
- Liver Tumor Translational Research ProgramSimmons Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Lai Ping Wong
- Department of Molecular BiologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Min Xu
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Yoojin Lee
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Stuti G. Shroff
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ruslan I. Sadreyev
- Department of Molecular BiologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kathleen E. Corey
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Thomas F. Baumert
- Institut National de la Santé et de la Recherche MédicaleU1110Institut de Recherche sur les Maladies Virales et HépatiquesStrasbourgFrance
- Pole Hepato‐digestif, IHUStrasbourg University HospitalsStrasbourgFrance
| | - Yujin Hoshida
- Liver Tumor Translational Research ProgramSimmons Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Raymond T. Chung
- Liver CenterGastrointestinal DivisionMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
9
|
Abstract
The Hippo pathway plays critical roles in controlling cell proliferation, and its dysregulation is widely implicated in numerous human cancers. YAP, a Hippo signaling effector, often acts as a nexus and integrator for multiple prominent signaling networks. In this study, we discover NF-κB cross talk with the Hippo pathway and identify p65 as a critical regulator for YAP nuclear retention and transcriptional activity. Furthermore, we find that p65-induced YAP activation is essential for maintaining the proliferation of ATL cells in vitro and in vivo. Our findings unravel the functional interplay between NF-κB and YAP signaling and provide mechanistic insights into the YAP-dependent growth control pathway and tumorigenesis. Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) infection. HTLV-1 exerts its oncogenic functions by interacting with signaling pathways involved in cell proliferation and transformation. Dysregulation of the Hippo/YAP pathway is associated with multiple cancers, including virus-induced malignancies. In the present study, we observe that expression of YAP, which is the key effector of Hippo signaling, is elevated in ATL cells by the action of the HTLV-1 Tax protein. YAP transcriptional activity is remarkably enhanced in HTLV-1–infected cells and ATL patients. In addition, Tax activates the YAP protein via a mechanism involving the NF-κB/p65 pathway. As a mechanism for this cross talk between the Hippo and NF-κB pathways, we found that p65 abrogates the interaction between YAP and LATS1, leading to suppression of YAP phosphorylation, inhibition of ubiquitination-dependent degradation of YAP, and YAP nuclear accumulation. Finally, knockdown of YAP suppresses the proliferation of ATL cells in vitro and tumor formation in ATL-engrafted mice. Taken together, our results suggest that p65-induced YAP activation is essential for ATL pathogenesis and implicate YAP as a potential therapeutic target for ATL treatment.
Collapse
|
10
|
Alfaro-García JP, Granados-Alzate MC, Vicente-Manzanares M, Gallego-Gómez JC. An Integrated View of Virus-Triggered Cellular Plasticity Using Boolean Networks. Cells 2021; 10:cells10112863. [PMID: 34831086 PMCID: PMC8616224 DOI: 10.3390/cells10112863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Virus-related mortality and morbidity are due to cell/tissue damage caused by replicative pressure and resource exhaustion, e.g., HBV or HIV; exaggerated immune responses, e.g., SARS-CoV-2; and cancer, e.g., EBV or HPV. In this context, oncogenic and other types of viruses drive genetic and epigenetic changes that expand the tumorigenic program, including modifications to the ability of cancer cells to migrate. The best-characterized group of changes is collectively known as the epithelial–mesenchymal transition, or EMT. This is a complex phenomenon classically described using biochemistry, cell biology and genetics. However, these methods require enormous, often slow, efforts to identify and validate novel therapeutic targets. Systems biology can complement and accelerate discoveries in this field. One example of such an approach is Boolean networks, which make complex biological problems tractable by modeling data (“nodes”) connected by logical operators. Here, we focus on virus-induced cellular plasticity and cell reprogramming in mammals, and how Boolean networks could provide novel insights into the ability of some viruses to trigger uncontrolled cell proliferation and EMT, two key hallmarks of cancer.
Collapse
Affiliation(s)
- Jenny Paola Alfaro-García
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - María Camila Granados-Alzate
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| |
Collapse
|
11
|
Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J Clin Cases 2021; 9:4890-4917. [PMID: 34307543 PMCID: PMC8283590 DOI: 10.12998/wjcc.v9.i19.4890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancer-related deaths worldwide. In recent years, uncovering the molecular mechanisms involved in the development and behavior of this tumor has led to the identification of multiple potential treatment targets. Despite the vast amount of data on this topic, HCC remains a challenging tumor to treat due to its aggressive behavior and complex molecular profile. Therefore, the number of studies aiming to elucidate the mechanisms involved in both carcinogenesis and tumor progression in HCC continues to increase. In this context, the close association of HCC with viral hepatitis has led to numerous studies focusing on the direct or indirect involvement of viruses in the mechanisms contributing to tumor development and behavior. In line with these efforts, this review was undertaken to highlight the current understanding of the molecular mechanisms by which hepatitis B virus (HBV) and hepatitis C virus (HCV) participate in oncogenesis and tumor progression in HCC and summarize new findings. Cumulative evidence indicates that HBV DNA integration promotes genomic instability, resulting in the overexpression of genes related to cancer development, metastasis, and angiogenesis or inactivation of tumor suppressor genes. In addition, genetic variations in HBV itself, especially preS2 deletions, may play a role in malignant transformation. Epigenetic dysregulation caused by both viruses might also contribute to tumor formation and metastasis by modifying the methylation of DNA and histones or altering the expression of microRNAs. Similarly, viral proteins of both HBV and HCV can affect pathways that are important anticancer targets. The effects of these two viruses on the Hippo-Yap-Taz pathway in HCC development and behavior need to be investigated. Additional, comprehensive studies are also needed to determine these viruses' interaction with integrins, farnesoid X, and the apelin system in malignant transformation and tumor progression. Although the relationship of persistent inflammation caused by HBV and HCV hepatitis with carcinogenesis is well defined, further studies are warranted to decipher the relationship among inflammasomes and viruses in carcinogenesis and elucidate the role of virus-microbiota interactions in HCC development and progression.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
12
|
Zhang A, Aslam H, Sharma N, Warmflash A, Fakhouri WD. Conservation of Epithelial-to-Mesenchymal Transition Process in Neural Crest Cells and Metastatic Cancer. Cells Tissues Organs 2021; 210:151-172. [PMID: 34218225 DOI: 10.1159/000516466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.
Collapse
Affiliation(s)
- April Zhang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hira Aslam
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Neha Sharma
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
13
|
The Epithelial-to-Mesenchymal Transition-Like Process Induced by TGF-β1 Enhances Rubella Virus Binding and Infection in A549 Cells via the Smad Pathway. Microorganisms 2021; 9:microorganisms9030662. [PMID: 33806778 PMCID: PMC8004957 DOI: 10.3390/microorganisms9030662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Virus–host cell interactions in rubella virus (RuV) are of great interest in current research in the field, as their mechanism is not yet well understood. By hypothesizing that the epithelial-to-mesenchymal transition (EMT) may play a role in RuV infection, this study aimed to investigate the influence of TGF-β1-induced EMT of human lung epithelial A549 cells on the infectivity of RuV. A549 cells were cultured and treated with TGF-β1 for 1 to 2 days prior to virus infection (with a clinical strain). Viral infectivity was determined by flow cytometry analysis of cells harvested at 24 and 48 h post-infection (hpi) and by titration of supernatants collected at 48 hpi. The results showed that the percentages of the TGF-β1-treated A549 cells that were positive for RuV were at least twofold higher than those of the control, and the viral progeny titers in the supernatants collected at 48 hpi were significantly higher in the treatment group than in the control group. In addition, the virus binding assay showed a strong increase (more than threefold) in the percentages of RuV-positive cells, as determined by flow cytometry analysis and further confirmed by real-time PCR. Such an enhancement effect on RuV infectivity was abolished using LY364947 or SB431542, inhibitors of the TGF-β/Smad signaling pathway. The findings suggest that the TGF-β1-induced EMT-like process enhances RuV binding and infection in A549 cells via the Smad pathway. Further studies are necessary to identify possible proteins that facilitate viral binding and entry into treated cells.
Collapse
|
14
|
Mukhopadhyay U, Banerjee A, Chawla-Sarkar M, Mukherjee A. Rotavirus Induces Epithelial-Mesenchymal Transition Markers by Transcriptional Suppression of miRNA-29b. Front Microbiol 2021; 12:631183. [PMID: 33679655 PMCID: PMC7930342 DOI: 10.3389/fmicb.2021.631183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/29/2023] Open
Abstract
Acute gastroenteritis (AGE) is a serious global health problem and has been known to cause millions of infant deaths every year. Rotavirus (RV), a member of the Reoviridae family, still majorly accounts for the AGE in children below 5 years of age in India and worldwide. The involvement of miRNAs in the pathogenesis of RV has been suggested to be of the proviral as well as the anti-viral nature. miRNAs that promote the RV pathogenesis are capable of targeting the cellular components to evade the host anti-viral strategies. On the other hand, miRNAs with anti-rotaviral properties are themselves incapacitated during the progression of the infection. The exploitation of the epithelial-mesenchymal transition (EMT) as a pro-rotaviral strategy has already been identified. Thus, miRNAs that proficiently target the intermediates of the EMT pathway may serve as anti-viral counterparts in the RV-host interactions. The role of microRNA-29b (miR-29b) in the majority of human cancers has been well demonstrated, but its significance in viral infections is yet to be elaborated. In this study, we have assessed the role of miR-29b in RV-induced EMT and RV replication. Our study on miR-29b provides evidence for the recruitment of RV non-structural protein NSP1 to control the trans-repression of miR-29b in a p53-dependent manner. The trans-repression of miR-29b modulates the EMT pathway by targeting tripartite motif-containing protein 44 (TRIM44) and cyclin E1 (CCNE1). SLUG and SNAIL transcription repressors (downstream of TRIM44 and CCNE1) regulate the expression of E-cadherin, an important marker of the EMT. Also, it is established that ectopic expression of miR-29b not only constrains the EMT pathway but also restricts RV replication. Therefore, miR-29b repression is a crucial event in the RV pathogenesis. Ectopic expression of miR-29b displays potential anti-viral properties against RV propagation.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Molecular Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| | - Mamta Chawla-Sarkar
- Division of Molecular Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Mukherjee
- Division of Molecular Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Division of Virology, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
15
|
Hincapie V, Gallego-Gómez JC. TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.79358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La Transición Epitelio-Mesénquima (EMT) es un proceso de dediferenciación altamente conservado en vertebrados. Este ocurre en células epiteliales con la activación progresiva de la pérdida de la polaridad, la adquisición de motilidad individual y la capacidad invasiva a otros tejidos. La EMT es un proceso normal durante el desarrollo; no obstante, en condiciones patológicas está relacionada con la inducción de metástasis, lo cual representa una vía alterna al desarrollo de procesos oncogénicos tempranos. Aunque la EMT es activada principalmente por factores de crecimiento, también se puede desencadenar por infecciones de patógenos intracelulares mediante la activación de rutas moleculares inductoras de este proceso. Por lo tanto, una infección bacteriana o viral pueda generar predisposición al desarrollo de tumores. Nuestro interés está enfocado principalmente encaracterizar la relación virus-hospedero, y en el caso de los virus, varios ya se han descrito como inductores de la EMT. En este artículo de revisión se describenelfenómeno de la plasticidad celular y la ocurrencia detallada del proceso de EMT, los patógenos virales reportados como inductores, los mecanismos moleculares usados para ello y las vías de regulación mediante miRNAs. Por último, se discute cómo esta relación virus-hospedero puede explicar la patogénesis de la enfermedad causada por Dengue virus, favoreciendo la identificación de blancos moleculares para terapia, estrategia conocida como Antivirales dirigidos a blancos celulares o HTA (Host-targeting antivirals).
Collapse
|
16
|
Hassan M, Aboushousha T, El-Ahwany E, Khalil HK, Montasser AY, Abu-Taleb H, El-Talkawy MD, Zoheiry M. Impact of E-cadherin and its transcription regulators on assessing epithelial-mesenchymal transition in chronic hepatitis C virus infection. Minerva Gastroenterol (Torino) 2020; 67:175-182. [PMID: 32677416 DOI: 10.23736/s2724-5985.20.02687-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mechanisms of chronic hepatitis C virus (HCV)-induced liver fibrosis and hepatocarcinogenesis are still poorly recognized. Therefore, this study aimed to determine the effect of chronic HCV infection on the expression of the major regulators of epithelial-mesenchymal transition (EMT) including E-cadherin, Snail, Slug, and Twist2, in the Egyptian population. This will help to design more efficient strategies to treat HCV-associated cirrhosis and carcinoma. METHODS Fifty-nine liver biopsies from patients, that were serologically proven to be HCV positive, were included in the current study. Histopathological examination was done. Grading of hepatitis activity (A) and staging of fibrosis (F) were assessed using the METAVIR Scoring System. Additionally, an immunohistochemical examination of E-cadherin, Snail, Slug, and Twist2 expression was performed. RESULTS E-cadherin showed a significant progressive decline of its expression with increased fibrosis staging and development of hepatocellular carcinoma (HCC). In contrast, Snail and Slug expression was positively associated with the stage of fibrosis and HCC. Meanwhile, Twist2 expression was not affected by the degree of hepatitis activity, the stage of fibrosis, or by the development of HCC. CONCLUSIONS E-cadherin and its transcriptional regulators; Snail and Slug may serve as indicators for assessing the stage of fibrosis and the progression of HCC associated with HCV infection but not for assessing the degree of hepatitis activity. Therefore, the Snail family could be a promising target for designing effective preventive and therapeutic strategies for chronic HCV infection and its serious comorbidities.
Collapse
Affiliation(s)
- Marwa Hassan
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt -
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Heba K Khalil
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed Y Montasser
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hoda Abu-Taleb
- Department of Environmental Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed D El-Talkawy
- Department of Hepato-Gastroenterology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Zoheiry
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
17
|
Wang Z, Lu W, Zhang Y, Zou F, Jin Z, Zhao T. The Hippo Pathway and Viral Infections. Front Microbiol 2020; 10:3033. [PMID: 32038526 PMCID: PMC6990114 DOI: 10.3389/fmicb.2019.03033] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo signaling pathway is a novel tumor suppressor pathway, initially found in Drosophila. Recent studies have discovered that the Hippo signaling pathway plays a critical role in a wide range of biological processes, including organ size control, cell proliferation, cancer development, and virus-induced diseases. In this review, we summarize the current understanding of the biological feature and pathological role of the Hippo pathway, focusing particularly on current findings in the function of the Hippo pathway in virus infection and pathogenesis.
Collapse
Affiliation(s)
- Zhilong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Wanhang Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yiling Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Feng Zou
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
18
|
Ninio L, Nissani A, Meirson T, Domovitz T, Genna A, Twafra S, Srikanth KD, Dabour R, Avraham E, Davidovich A, Gil-Henn H, Gal-Tanamy M. Hepatitis C Virus Enhances the Invasiveness of Hepatocellular Carcinoma via EGFR-Mediated Invadopodia Formation and Activation. Cells 2019; 8:cells8111395. [PMID: 31694343 PMCID: PMC6912298 DOI: 10.3390/cells8111395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the fifth most common cancer worldwide and the third cause of cancer-related mortality. Hepatitis C virus (HCV) is the leading cause of chronic hepatitis, which often results in liver fibrosis, cirrhosis, and eventually HCC. HCV is the most common risk factor for HCC in western countries and leads to a more aggressive and invasive disease with poorer patient survival rates. However, the mechanism by which the virus induces the metastatic spread of HCC tumor cells through the regulation of invadopodia, the key features of invasive cancer, is still unknown. Here, the integration of transcriptome with functional kinome screen revealed that HCV infection induced invasion and invadopodia-related gene expression combined with activation of host cell tyrosine kinases, leading to invadopodia formation and maturation and consequent cell invasiveness in vitro and in vivo. The promotion of invadopodia following HCV infection was mediated by the sustained stimulation of epidermal growth factor receptor (EGFR) via the viral NS3/4A protease that inactivates the T-cell protein tyrosine phosphatase (TC-PTP), which inhibits EGFR signaling. Characterization of an invadopodia-associated gene signature in HCV-mediated HCC tumors correlated with the invasiveness of HCC and poor patient prognosis. These findings might lead to new prognostic and therapeutic strategies for virus-mediated invasive cancer.
Collapse
Affiliation(s)
- Liat Ninio
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
| | - Abraham Nissani
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Tomer Meirson
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
- Drug Discovery Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tom Domovitz
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Alessandro Genna
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
| | - Shams Twafra
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
| | - Kolluru D. Srikanth
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
| | - Roba Dabour
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Erez Avraham
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Ateret Davidovich
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Hava Gil-Henn
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
- Correspondence: (H.G.-H.); (M.G.-T.)
| | - Meital Gal-Tanamy
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
- Correspondence: (H.G.-H.); (M.G.-T.)
| |
Collapse
|
19
|
Joyce MA, Berry-Wynne KM, dos Santos T, Addison WR, McFarlane N, Hobman T, Tyrrell DL. HCV and flaviviruses hijack cellular mechanisms for nuclear STAT2 degradation: Up-regulation of PDLIM2 suppresses the innate immune response. PLoS Pathog 2019; 15:e1007949. [PMID: 31374104 PMCID: PMC6677295 DOI: 10.1371/journal.ppat.1007949] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/29/2019] [Indexed: 12/22/2022] Open
Abstract
Host encounters with viruses lead to an innate immune response that must be rapid and broadly targeted but also tightly regulated to avoid the detrimental effects of unregulated interferon expression. Viral stimulation of host negative regulatory mechanisms is an alternate method of suppressing the host innate immune response. We examined three key mediators of the innate immune response: NF-KB, STAT1 and STAT2 during HCV infection in order to investigate the paradoxical induction of an innate immune response by HCV despite a multitude of mechanisms combating the host response. During infection, we find that all three are repressed only in HCV infected cells but not in uninfected bystander cells, both in vivo in chimeric mouse livers and in cultured Huh7.5 cells after IFNα treatment. We show here that HCV and Flaviviruses suppress the innate immune response by upregulation of PDLIM2, independent of the host interferon response. We show PDLIM2 is an E3 ubiquitin ligase that also acts to stimulate nuclear degradation of STAT2. Interferon dependent relocalization of STAT1/2 to the nucleus leads to PDLIM2 ubiquitination of STAT2 but not STAT1 and the proteasome-dependent degradation of STAT2, predominantly within the nucleus. CRISPR/Cas9 knockout of PDLIM2 results in increased levels of STAT2 following IFNα treatment, retention of STAT2 within the nucleus of HCV infected cells after IFNα stimulation, increased interferon response, and increased resistance to infection by several flaviviruses, indicating that PDLIM2 is a global regulator of the interferon response. The response of cells to an invading pathogen must be swift and well controlled because of the detrimental effects of chronic inflammation. However, viruses often hijack host control mechanisms. HCV and flaviviruses are known to suppress the innate immune response in cells by a variety of mechanisms. This study clarifies and expands a specific cellular mechanism for global control of the antiviral response after the induction of interferon expression. It shows how several viruses hijack this control mechanism to suppress the innate interferon response.
Collapse
Affiliation(s)
- Michael A. Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (MAJ); (DLT)
| | - Karyn M. Berry-Wynne
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Theodore dos Santos
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - William R. Addison
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicola McFarlane
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Tom Hobman
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (MAJ); (DLT)
| |
Collapse
|
20
|
Liu J, Huang B, Xiu Z, Zhou Z, Liu J, Li X, Tang X. PI3K/Akt/HIF-1α signaling pathway mediates HPV-16 oncoprotein-induced expression of EMT-related transcription factors in non-small cell lung cancer cells. J Cancer 2018; 9:3456-3466. [PMID: 30310502 PMCID: PMC6171031 DOI: 10.7150/jca.26112] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Our previous studies have demonstrated that human papillomaviruse (HPV)-16 oncoproteins promoted epithelial-mesenchymal transition (EMT), leading to non-small cell lung cancer (NSCLC) progression, but the underlying molecular mechanisms still remain unclear. PI3K/Akt/HIF-1α signaling pathway has been reported to mediate hypoxia-induced EMT. In this study, we further explored the role of PI3K/Akt/HIF-1α signaling pathway in HPV-16 oncoprotein-induced EMT in NSCLC cells. Methods: A549 and NCI-H460 NSCLC cells were transiently transfected with pEGFP-HPV-16 E6 or E7 constructs. Western blotting and RT-qPCR were respectively performed to determine the protein and mRNA expression of EMT-related transcription factors. HPV-16 E6 or E7-transfected NSCLC cells were co-transfected with specific HIF-1α-siRNA or pretreated with different concentrations of LY294002, a specific PI3K inhibitor, followed by the analysis of expression of EMT-related transcription factors. The correlation between HIF-1α and EMT-related transcription factors in NSCLC tissues was analyzed by immunohistochemical staining and Spearman rank correlation coefficient. Results: HPV-16 E6 and E7 oncoproteins upregulated the expression of Slug and Twist1, the EMT-related transcription factors, at both protein and mRNA levels in A549 and NCI-H460 cells. The co-transfection with specific HIF-1α-siRNA, but not the non-specific (NS)-siRNA, significantly abrogated HPV-16 oncoprotein-induced upregulation of ZEB1, Snail1, Slug, and Twist1 at both protein and mRNA levels. Additionally, pretreatment with LY294002 obviously blocked HPV-16 E6- and E7-induced Snail1, Slug, and Twist1 protein expression in A549 and NCI-H460 cells. Further analysis of clinical specimens showed that HIF-1α protein was strongly expressed in NSCLC tissues, which was positively correlated with ZEB1, Snail1, Slug, and Twist1 protein expression. Conclusions: PI3K/Akt/HIF-1α may contribute to the progression of HPV-associated NSCLC via mediating the expression of EMT-related transcription factors in NSCLC cells.
Collapse
Affiliation(s)
- Jinhua Liu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Bingyu Huang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zihan Xiu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zhiyuan Zhou
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Jiao Liu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, P.R. China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, P.R. China
| |
Collapse
|
21
|
Yan L, Xu F, Dai CL. Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:203. [PMID: 30157906 PMCID: PMC6114477 DOI: 10.1186/s13046-018-0887-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a complex process involving multiple genes, steps and stages. It refers to the disruption of tight intercellular junctions among epithelial cells under specific conditions, resulting in loss of the original polarity, order and consistency of the cells. Following EMT, the cells show interstitial cell characteristics with the capacity for adhesion and migration, while apoptosis is inhibited. This process is critically involved in embryogenesis, wound-healing, tumor invasion and metastasis. The tumor microenvironment is composed of infiltrating inflammatory cells, stromal cells and the active medium secreted by interstitial cells. Most patients with hepatocellular carcinoma (HCC) have a history of hepatitis virus infection. In such cases, major components of the tumor microenvironment include inflammatory cells, inflammatory factors and virus-encoded protein are major components. Here, we review the relationship between EMT and the inflammatory tumor microenvironment in the context of HCC. We also further elaborate the significant influence of infiltrating inflammatory cells and inflammatory mediators as well as the products expressed by the infecting virus in the tumor microenvironment on the EMT process.
Collapse
Affiliation(s)
- Long Yan
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Feng Xu
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Chao-Liu Dai
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China.
| |
Collapse
|
22
|
Rout-Pitt N, Farrow N, Parsons D, Donnelley M. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respir Res 2018; 19:136. [PMID: 30021582 PMCID: PMC6052671 DOI: 10.1186/s12931-018-0834-8] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Cystic Fibrosis (CF) is a genetic disorder that arises due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene, which encodes for a protein responsible for ion transport out of epithelial cells. This leads to a disruption in transepithelial Cl-, Na + and HCO3− ion transport and the subsequent dehydration of the airway epithelium, resulting in infection, inflammation and development of fibrotic tissue. Unlike in CF, fibrosis in other lung diseases including asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis has been well characterised. One of the driving forces behind fibrosis is Epithelial Mesenchymal Transition (EMT), a process where epithelial cells lose epithelial proteins including E-Cadherin, which is responsible for tight junctions. The cell moves to a more mesenchymal phenotype as it gains mesenchymal markers such as N-Cadherin (providing the cells with migration potential), Vimentin and Fibronectin (proteins excreted to help form the extracellular matrix), and the fibroblast proliferation transcription factors Snail, Slug and Twist. This review paper explores the EMT process in a range of lung diseases, details the common links that these have to cystic fibrosis, and explores how understanding EMT in cystic fibrosis may open up novel methods of treating patients with cystic fibrosis.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia. .,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia. .,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.
| | - Nigel Farrow
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia
| |
Collapse
|
23
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|