1
|
Trotta MC, Herman H, Balta C, Rosu M, Ciceu A, Mladin B, Gesualdo C, Lepre CC, Russo M, Petrillo F, Pieretti G, Simonelli F, Rossi S, D’Amico M, Hermenean A. Oral Administration of Vitamin D3 Prevents Corneal Damage in a Knock-Out Mouse Model of Sjögren's Syndrome. Biomedicines 2023; 11:biomedicines11020616. [PMID: 36831152 PMCID: PMC9953695 DOI: 10.3390/biomedicines11020616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Vitamin D deficiency has been associated with dry eye development during Sjögren's syndrome (SS). Here, we investigated whether repeated oral vitamin D3 supplementation could prevent the corneal epithelium damage in an SS mouse model. METHODS 30 female mouse knock-out for the thrombospondin 1 gene were randomized (six per group) in untreated mice euthanized at 6 weeks as negative control (C-) or at 12 weeks as the positive control for dry eye (C+). Other mice were sacrificed after 6 weeks of oral vitamin D3 supplementation in the drinking water (1000, 8000, and 20,000 IU/kg/week, respectively). RESULTS The C+ mice showed alterations in their corneal epithelial morphologies and thicknesses (p < 0.01 vs. C-), while the mice receiving 8000 (M) and 20,000 (H) IU/kg/week of vitamin D3 showed preservation of the corneal epithelium morphology and thickness (p < 0.01 vs. C+). Moreover, while the C+ mice exhibited high levels and activity of corneal tumor necrosis factor alpha converting enzyme (TACE), neovascularization and fibrosis markers; these were all reduced in the M and H mice. CONCLUSIONS Oral vitamin D3 supplementation appeared to counteract the negative effect of TACE on corneal epithelium in a mouse model of SS-associated dry eye.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Marcel Rosu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Petrillo
- PhD Course in Translational Medicine, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
- Correspondence:
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| |
Collapse
|
2
|
Atcheson RJ, Burne THJ, Dawson PA. Serum sulfate level and Slc13a1 mRNA expression remain unaltered in a mouse model of moderate vitamin D deficiency. Mol Cell Biochem 2022:10.1007/s11010-022-04634-7. [PMID: 36566486 DOI: 10.1007/s11010-022-04634-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022]
Abstract
Sulfate is essential for healthy foetal growth and neurodevelopment. The SLC13A1 sulfate transporter is primarily expressed in the kidney where it mediates sulfate reabsorption and maintains circulating sulfate levels. To meet foetal demands, maternal sulfate levels increase by twofold in pregnancy via upregulated SLC13A1 expression. Previous studies found hyposulfataemia and reduced renal Slc13a1 mRNA expression in rodent models with either severe vitamin D deficiency or perturbed vitamin D signalling. Here we investigated a mouse model of moderate vitamin D deficiency. However, serum sulfate level and renal Slc13a1 mRNA expression was not decreased by a moderate reduction in circulating vitamin D level. We confirmed that the mouse Slc13a1 5'-flanking region was upregulated by 1,25(OH)2D3 using luciferase assays in a cultured renal OK cell line. These results support the presence of a functional VDRE in the mouse Slc13a1 but suggests that moderate vitamin D deficiency does not impact on sulfate homeostasis. As sulfate biology is highly conserved between rodents and humans, we proposed that human SLC13A1 would be under similar transcriptional regulation by 1,25(OH)2D3. Using an online prediction tool we identified a putative VDRE in the SLC13A1 5'-flanking region but unlike the mouse Slc13a1 sequence, the human sequence did not confer a significant response to 1,25(OH)2D3 in vitro. Overall, this study suggests that moderate vitamin D deficiency may not alter sulfate homeostasis. This needs to be confirmed in humans, particularly during pregnancy when vitamin D and sulfate levels need to be maintained at high levels for healthy maternal and child outcomes.
Collapse
Affiliation(s)
- Ranita J Atcheson
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, 4076, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
3
|
Harahap IA, Landrier JF, Suliburska J. Interrelationship between Vitamin D and Calcium in Obesity and Its Comorbid Conditions. Nutrients 2022; 14:3187. [PMID: 35956362 PMCID: PMC9370653 DOI: 10.3390/nu14153187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity has been linked to vitamin D (VD) deficiency and low calcium (CAL) status. In the last decade, dietary supplementation of vitamin D and calcium (VD-CAL) have been extensively studied in animal experiments and human studies. However, the physiological mechanisms remain unknown as to whether the VD-CAL axis improves homeostasis and reduces biomarkers in regulating obesity and other metabolic diseases directly or indirectly. This review sought to investigate their connections. This topic was examined in scientific databases such as Web of Science, Scopus, and PubMed from 2011 to 2021, and 87 articles were generated for interpretation. Mechanistically, VD-CAL regulates from the organs to the blood, influencing insulin, lipids, hormone, cell, and inflammatory functions in obesity and its comorbidities, such as non-alcoholic fatty liver disease, cardiovascular disease, and type-2 diabetes mellitus. Nevertheless, previous research has not consistently shown that simultaneous VD-CAL supplementation affects weight loss or reduces fat content. This discrepancy may be influenced by population age and diversity, ethnicity, and geographical location, and also by degree of obesity and applied doses. Therefore, a larger prospective cohort and randomised trials are needed to determine the exact role of VD-CAL and their interrelationship.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland;
| | | | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland;
| |
Collapse
|
4
|
Sirajudeen S, Shah I, Ayoub MA, Karam SM, Al Menhali A. Long-Term Vitamin D Deficiency Results in the Inhibition of Cell Proliferation and Alteration of Multiple Gastric Epithelial Cell Lineages in Mice. Int J Mol Sci 2022; 23:6684. [PMID: 35743124 PMCID: PMC9224370 DOI: 10.3390/ijms23126684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Over one billion people globally are vitamin D (VD) deficient. Studies on the biological roles of VD are numerous but very little on the stomach. This project aims to understand how gastric homeostasis is affected by VD deficiency caused by prolonged exposure to darkness alone or combined with VD deficient diet. Three groups of C57/BL6 mice were subjected to different light exposure conditions and diets for 12 months (n = 8−12/group): control—12 h/12 h light/dark SDL (Standard Diet/Light), 24 h dark SDD (Standard Diet/Dark), and 24 h dark VDD (VD deficient diet/Dark). Stomach samples were collected for different multi-label lectin-/immuno-histochemical and qRT-PCR analyses, and the serum for LC-MS-MS. We found that the membrane VD receptor is expressed widely in the stomach when compared to nuclear VD receptors. Compared to SDL, VDD mice developed mucous cell expansion with increased mucins-mRNA (3.27 ± 2.73 (p < 0.05)) increased apoptotic cells, 15 ± 7 (p ≤ 0.001)); decreased cell proliferation, 4 ± 4 (p < 0.05)) and decreased acid secretion 33 ± 2 μEq/kg (p ≤ 0.0001)). Interestingly, mice exposed to full darkness developed mild VD deficiency with higher VD epimer levels: 11.9 ± 2.08 ng/mL (p ≤ 0.0001)), expansion in zymogenic cell number (16 ± 3 (p ≤ 0.01)), and a reduction in acid secretion (18 ± 2 μEq/kg (p ≤ 0.0001)). In conclusion, changes in light exposure or VD levels have serious physiological effects on the gastric mucosa, which should be considered during the management of gastric disorders.
Collapse
Affiliation(s)
- Shaima Sirajudeen
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
| | - Iltaf Shah
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
| | - Sherif M. Karam
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
| |
Collapse
|
5
|
Bennour I, Haroun N, Sicard F, Mounien L, Landrier JF. Vitamin D and Obesity/Adiposity—A Brief Overview of Recent Studies. Nutrients 2022; 14:nu14102049. [PMID: 35631190 PMCID: PMC9143180 DOI: 10.3390/nu14102049] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Observational studies classically find an inverse relationship between human plasma 25-hydroxyvitamin D concentration and obesity. However, interventional and genetic studies have failed to provide clear conclusions on the causal effect of vitamin D on obesity/adiposity. Likewise, vitamin D supplementation in obese rodents has mostly failed to improve obesity parameters, whereas several lines of evidence in rodents and prospective studies in humans point to a preventive effect of vitamin D supplementation on the onset of obesity. Recent studies investigating the impact of maternal vitamin D deficiency in women and in rodent models on adipose tissue biology programming in offspring further support a preventive metabolically driven effect of vitamin D sufficiency. The aim of this review is to summarize the state of the knowledge on the relationship between vitamin D and obesity/adiposity in humans and in rodents and the impact of maternal vitamin D deficiency on the metabolic trajectory of the offspring.
Collapse
Affiliation(s)
- Imene Bennour
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
| | - Nicole Haroun
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
| | - Flavie Sicard
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, 13000 Marseille, France
| | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, 13000 Marseille, France
| | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, 13000 Marseille, France; (I.B.); (N.H.); (F.S.); (L.M.)
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, 13000 Marseille, France
- Correspondence: ; Tel.: +33-4-9129-4275
| |
Collapse
|
6
|
Ribeiro MC, MacDonald JL. Vitamin D modulates cortical transcriptome and behavioral phenotypes in an Mecp2 heterozygous Rett syndrome mouse model. Neurobiol Dis 2022; 165:105636. [PMID: 35091041 PMCID: PMC8864637 DOI: 10.1016/j.nbd.2022.105636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the transcriptional regulator MECP2. Mecp2 loss-of-function leads to the disruption of many cellular pathways, including aberrant activation of the NF-κB pathway. Genetically attenuating the NF-κB pathway in Mecp2-null mice ameliorates hallmark phenotypes of RTT, including reduced dendritic complexity, raising the question of whether NF-κB pathway inhibitors could provide a therapeutic avenue for RTT. Vitamin D is a known inhibitor of NF-κB signaling; further, vitamin D deficiency is prevalent in RTT patients and male Mecp2-null mice. We previously demonstrated that vitamin D rescues the aberrant NF-κB activity and reduced neurite outgrowth of Mecp2-knockdown cortical neurons in vitro, and that dietary vitamin D supplementation rescues decreased dendritic complexity and soma size of neocortical projection neurons in both male hemizygous Mecp2-null and female heterozygous mice in vivo. Here, we have identified over 200 genes whose dysregulated expression in the Mecp2+/- cortex is modulated by dietary vitamin D. Genes normalized with vitamin D supplementation are involved in dendritic complexity, synapses, and neuronal projections, suggesting that the rescue of their expression could underpin the rescue of neuronal morphology. Further, there is a disruption in the homeostasis of the vitamin D synthesis pathway in Mecp2+/- mice, and motor and anxiety-like behavioral phenotypes in Mecp2+/- mice correlate with circulating vitamin D levels. Thus, our data indicate that vitamin D modulates RTT pathology and its supplementation could provide a simple and cost-effective partial therapeutic for RTT.
Collapse
Affiliation(s)
- Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, United States of America
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, United States of America.
| |
Collapse
|
7
|
Foessl I, Bassett JHD, Bjørnerem Å, Busse B, Calado Â, Chavassieux P, Christou M, Douni E, Fiedler IAK, Fonseca JE, Hassler E, Högler W, Kague E, Karasik D, Khashayar P, Langdahl BL, Leitch VD, Lopes P, Markozannes G, McGuigan FEA, Medina-Gomez C, Ntzani E, Oei L, Ohlsson C, Szulc P, Tobias JH, Trajanoska K, Tuzun Ş, Valjevac A, van Rietbergen B, Williams GR, Zekic T, Rivadeneira F, Obermayer-Pietsch B. Bone Phenotyping Approaches in Human, Mice and Zebrafish - Expert Overview of the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal traits TranslatiOnal NEtwork"). Front Endocrinol (Lausanne) 2021; 12:720728. [PMID: 34925226 PMCID: PMC8672201 DOI: 10.3389/fendo.2021.720728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".
Collapse
Affiliation(s)
- Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Research Centre for Women’s Health, Oslo University Hospital, Oslo, Norway
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | | | - Maria Christou
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - João Eurico Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Eva Hassler
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, Graz, Austria
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Erika Kague
- The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, Ghent, Belgium
| | - Bente L. Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Victoria D. Leitch
- Innovative Manufacturing Cooperative Research Centre, Royal Melbourne Institute of Technology, School of Engineering, Carlton, VIC, Australia
| | - Philippe Lopes
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
- Department of Health Services, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, United States
| | - Ling Oei
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pawel Szulc
- INSERM UMR 1033, University of Lyon, Lyon, France
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School, Bristol, University of Bristol, Bristol, United Kingdom
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Şansın Tuzun
- Physical Medicine & Rehabilitation Department, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Amina Valjevac
- Department of Human Physiology, School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Tatjana Zekic
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Wong D, Broberg DN, Doad J, Umoh JU, Bellyou M, Norley CJD, Holdsworth DW, Montero-Odasso M, Beauchet O, Annweiler C, Bartha R. Effect of Memantine Treatment and Combination with Vitamin D Supplementation on Body Composition in the APP/PS1 Mouse Model of Alzheimer's Disease Following Chronic Vitamin D Deficiency. J Alzheimers Dis 2021; 81:375-388. [PMID: 33780366 DOI: 10.3233/jad-201137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin D deficiency and altered body composition are common in Alzheimer's disease (AD). Memantine with vitamin D supplementation can protect cortical axons against amyloid-β exposure and glutamate toxicity. OBJECTIVE To study the effects of vitamin D deprivation and subsequent treatment with memantine and vitamin D enrichment on whole-body composition using a mouse model of AD. METHODS Male APPswe/PS1dE9 mice were divided into four groups at 2.5 months of age: the control group (n = 14) was fed a standard diet throughout; the remaining mice were started on a vitamin D-deficient diet at month 6. The vitamin D-deficient group (n = 14) remained on the vitamin D-deficient diet for the rest of the study. Of the remaining two groups, one had memantine (n = 14), while the other had both memantine and 10 IU/g vitamin D (n = 14), added to their diet at month 9. Serum 25(OH)D levels measured at months 6, 9, 12, and 15 confirmed vitamin D levels were lower in mice on vitamin D-deficient diets and higher in the vitamin D-supplemented mice. Micro-computed tomography was performed at month 15 to determine whole-body composition. RESULTS In mice deprived of vitamin D, memantine increased bone mineral content (8.7% increase, p < 0.01) and absolute skeletal tissue mass (9.3% increase, p < 0.05) and volume (9.2% increase, p < 0.05) relative to controls. This was not observed when memantine treatment was combined with vitamin D enrichment. CONCLUSION Combination treatment of vitamin D and memantine had no negative effects on body composition. Future studies should clarify whether vitamin D status impacts the effects of memantine treatment on bone physiology in people with AD.
Collapse
Affiliation(s)
- Dickson Wong
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Dana N Broberg
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jagroop Doad
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Joseph U Umoh
- Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Chris J D Norley
- Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - David W Holdsworth
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Manuel Montero-Odasso
- Department of Medicine, Division of Geriatric Medicine, Parkwood Hospital, University of Western Ontario, London, ON, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - Olivier Beauchet
- Department of Medicine, University of Montreal and McGill University, Montreal, QC, Canada
| | - Cedric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France.,UPRES EA 4638, University of Angers, Angers, France
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
9
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
10
|
Adam-Bonci TI, Bonci EA, Pârvu AE, Herdean AI, Moț A, Taulescu M, Ungur A, Pop RM, Bocșan C, Irimie A. Vitamin D Supplementation: Oxidative Stress Modulation in a Mouse Model of Ovalbumin-Induced Acute Asthmatic Airway Inflammation. Int J Mol Sci 2021; 22:7089. [PMID: 34209324 PMCID: PMC8268667 DOI: 10.3390/ijms22137089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Asthma oxidative stress disturbances seem to enable supplementary proinflammatory pathways, thus contributing to disease development and severity. The current study analyzed the impact of two types of oral vitamin D (VD) supplementation regimens on the redox balance using a murine model of acute ovalbumin-induced (OVA-induced) asthmatic inflammation. The experimental prevention group received a long-term daily dose of 50 µg/kg (total dose of 1300 µg/kg), whereas the rescue group underwent a short-term daily dose of 100 µg/kg (total dose of 400 µg/kg). The following oxidative stress parameters were analyzed in serum, bronchoalveolar lavage fluid (BALF) and lung tissue homogenate (LTH): total oxidative status, total antioxidant response, oxidative stress index, malondialdehyde and total thiols. Results showed that VD significantly reduced oxidative forces and increased the antioxidant capacity in the serum and LTH of treated mice. There was no statistically significant difference between the two types of VD supplementation. VD also exhibited an anti-inflammatory effect in all treated mice, reducing nitric oxide formation in serum and the expression of nuclear factor kappa B p65 in the lung. In conclusion, VD supplementation seems to exhibit a protective role in oxidative stress processes related to OVA-induced acute airway inflammation.
Collapse
Affiliation(s)
- Teodora-Irina Adam-Bonci
- Department of Pathophysiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (T.-I.A.-B.); (A.-E.P.)
| | - Eduard-Alexandru Bonci
- Department of Oncological Surgery and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Alina-Elena Pârvu
- Department of Pathophysiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (T.-I.A.-B.); (A.-E.P.)
| | - Andrei-Ioan Herdean
- Department of Anatomy and Embryology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Augustin Moț
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, “Babeș-Bolyai” University, 400028 Cluj-Napoca, Romania;
| | - Marian Taulescu
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.T.); (A.U.)
- Synevovet Laboratory, 81 Pache Protopopescu, 021408 Bucharest, Romania
| | - Andrei Ungur
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.T.); (A.U.)
| | - Raluca-Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.-M.P.); (C.B.)
| | - Corina Bocșan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.-M.P.); (C.B.)
| | - Alexandru Irimie
- Department of Oncological Surgery and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| |
Collapse
|
11
|
Valle M, Mitchell PL, Pilon G, St-Pierre P, Varin T, Richard D, Vohl MC, Jacques H, Delvin E, Levy E, Gagnon C, Bazinet L, Marette A. Cholecalciferol Supplementation Does Not Prevent the Development of Metabolic Syndrome or Enhance the Beneficial Effects of Omega-3 Fatty Acids in Obese Mice. J Nutr 2021; 151:1175-1189. [PMID: 33851198 PMCID: PMC8112766 DOI: 10.1093/jn/nxab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cholecalciferol (D3) may improve inflammation, and thus provide protection from cardiometabolic diseases (CMD), although controversy remains. Omega-3 fatty acids (ω-3FA) may also prevent the development of CMD, but the combined effects of ω-3FA and D3 are not fully understood. OBJECTIVES We determined the chronic independent and combined effects of D3 and ω-3FA on body weight, glucose homeostasis, and markers of inflammation in obese mice. METHODS We gave 8-week-old male C57BL/6J mice, which had been fed a high-fat, high-sucrose (HF) diet (65.5% kcal fat, 19.8% kcal carbohydrate, and 14% kcal protein) for 12 weeks, either a standard D3 dose (+SD3; 1400 IU D3/kg diet) or a high D3 dose (+HD3; 15,000 IU D3/kg diet). We fed 1 +SD3 group and 1 +HD3 group with 4.36% (w/w) fish oil (+ω-3FA; 44% eicosapentaenoic acid, 25% docosahexaenoic acid), and fed the other 2 groups with corn oil [+omega-6 fatty acids (ω-6FA)]. A fifth group was fed a low-fat (LF; 15.5% kcal) diet. LF and HF+ω-6+SD3 differences were tested by a Student's t-test and HF treatment differences were tested by a 2-way ANOVA. RESULTS D3 supplementation in the +HD3 groups did not significantly increase plasma total 25-hydroxyvitamin D and 25-hydroxyvitamin D3 [25(OH)D3] versus the +SD3 groups, but it increased 3-epi-25-hydroxyvitamin D3 levels by 3.4 ng/mL in the HF+ω-6+HD3 group and 4.0 ng/mL in the HF+ω-3+HD3 group, representing 30% and 70%, respectively, of the total 25(OH)D3 increase. Energy expenditure increased in those mice fed diets +ω-3FA, by 3.9% in the HF+ω-3+SD3 group and 7.4% in the HF+ω-3+HD3 group, but it did not translate into lower body weight. The glucose tolerance curves of the HF+ω-3+SD3 and HF+ω-3+HD3 groups were improved by 11% and 17%, respectively, as compared to the respective +ω-6FA groups. D3 supplementation, within the ω-3FA groups, altered the gut microbiota by increasing the abundance of S24-7 and Lachnospiraceae taxa compared to the standard dose, while within the ω-6FA groups, D3 supplementation did not modulate specific taxa. CONCLUSIONS Overall, D3 supplementation does not prevent CMD or enhance the beneficial effects of ω-3FA in vitamin D-sufficient obese mice.
Collapse
Affiliation(s)
- Marion Valle
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Patricia L Mitchell
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Geneviève Pilon
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Philippe St-Pierre
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Thibault Varin
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Denis Richard
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Department of Medicine, Laval University, Québec City, QC, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,School of Nutrition, Laval University, Québec, QC, Canada
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,School of Nutrition, Laval University, Québec, QC, Canada
| | - Edgar Delvin
- Department of Nutrition and Biochemistry, Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,Department of Nutrition and Biochemistry, Sainte Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Claudia Gagnon
- Québec Heart and Lung Institute Research Centre, Faculty of Medicine, Laval University, Québec City, QC, Canada,Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,Department of Medicine, Laval University, Québec City, QC, Canada,Endocrinology and Nephrology Unit, Centre hospitalier universitaire de Québec Research Centre, Québec City, QC, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada,Department of Food Sciences, Laboratory of Food Processing and ElectroMembrane Processes, Laval University, Québec City, QC, Canada
| | | |
Collapse
|
12
|
Abstract
Frailty is a condition marked by greater susceptibility to adverse outcomes, including disability and mortality, which affects up to 50% of those 80 years of age and older. Concurrently, serum vitamin D insufficiency and deficiency, for which as many as 70% of older adults may be at risk, potentially play an important role in frailty onset and progression. Large population driven studies have uncovered associations between low serum vitamin D levels and higher incidence of frailty. However, attempts to apply vitamin D therapeutically to treat and/or prevent frailty have not yielded consistent support for benefits. Given the complexity and inconsistency arising from human studies involving vitamin D, our research group has recently published on animal models of vitamin D insufficiency. Combining our model with the emerging development of animal frailty assessment, we identified that higher than standard levels of vitamin D supplementation may delay frailty in mice. In this viewpoint article, we will discuss current knowledge regarding the importance of vitamin D in frailty progression, the emerging significance of animal models in addressing these relationships, and the future for pre-clinical and clinical research.
Collapse
|
13
|
High-phosphorus diets reduce aortic lesions and cardiomyocyte size and modify lipid metabolism in Ldl receptor knockout mice. Sci Rep 2020; 10:20748. [PMID: 33247205 PMCID: PMC7695849 DOI: 10.1038/s41598-020-77509-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The consumption of phosphorus in Western populations largely exceeds the recommended intake, while vitamin D supply is often insufficient. Both situations are linked to an increased cardiovascular risk. A 17-week two-factorial study with Ldl receptor-/- mice was conducted to investigate the cardiovascular impact of dietary phosphorus [adequate (0.3%; P0.3) vs. high (1.5%; P1.5)] in combination with a low (50 IU/kg; D50) or adequate vitamin D diet (1000 IU/kg; D1000). The data demonstrate that mice fed the P1.5 vs. P0.3 diets developed smaller vascular lesions (p = 0.013) and cardiac hypotrophy (p = 0.011), which were accompanied by diminished IGF1 and insulin signalling activity in their hearts. Vitamin D showed no independent effect on atherogenesis and heart morphology. Feeding P1.5 vs. P0.3 diets resulted in markedly reduced serum triacylglycerols (p < 0.0001) and cholesterol (p < 0.0001), higher faecal lipid excretion (p < 0.0001) and a reduced mRNA abundance of hepatic sterol exporters and lipoprotein receptors. Minor hypocholesterolaemic and hypotriglyceridaemic effects were also found in mice fed the D1000 vs. D50 diets (p = 0.048, p = 0.026). To conclude, a high phosphorus intake strongly affected the formation of vascular lesions, cardiac morphology, and lipid metabolism, although these changes are not indicative of an increased cardiovascular risk.
Collapse
|
14
|
Kim DH, Klemp A, Salazar G, Hwang HS, Yeh M, Panton LB, Kim JS. High-dose vitamin D administration and resistance exercise training attenuate the progression of obesity and improve skeletal muscle function in obese p62-deficient mice. Nutr Res 2020; 84:14-24. [PMID: 33199033 DOI: 10.1016/j.nutres.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023]
Abstract
Vitamin D (VitD) possesses antiadipogenic and ergogenic properties that could be effective to counteract obesity-related adverse health consequences. Therefore, our overall hypothesis was that VitD could ameliorate obesity-induced insulin resistance, systemic inflammation, and loss of skeletal muscle mass and function in an obesity animal model, p62-deficient mice. Furthermore, it was hypothesized that resistance exercise training (RT) could enhance the benefits of VitD by upregulating protein expression of vitamin D receptor in skeletal muscle. Forty 24-week-old male p62-deficient mice were assigned to the following 4 groups (10/group) for a 10-week intervention: control (p62C, no treatment), VitD (VD, 1000 IU vitamin D3/kg/d), RT (ladder climbing, 3 times per week), or combined treatment (VRT, VD + RT). Serum VitD levels increased in VD and VRT (P < .05). Total body mass increased in p62C, VD, and VRT, but fat mass increased only in p62C (P < .05). Loss of skeletal muscle function was reported only in p62C (P < .05). Improved blood glucose levels and lower spleen mass were reported in RT and VRT compared to p62C (P < .05). However, the hindlimb muscle wet weights; myofiber cross-sectional area; and expression levels of the regulatory proteins for insulin signaling, inflammation, and muscle growth were not changed by any intervention. In conclusion, VitD administration attenuated the progression of obesity and preserved skeletal muscle function in p62-deficient mice. However, the obese mice improved systemic insulin sensitivity and inflammation only when the intervention involved RT.
Collapse
Affiliation(s)
- Do-Houn Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Alex Klemp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Gloria Salazar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Hyun-Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306
| | - Mingchia Yeh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Lynn B Panton
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, 120 Convocation Way, Tallahassee, FL 32306.
| |
Collapse
|
15
|
Seldeen KL, Berman RN, Pang M, Lasky G, Weiss C, MacDonald BA, Thiyagarajan R, Redae Y, Troen BR. Vitamin D Insufficiency Reduces Grip Strength, Grip Endurance and Increases Frailty in Aged C57Bl/6J Mice. Nutrients 2020; 12:nu12103005. [PMID: 33007912 PMCID: PMC7599884 DOI: 10.3390/nu12103005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Low 25-OH serum vitamin D (VitD) is pervasive in older adults and linked to functional decline and progression of frailty. We have previously shown that chronic VitD insufficiency in "middle-aged" mice results in impaired anaerobic exercise capacity, decreased lean mass, and increased adiposity. Here, we examine if VitD insufficiency results in similar deficits and greater frailty progression in old-aged (24 to 28 months of age) mice. Similar to what we report in younger mice, older mice exhibit a rapid and sustained response in serum 25-OH VitD levels to differential supplementation, including insufficient (125 IU/kg chow), sufficient (1000 IU/kg chow), and hypersufficient (8000 IU/kg chow) groups. During the 4-month time course, mice were assessed for body composition (DEXA), physical performance, and frailty using a Fried physical phenotype-based assessment tool. The 125 IU mice exhibited worse grip strength (p = 0.002) and inverted grip hang time (p = 0.003) at endpoint and the 8000 IU mice transiently displayed greater rotarod performance after 3 months (p = 0.012), yet other aspects including treadmill performance and gait speed were unaffected. However, 125 and 1000 IU mice exhibited greater frailty compared to baseline (p = 0.001 and p = 0.038, respectively), whereas 8000 IU mice did not (p = 0.341). These data indicate targeting higher serum 25-OH vitamin D levels may attenuate frailty progression during aging.
Collapse
Affiliation(s)
- Kenneth Ladd Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Buffalo, NY 14203, USA; (K.L.S.); (R.N.B.); (M.P.); (G.L.); (C.W.); (B.A.M.); (R.T.); (Y.R.)
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Reem Nagi Berman
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Buffalo, NY 14203, USA; (K.L.S.); (R.N.B.); (M.P.); (G.L.); (C.W.); (B.A.M.); (R.T.); (Y.R.)
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Manhui Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Buffalo, NY 14203, USA; (K.L.S.); (R.N.B.); (M.P.); (G.L.); (C.W.); (B.A.M.); (R.T.); (Y.R.)
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Ginger Lasky
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Buffalo, NY 14203, USA; (K.L.S.); (R.N.B.); (M.P.); (G.L.); (C.W.); (B.A.M.); (R.T.); (Y.R.)
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Carleara Weiss
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Buffalo, NY 14203, USA; (K.L.S.); (R.N.B.); (M.P.); (G.L.); (C.W.); (B.A.M.); (R.T.); (Y.R.)
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Brian Alexander MacDonald
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Buffalo, NY 14203, USA; (K.L.S.); (R.N.B.); (M.P.); (G.L.); (C.W.); (B.A.M.); (R.T.); (Y.R.)
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Buffalo, NY 14203, USA; (K.L.S.); (R.N.B.); (M.P.); (G.L.); (C.W.); (B.A.M.); (R.T.); (Y.R.)
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Yonas Redae
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Buffalo, NY 14203, USA; (K.L.S.); (R.N.B.); (M.P.); (G.L.); (C.W.); (B.A.M.); (R.T.); (Y.R.)
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Bruce Robert Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Buffalo, NY 14203, USA; (K.L.S.); (R.N.B.); (M.P.); (G.L.); (C.W.); (B.A.M.); (R.T.); (Y.R.)
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA
- Correspondence:
| |
Collapse
|
16
|
Badger-Emeka LI, AlJaziri ZY, Almulhim CF, Aldrees AS, AlShakhs ZH, AlAithan RI, Alothman FA. Vitamin D Supplementation in Laboratory-Bred Mice: An In Vivo Assay on Gut Microbiome and Body Weight. Microbiol Insights 2020; 13:1178636120945294. [PMID: 32782431 PMCID: PMC7388085 DOI: 10.1177/1178636120945294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/01/2020] [Indexed: 01/11/2023] Open
Abstract
Saudi Arabia is in a tropical geographical region with a population that has
access to adequate diet. There is, however, a high level of vitamin D deficiency
in the Kingdom, comorbid with other disease. There is the postulation of a
correlation between a healthy gut microbiota and balanced levels of serum
vitamin D. This investigation looks into the effect of vitamin D supplementation
on the gut flora of laboratory-bred mice as well as any possible association on
body weight. BALB/C mice weighing between 34 and 35.8 g were divided into 4
groups and placed on daily doses of vitamin D of 3.75 µg (low dose), 7.5 µg
(normal dose), and 15 µg (high dose). The fourth group was the control group
that did not receive any supplementation with vitamin D. Body weights were
monitored on weekly basis, while faecal samples from the rectum were obtained
for microbial culturing and the monitoring of bacterial colony count using the
Vitek 2 Compact automated system (BioMerieux, Marcy-l’Etoile, France) according
to manufacturer’s guidelines. The data presented as mean ± SD, while significant
differences were determined with 2-way analysis of variance in comparing
differences within and between treatment groups. The different doses of vitamin
D showed varying effects on the body weight and gut microbial colonies of the
mice. There was a highly significant difference between the control, 15 µg
(high), and 7.5 µg (normal) dose groups. This is suggestive that supplementation
with vitamin D could a role in the gut microbial flora in the gut which could
reflect in changes in body weight.
Collapse
Affiliation(s)
- Lorina Ineta Badger-Emeka
- College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biomedical Sciences, Microbiology Division. College of Medicine, King Faisal University, Al-Ahsa. Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
17
|
Park CY, Shin Y, Kim JH, Zhu S, Jung YS, Han SN. Effects of high fat diet-induced obesity on vitamin D metabolism and tissue distribution in vitamin D deficient or supplemented mice. Nutr Metab (Lond) 2020; 17:44. [PMID: 32549901 PMCID: PMC7294642 DOI: 10.1186/s12986-020-00463-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023] Open
Abstract
Background Vitamin D deficiency has been often observed in obese persons. One of the mechanisms suggested for low vitamin D status in obesity was decreased bioavailability of vitamin D (VD) due to sequestration in adipose tissue. However, only few studies have investigated this mechanism via quantifying vitamin D levels from tissues from the obese. Methods Six-wk-old C57BL/6 mice were fed 10 or 45% kcal fat (CON or HFD) diets containing 50, 1000 or 25,000 IU vitamin D3/kg diet (LVd, CVd or HVd) for 13 wks. Serum 25-hydroxyvitamin D (25(OH)D) levels were determined by radioimmunoassay and liver and adipose tissue cholecalciferol (VD3) and 25-hydrocholecalciferol (25(OH)D3) levels were measured by LC-MS/MS. mRNA levels of jejunal Mttp, Cd36, Sr-b1, Npc1l1, and Abca1 and liver and adipose tissue 25-hydroxylases (Cyp2r1 and Cyp27a1) were determined by real-time PCR. Results Serum 25(OH)D levels were affected by dietary vitamin D content but differential effects were observed between HFD and CON groups. When vitamin D intake was at a supplementary level, the HFD-HVd group had lower serum 25(OH)D levels than the CON-HVd group, while there was no significant difference between the HFD and CON groups fed LVd or CVd. Total amount of VD3 in liver and adipose tissue were significantly higher in HFD-HVd group compared with the CON-HVd group. However, no difference in total amount of tissue VD3 was observed between the CON and HFD groups fed CVd. In jejunum, mRNA levels of Mttp and Abca1 were significantly higher in HFD groups than CON groups. There was no difference in mRNA levels of liver 25-hydroxylases by both dietary fat amount and vitamin D content. Conclusion A significant amount of VD3 seemed to be stored in the liver and adipose tissue when dietary vitamin D is at a supplementation level; thus excess body adiposity could contribute to relatively low serum 25(OH)D level when vitamin D was supplemented.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Yongho Shin
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Shuang Zhu
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Young Sun Jung
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Wilkin AM, Sullivan R, Trinh T, Edson M, Kozlowski B, Meckling KA. Differential effects of the 1,25D3-MARRS receptor (ERp57/PDIA3) on murine mammary gland development depend on the vitamin D3 dose. Steroids 2020; 158:108621. [PMID: 32119872 DOI: 10.1016/j.steroids.2020.108621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
1,25 dihydroxyvitamin D3 (1,25D3) is the most potent biologically active form of vitamin D3. Its actions on the mammary gland include cell growth inhibition and anti-cancer effects. This study's purpose was to explore the role of the 1,25D3-membrane associated rapid response steroid (MARRS) receptor in the mammary gland using a tissue-specific knockout mouse model and a vitamin D3 dietary intervention. Three genotype groups were created using the Cre/loxp system to knock-down (+/-) and knockout (-/-) the MARRS receptor in epithelial cells of mammary glands (MG). Abdominal MGs were collected from 6-week old female mice (n = 94) on diets of 10,000 IU/kg (excess), 1,000 IU/kg (sufficient) or 0 IU/kg (deficient) of D3. There was a significant interaction between genotype and diet regarding number of terminal end buds (TEBs) (p = 0.001) and ductal coverage of the fat pad (p = 0.03). MARRS -/- mice on the sufficient diet had significantly fewer TEBs (p = 0.001) compared to MARRS +/+ on the same diet, but the opposite effect was seen in mice on the excess diet. There were no effects of genotype on TEBs when animals were vitamin D3 deficient. These results suggest that there is an effect of MARRS on mammary gland development that is dependent on 25(OH)D status, specifically, altering the number of highly proliferative TEBs. Increased numbers of TEBs have been correlated with increased breast cancer risk later in life. Therefore the results of this study warrant further examination of 25(OH)D status and recommendations in adolescent humans to reduce dietary effects on future breast cancer risk.
Collapse
Affiliation(s)
- Allison M Wilkin
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd. E. Guelph, ON N1G 2W1, Canada.
| | - Robert Sullivan
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd. E. Guelph, ON N1G 2W1, Canada.
| | - Thao Trinh
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd. E. Guelph, ON N1G 2W1, Canada.
| | - Michael Edson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd. E. Guelph, ON N1G 2W1, Canada.
| | - Benjamin Kozlowski
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd. E. Guelph, ON N1G 2W1, Canada.
| | - Kelly A Meckling
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd. E. Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
19
|
Lu X, Vick S, Chen Z, Chen J, Watsky MA. Effects of Vitamin D Receptor Knockout and Vitamin D Deficiency on Corneal Epithelial Wound Healing and Nerve Density in Diabetic Mice. Diabetes 2020; 69:1042-1051. [PMID: 32139594 PMCID: PMC7171964 DOI: 10.2337/db19-1051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Diabetic keratopathy occurs in ∼70% of all people with diabetes. This study was designed to examine the effects of vitamin D receptor knockout (VDR-/-) and vitamin D deficiency (VDD) on corneal epithelial wound healing and nerve density in diabetic mice. Diabetes was induced using the low-dose streptozotocin method. Corneal epithelial wounds were created using an Algerbrush, and wound healing was monitored over time. Corneal nerve density was measured in unwounded mice. VDR-/- and VDD diabetic mice (diabetic for 8 and 20 weeks, respectively) had slower healing ratios than wild-type diabetic mice. VDR-/- and VDD diabetic mice also showed significantly decreased nerve density. Reduced wound healing ratios and nerve densities were not fully rescued by a supplemental diet rich in calcium, lactose, and phosphate. We conclude that VDR-/- and VDD significantly reduce both corneal epithelial wound healing and nerve density in diabetic mice. Because the supplemental diet did not rescue wound healing or nerve density, these effects are likely not specifically related to hypocalcemia. This work supports the hypothesis that low vitamin D levels can exacerbate preexisting ophthalmic conditions, such as diabetes.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
| | - Sarah Vick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zhong Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jie Chen
- Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA
| | - Mitchell A Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA
- The Graduate School, Augusta University, Augusta, GA
| |
Collapse
|
20
|
Chatterjee I, Lu R, Zhang Y, Zhang J, Dai Y, Xia Y, Sun J. Vitamin D receptor promotes healthy microbial metabolites and microbiome. Sci Rep 2020; 10:7340. [PMID: 32355205 PMCID: PMC7192915 DOI: 10.1038/s41598-020-64226-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Microbiota derived metabolites act as chemical messengers that elicit a profound impact on host physiology. Vitamin D receptor (VDR) is a key genetic factor for shaping the host microbiome. However, it remains unclear how microbial metabolites are altered in the absence of VDR. We investigated metabolites from mice with tissue-specific deletion of VDR in intestinal epithelial cells or myeloid cells. Conditional VDR deletion severely changed metabolites specifically produced from carbohydrate, protein, lipid, and bile acid metabolism. Eighty-four out of 765 biochemicals were significantly altered due to the Vdr status, and 530 significant changes were due to the high-fat diet intervention. The impact of diet was more prominent due to loss of VDR as indicated by the differences in metabolites generated from energy expenditure, tri-carboxylic acid cycle, tocopherol, polyamine metabolism, and bile acids. The effect of HFD was more pronounced in female mice after VDR deletion. Interestingly, the expression levels of farnesoid X receptor in liver and intestine were significantly increased after intestinal epithelial VDR deletion and were further increased by the high-fat diet. Our study highlights the gender differences, tissue specificity, and potential gut-liver-microbiome axis mediated by VDR that might trigger downstream metabolic disorders.
Collapse
Affiliation(s)
- Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, USA.
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
21
|
Abulmeaty MMA, Almajwal AM, Alam I, Razak S, ElSadek MF, Aljuraiban GS, Hussein KS, Malash AM. Relationship of Vitamin D-Deficient Diet and Irisin, and Their Impact on Energy Homeostasis in Rats. Front Physiol 2020; 11:25. [PMID: 32082189 PMCID: PMC7005576 DOI: 10.3389/fphys.2020.00025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 01/23/2023] Open
Abstract
Background and Objective Previous studies have identified the role of irisin and vitamin D in energy homeostasis. However, the effect of irisin and vitamin D on energy regulation has not been thoroughly investigated. Therefore, in this study, the effects of a vitamin D-deficient diet and irisin on total energy expenditure (TEE), food intake, and blood metabolites were investigated in rats. Methods Sixteen healthy weaned male albino rats were randomly divided into two groups: a group fed a normal balanced growth diet (group A: n = 8) and a group fed a normocalcemic diet that is vitamin D deficient with limited ultraviolet (UV) light exposure (group B, n = 8). After 6 weeks, the volumes of respiratory gases were measured by open-circuit indirect calorimetry. Serum irisin, 25-OHVD3, calcium, insulin, and glucose levels were measured using ELISA. The respiratory quotient (RQ), energy expenditure, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were calculated. Results Rats with hypovitaminosis D were hypoirisinemic. Food intake, RQ (to the range of using endogenous fat), and glucose levels reduced significantly, while insulin levels increased. Body weight and TEE were non-significant changed. Additionally, irisin was strongly and positively correlated with body weight under normal conditions (r = 0.905, p < 0.01), and a moderate negative correlation in group B (r = −0.429, p < 0.05). TEE and irisin showed no significant correlation. Conclusion This study demonstrated that the early changes in energy homeostasis and irisin levels during states of hypovitaminosis D are affected by long-term consumption of a vitamin D-deficient diet with limited UV exposure.
Collapse
Affiliation(s)
- Mahmoud Mustafa Ali Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.,Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ali M Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Iftikhar Alam
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F ElSadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghadeer S Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khulood S Hussein
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa M Malash
- Department of Basic Medical Sciences, College of Medicine, Alfarabi Colleges, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Seldeen KL, Pang M, Leiker MM, Bard JE, Rodríguez-Gonzalez M, Hernandez M, Sheridan Z, Nowak N, Troen BR. Chronic vitamin D insufficiency impairs physical performance in C57BL/6J mice. Aging (Albany NY) 2019; 10:1338-1355. [PMID: 29905532 PMCID: PMC6046224 DOI: 10.18632/aging.101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Vitamin D insufficiency (serum 25-OH vitamin D < 30 ng/ml) affects 70-80% of the general population, yet the long-term impacts on physical performance and the progression of sarcopenia are poorly understood. We therefore followed 6-month-old male C57BL/6J mice (n=6) consuming either sufficient (STD, 1000 IU) or insufficient (LOW, 125 IU) vitamin D3/kg chow for 12 months (equivalent to 20-30 human years). LOW supplemented mice exhibited a rapid decline of serum 25-OH vitamin D levels by two weeks that remained between 11-15 ng/mL for all time points thereafter. After 12 months LOW mice displayed worse grip endurance (34.6 ± 14.1 versus 147.5 ± 50.6 seconds, p=0.001), uphill sprint speed (16.0 ± 1.0 versus 21.8 ± 2.4 meters/min, p=0.0007), and stride length (4.4 ± 0.3 versus 5.1 ± 0.3, p=0.002). LOW mice also showed less lean body mass after 8 months (57.5% ± 5.1% versus 64.5% ± 4.0%, p=0.023), but not after 12 months of supplementation, as well as greater protein expression of atrophy pathway gene atrogin‑1. Additionally, microRNA sequencing revealed differential expression of mIR‑26a in muscle tissue of LOW mice. These data suggest chronic vitamin D insufficiency may be an important factor contributing to functional decline and sarcopenia.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Manhui Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Merced M Leiker
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Maria Rodríguez-Gonzalez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Mireya Hernandez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Zachary Sheridan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Norma Nowak
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| |
Collapse
|
23
|
Roizen JD, Levine MA. Response to: Obesity and Vitamin D Metabolism Modifications. J Bone Miner Res 2019; 34:1384. [PMID: 31141223 PMCID: PMC7727878 DOI: 10.1002/jbmr.3743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey D Roizen
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael A Levine
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
Landrier JF, Mounien L, Tourniaire F. Obesity and Vitamin D Metabolism Modifications. J Bone Miner Res 2019; 34:1383. [PMID: 31141222 DOI: 10.1002/jbmr.3739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Lourdes Mounien
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | | |
Collapse
|
25
|
Yoon SH, Sugamori KS, Grynpas MD, Mitchell J. Effect of 25-HydroxyVitamin D Deficiency and Its Interaction with Prednisone Treatment on Musculoskeletal Health in Growing Mdx Mice. Calcif Tissue Int 2018; 103:311-323. [PMID: 29691609 DOI: 10.1007/s00223-018-0423-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/11/2018] [Indexed: 01/28/2023]
Abstract
Duchenne muscular dystrophy (DMD) results from genetic mutations of the gene encoding dystrophin, leading to muscle inflammation and degeneration that is typically treated with glucocorticoids. DMD and its treatment with glucocorticoids result in poor bone health and high risk of fractures. Insufficient levels of 25-hydroxyvitamin D (25-hydroxy D) that may contribute to weakened bone are routinely found in DMD patients. To determine the effect of 25-hydroxy D deficiency, this study examined the effects of low vitamin D dietary intake with and without glucocorticoids on the musculoskeletal system of the Mdx mouse model of DMD. At 10 weeks of age, Mdx mice on control diet had low trabecular bone mineral density of distal femurs and lumbar vertebrae with increased osteoclast numbers compared to wild-type mice. Low vitamin D intake resulted in 25-hydroxy D deficiency but had no effect on trabecular or cortical bone. Cortical bone loss and bone weakness were induced by glucocorticoids while they improved muscle grip strength in Mdx mice. 25-hydroxy D deficiency did not result in any significant effects on growing bone or muscle in the Mdx mice. In combination with glucocorticoid treatment, low 25-hydroxy D resulted in no change in cortical bone mineral density but bone ductility was significantly increased suggesting lower bone mineralization.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, ON, Canada
| | - Kim S Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, ON, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Room 4342, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
26
|
Labudzynskyi DO, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Shymanskyi ІО, Lisakovska OO, Veliky ММ, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;. Osteoprotective effects of vitamin D(3) in diabetic mice is VDR-mediated and regulated via RANKL/RANK/OPG axis. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.02.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Lim HS, Kim TH, Lee HH, Kim SK, Lee B, Park YH. Relationship between Serum 25-hydroxy-vitamin D Concentration and Risk of Metabolic Syndrome in Patients with Fatty Liver. J Bone Metab 2017; 24:223-228. [PMID: 29259961 PMCID: PMC5734947 DOI: 10.11005/jbm.2017.24.4.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Background The vitamin D deficiency rate in Koreans is still high and dietary intake is insufficient. The purpose of this study was to provide basic data for the management of metabolic syndrome (MetS) by analyzing the effect of vitamin D levels on the MetS in patients with fatty liver. Methods We analyzed the MetS ratio and serum 25-hydroxy-vitamin D (25[OH]D) concentration in 151 adults diagnosed with fatty liver by using obesity index and blood profiles. We collected data on demographic factors, nutrient intake, and lifestyle habits. Results The mean 25(OH)D concentration of all subjects was 14 ng/mL and the insufficiency and deficiency rates were 40.4% and 29.8%. The proportion of MetS was 38.4% and the mean 25(OH)D level of MetS group was 12.1 ng/mL. Low-density lipoprotein cholesterol, triglyceride, and blood glucose were higher in the MetS group than in the normal group, and the waist circumference of the male was significantly higher than that of the normal group. The results showed that the lower the vitamin D concentration, the higher the risk of MetS (odds ratio, 1.47, 95% confidence interval, 0.98–2.81; P=0.043). Conclusions These results suggest that serum 25(OH)D levels may be a risk factor for MetS in patients with fatty liver.
Collapse
Affiliation(s)
- Hee-Sook Lim
- Department of Food and Nutrition, Yoensung University, Anyang, Korea.,Department of Preventive Medicine, Soonchunhyang University College of Medicine, Asan, Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hae-Hyeog Lee
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Soon-Kyung Kim
- Department of Food Sciences & Nutrition, Soonchunhyang University College of Medicine, Asan, Korea
| | - Bora Lee
- Department of Biostatistics, Graduate School of Chung-Ang University, Seoul, Korea
| | - Yoon-Hyung Park
- Department of Preventive Medicine, Soonchunhyang University College of Medicine, Asan, Korea
| |
Collapse
|
28
|
Dooley J, Lagou V, Heirman N, Dresselaers T, Himmelreich U, Liston A. Murine Pancreatic Acinar Cell Carcinoma Growth Kinetics Are Independent of Dietary Vitamin D Deficiency or Supplementation. Front Oncol 2017; 7:133. [PMID: 28702373 PMCID: PMC5488083 DOI: 10.3389/fonc.2017.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
Vitamin D has been proposed as a therapeutic strategy in pancreatic cancer, yet evidence for an effect of dietary vitamin D on pancreatic cancer is ambiguous, with conflicting data from human epidemiological and intervention studies. Here, we tested the role of dietary vitamin D in the in vivo context of the well-characterized Ela1-TAg transgenic mouse model of pancreatic acinar cell carcinoma. Through longitudinal magnetic resonance imaging of mice under conditions of either dietary vitamin D deficiency (<5 IU/kg vitamin D) or excess (76,500 IU/kg vitamin D), compared to control diet (1,500 IU/kg vitamin D), we measured the effect of variation of dietary vitamin D on tumor kinetics. No measurable impact of dietary vitamin D was found on pancreatic acinar cell carcinoma development, growth or mortality, casting further doubt on the already equivocal data supporting potential therapeutic use in humans. The lack of any detectable effect of vitamin D, within the physiological range of dietary deficiency or supplementation, in this model further erodes confidence in vitamin D as an effective antitumor therapeutic in pancreatic acinar cell carcinoma.
Collapse
Affiliation(s)
- James Dooley
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Vasiliki Lagou
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Nathalie Heirman
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Tom Dresselaers
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| |
Collapse
|