1
|
Naidu D, Althaf Umar KP, Muhsina K, Augustine S, Jeengar MK, S K K. Zingiberaceae in Cardiovascular Health: A review of adipokine modulation and endothelial protection via adipocyte-endothelial crosstalk mechanism. Curr Nutr Rep 2025; 14:66. [PMID: 40366476 DOI: 10.1007/s13668-025-00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF THE REVIEW Although adipose tissue controls metabolism and protects vital organs, its importance to general health is being highlighted by the rise in type 2 diabetes and cardiovascular disease. Adipokines produced by adipose cells are essential regulators of metabolism, glucose homeostasis, and inflammatory response. It also protects vascular endothelial cells for its potential implications for cardiovascular protection. Understanding its intricate involvement in adipose tissue-endothelial communication is critical in developing targeted therapeutics to treat cardiovascular conditions linked with obesity and metabolic dysregulation. Spices from the Zingiberaceae family, such as cardamom, turmeric, and ginger, have anti-inflammatory and anti-oxidant properties that help reduce oxidative stress, vascular dysfunction, and adipocyte-endothelial crosstalk which are all linked to the etiology of CVD. Comprehensive molecular insights into how they modulate adipokine signalling, inflammatory pathways, and ROS-induced adipocyte-vascular interactions remain unexplored, demanding additional translational and clinical validation. With an emphasis on patients with obesity and metabolic dysregulation, the investigation aims to elucidate the mechanisms by which the spice as whole/bioactive constituents of the Zingiberaceae family may provide protection against CVD by integrating previous studies. RECENT FINDINGS Current research continues to support the use of spices from the Zingiberaceae family, such as ginger, turmeric, cardamom, and pepper, as potential therapeutic agents for addressing metabolic complications like obesity, type II diabetes, and CVDs. These natural remedies may modulate adipocyte-endothelial crosstalk and inflammation by modulating important signalling pathways such as AMPK, AKT, PPAR, and NF-κB.. CONCLUSION This review provides a complete summary of existing knowledge, opening the way for future research and prospective therapeutic applications of Zingiberaceae spices in cardiovascular health management.
Collapse
Affiliation(s)
- Disha Naidu
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K P Althaf Umar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K Muhsina
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sanu Augustine
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Kanthlal S K
- Department of Pharmacology, Sree Krishna College of Pharmacy and Research Centre, Parassala, Thiruvananthapuram, Kerala, 695502, India.
| |
Collapse
|
2
|
Wang XC, Song L, Wang XH. Efficacy of dietary polyphenol supplement in patients with non-alcoholic fatty liver disease: a network meta-analysis. Front Nutr 2025; 12:1582861. [PMID: 40416369 PMCID: PMC12100629 DOI: 10.3389/fnut.2025.1582861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/24/2025] [Indexed: 05/27/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) has become a public health issue worldwide. Dietary polyphenols are naturally occurring plant active ingredients and are widely employed in the treatment of NAFLD. However, the therapeutic effect is still controversial. In this study, a network meta-analysis (NMA) was performed to appraise the effects of various polyphenols on metabolic indices of NAFLD. Methods PubMed, Embase, the Cochrane Library, and Web of Science were retrieved for English studies on dietary polyphenols in the treatment of NAFLD. Outcome measures were extracted from the included studies and compared using a Bayesian NMA model, encompassing body mass index (BMI), alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and necrosis factor alpha (TNF-α). Results In total, 54 randomized controlled trials (RCTs) were included in this study, including 3,132 participants. It involved 13 single (or combined) dietary polyphenols. Naringenin could reduce serum TC (surface under the cumulative ranking curve: 94.59%) and TG (99.00%) in NAFLD patients. Catechin could decrease BMI (77.74%) and serum ALT (94.21%), AST (93.56%), TC (92.26%), and increase HDL-C (93.72%). Dihydromyricetin (DHM) was effective in reducing serum LDL-C (73.22%), and quercetin decreased serum TNF-α (99.47%). Conclusion Catechin may be the most appropriate dietary polyphenol supplement for NAFLD. Future studies should incorporate more RCTs to further validate the efficacy of dietary polyphenols (like DHM and quercetin), which are limited in sample sizes, in treating NAFLD. On the other hand, it is essential to investigate improvements in the bioavailability of these dietary polyphenols and to clarify their safety profiles.
Collapse
Affiliation(s)
- Xiao-cui Wang
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Li Song
- Department of Nephrology, Affiliated Hospital of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xin-han Wang
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Cerullo M, Armeli F, Mengoni B, Menin M, Crudeli ML, Businaro R. Curcumin Modulation of the Gut-Brain Axis for Neuroinflammation and Metabolic Disorders Prevention and Treatment. Nutrients 2025; 17:1430. [PMID: 40362738 PMCID: PMC12073396 DOI: 10.3390/nu17091430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, has gained significant attention for its potential therapeutic benefits, particularly counteracting inflammation, oxidative stress, and metabolic disorders. Its chemical structure, featuring conjugated double bonds between two aromatic rings, allows it to act as an electron donor, thereby mitigating free radical formation. Despite its poor solubility in water, curcumin is stable in acidic environments and undergoes significant metabolism in both the liver and the gut. Intestinal microbiota, particularly at the colon level, further metabolizes curcumin into several derivatives, including dihydrocurcumin and tetrahydrocurcumin, which exhibit antioxidant and anti-inflammatory properties. Studies suggest that curcumin can reduce body mass index (BMI) and improve other body composition parameters, especially when used in combination with lifestyle changes, though its bioavailability is low due to its rapid metabolism and the resulting low blood concentration. In obesity, dysfunctional adipose tissue remodeling and chronic inflammation play critical roles in the development of metabolic complications. Curcumin's anti-inflammatory properties are related to the inhibition of the NF-κB pathway, leading to the reduction in inflammatory markers in adipocytes and macrophages. Additionally, curcumin modulates oxidative stress by activating the NRF2 pathway, enhancing cellular antioxidant defenses. Emerging evidence also supports curcumin's potential in improving gut health by modulating microbiota composition, enhancing intestinal barrier function, and reducing systemic inflammation. This interaction with the gut-brain axis highlights the broader implications of curcumin in neuroprotection, as it positively affects cognitive function and mitigates neuroinflammation in neurodegenerative diseases like Alzheimer's. disease. Thus, curcumin holds promise as a multifaceted agent in the management of obesity and associated diseases.
Collapse
Affiliation(s)
- Miriam Cerullo
- Neurofarba Department, University of Florence, 50139 Florence, Italy;
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| | - Martina Menin
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| | - Maria Luisa Crudeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.); (M.M.); (M.L.C.)
| |
Collapse
|
4
|
Obrzut O, Gostyńska-Stawna A, Kustrzyńska K, Stawny M, Krajka-Kuźniak V. Curcumin: A Natural Warrior Against Inflammatory Liver Diseases. Nutrients 2025; 17:1373. [PMID: 40284236 PMCID: PMC12030243 DOI: 10.3390/nu17081373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Curcumin (CUR), a bioactive compound found in turmeric, has garnered attention for its potential anti-inflammatory properties and impact on liver health. Numerous studies suggest that CUR may be crucial in mitigating liver inflammation. The compound's anti-inflammatory effects are believed to be attributed to its ability to modulate various molecular pathways involved in the inflammatory response. Research indicates that CUR may suppress the activation of inflammatory cells and the production of pro-inflammatory cytokines in the liver. Additionally, it has been observed to inhibit the activity of transcription factors that play a key role in inflammation. By targeting these molecular mechanisms, CUR may help alleviate the inflammatory burden on the liver. Moreover, CUR's antioxidant properties are thought to contribute to its protective effects on the liver. Oxidative stress is closely linked to inflammation, and CUR's ability to neutralize free radicals may further support its anti-inflammatory action. While the evidence is promising, it is essential to note that more research is needed to fully understand the precise mechanisms through which CUR influences liver inflammation. Nevertheless, these findings suggest that CUR could be a potential therapeutic agent in managing liver inflammatory conditions. In this review, we explore the potential impact of CUR on inflammation, highlighting the key mechanisms involved, as reported in the literature.
Collapse
Affiliation(s)
- Olga Obrzut
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Aleksandra Gostyńska-Stawna
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Karolina Kustrzyńska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
5
|
Mehta J, Kumar P, Pawar SV. Exploration of capsaicin-encapsulated lignin nanoparticles for alleviating non-alcoholic fatty liver disease: In-vitro study. Int J Biol Macromol 2025; 303:140616. [PMID: 39909244 DOI: 10.1016/j.ijbiomac.2025.140616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a rising public health concern with limited effective therapeutic options, making it a significant risk factor for end-stage liver disease and cirrhosis, globally. This increasing prevalence of NAFLD underscores the development of innovative therapeutic approaches to confront the increasing prevalence of NAFLD. This research explores the potential of capsaicin-encapsulated lignin nanoparticles (Cap-LNPs) as a novel targeted therapeutic approach. Capsaicin, a bioactive compound has demonstrated anti-oxidant, anti-inflammatory, anti-steatotic, and anti-fibrotic properties that have a protective role against NAFLD. Lignin, recognized for its non-toxic, eco-friendly, multifunctional, and biodegradable attributes, has garnered significant attention as a versatile material for drug delivery systems. Incorporating these two natural compounds into nanoparticles offers a promising approach to enhance capsaicin's bioavailability, stability, and targeted delivery to hepatic cells. The Cap-LNPs were synthesized using the nanoprecipitation technique and characterized by a mean diameter of 200.2 ± 5.79 nm, polydispersity index (PDI) of 0.137 ± 0.0459 with spherical morphology, encapsulation efficiency of 96.85 ± 0.73 %, and drug loading capacity of 16.14 ± 0.12 %. In-vitro studies demonstrated that Cap-LNPs substantially reduced intracellular accumulation of triglyceride compared with free capsaicin and control groups, confirmed by Oil Red O staining and triglycerides (TG) quantification.
Collapse
Affiliation(s)
- Jhalak Mehta
- Pharmaceutical Biotechnology Research Lab, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Pankaj Kumar
- Pharmaceutical Biotechnology Research Lab, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Sandip V Pawar
- Pharmaceutical Biotechnology Research Lab, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
6
|
Li G, Dai Z, Guo J. Therapeutic Nanomaterials in NAFLD: Current Advances and Potential Applications in Patients with Concurrent HBV Infection. Int J Nanomedicine 2025; 20:3803-3823. [PMID: 40162335 PMCID: PMC11954402 DOI: 10.2147/ijn.s510271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Due to the high prevalence of non-alcoholic fatty liver disease (NAFLD) and chronic hepatitis B virus (HBV) infection, a significant proportion of patients suffer from both conditions simultaneously. The management of NAFLD in patients with concurrent HBV infection presents unique challenges, primarily due to the complex interplay between these two diseases. Nanomaterials have gained widespread attention due to their ability to overcome the limitations of conventional therapies. This review provides an overview of the current advances in therapeutic nanomaterials for NAFLD and explores their potential applications for personalized and effective management in patients with concurrent HBV infection. Furthermore, we discuss the challenges and future directions in the development of nanomaterials for the treatment of coexisting liver diseases.
Collapse
Affiliation(s)
- Guixin Li
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zheng Dai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jinghui Guo
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Wilar G, Suhandi C, Fukunaga K, Shigeno M, Kawahata I, Abdulah R, Sasaki T. Effects of nanocurcumin supplementation on metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2025; 213:107641. [PMID: 39894187 DOI: 10.1016/j.phrs.2025.107641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Metabolic syndrome (MetS) encompasses metabolic risk factors like elevated blood glucose, abnormal lipid levels, and hypertension. Nanocurcumin, a nanoscale formulation of curcumin, may offer therapeutic benefits for MetS management. This systematic review and meta-analysis evaluates the impact of nanocurcumin supplementation on key MetS parameters. METHODS A systematic literature search identified 20 randomized controlled trials (RCTs) with 1394 participants. Data were pooled using a random-effects model, and standardized mean differences (SMDs) were calculated for key outcomes. RESULTS Nanocurcumin supplementation significantly improved waist circumference (WC) (standardized mean difference (SMD): -0.30 cm), fasting blood sugar (FBS) (SMD: -0.34 mg/dL), HbA1c (SMD: -0.33 %), and quantitative insulin sensitivity check index (QUICKI) score (SMD: 0.73). Lipid profile parameters, including total cholesterol (SMD: -0.18 mg/dL), LDL-C (SMD: -0.16 mg/dL), and HDL-C (SMD: 0.32 mg/dL), also reduced significantly. Improvement in diastolic blood pressure (DBP) (SMD: -0.32 mmHg), total antioxidant capacity (TAC) (SMD: 0.44 mmol/L), malondialdehyde (MDA) (SMD: -0.37 mmol/L), tumor necrosis factor-α (TNF-α) (SMD: -2.30 ng/L), interleukin-6 (IL-6) (SMD: -1.07 ng/L), and high-sensitivity C-reactive protein (hs-CRP) (SMD: -0.34 mg/L) were observed. CONCLUSION Nanocurcumin supplementation significantly improves multiple MetS-related parameters, including anthropometric measures, glycemic control, lipid profile, blood pressure, oxidative stress markers, and inflammatory biomarkers. These findings highlight nanocurcumin's potential as an effective adjunctive therapy for managing MetS. However, the variability in study participant ages, treatment durations, and sample sizes suggests the need for further well-designed RCTs to establish optimal usage guidelines.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia.
| | - Cecep Suhandi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
8
|
Milewska-Kobos E, Szczepanek-Parulska E, Marciniak M, Wrotkowska E, Cieślewicz M, Dobrowolska A, Ruchala M. Association among nesfatin-1, obesity category, presence of obesity-related complications, and eating patterns in patients with obesity: Results of a single endocrine centre observational study. Peptides 2025; 185:171355. [PMID: 39921103 DOI: 10.1016/j.peptides.2025.171355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Since its discovery, nesfatin-1 (N1) has been recognised as an anorexigenic agent potentially related to obesity pathogenesis and development, including its modulatory effect on the brain's reward system and eating behaviours. As the results from human studies examining the relation between N1 serum levels, body mass index (BMI), and metabolic status are scarce and inconclusive, we aimed to investigate the association between serum N1 levels and obesity categories, obesity-related complications, and disturbed eating behaviour. We studied 110 patients with obesity divided into obesity categories according to their BMI and metabolic status. N1 was measured in a fasting state (N10) and 2 h after a glucose load (N12) and correlated with anthropometric measurements, serum analysis, and the presence of selected obesity-related complications. Neither N10 nor N12 correlated significantly with obesity; however, N10 tended to be high in patients with a high BMI. A positive correlation was observed among N12, fat-free mass (p = 0.022), and muscle mass (p = 0.02). We found positive correlations between N10 and N12 with aspartate aminotransferase (p = 0.012 and p = 0.022, respectively) and alanine aminotransferase (p = 0.027 and p = 0.006, respectively). Patients with dyslipidaemia had significantly higher N10 (p = 0.03) and N12 (p = 0.049) levels. Neither N10 nor N12 correlated significantly with disturbed eating behaviour; however, low N10 levels were associated with a hedonic eating pattern (p = 0.03). N1 may be involved in the pathogenesis of obesity and obesity-related complications; however, owing to the complex mechanisms of its secretion and action, further clinical and experimental research is needed.
Collapse
Affiliation(s)
- Ewa Milewska-Kobos
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland.
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Martyna Marciniak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Maja Cieślewicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Ul. Przybyszewskiego 49, Poznan 61-701, Poland
| |
Collapse
|
9
|
Karatayli E, Sadiq SC, Schattenberg JM, Grabbe S, Biersack B, Kaps L. Curcumin and Its Derivatives in Hepatology: Therapeutic Potential and Advances in Nanoparticle Formulations. Cancers (Basel) 2025; 17:484. [PMID: 39941855 PMCID: PMC11816286 DOI: 10.3390/cancers17030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Curcumin, a plant-derived polyphenol, shows promise in hepatology for treating both malignant and non-malignant liver diseases and a subset of extrahepatic cancers. Curcumin has hepatoprotective, anti-inflammatory, antifibrotic, and antiproliferative properties, as is evident in preclinical and clinical studies. This highlights its potential as an adjunct to established cancer therapies, especially in the context of hepatocellular carcinoma and secondary liver malignancies. Curcumin also demonstrates potential in metabolic dysfunction-associated steatotic liver disease (MASLD), owing to its antifibrotic and lipid-lowering effects. However, its clinical use is limited, relating to its poor bioavailability and rapid metabolism. Nanotechnology, including liposomal and polymeric carriers, alongside synthetic curcumin derivatives, offers strategies to enhance the bioavailability and pharmacokinetic properties. We propose to revisit the use of curcumin in nanoparticle preparations in chronic liver disease and summarize current evidence in this review article.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Shifana C. Sadiq
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Jörn M. Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany;
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, 95440 Bayreuth, Germany
| | - Leonard Kaps
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany;
| |
Collapse
|
10
|
Handu D, Stote K, Piemonte T. Evaluating Bioactive-Substance-Based Interventions for Adults with MASLD: Results from a Systematic Scoping Review. Nutrients 2025; 17:453. [PMID: 39940310 PMCID: PMC11820841 DOI: 10.3390/nu17030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Objective: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition affecting a broad population. This review aimed to identify and summarize the current evidence on bioactive-substance-based interventions for adults with MASLD, formerly known as nonalcoholic fatty liver disease (NAFLD), covering publications from 2000 to 2023. Methods: A search was conducted across six databases (MEDLINE, CINAHL, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, Food Science Source, and SPORTDiscus) for randomized controlled trials and other study types (e.g., prospective cohort studies and systematic reviews), reflecting the scoping nature of this review. The search was limited to studies in adults (>18 years old), with an intervention of interest and at least one comparator group. Results: A total of 4572 articles were retrieved, with 201 full-text articles screened for eligibility. Of these, 131 primary studies and 49 systematic reviews were included in the scoping review. The most studied bioactive substances were Curcumin (Turmeric) (n = 25), Silymarin (Milk Thistle) (n = 17), Resveratrol (n = 10), Coffee (n = 7), Green Tea (n = 5), and Berberine (n = 5 each). Moreover, 46 studies reported on 36 other bioactive substances with 2 or fewer articles each. Among the included systematic reviews, 13 focused on Curcumin, 12 on Coffee or Tea, 10 on bioactive substance combinations, 6 on Resveratrol, and 2 each on Silymarin and Artichoke Leaf. The included studies showed substantial heterogeneity in reported outcomes, which primarily focused on hepatic health, body weight, adverse events, glycemic control, blood lipids, and body composition. Conclusions: This scoping review highlights a range of bioactive substances used in the treatment of MASLD. While evidence is abundant for bioactive substances like Curcumin and Silymarin, further research and synthesis of findings is necessary to establish the clinical efficacy of all bioactive substances.
Collapse
Affiliation(s)
- Deepa Handu
- Academy of Nutrition and Dietetics, Chicago, IL 60606, USA;
| | - Kim Stote
- Department of Allied Health Sciences, State University of New York, Empire State University, Saratoga Springs, NY 12866, USA;
| | - Tami Piemonte
- Academy of Nutrition and Dietetics, Chicago, IL 60606, USA;
| |
Collapse
|
11
|
Tipduangta P, Saokham P, Jiaranaikulwanitch J, Okonogi S, Ampasavate C, Kiattisin K. Boosting Therapeutic Effect of Turmeric, Coffee, and Chili Extracts Through Experimental Design and Encapsulation as Nanostructured Lipid Carriers for Novel Heath Supplements. PLANTS (BASEL, SWITZERLAND) 2025; 14:236. [PMID: 39861589 PMCID: PMC11768308 DOI: 10.3390/plants14020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
This study investigates the potential synergistic effects of extracts from Curcuma longa (turmeric), Coffea arabica (Arabica coffee beans), and Capsicum annuum (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The extract combination showed higher antioxidant activity and comparable anti-inflammatory effects relative to each single extract. Additionally, the extract combination demonstrated effective activity compared with turmeric extract while using a lower concentration, resulting in reduced cytotoxicity. The optimized extract combination was successfully incorporated into nanostructured lipid carriers (NLCs) with a hydrodynamic diameter of 258.0 ± 10.2 nm, which effectively redisperses after the spray-drying process with increased diameter to 349.8 ± 49.6 nm. Under stress conditions, the stability of curcumin and capsaicin in dried-NLCs was maintained. In summary, the optimized extract-loaded NLCs formulation, achieved through a multistage approach, shows promise in mitigating oxidative stress and inflammation, suggesting its potential as a valuable daily dietary supplement.
Collapse
Affiliation(s)
- Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (P.S.); (J.J.); (S.O.); (C.A.)
| | - Phennapha Saokham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (P.S.); (J.J.); (S.O.); (C.A.)
| | - Jutamas Jiaranaikulwanitch
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (P.S.); (J.J.); (S.O.); (C.A.)
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (P.S.); (J.J.); (S.O.); (C.A.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chadarat Ampasavate
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (P.S.); (J.J.); (S.O.); (C.A.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (P.S.); (J.J.); (S.O.); (C.A.)
| |
Collapse
|
12
|
Ebrahimzadeh A, Ebrahimzadeh A, Fooladshekan S, Mohseni S, Mohtashamian A, Babajafari S, Sohrabi Z. Therapeutic effects of curcumin supplementation on liver enzymes of nonalcoholic fatty liver disease patients: A systematic review and meta-analysis of randomized clinical trials. Food Sci Nutr 2025; 13:e4144. [PMID: 39803230 PMCID: PMC11716989 DOI: 10.1002/fsn3.4144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 01/05/2025] Open
Abstract
Curcumin, as an antioxidant agent, has been proposed as a potential treatment for nonalcoholic fatty liver disease (NAFLD). The aim of the current systematic review and meta-analysis was to summarize earlier findings regarding the effect of curcumin supplementation on liver enzymes and ALP in NAFLD patients. All studies published up to November 18, 2022, were searched through the PubMed, SCOPUS, and Web of Science databases to collect all randomized clinical trials (RCTs) on NAFLD patients in which curcumin was used as a treatment. A random-effects model was used to measure pooled effect sizes. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were used to report pooled effect sizes. Subgroup analysis was utilized to investigate heterogeneity. A total of 14 studies were included in this systematic review and meta-analysis. Our pooled meta-analysis indicated a significant decrease in alanine aminotransferase (ALT) following curcumin therapy by pooling 12 effect sizes (WMD: -8.72; 95% CI: -15.16, -2.27, I 2 = 94.1%) and in aspartate aminotransferase (AST) based on 13 effect sizes (WMD: -6.35; 95% CI: -9.81, -2.88, I 2 = 94.4%). However, the pooled analysis of five trials indicated that there was no significant association between curcumin therapy and alkaline phosphatase (ALP) in NAFLD patients (WMD: -4.71; 95% CI: -13.01, 3.58, I 2 = 64.2%). Nevertheless, subgroup analyses showed significant effects of curcumin on ALP with a longer duration of supplementation. The findings of this systematic review and meta-analysis support the potential effect of curcumin on the management of NAFLD. Further randomized controlled trials should be conducted in light of our findings.
Collapse
Affiliation(s)
- Armin Ebrahimzadeh
- Nutrition Research Center, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Anahita Ebrahimzadeh
- Nutrition Research Center, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Sara Fooladshekan
- Dental Research CenterGolestan University of Medical SciencesGorganIran
| | - Shokouh Mohseni
- Nutrition Research Center, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Abbas Mohtashamian
- Student Research Committee, Department of Nutrition, Faculty of MedicineKashan University of Medical SciencesKashanIran
| | - Siavash Babajafari
- Nutrition Research Center, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Zahra Sohrabi
- Nutrition Research Center, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
13
|
Vajdi M, Hassanizadeh S, Hassanizadeh R, Bagherniya M. Curcumin supplementation effect on liver enzymes in patients with nonalcoholic fatty liver disease: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Rev 2025; 83:1-12. [PMID: 38213188 DOI: 10.1093/nutrit/nuad166] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
CONTEXT Clinical evidence from investigations of the effects of curcumin on liver enzymes in patients with nonalcoholic fatty liver disease (NAFLD) have led to inconsistent results. OBJECTIVE The aim of this systematic review and meta-analysis was to investigate the overall effects of curcumin and curcumin plus piperine supplementation on liver enzymes such as alanine aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST) in patients with NAFLD. DATA SOURCES The Scopus, Web of Science, PubMed, and Cochrane Library databases were searched from inception through July 2023, using search terms representing NAFLD and liver enzymes. Articles were screened independently by 2 researchers based on PICOS inclusion criteria. DATA EXTRACTION The following data were extracted: first author's name, study location, year of publication, mean age, study duration, study design, participants' sex, number of participants in each group, dose of curcumin supplementation, and ALT, ALP, and AST concentrations. Risk of bias was assessed using the Cochrane Collaboration's modified risk-of-bias tool. DATA ANALYSIS Fixed- or random-effects meta-analysis was performed to estimate the effects of curcumin on liver enzymes, considering heterogeneity across studies. The I2 and Cochran's Q tests were used to assess heterogeneity between studies. RESULTS Overall, 15 randomized controlled trials comprising 905 participants were eligible for this meta-analysis. Curcumin supplementation significantly reduced ALT (weighted mean difference [WMD], -4.10, 95%CI, -7.16 to -1.04) and AST (WMD, -3.27; 95%CI, -5.16 to -1.39), but not ALP (WMD, -0.49; 95%CI, -1.79 to 0.82). Curcumin plus piperine supplementation had no significant effect on ALT (WMD, -3.79; 95%CI, -13.30 to 5.72), and AST (WMD, -1.1; 95%CI, -3.32 to 1.09). CONCLUSIONS Curcumin supplementation improved AST and ALT levels compared with the control group. However, better-designed randomized controlled trials with larger sample sizes and of higher quality are needed to assess the effects of curcumin on ALP. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023448231.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Hassanizadeh
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Hassanizadeh
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Yadav P, Quadri K, Kadian R, Waziri A, Agrawal P, Alam MS. New approaches to the treatment of metabolic dysfunction-associated steatotic liver with natural products. ILIVER 2024; 3:100131. [DOI: 10.1016/j.iliver.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Beigoli S, Boskabady MH. The molecular basis of the immunomodulatory effects of natural products: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156028. [PMID: 39276685 DOI: 10.1016/j.phymed.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Natural products (NPs) have long been recognized for their potential to modulate the immune system, offering a natural and holistic approach to enhancing immune function. In recent years, the immunomodulation effects of various natural products have attained significant attention. PURPOSE This article provides an overview of the role of natural products in immunomodulation, exploring their mechanisms of action, common types of NPs with immunomodulation properties, clinical applications, as well as considerations for their safety and efficacy. METHODS Extensive research has been conducted to compile important discoveries on the immunomodulatory properties of NPs through thorough searches of multiple databases such as PubMed, Science Direct, and Scopus up until January 2024. RESULTS By decreasing the levels of Th2 cytokines and pro-inflammatory cytokines, the results suggested that NPs have the ability to modulate the immune system. Therefore, NPs alleviate inflammation in various disorders such as asthma and cancer. Furthermore, the observed increase in CD4 cells and IFN-ɣ/IL4 levels, along with an increased IFN-c/IL4 ratio, indicates a stimulatory effect of NPs on Th1 activity in various inflammatory conditions. Therefore, NPs regulate the immune system by inhibiting T-cells and decreasing the growth of young B-cell lymphoma cells. CONCLUSION Reviewing studies indicated that NPs have the potential to serve as immunomodulatory candidates for treating disorders characterized by immune dysregulation. However, additional experimental and clinical studies are necessary before these agents can be implemented in clinical settings.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Ranneh Y, Bedir AS, Abu-Elsaoud AM, Al Raish S. Polyphenol Intervention Ameliorates Non-Alcoholic Fatty Liver Disease: An Updated Comprehensive Systematic Review. Nutrients 2024; 16:4150. [PMID: 39683546 PMCID: PMC11644642 DOI: 10.3390/nu16234150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a challenging metabolic disorder with a strong emphasis on its prevention and management. Polyphenols, a group of naturally occurring plant compounds, have been associated with a decreased risk of various metabolic disorders related to NAFLD. The current systematic review aims to critically assess evidence about the ameliorative effect of polyphenol supplementation on NAFLD patients. A PRISMA systematic search appraisal was conducted in PubMed, Scopus, Web of Science Core Collection, and all relevant studies published prior to April 2024 and met the inclusion criteria were included. Twenty-nine randomized clinical trials (RCTs) comprised 1840 NAFLD patients. The studies primarily examined eleven phenolic compounds, including turmeric, curcumin, resveratrol, genistein, catechin, green tea extract, hesperidin, and silymarin. Turmeric and curcumin decreased liver enzymes, inflammatory cytokines, lipid profile, insulin resistance, and NAFLD score, while resveratrol did not present consistent results across all the studies. Most studies on silymarin showed a reduction in liver enzymes and lipid profile; however, no changes were observed in inflammatory cytokine levels. The dietary supplementation of hesperidin and naringenin or green tea extract caused improvements in liver enzyme, lipid profile, and inflammatory cytokine, while genistein supplementation did not modulate blood lipid profile. In conclusion, dietary supplementation of polyphenols could potentially prevent and ameliorate NAFLD. Still, the inconsistent results across the included RCTs require further clinical research to establish optimal dosage and duration.
Collapse
Affiliation(s)
- Yazan Ranneh
- Department of Nutrition and Dietetics, College of Pharmacy, Al-Ain University, Al-Ain P.O. Box 64141, United Arab Emirates;
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Abdelghafar M. Abu-Elsaoud
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Seham Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
17
|
Ezhilarasan D, Langeswaran K. Hepatocellular Interactions of Potential Nutraceuticals in the Management of Inflammatory NAFLD. Cell Biochem Funct 2024; 42:e4112. [PMID: 39238138 DOI: 10.1002/cbf.4112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells. These cells acquire a profibrogenic phenotype, leading to extracellular matrix accumulation and fibrosis. Persistent fibrosis can progress to cirrhosis. Fatty infiltration, oxidative stress, and inflammation exacerbate fatty liver diseases. Thus, many plant-derived antioxidants, like silymarin, silibinin, curcumin, resveratrol, berberine, and quercetin, have been extensively studied in experimental models and clinical patients with NAFLD. Experimentally, these compounds have shown beneficial effects in reducing lipid accumulation, oxidative stress, and inflammatory markers by modulating the ERK, NF-κB, AMPKα, and PPARγ pathways. They also help decrease metabolic endotoxemia, intestinal permeability, and gut inflammation. Clinically, silymarin and silibinin have been found to reduce transaminase levels, while resveratrol and curcumin help alleviate inflammation in NAFLD patients. However, these phytocompounds exhibit poor water solubility, leading to low oral bioavailability and hindering their biological efficacy. Additionally, inconclusive clinical results highlight the need for further trials with larger populations, longer durations, and standardized protocols.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Hepatology and Molecular Medicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Kulanthaivel Langeswaran
- Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
18
|
Li X, Li M. Unlocking Cholesterol Metabolism in Metabolic-Associated Steatotic Liver Disease: Molecular Targets and Natural Product Interventions. Pharmaceuticals (Basel) 2024; 17:1073. [PMID: 39204178 PMCID: PMC11358954 DOI: 10.3390/ph17081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD), the hepatic manifestation of metabolic syndrome, represents a growing global health concern. The intricate pathogenesis of MASLD, driven by genetic, metabolic, epigenetic, and environmental factors, leads to considerable clinical variability. Dysregulation of hepatic lipid metabolism, particularly cholesterol homeostasis, is a critical factor in the progression of MASLD and its more severe form, metabolic dysfunction-associated steatohepatitis (MASH). This review elucidates the multifaceted roles of cholesterol metabolism in MASLD, focusing on its absorption, transportation, biosynthesis, efflux, and conversion. We highlight recent advancements in understanding these processes and explore the therapeutic potential of natural products such as curcumin, berberine, and resveratrol in modulating cholesterol metabolism. By targeting key molecular pathways, these natural products offer promising strategies for MASLD management. Finally, this review also covers the clinical studies of natural products in MASLD, providing new insights for future research and clinical applications.
Collapse
Affiliation(s)
| | - Meng Li
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China;
| |
Collapse
|
19
|
Rathnayake DW, Sooriyaarachchi P, Niriella MA, Ediriweera D, Perera J. Herbal treatments for non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. ADVANCES IN INTEGRATIVE MEDICINE 2024. [DOI: 10.1016/j.aimed.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Aragón-Vela J, Sánchez-Oliver AJ, Huertas JR, Casuso RA. Does curcumin improve liver enzymes levels in nonalcoholic fatty liver disease? A systematic review, meta-analysis, and meta-regression. Phytother Res 2024; 38:4261-4271. [PMID: 38965866 DOI: 10.1002/ptr.8274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
The aim of this meta-analysis is to investigate the sources of heterogeneity in randomized clinical trials examining the effects of curcumin supplementation on liver aminotransferases in subjects with nonalcoholic fatty liver disease (NAFLD). We conducted a systematic search of the PubMed, SCOPUS, and Web of Science databases for randomized clinical trials and identified 15 studies (n = 835 subjects). We used random-effects models with DerSimonian-Laird methods to analyze the serum levels of alanine aminotransferase and aspartate aminotransferase enzymes. Our results indicate that curcumin did not affect serum alanine aminotransferase, but it did reduce aspartate aminotransferase levels. Notably, both outcomes showed high heterogeneity (p < 0.01). Subgroup analysis revealed that adding piperine to curcumin did not benefit aminotransferase levels in NAFLD patients. Additionally, we found a negative correlation between the duration of the intervention and the relative (mg/kg/day) curcumin dose with the reduction in liver aminotransferases. In summary, the sources of heterogeneity identified in our study are likely attributed to the duration of the intervention and the relative dose of curcumin. Consequently, longer trials utilizing high doses of curcumin could diminish the positive impact of curcumin in reducing serum levels of aminotransferases in patients with NAFLD.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, University of Jaen, Jaén, Spain
| | - Antonio J Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, Facultad de Ciencias de la Educación, Universidad de Sevilla, Sevilla, Spain
| | - Jesús R Huertas
- Institutes of Nutrition and Food Technology, Department of Physiology, University of Granada, Granada, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Universidad Loyola Andalucía, Córdoba, Spain
| |
Collapse
|
21
|
Soltani M, Hosseinzadeh-Attar MJ, Rezaei M, Alipoor E, Vasheghani-Farahani A, Yaseri M, Rezayat SM. Effect of nano-curcumin supplementation on cardiometabolic risk factors, physical and psychological quality of life, and depression in patients with coronary slow flow phenomenon: a randomized double-blind clinical trial. Trials 2024; 25:515. [PMID: 39085864 PMCID: PMC11290174 DOI: 10.1186/s13063-024-08354-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Extensive evidence has suggested the cardio-protective properties of the polyphenol curcumin. The aim of this study was to investigate the effects of a highly bioavailable curcumin supplement on cardiometabolic risk factors, health-related quality of life, and depression in patients with coronary slow flow phenomenon (CSFP). METHODS This randomized double-blind placebo-controlled clinical trial was conducted in 42 patients with CSFP (age 35-70 years, 25 ≤ body mass index < 40 kg/m2). Patients received either 80 mg/day nano-curcumin or placebo for 12 weeks. Serum levels of visfatin, high-sensitivity C-reactive protein (hs-CRP), and glycemic indices were measured before and after the intervention. The short form 36-item quality of life (SF-36) and Beck's Depression Inventory-II (BDI-II) questionnaires were assessed, as well. RESULTS No significant improvements were observed in circulating hs-CRP and visfatin following the intervention. A significant increase was observed in pre- to post-fasting blood glucose (- 0.9 ± 12.2 vs. 7.7 ± 12.4 mg/dl, p = 0.02) and hemoglobin A1C (- 0.1 ± 0.8 vs. 0.5 ± 0.8%, p = 0.04) levels, in the placebo compared with the intervention group. Physical (8.2 ± 8.1 vs. - 1.2 ± 6.5, p < 0.001) and mental (6.8 ± 11.8 vs. - 1.1 ± 10.4, p = 0.02) component summary scores were significantly improved in the nano-curcumin than the placebo group. Additionally, the number of patients with lower degrees of depression was significantly better in the intervention than the placebo group following the supplementation (p = 0.046). CONCLUSION Curcumin supplementation prevented deterioration of glycemic control and improved physical and psychological quality of life and depression in patients with CSFP. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT20131125015536N8), June 19, 2019.
Collapse
Affiliation(s)
- Mitra Soltani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Clinical Cardiac Electrophysiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahsa Rezaei
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Alipoor
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Department of Clinical Cardiac Electrophysiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Liu H, Li Y, Jin Y, Li X, Wang D, Yu X, Jiang Z, Yin G, Chen S, Zhang X, Meng D, Yu W, Jiang W, Zhang F. Effects of different natural products in patients with non-alcoholic fatty liver disease-A network meta-analysis of randomized controlled trials. Phytother Res 2024; 38:3801-3824. [PMID: 38886838 DOI: 10.1002/ptr.8182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 06/20/2024]
Abstract
Due to a scarcity of appropriate therapeutic approaches capable of ameliorating or eliminating non-alcoholic fatty liver disease (NAFLD), many researchers have come to focus on natural products based on traditional medicine that can be utilized to successfully treat NAFLD. In this study, we aimed to evaluate the effects exerted by seven natural products (curcumin, silymarin, resveratrol, artichoke leaf extract, berberine, catechins, and naringenin) on patients with NAFLD. For this purpose, PubMed, Embase, Cochrane Library, and Web of Science, were searched for randomized controlled trials (RCTs) exclusively. The selected studies were evaluated for methodological quality via the Cochrane bias risk assessment tool, and data analysis software was used to analyze the data accordingly. The RCTs from the earliest available date until September 2022 were collected. This process resulted in 37 RCTs with a total sample size of 2509 patients being included. The results of the network meta-analysis showed that artichoke leaf extract confers a relative advantage in reducing the aspartate aminotransferase (AST) levels (SUCRA: 99.1%), alanine aminotransferase (ALT) levels (SUCRA: 88.2%) and low-density lipoprotein cholesterol (LDL-C) levels (SUCRA: 88.9%). Naringenin conferred an advantage in reducing triglyceride (TG) levels (SUCRA: 97.3%), total cholesterol (TC) levels (SUCRA: 73.9%), and improving high-density lipoprotein cholesterol (HDL-C) levels (SUCRA: 74.9%). High-density catechins significantly reduced body mass index (BMI) levels (SUCRA: 98.5%) compared with the placebo. The Ranking Plot of the Network indicated that artichoke leaf extract and naringenin performed better than the other natural products in facilitating patient recovery. Therefore, we propose that artichoke leaf extract and naringenin may exert a better therapeutic effect on NAFLD. This study may help guide clinicians and lead to further detailed studies.
Collapse
Affiliation(s)
- Hongshuai Liu
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yufei Li
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yan Jin
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xin Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Dongxian Wang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaowen Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Suwen Chen
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Decheng Meng
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wenfei Yu
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wenyin Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
23
|
He Y, Chen X, Li Y, Liang Y, Hong T, Yang J, Cao Z, Mai H, Yao J, Zhang T, Wu K, Zou J, Feng D. Curcumin supplementation alleviates hepatic fat content associated with modulation of gut microbiota-dependent bile acid metabolism in patients with nonalcoholic simple fatty liver disease: a randomized controlled trial. Am J Clin Nutr 2024; 120:66-79. [PMID: 38795741 DOI: 10.1016/j.ajcnut.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Our previous studies showed that curcumin prevented hepatic steatosis in animal models. OBJECTIVES This study aimed to assess the effects of curcumin on hepatic fat content, body composition, and gut microbiota-dependent bile acid (BA) metabolism in patients with nonalcoholic simple fatty liver (NASFL). METHODS In a 24-wk double-blind randomized trial, 80 patients with NASFL received 500 mg/d curcumin or placebo. Hepatic fat content was measured using FibroTouch-based controlled attenuation parameters (CAPs). Microbial composition and BA metabolites were analyzed using 16S rRNA sequencing and metabolomics. RESULTS Curcumin consumption significantly reduced CAP value compared with placebo (-17.5 dB/m; 95% confidence interval [CI]: -27.1, -7.8 dB/m; P < 0.001). This corresponded to reduction in weight (-2.6 kg; 95% CI: -4.4, -0.8 kg; P < 0.001) and BMI (-1.0 kg/m2; 95% CI: -2.0, -0.1 kg/m2; P = 0.032) compared with placebo group. Additionally, free fatty acid (-0.12 mmol/L; 95% CI: -0.20, -0.04 mmol/L; P = 0.004), triglycerides (-0.29 mmol/L; 95% CI: -0.41, -0.14 mmol/L; P < 0.001), fasting blood glucose (-0.06 mmol/L; 95% CI: -0.12, -0.01 mmol/L; P = 0.038), hemoglobin A1c (-0.06%; 95% CI: -0.33, -0.01%; P = 0.019), and insulin (-4.94 μU/L; 95% CI: -9.73, -0.15 μU/L; P = 0.043) showed significant reductions in the curcumin group compared with placebo group. Gut microbiota analysis indicated that curcumin significantly decreased Firmicutes to Bacteroidetes ratio and significantly increased Bacteroides abundance. Serum levels of deoxycholic acid, the most potent activator of Takeda G protein-coupled receptor 5 (TGR5), were significantly elevated after curcumin intervention (37.5 ng/mL; 95% CI: 6.7, 68.4 ng/mL; P = 0.018). Curcumin treatment also increased TGR5 expression in peripheral blood mononuclear cells and serum glucagon-like peptide-1 levels (0.73 ng/mL; 95% CI: 0.16, 1.30 ng/mL; P = 0.012). CONCLUSIONS Improvements in gut microbiota-dependent BA metabolism and TGR5 activation after 24-wk curcumin intervention were associated with a reduction in hepatic fat content in patients with NASFL, providing evidence that curcumin is a potential nutritional therapy for NASFL. The trial was registered at www.chictr.org.cn as ChiCTR2200058052.
Collapse
Affiliation(s)
- Youming He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongchun Li
- Department of Infectious Diseases, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yunyi Liang
- Health Management Center, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Ting Hong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhuo Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Mai
- Department of Clinical Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiale Yao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tong Zhang
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Kaize Wu
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jun Zou
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Liu Q, Wang C, Guo X, Du Q, Keshavarzi M. Curcumin and its nano-formulations combined with exercise: From molecular mechanisms to clinic. Cell Biochem Funct 2024; 42:e4061. [PMID: 38812287 DOI: 10.1002/cbf.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Curcumin is a strong substance derived from turmeric, a popular spice, renowned for its antioxidant and anti-inflammatory abilities. The study delved deeply into a thorough examination of various sources to evaluate the impact of both regular curcumin and nano-formulated curcumin on elements that impact physical performance, including muscular strain, discomfort, swelling, and oxidative tension. While engaging in exercise, the body experiences a rise in reactive oxygen species and inflammation. As a result, it is important to ensure a proper balance between internal and external sources of antioxidants to maintain stability in the skeletal muscle. Without this balance, there is a risk of muscle soreness, damage, and ultimately, a decline in exercise performance. Curcumin possesses the ability to enhance physical performance and reduce the symptoms of muscle fatigue and injury by virtue of its antioxidative and anti-inflammatory properties. Including curcumin supplements appears to have advantageous effects on various aspects of exercise, such as enhancing performance, assisting with recovery, lessening muscle damage and discomfort, and lowering levels of inflammation and oxidative stress. However, a thorough assessment is necessary to precisely gauge the healing advantages of curcumin in enhancing exercise ability and reducing recovery time.
Collapse
Affiliation(s)
- Qian Liu
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Chengyu Wang
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Xinyan Guo
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Qiankun Du
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Lee YM, Kim Y. Is Curcumin Intake Really Effective for Chronic Inflammatory Metabolic Disease? A Review of Meta-Analyses of Randomized Controlled Trials. Nutrients 2024; 16:1728. [PMID: 38892660 PMCID: PMC11174746 DOI: 10.3390/nu16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This review aimed to examine the effects of curcumin on chronic inflammatory metabolic disease by extensively evaluating meta-analyses of randomized controlled trials (RCTs). We performed a literature search of meta-analyses of RCTs published in English in PubMed®/MEDLINE up to 31 July 2023. We identified 54 meta-analyses of curcumin RCTs for inflammation, antioxidant, glucose control, lipids, anthropometric parameters, blood pressure, endothelial function, depression, and cognitive function. A reduction in C-reactive protein (CRP) levels was observed in seven of ten meta-analyses of RCTs. In five of eight meta-analyses, curcumin intake significantly lowered interleukin 6 (IL-6) levels. In six of nine meta-analyses, curcumin intake significantly lowered tumor necrosis factor α (TNF-α) levels. In five of six meta-analyses, curcumin intake significantly lowered malondialdehyde (MDA) levels. In 14 of 15 meta-analyses, curcumin intake significantly reduced fasting blood glucose (FBG) levels. In 12 of 12 meta-analyses, curcumin intake significantly reduced homeostasis model assessment of insulin resistance (HOMA-IR). In seven of eight meta-analyses, curcumin intake significantly reduced glycated hemoglobin (HbA1c) levels. In eight of ten meta-analyses, curcumin intake significantly reduced insulin levels. In 14 of 19 meta-analyses, curcumin intake significantly reduced total cholesterol (TC) levels. Curcumin intake plays a protective effect on chronic inflammatory metabolic disease, possibly via improved levels of glucose homeostasis, MDA, TC, and inflammation (CRP, IL-6, TNF-α, and adiponectin). The safety and efficacy of curcumin as a natural product support the potential for the prevention and treatment of chronic inflammatory metabolic diseases.
Collapse
Affiliation(s)
- Young-Min Lee
- Department of Practical Science Education, Gyeongin National University of Education, Gyesan-ro 62, Gyeyang-gu, Incheon 21044, Republic of Korea;
| | - Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
26
|
Nendouvhada LP, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Meyer M, Gabuza KB. Phytonanotherapy for the Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:5571. [PMID: 38891759 PMCID: PMC11171778 DOI: 10.3390/ijms25115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease, is a steatotic liver disease associated with metabolic syndrome (MetS), especially obesity, hypertension, diabetes, hyperlipidemia, and hypertriglyceridemia. MASLD in 43-44% of patients can progress to metabolic dysfunction-associated steatohepatitis (MASH), and 7-30% of these cases will progress to liver scarring (cirrhosis). To date, the mechanism of MASLD and its progression is not completely understood and there were no therapeutic strategies specifically tailored for MASLD/MASH until March 2024. The conventional antiobesity and antidiabetic pharmacological approaches used to reduce the progression of MASLD demonstrated favorable peripheral outcomes but insignificant effects on liver histology. Alternatively, phyto-synthesized metal-based nanoparticles (MNPs) are now being explored in the treatment of various liver diseases due to their unique bioactivities and reduced bystander effects. Although phytonanotherapy has not been explored in the clinical treatment of MASLD/MASH, MNPs such as gold NPs (AuNPs) and silver NPs (AgNPs) have been reported to improve metabolic processes by reducing blood glucose levels, body fat, and inflammation. Therefore, these actions suggest that MNPs can potentially be used in the treatment of MASLD/MASH and related metabolic diseases. Further studies are warranted to investigate the feasibility and efficacy of phytonanomedicine before clinical application.
Collapse
Affiliation(s)
- Livhuwani P. Nendouvhada
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale O. Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Abram M. Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Kwazikwakhe B. Gabuza
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
27
|
Rezaei M, Soltani M, Alipoor E, Rezayat SM, Vasheghani-Farahani A, Yaseri M, Firouzi A, Hosseinzadeh-Attar MJ. Effect of nano-curcumin supplementation on angina status, and traditional and novel cardiovascular risk factors in overweight or obese patients with coronary slow flow phenomenon: a randomized double-blind placebo-controlled clinical trial. BMC Nutr 2024; 10:73. [PMID: 38741194 DOI: 10.1186/s40795-024-00877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Cardiovascular events and poor quality of life are frequently observed in patients with coronary slow flow phenomenon (CSFP). This trial evaluated the effect of nano-curcumin supplement containing curcuminoids, as multifunctional nutraceuticals, on angina status, and some traditional and novel cardiovascular risk factors in overweight or obese patients with CSFP. METHODS In this double-blind, randomized, placebo-controlled clinical trial, 42 overweight or obese patients with CSFP received either 80 mg/day of nano-curcumin or placebo for 12 weeks. Seattle angina questionnaire (SAQ) as a clinical measure of angina status, circulating endocan, adropin, homocysteine, lipid profile, and the novel scores of visceral adiposity index (VAI) and waist-triglyceride index (WTI) were assessed before and after the intervention. The independent samples t-test, Mann-Whitney test, analysis of covariance, Chi-square, and Fisher's exact tests were used where appropriate. RESULTS All domains of SAQ including physical limitation, angina stability, angina frequency-severity, treatment satisfaction, and disease perception and quality of life improved significantly in the nano-curcumin compared with the placebo group. No significant changes were observed in serum endocan, adropin, and homocysteine following the intervention. Triglycerides, triglyceride/high-density lipoprotein cholesterol ratio, WTI and VAI values improved significantly only within the nano-curcumin group. CONCLUSIONS Supplementation with 80 mg/day nano-curcumin (containing curcuminoids) for 12 weeks significantly improved clinically important disease-specific aspects of health in patients with CSFP. Some traditional and novel cardiovascular risk factors improved significantly only compared with the baseline values, which need further investigation. TRIAL REGISTRATION This study was approved by the Ethics Committee of Tehran University of Medical Sciences (IR.TUMS.VCR.REC.1398.794). The study protocol was registered at Iranian Registry of Clinical Trials by IRCT20131125015536N8 registration ID at 19.06.2019.
Collapse
Affiliation(s)
- Mahsa Rezaei
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Soltani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Alipoor
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nanomedicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Cardiac Electrophysiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ata Firouzi
- Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Wang H, Zheng C, Tian F, Xiao Z, Sun Z, Lu L, Dai W, Zhang Q, Mei X. Improving the Dissolution Rate and Bioavailability of Curcumin via Co-Crystallization. Pharmaceuticals (Basel) 2024; 17:489. [PMID: 38675449 PMCID: PMC11053631 DOI: 10.3390/ph17040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumin (CUR) is a natural polyphenolic compound with various pharmacological activities. Low water solubility and bioavailability limit its clinical application. In this work, to improve the bioavailability of CUR, we prepared a new co-crystal of curcumin and L-carnitine (CUR-L-CN) via liquid-assisted grinding. Both CUR and L-CN have high safe dosages and have a wide range of applications in liver protection and animal nutrition. The co-crystal was fully characterized and the crystal structure was disclosed. Dissolution experiments were conducted in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF). CUR-L-CN exhibited significantly faster dissolution rates than those of pure CUR. Hirshfeld surface analysis and wettability testing indicate that CUR-L-CN has a higher affinity for water and thus exhibits faster dissolution rates. Pharmacokinetic studies were performed in rats and the results showed that compared to pure CUR, CUR-L-CN exhibited 6.3-times-higher AUC0-t and 10.7-times-higher Cmax.
Collapse
Affiliation(s)
- Hao Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Chenxuan Zheng
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fanyu Tian
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Ziyao Xiao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Zhixiong Sun
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Liye Lu
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Wenjuan Dai
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Qi Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Xuefeng Mei
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| |
Collapse
|
29
|
Bertoncini-Silva C, Vlad A, Ricciarelli R, Giacomo Fassini P, Suen VMM, Zingg JM. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants (Basel) 2024; 13:331. [PMID: 38539864 PMCID: PMC10967568 DOI: 10.3390/antiox13030331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Curcumin, a natural polyphenolic component from Curcuma longa roots, is the main bioactive component of turmeric spice and has gained increasing interest due to its proposed anti-cancer, anti-obesity, anti-inflammatory, antioxidant, and lipid-lowering effects, in addition to its thermogenic capacity. While intake from dietary sources such as curry may be sufficient to affect the intestinal microbiome and thus may act indirectly, intact curcumin in the body may be too low (<1 microM) and not sufficient to affect signaling and gene expression, as observed in vitro with cultured cells (10-20 microM). Several strategies can be envisioned to increase curcumin levels in the body, such as decreasing its metabolism or increasing absorption through the formation of nanoparticles. However, since high curcumin levels could also lead to undesired regulatory effects on cellular signaling and gene expression, such studies may need to be carefully monitored. Here, we review the bioavailability of curcumin and to what extent increasing curcumin levels using nanoformulations may increase the bioavailability and bioactivity of curcumin and its metabolites. This enhancement could potentially amplify the disease-preventing effects of curcumin, often by leveraging its robust antioxidant properties.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
30
|
Ebrahimzadeh A, Mohseni S, Safargar M, Mohtashamian A, Niknam S, Bakhoda M, Afshari S, Jafari A, Ebrahimzadeh A, Fooladshekan S, Mohtashami A, Ferns GA, Babajafari S, Sohrabi Z. Curcumin effects on glycaemic indices, lipid profile, blood pressure, inflammatory markers and anthropometric measurements of non-alcoholic fatty liver disease patients: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2024; 80:103025. [PMID: 38232906 DOI: 10.1016/j.ctim.2024.103025] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Curcumin has antioxidant properties and has been proposed as a potential treatment for NAFLD. The aim of current systematic review and meta-analysis was to evaluate previous findings for the effect of curcumin supplementation on glycaemic indices, lipid profile, blood pressure, inflammatory markers, and anthropometric measurements of NAFLD patients. METHODS Relevant studies published up to January 2024 were searched systematically using the following databases: PubMed, SCOPUS, WOS, Science Direct, Ovid and Cochrane. The systematic review and meta-analysis were conducted according to the 2020 PRISMA guidelines. The quality of the papers was assessed the using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist. Pooled effect sizes were calculated using a random-effects model and reported as the WMD and 95% CI. Also, subgroup analyses were done to find probable sources of heterogeneity among studies. RESULTS Out of 21010 records initially identified, 21 eligible RCTs were selected for inclusion in a meta-analysis. Overall, 1191 participants of both genders, 600 in the intervention and 591 in the control group with NAFLD were included. There are several limitations in the studies that were included, for instance, the results are weakened substantially by potential bias or failure to account for potential adulteration (with pharmaceuticals) or contamination (with other herbs) of the curcumin supplements that were tested. However, previous studies have reported curcumin to be a safe complementary therapy for several conditions. Our study indicated that curcumin supplementation in doses of 50-3000 mg/day was associated with significant change in FBG [WMD: -2.83; 95% CI: -4.61, -1.06), I2 = 51.3%], HOMA-IR [WMD: -0.52; 95% CI: -0.84, -0.20), I2= 82.8%], TG [WMD: -10.31; 95% CI: -20.00, -0.61), I2 = 84.5%], TC [WMD: -11.81; 95% CI: -19.65, -3.96), I2 = 94.6%], LDL [WMD: -8.01; 95% CI: -15.79, -0.24), I2 = 96.1%], weight [WMD: -0.81; 95% CI: -1.28, -0.35), I2= 0.0%] and BMI [WMD: -0.35; 95% CI: -0.57, -0.13), I2= 0.0%] in adults with NAFLD. There was no significant change in HbA1C, plasma insulin, QUICKI, HDL, SBP, DBP, CRP, TNF-α and WC after curcumin therapy. Subgroup analysis suggested a significant changes in serum FBG, TG, SBP, WC in RCTs for intervention durations of ≥ 8 weeks, and SBP, TG, LDL, HDL, BMI, WC in RCTs with sample size > 55 participants. CONCLUSION Curcumin supplementation in doses of 50-3000 mg/day over 8-12 weeks was associated with significant reductions in levels of FBG, HOMA-IR, TG, TC, LDL, weight and BMI in patients with NAFLD. Previous studies have reported curcumin as a safe complementary therapy for several diseases. We would suggest that should curcumin supplements be used clinically in specific conditions, it should be used with caution. Also, difference in grades of NAFLD may effect the evaluated outcomes, so it is suggested that future studies be conducted with an analyses on subgroups according to their NAFLD grade. Furthermore, because of the failure to conduct independent biochemical assessment of the turmeric/curcumin product used in most studies as well as potential sources of bias, results should be interpreted with caution.
Collapse
Affiliation(s)
- Armin Ebrahimzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokouh Mohseni
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Safargar
- Department of Nutrition, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Mohtashamian
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Niknam
- Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Bakhoda
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Afshari
- Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran
| | - Amirhossein Jafari
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kashan University of Medical Sciences, Kashan, Iran
| | - Anahita Ebrahimzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Fooladshekan
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Mohtashami
- Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Park Square, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, United Kingdom
| | - Siavash Babajafari
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Sohrabi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Dehzad MJ, Ghalandari H, Askarpour M. Curcumin/turmeric supplementation could improve blood pressure and endothelial function: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 59:194-207. [PMID: 38220376 DOI: 10.1016/j.clnesp.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND PURPOSE A number of studies have examined the impact of curcumin/turmeric on blood pressure and the factors allegedly responsible for hypertension. In this systematic review and meta-analysis, we tried to sum up the existing literature on randomized controlled trials (RCTs) investigating this hypothesis. METHODS Online databases (PubMed, Scopus, Web of Science Core Collection, Cochrane Library, and Google Scholar) were searched from inception up to October 2022. We used the cochrane quality assessment tool to evaluate the risk of bias. Outcomes of interest included systolic blood pressure (SBP), diastolic blood pressure (DBP), blood levels of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), flow-mediated vasodilation (FMD), and pulse-wave velocity (PWV). Weighted mean differences (WMDs) were derived and reported. In case of significant between-study heterogeneity, subgroup analyses were carried out. Significance level was considered as P-values<0.05. RESULTS Finally, 35 RCTs out of 4182 studies were included. Our findings suggested that curcumin/turmeric supplementation significantly improved SBP (WMD: -2.02 mmHg; 95 % CI: -2.85, -1.18), DBP (WMD: -0.82 mmHg; 95 % CI: -1.46, -0.18), VCAM-1 (WMD: -39.19 ng/mL; 95 % CI: -66.15, -12.23), and FMD (WMD: 2.00 %; 95 % CI: 1.07, 2.94). However, it did not significantly change levels of ICAM-1 (WMD: -17.05 ng/ml; 95 % CI: -80.79, 46.70), or PWV (WMD: -79.53 cm/s; 95 % CI: -210.38, 51.33). CONCLUSION It seems that curcumin/turmeric supplementation could be regarded as a complementary method to improve blood pressure and endothelial function. However, further research is needed to clarify its impact on inflammatory adhesion molecules in the circulation.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
32
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
33
|
Jiang Z, Liu L, Su H, Cao Y, Ma Z, Gao Y, Huang D. Curcumin and analogues in mitigating liver injury and disease consequences: From molecular mechanisms to clinical perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155234. [PMID: 38042008 DOI: 10.1016/j.phymed.2023.155234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Liver injury is a prevalent global health concern, impacting a substantial number of individuals and leading to elevated mortality rates and socioeconomic burdens. Traditional primary treatment options encounter resource constraints and high costs, prompting exploration of alternative adjunct therapies, such as phytotherapy. Curcumin demonstrates significant therapeutic potential across various medical conditions, particularly emerging as a promising candidate for liver injury treatment. PURPOSE This study aims to provide current evidence maps of curcumin and its analogs in the context of liver injury, covering aspects of biosafety, toxicology, and clinical trials. Importantly, it seeks to summarize the intricate mechanisms modulated by curcumin. METHODS We conducted a comprehensive search of MEDLINE, Web of Science, and Embase up to July 2023. Titles and abstracts were reviewed to identify studies that met our eligibility criteria. The screening process involved three authors independently assessing the potential of curcumin mitigating liver injury and its disease consequences by reviewing titles, abstracts, and full texts. RESULTS Curcumin and its analogs have demonstrated low toxicity in vitro and in vivo. However, the limited bioavailability has hindered their advanced use in liver injury. This limitation can potentially be addressed by nano-curcumin and emerging drug delivery systems. Curcumin plays a role in alleviating liver injury by modulating the antioxidant system, as well as cellular and molecular pathways. The specific mechanisms involve multiple pathways, such as NF-κB, p38/MAPK, and JAK2/STAT3, and the pro-apoptosis Bcl-2/Bax/caspase-3 axis in damaged cells. Additionally, curcumin targets nutritional metabolism, regulating the substance in liver cells and tissues. The microenvironment associated with liver injury, like extracellular matrix and immune cells and factors, is also regulated by curcumin. Initial evaluation of curcumin and its analogs through 12 clinical trials demonstrates their potential application in liver injury. CONCLUSION Curcumin emerges as a promising phytomedicine for liver injury owing to its effectiveness in hepatoprotection and low toxicity profile. Nevertheless, in-depth investigations are warranted to unravel the complex mechanisms through which curcumin influences liver tissues and overall physiological milieu. Moreover, extensive clinical trials are essential to determine optimal curcumin dosage forms, maximizing its benefits and achieving favorable clinical outcomes.
Collapse
Affiliation(s)
- Zhishen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hengpei Su
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Zhongkai Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Li X, Chen W, Ren J, Gao X, Zhao Y, Song T, Fu K, Zheng Y, Yang J. Effects of curcumin on non-alcoholic fatty liver disease: A scientific metrogy study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155241. [PMID: 38128395 DOI: 10.1016/j.phymed.2023.155241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases encountered in clinical practice. Curcumin can alleviate insulin resistance, inhibit oxidative stress response, reduce inflammation, reduce liver fat deposition, and effectively improve NAFLD through various modalities, inhibiting the progression into cirrhosis and fibrosis. PURPOSE To explore the current status, hot spots, and developing trends of curcumin in NAFLD treatment through quantitative scientific analysis to serve as a reference for subsequent studies. STUDY DESIGN A comprehensive analysis of the mechanism of action of curcumin in the treatment of NAFLD and methods to increase curcumin bioavailability using bibliometric analysis and literature review. METHODS This study used VOSviewer software to analyze the literature related to curcumin treatment of NAFLD in the Web of Science (WOS) core set database. A comprehensive and in-depth review was conducted based on the results of scientific econometric research and literature review. RESULTS The review observed that curcumin can activate various signaling pathways such as AMPK and NF-κB to inhibit oxidative stress and apoptosis, thereby reflecting its pharmacological effects: lowering lipid, anti-inflammatory, reducing insulin resistance, and anti-fibrosis. These mechanisms improve or even reverse the complex pathological features of lipid metabolism disorders associated with NAFLD. Curcumin also can potentially serve as a primary regulatory target for treating hepatic steatosis using gut microbiota. However, these pharmacological effects of curcumin were limited owing to its low bioavailability. CONCLUSION This review discusses NAFLD treatment with curcumin, analyzes the reasons for its low bioavailability, and introduces models for studying and methods for improving curcumin bioavailability. As research on NAFLD grows, future research should capture the trend of basic research, pay attention to clinical research, and continuously explore the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weisan Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchen Gao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tianbao Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kun Fu
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300120, China
| | - Yanchao Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jinlong Yang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Boshagh K, Khorvash F, Sahebkar A, Majeed M, Bahreini N, Askari G, Bagherniya M. The effects of curcumin-piperine supplementation on inflammatory, oxidative stress and metabolic indices in patients with ischemic stroke in the rehabilitation phase: a randomized controlled trial. Nutr J 2023; 22:69. [PMID: 38082237 PMCID: PMC10712118 DOI: 10.1186/s12937-023-00905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Stroke is a leading cause of death worldwide, which is associated with a heavy economic and social burden. The purpose of this study was to investigate the effects of supplementation with curcumin-piperine combination in patients with ischemic stroke in the rehabilitation stage. METHODS In this randomized controlled trial, 66 patients with stroke were randomized into two groups receiving curcumin-piperine tablets (500 mg curcumin + 5 mg piperine) and matched placebo tablets for 12 weeks. High-sensitivity C-reactive protein (hs-CRP), carotid intima-media thickness (CIMT), thrombosis, total antioxidant capacity (TAC), lipid profile, anthropometric indices, blood pressure, and quality of life were assessed before and after the intervention. Statistical data analysis was done using SPSS22 software. RESULTS A total of 56 patients with a mean age of 59.80 ± 4.25 years completed the trial. Based on ANCOVA test, adjusted for baseline values, curcumin-piperine supplementation for 12 weeks resulted in significant reductions in serum levels of hs-CRP (p = 0.026), total cholesterol (TC) (p = 0.009), triglycerides (TG) (p = 0.001), CIMT (p = 0.002), weight (P = 0.001), waist circumference (p = 0.024), and systolic and diastolic blood pressure (p < 0.001), and a significant increase in TAC (p < 0.001) in comparison to the placebo. Pain score significantly increased in both groups; however, its increase was significantly higher in the placebo group compared with the intervention group (p = 0.007). No significant changes were observed between the two groups in terms of serum fibrinogen, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and quality of life indices. CONCLUSION Curcumin-piperine supplementation had beneficial effects on CIMT, serum hs-CRP, TC, TG, TAC, and systolic and diastolic blood pressure in patients with ischemic stroke in the rehabilitation stage.
Collapse
Affiliation(s)
- Kosar Boshagh
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Neurology Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammed Majeed
- Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ, 08520, USA
| | - Nimah Bahreini
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
36
|
Łanoszka K, Vlčková N. Natural Sirtuin1 Activators and Atherosclerosis: an Overview. Curr Atheroscler Rep 2023; 25:979-994. [PMID: 38038821 PMCID: PMC10770200 DOI: 10.1007/s11883-023-01165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the most recent findings investigating the impact of several natural sirtuin (SIRT) activators, particularly SIRT1, on atherosclerosis. RECENT FINDINGS Sirtuins that belong to a family of class III histone deacetylases are believed to be novel therapeutic targets to treat age-related and chronic diseases. SIRT expression is regulated by small molecules called SIRT-activating compounds that can be found in natural food products. SIRT1 may exert protective effects in atherosclerosis, which is said to be a major cause of cardiovascular diseases. Most of the evidence supporting the beneficial effects of these natural compounds comes from in vitro or animal-based studies, while there have been particularly few or inconsistent human-based studies evaluating their long-term impact in recent years. SIRT1 activation has been demonstrated to mitigate or prevent atherosclerosis through various mechanisms. However, further research is required to determine the optimal SIRT activator dosage and to establish a stronger correlation between health effects and the administration of bioactive compounds. Additionally, conducting more human clinical trials is necessary to ensure the safety of these compounds for preventing atherosclerosis development.
Collapse
Affiliation(s)
- Karolina Łanoszka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland
| | - Nimasha Vlčková
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland.
| |
Collapse
|
37
|
Beheshti Namdar A, Ahadi M, Hoseini SM, Vosoghinia H, Rajablou H, Farsi S, Zangouei A, Rahimi HR. Effect of nano-micelle curcumin on hepatic enzymes: A new treatment approach for non-alcoholic fatty liver disease (NAFLD). AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:615-625. [PMID: 38106627 PMCID: PMC10719728 DOI: 10.22038/ajp.2023.21919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/22/2022] [Accepted: 11/12/2022] [Indexed: 12/19/2023]
Abstract
Objective Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in hepatocytes with no consumption of alcohol. Recently, curcumin is a natural polyphenol found in turmeric has been examined for the treatment of NAFLD. This study aimed to assess the efficacy of 160 mg/day nano-micelle curcumin on the amelioration of NAFLD by measuring liver enzymes. Materials and Methods Patients with NAFLD were randomly divided into curcumin (intervention group n=33) and placebo (n=33) groups and at the end of the study, the data of 56 participants who completed the 2-month intervention were analyzed. Laboratory tests and questionnaires were used to gather information. Both groups received recommendations for lifestyle modification, and were advised to other necessary advices. Patients in the curcumin group received 160 mg/day of nano-micelle curcumin in two divided doses for 60 days. The 2 groups were followed up for two months and clinical and laboratory indices were compared. Results Our data showed a significant decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the curcumin group (p<0.01) as well as a significant difference between the groups before and after the intervention in curcumin group (p<0.05). Interestingly, a meaningful decrease in AST serum level was observed in the intervention group (p<0.01). Conclusion Our study demonstrated that short-term supplementation with nano-micelle curcumin results in the reduction of AST and ALT and is beneficial for the treatment of NAFLD.
Collapse
Affiliation(s)
- Ali Beheshti Namdar
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Ahadi
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mousalreza Hoseini
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Vosoghinia
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Rajablou
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Salman Farsi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirsadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics & Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Karimi A, Moini Jazani A, Darzi M, Doost Azgomi RN, Vajdi M. Effects of curcumin on blood pressure: A systematic review and dose-response meta-analysis. Nutr Metab Cardiovasc Dis 2023; 33:2089-2101. [PMID: 37567790 DOI: 10.1016/j.numecd.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023]
Abstract
AIMS This systematic review and dose-response meta-analysis were conducted to summarize data from available clinical trials on the effects of curcumin supplementation on systolic BP (SBP) and diastolic BP (DBP). DATA SYNTHESIS Using related keywords, multiple databases, including the Web of Sciences, Scopus, Embase, PubMed, Cochrane Library, and Google Scholar, were searched until November 2022. We chose the studies that examined the effects of curcumin on systolic blood pressure (SBP) and diastolic blood pressure (DBP). Seventeen eligible studies with a total sample size of 1377 participants were included in the meta-analysis. The findings of the meta-analysis did not indicate any significant effect of curcumin on SBP (WMD = -0.06 mmHg, 95% CI: -0.62, 0.50, p = 0.85; I2 = 44.2%) and DBP (WMD = -0.18 mmHg, 95% CI: -1.17, 0.82, p = 0.62; I2 = 77.2%). Moreover, in our dose-response analysis, we found that the dose and duration of curcumin supplementation were non-significantly associated with the reduction of SBP and DBP. However, subgroup analysis revealed a significant reduction only in DBP levels (WMD: -0.76 mmHg, 95% CI: -1.46,-0.05; P = 0.03) but not in SBP in studies with ≥12-week supplementation. Also, a significant reduction in SBP (WMD: -1.55 mmHg, 95% CI: -2.85, -0.25; P = 0.01) and DBP (WMD: -1.73 mmHg, 95% CI: 2.67, -0.79; P < 0.01) was noticed by curcumin supplementation in studies performed on women. CONCLUSIONS The current study suggests that consuming curcumin may improve DBP when administered for long durations ≥12 weeks. However, more trials are required to confirm these findings.
Collapse
Affiliation(s)
- Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tabriz, University of Medical Sciences, Tabriz, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Melika Darzi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdi Vajdi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
39
|
Godse S, Zhou L, Sakshi S, Singla B, Singh UP, Kumar S. Nanocarrier-mediated curcumin delivery: An adjuvant strategy for CNS disease treatment. Exp Biol Med (Maywood) 2023; 248:2151-2166. [PMID: 38058006 PMCID: PMC10800127 DOI: 10.1177/15353702231211863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Neurological disorders are a major global challenge, which counts for a substantial slice of disease burden around the globe. In these, the challenging landscape of central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuro-AIDS, demands innovative and novel therapeutic approaches. Curcumin, a versatile natural compound with antioxidant and anti-inflammatory properties, shows great potential as a CNS adjuvant therapy. However, its limited bioavailability and suboptimal permeability to the blood-brain barrier (BBB) hamper the therapeutic efficacy of curcumin. This review explores how nanocarrier facilitates curcumin delivery, which has shown therapeutic efficacy for various non-CNS diseases, for example, cancers, and can also revolutionize the treatment outcomes in patients with CNS diseases. Toward this, intranasal administration of curcumin as a non-invasive CNS drug delivery route can also aid its therapeutic outcomes as an adjuvant therapy for CNS diseases. Intranasal delivery of nanocarriers with curcumin improves the bioavailability of curcumin and its BBB permeability, which is instrumental in promoting its therapeutic potential. Furthermore, curcumin's inhibitory effect on efflux transporters will help to enhance the BBB and cellular permeability of various CNS drugs. The therapeutic potential of curcumin as an adjuvant has the potential to yield synergistic effects with CNS drugs and will help to reduce CNS drug doses and improve their safety profile. Taken together, this approach holds a promise for reshaping CNS disease management by maximizing curcumin's and other drugs' therapeutic benefits.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Swarna Sakshi
- Alabama College of Osteopathic Medicine, Dothan, AL 36303, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
40
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Effects of curcumin/turmeric supplementation on glycemic indices in adults: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102855. [PMID: 37748368 DOI: 10.1016/j.dsx.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Glycemic control is of utmost importance both as a preventive measure in individuals at risk of diabetes and in the management of patients with disturbed glycemia. Turmeric/curcumin has been extensively studied in this field. In the present systematic review and meta-analysis, we aimed at investigating the impact of turmeric/curcumin supplementation on glycemic control. METHODS Major online databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were systematically searched from inception up to October 2022. Relevant randomized controlled trials (RCTs) meeting our eligible criteria were included. Weighted mean differences (WMDs) with confidence intervals (CIs) were expressed using a random-effect model. Subgroup analyses were conducted to find the sources of heterogeneities. To detect risk of bias in the included studies, we used the Cochrane risk-of-bias tool. The registration number was CRD42022374874. RESULTS Out of 4182 articles retrieved from the initial search, 59 RCTs were included. Our findings suggested that turmeric/curcumin supplementation was significantly effective in improving fasting blood sugar (WMD: 4.60 mg/dl; 95% CI: 5.55, -3.66), fasting insulin levels (WMD: 0.87 μIU/ml; 95% CI: 1.46, -0.27), hemoglobin A1c (HbA1c) (WMD: 0.32%; 95% CI: 0.45, -0.19), and homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: 0.33; 95% CI: 0.43, -0.22). CONCLUSION Our results indicate that turmeric/curcumin supplementation can be considered as a complementary method in the management of disturbed glycemia.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Chang B, Bae J, Yun S, Kim Y, Park S, Kim S. Wheat sprouts ( Triticum aestivum Linn.) cultured by a smart farm system ameliorate NAFLD through the AMPK-mediated SREBP signaling pathway. Food Sci Biotechnol 2023; 32:1585-1594. [PMID: 37637841 PMCID: PMC10449750 DOI: 10.1007/s10068-023-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 08/29/2023] Open
Abstract
Wheat is cultivated worldwide and is the most widely distributed food crop. Wheat is a staple crop in many countries. However, the effects of various cultivation methods on the efficacy of wheat sprouts have not been determined. This study investigated wheat sprouts obtained using a standardized smart farm system (WS-S) to improve the effects of non-alcoholic fatty liver disease (NAFLD) and molecular mechanism. Wheat sprouts significantly attenuated the accumulation of lipid droplets in FFA-induced HepG2 cells through AMPK pathway activity. In vivo experiments showed that WS-S significantly lowered body weight gain and decreased adipose tissue, lipid, aspartate transaminase, and alanine aminotransferase levels in HFD/F-treated mice. Furthermore, WS-S stimulated the phosphorylation of ACC and peroxisome proliferator-activated receptor alpha via the AMPK pathway and inhibited SREBP-1/FAS signaling to inhibit de novo adipogenesis and increase fatty acid oxidation. These results suggest that WS-S ameliorates NAFLD by regulating fatty acid metabolism via the AMPK pathway.
Collapse
Affiliation(s)
- BoYoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Republic of Korea
| | - JinHye Bae
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Republic of Korea
| | - SeungBeom Yun
- R&D Center, BTC Corporation, #703, Technology Development Center, Gyeongi Technopark, 705, Haean-ro, Sangnok-gu, Ansan-si, 15588 Gyeonggi-do Republic of Korea
| | - YongDuk Kim
- R&D Center, BTC Corporation, #703, Technology Development Center, Gyeongi Technopark, 705, Haean-ro, Sangnok-gu, Ansan-si, 15588 Gyeonggi-do Republic of Korea
| | - SeongJin Park
- Reputer Co., 401, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si, 54810 Jeollabuk-do Republic of Korea
| | - SungYeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Republic of Korea
| |
Collapse
|
42
|
Noorbakhsh S, Roshan VD. Influence of 8 Weeks of Tabata High-Intensity Interval Training and Nanocurcumin Supplementation on Inflammation and Cardiorespiratory Health among Overweight Elderly Women. Prev Nutr Food Sci 2023; 28:224-234. [PMID: 37842247 PMCID: PMC10567597 DOI: 10.3746/pnf.2023.28.3.224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 10/17/2023] Open
Abstract
Nanocurcumin (NaC) and high-intensity interval training (HIIT) play crucial role in weight and inflammation control. The purpose of the current study was to evaluate the separate and combined effects of 8 weeks of Tabata-HIIT and NaC supplementation on the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, long non-coding RNA myocardial infarction associated transcript (lncRNA MIAT) expression, body composition, and cardiorespiratory health in elderly overweight women. A total of 48 healthy overweight elderly women were randomly divided into four groups: NaC, Tabata-HIIT+Pla, Tabata-HIIT+NaC, and placebo. Participants underwent a Tabata HIIT program (2 days per week, at 80∼0% of maximal HR) and NaC supplementation (daily 80 mg in two 40 mg capsules) for 8 weeks. Blood sampling, cardiorespiratory hemodynamic responses, and body composition evaluations were obtained before and after treadmill stress testing at the baseline timepoint and following 8 weeks of intervention. The mRNA of lncRNA-MIAT and NLRP3 were measured by real-time polymerase chain reaction. After 8 weeks, a significant improvement was observed in body composition and cardiorespiratory hemodynamics in the Tabata-HIIT groups compared to the NaC alone and placebo groups (P<0.05). Tabata training, both with and without the addition of nano curcumin supplementation, did not result significant effect on the resting levels of lncRNA-MIAT expression (P>0.05). Nevertheless, NaC supplementation along with Tabata training led to a significant reduction in NLRP3 inflammasome. In addition, NaC supplementation in overweight/preobese women improved systemic inflammation during treadmill stress testing. These findings indicating the suppressive effects of non-pharmacologic interventions on the sympathetic system and downregulation of the inflammasome.
Collapse
Affiliation(s)
- Sepideh Noorbakhsh
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar 416, Iran
| | - Valiollah Dabidi Roshan
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar 416, Iran
- Athletic Performance and Health Research Center, Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar 416, Iran
| |
Collapse
|
43
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14:1205821. [PMID: 37841267 PMCID: PMC10570533 DOI: 10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
Affiliation(s)
| | | | | | - Palash Mandal
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
44
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
|
45
|
Luo Y, Zeng Y, Peng J, Zhang K, Wang L, Feng T, Nhamdriel T, Fan G. Phytochemicals for the treatment of metabolic diseases: Evidence from clinical studies. Biomed Pharmacother 2023; 165:115274. [PMID: 37542856 DOI: 10.1016/j.biopha.2023.115274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
With the continuous improvement of people's living standard, the incidence of metabolic diseases is gradually increasing in recent years. There is growing interest in finding drugs to treat metabolic diseases from natural compounds due to their good efficacy and limited side effects. Over the past few decades, many phytochemicals derived from natural plants, such as berberine, curcumin, quercetin, resveratrol, rutin, and hesperidin, have been shown to have good pharmacological activity against metabolic diseases in preclinical studies. More importantly, clinical trials using these phytochemicals to treat metabolic diseases have been increasing. This review comprehensively summarizes the clinical progress of phytochemicals derived from natural plants in the treatment of several metabolic diseases, including type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). Accumulating clinical evidence shows that a total of 18 phytochemicals have good therapeutic effects on the three metabolic diseases by lowering blood glucose and lipid levels, reducing insulin resistance, enhancing insulin sensitivity, increasing energy expenditure, improving liver function, and relieving inflammation and oxidative stress. The information will help us better understand the medicinal value of these phytochemicals and promote their clinical application in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tu Feng
- School of Ecological Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
| | - Tsedien Nhamdriel
- Department of Tibetan medicine, University of Tibetan Medicine, Lhasa 850000, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| |
Collapse
|
46
|
Qiu L, Gao C, Wang H, Ren Y, Li J, Li M, Du X, Li W, Zhang J. Effects of dietary polyphenol curcumin supplementation on metabolic, inflammatory, and oxidative stress indices in patients with metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2023; 14:1216708. [PMID: 37522129 PMCID: PMC10376715 DOI: 10.3389/fendo.2023.1216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Objective The aim was to conduct a systematic review and meta-analysis for assessing the effectiveness and safety of dietary polyphenol curcumin supplement on metabolic, inflammatory, and oxidative stress indices in patients with metabolic syndrome (MetS). Methods A comprehensive search for clinical trials was conducted in the following scientific databases: PubMed, SCOPUS, Cochrane Library, EMBASE, Web of Science, and China Biological Medicine. Randomized controlled trials (RCTs) evaluating the efficacy and safety of curcumin supplement for MetS were identified. A random-effects meta-analysis was performed using inverse variance, and efficacy was expressed as mean difference (MD) with 95% confidence interval (CI). The metabolic syndrome markers that were evaluated in the present study included waist circumference (WC), fasting blood sugar (FBS), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), tumor necrosis factor-a (TNF-a), interleukin 6 (IL-6), C-reactive protein (CRP), ultrasensitive c-reactive protein (hsCRP), and malondialdehyde (MDA). By employing the Cochrane tool, RCTs were assessed for bias risk. Results A total of 785 participants from 13 RCTs were included, with intervention durations ranging from 4 to 12 weeks. Compared with the control group, the curcumin group had positive effects on WC (MD = -2.16, 95% CI: -3.78 to -0.54, p = 0.009, seven studies), FBS (MD = -8.6, 95% CI: -15.45 to -1.75, p = 0.01, nine studies), DBP (MD = -2.8, 95% CI: -4.53 to - 1.06, p = 0.002, five studies), HDL-C (MD = 4.98, 95% CI: 2.58 to 7.38, p < 0.0001, eight studies), TNF-a (MD = -12.97, 95% CI: -18.37 to -7.57, p < 0.00001, two studies), CRP (MD = - 1.24, 95% CI: -1.71 to -0.77, p < 0.00001, two studies), and MDA (MD = -2.35, 95% CI: -4.47 to -0.24, p = 0.03, three studies). These improvements were statistically significant. Meanwhile, there was no significant improvement in SBP (MD = -4.82, 95% CI: -9.98 to 0.35, p = 0.07, six studies), TG (MD = 1.28, 95% CI: -3.75 to 6.30, p = 0.62, eight studies), IL-6 (MD = -1.5, 95% CI: -3.97 to 0.97, p = 0.23, two studies), or hsCRP (MD = -1.10, 95% CI: -4.35 to 2.16, p < 0.51, two studies). FBS, SBP, HDL-C, IL-6, CRP, hsCRP, and MDA had a relatively high heterogeneity. Conclusion Curcumin exhibited promising potential in enhancing markers associated with metabolic syndrome, including inflammation. However, additional studies are required to confirm such findings since the included evidence is limited and has a relatively high heterogeneity. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42022362553.
Collapse
Affiliation(s)
- Linjie Qiu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunyang Gao
- Department of Special Needs International Medical, Peking University International Hospital, Beijing, China
| | - Haonan Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meijie Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinlei Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Talebpour A, Mohammadifard M, Zare Feyzabadi R, Mahmoudzadeh S, Rezapour H, Saharkhiz M, Tajik M, Ferns GA, Bahrami A. Effect of curcumin on inflammatory biomarkers and iron profile in patients with premenstrual syndrome and dysmenorrhea: A randomized controlled trial. Physiol Rep 2023; 11:e15763. [PMID: 37394650 PMCID: PMC10315327 DOI: 10.14814/phy2.15763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023] Open
Abstract
Premenstrual syndrome (PMS) and primary dysmenorrhea are common gynecological problems and inflammation may have a role in their etiology. Curcumin is a polyphenolic natural product for which there is increasing evidence of anti-inflammatory and iron chelation effects. This study assessed the effects of curcumin on inflammatory biomarkers and iron profile in young women with PMS and dysmenorrhea. A sample of 76 patients was included in this triple-blind, placebo-controlled clinical trial. Participants were randomly allocated to curcumin (n = 38) and control groups (n = 38). Each participant received one capsule (500 mg of curcuminoid+ piperine, or placebo) daily, from 7 days before until 3 days after menstruation for three consecutive menstrual cycles. Serum iron, ferritin, total iron-binding capacity (TIBC) and high-sensitivity C-reactive protein (hsCRP), as well as white blood cell, lymphocyte, neutrophil, platelet counts, mean platelet volume (MPV) and red blood cell distribution width (RDW), were quantified. Neutrophil: lymphocyte ratio (NLR), platelet: lymphocyte ratio (PLR), and RDW: platelet ratio (RPR) were also calculated. Curcumin significantly decreased the median (interquartile range) serum levels of hsCRP [from 0.30 mg/L (0.0-1.10) to 0.20 mg/L (0.0-1.3); p = 0.041] compared with placebo, but did not show any difference for neutrophil, RDW, MPV, NLR, PLR and RPR values (p > 0.05). The treatment schedule was well-tolerated, and none of markers of iron metabolism statistically changed after the intervention in the curcumin group (p > 0.05). Curcumin supplementation may have positive effects on serum hsCRP, a marker of inflammation, with no any changes on iron homeostasis in healthy women with PMS and dysmenorrhea.
Collapse
Affiliation(s)
- Amir Talebpour
- Department of Cardiology, Cardiovascular Diseases Research Centre, School of MedicineBirjand University of Medical SciencesBirjandIran
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Mahtab Mohammadifard
- Infectious Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Reza Zare Feyzabadi
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Sara Mahmoudzadeh
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Hadis Rezapour
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mansoore Saharkhiz
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mahboube Tajik
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Gordon A. Ferns
- Division of Medical EducationBrighton & Sussex Medical SchoolBrightonSussexUK
| | - Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
48
|
Pelczyńska M, Moszak M, Wesołek A, Bogdański P. The Preventive Mechanisms of Bioactive Food Compounds against Obesity-Induced Inflammation. Antioxidants (Basel) 2023; 12:1232. [PMID: 37371961 DOI: 10.3390/antiox12061232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary patterns are promising strategies for preventing and treating obesity and its coexisting inflammatory processes. Bioactive food compounds have received considerable attention due to their actions against obesity-induced inflammation, with limited harmful side effects. They are perceived as food ingredients or dietary supplements other than those necessary to meet basic human nutritional needs and are responsible for positive changes in the state of health. These include polyphenols, unsaturated fatty acids, and probiotics. Although the exact mechanisms of bioactive food compounds' action are still poorly understood, studies have indicated that they involve the modulation of the secretion of proinflammatory cytokines, adipokines, and hormones; regulate gene expression in adipose tissue; and modify the signaling pathways responsible for the inflammatory response. Targeting the consumption and/or supplementation of foods with anti-inflammatory potential may represent a new approach to obesity-induced inflammation treatment. Nevertheless, more studies are needed to evaluate strategies for bioactive food compound intake, especially times and doses. Moreover, worldwide education about the advantages of bioactive food compound consumption is warranted to limit the consequences of unhealthy dietary patterns. This work presents a review and synthesis of recent data on the preventive mechanisms of bioactive food compounds in the context of obesity-induced inflammation.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Małgorzata Moszak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Agnieszka Wesołek
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 10 Fredry Street, 61-701 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| |
Collapse
|
49
|
Talebi S, Day AS, Safarian M, Sayedi SJ, Jaafari MR, Abbasi Z, Barghchi H, Kianifar HR. Adjunctive nano-curcumin therapy improves inflammatory and clinical indices in children with cystic fibrosis: A randomized clinical trial. Food Sci Nutr 2023; 11:3348-3357. [PMID: 37324924 PMCID: PMC10261803 DOI: 10.1002/fsn3.3323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammation may develop due to internal dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein or external factors in patients with cystic fibrosis (CF). This prospective randomized clinical trial aimed to ascertain the effects of nano-curcumin as an anti-inflammatory agent and a CFTR modulator on clinical and inflammatory markers in children with CF. Children with CF were randomly assigned to receive daily curcumin or a placebo for 3 months. The primary outcome measure was to evaluate inflammatory indices, nasopharyngeal swab analysis, and clinical assessments via spirometry, anthropometric measurements, and quality of life (QOL) analysis. Sixty children were included. Intra-group changes comparison showed that curcumin decreased the level of high-sensitivity C-reactive protein (hs-CRP) (median: -0.31 mg/L, IQR: -1.53 to 0.81; p = .01) and fecal calprotectin level (-29 μg/g, -57.5 to 11.5; p = .03), also increased the level of interleukin (IL)-10 (6.1 pg/mL, 4.5-9; p = .01). Moreover, curcumin improved the overall QOL and the subscales of the questionnaire. Inter-group changes comparison depicted the number of Pseudomonas colonies reduced by about 52% in the curcumin group and gained weight by about 16% (p > .05). Nano-curcumin seems to be considered as an effective nutritional supplement on hs-CRP, IL-10, fecal calprotectin levels, and improving QOL in patients with CF.
Collapse
Affiliation(s)
- Saeedeh Talebi
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Andrew S. Day
- Department of PediatricsUniversity of OtagoChristchurchNew Zealand
| | - Mahammad Safarian
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyed Javad Sayedi
- Department of PediatricsMashhad University of Medical SciencesMashhadIran
| | - Mahmood Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Zahra Abbasi
- Akbar Clinical Research and Development UnitMashhad University of Medical SciencesMashhadIran
| | - Hanieh Barghchi
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | |
Collapse
|
50
|
Rana N, Singh SK, Banu NA, Hjazi A, Vamanu E, Singh MP. The Ethnopharmacological Properties of Green-Engineered Metallic Nanoparticles against Metabolic Disorders. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1022. [PMID: 37374226 DOI: 10.3390/medicina59061022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Metabolic syndrome is a multifaceted pathophysiologic condition that is largely caused by an imbalance between caloric intake and energy expenditure. The pathogenesis of metabolic syndrome is determined by an individual's genetic/epigenetics and acquired factors. Natural compounds, notably plant extracts, have antioxidant, anti-inflammatory, and insulin-sensitizing properties and are considered to be a viable option for metabolic disorder treatment due to their low risk of side effects. However, the limited solubility, low bioavailability, and instability of these botanicals hinder their performance. These specific limitations have prompted the need for an efficient system that reduces drug degradation and loss, eliminates unwanted side effects, and boosts drug bioavailability, as well as the percentage of the drug deposited in the target areas. The quest for an enhanced (effective) drug delivery system has led to the formation of green-engineered nanoparticles, which has increased the bioavailability, biodistribution, solubility, and stability of plant-based products. The unification of plant extracts and metallic nanoparticles has helped in the development of new therapeutics against metabolic disorders such as obesity, diabetes mellitus, neurodegenerative disorders, non-alcoholic fatty liver, and cancer. The present review outlines the pathophysiology of metabolic diseases and their cures with plant-based nanomedicine.
Collapse
Affiliation(s)
- Neha Rana
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara 144411, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Najitha A Banu
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara 144411, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Adulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P Singh
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
- Centre of Genomics and Bioinformatics, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|