1
|
Zhao T, Su Y. Mechanisms and Therapeutic Potential of Myofibroblast Transformation in Pulmonary Fibrosis. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2025; 2:10001. [PMID: 40190620 PMCID: PMC11970920 DOI: 10.70322/jrbtm.2025.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and fatal disease with an increasing incidence and limited therapeutic options. It is characterized by the formation and deposition of excess extracellular matrix proteins resulting in the gradual replacement of normal lung architecture by fibrous tissue. The cellular and molecular mechanism of IPF has not been fully understood. A hallmark in IPF is pulmonary fibroblast to myofibroblast transformation (FMT). During excessive lung repair upon exposure to harmful stimuli, lung fibroblasts transform into myofibroblasts under stimulation of cytokines, chemokines, and vesicles from various cells. These mediators interact with lung fibroblasts, initiating multiple signaling cascades, such as TGFβ1, MAPK, Wnt/β-catenin, NF-κB, AMPK, endoplasmic reticulum stress, and autophagy, contributing to lung FMT. Furthermore, single-cell transcriptomic analysis has revealed significant heterogeneity among lung myofibroblasts, which arise from various cell types and are adapted to the altered microenvironment during pathological lung repair. This review provides an overview of recent research on the origins of lung myofibroblasts and the molecular pathways driving their formation, with a focus on the interactions between lung fibroblasts and epithelial cells, endothelial cells, and macrophages in the context of lung fibrosis. Based on these molecular insights, targeting the lung FMT could offer promising avenues for the treatment of IPF.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Gilon-Zaltsman O, Weidenfeld-Barenboim K, Samara H, Feuermann Y, Michaeli-Ashkenasi S, Schif-Zuck S, Von Huth P, Butenko S, Assi S, Sabo E, Ariel A, Barkan D. Targeting dormant disseminated tumor cells and their permissive niche by pro-resolving mediators derived from resolution-phase macrophages. Cancer Lett 2025; 612:217468. [PMID: 39826669 DOI: 10.1016/j.canlet.2025.217468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Metastatic breast cancer (BC) can recur years after initial treatments and arise from quiescent disseminated tumor cells (QDTC) that resist conventional therapies. To date there are no treatments to target QDTCs. Previously, the fibrotic-like niche (FLN) enriched with Type I collagen (Col-I) was shown to be required for the switch of QDTC to overt metastases. Here, we examined whether artificially reinstating resolution of inflammation, by using soluble mediators secreted by ex-vivo generated pro-resolving macrophages (CM-Mres), will prevent FLN establishment and in turn hinder QDTC outgrowth. Our findings indicate that CM-Mres promoted immune silencing at the metastatic site as part of the resolution process and inhibited the FLN resulting in the inhibition of the metastatic outgrowth in vitro and in vivo. This was due to inhibition of fibroblasts to myofibroblasts differentiation independent of TGFβ1 canonical signaling and the abolishment of Col-I expression. Furthermore, CM-Mres eliminated myofibroblasts as part of the resolution process by inducing an increase in reactive oxygen species (ROS) via NADPH oxidase leading to DNA damage and apoptosis. Moreover, ROS-mediated apoptosis was also induced by CM-Mres in the dormant and outgrowing DTCs. Overall, our findings suggest for the first time that pro-resolving mediators can target both QDTCs and their permissive niche thus preventing BC from recurring. SIGNIFICANCE: Since conventional therapies fail to eradicate QDTCs. Future identification of the pro-resolving mediators secreted by pro-resolving macrophages may serve as a basis for novel therapeutic strategies targeting QDTCs and their metastatic niche.
Collapse
Affiliation(s)
| | | | - Hadeel Samara
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | | | | | | | - Sergei Butenko
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Simaan Assi
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Carmel Medical Center, Israel
| | - Amiram Ariel
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Dalit Barkan
- Department of Human Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
3
|
Wu N, Xue C, Yu S, Wang Y, Sun D, Ye Q. CC-chemokine ligand 18, CXC motif chemokine 13 and osteopontin as biomarkers of silicosis and asbestosis: a prospective observational study. Sci Rep 2025; 15:6819. [PMID: 40000810 PMCID: PMC11861896 DOI: 10.1038/s41598-025-91423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Silicosis and asbestosis, distinct forms of pneumoconiosis, manifest progressive interstitial fibrosis due to exposure to silica dust or asbestos fibers. This study aimed to identify potential biomarkers for diagnosing silicosis and asbestosis, while also evaluating disease severity and prognosis. We undertook an prospective observational study involving patients with silicosis or asbestosis. The correlation between baseline CC-chemokine ligand 18 (CCL18), CXC motif chemokine 13 (CXCL13), osteopontin (OPN), periostin, and fibulin-3 and clinical variables was analyzed. Diagnostic sensitivity was evaluated using receiver operating characteristic curves, and correlations between baseline biomarker levels and disease severity were analyzed. Multivariable Cox regression assessed the baseline concentrations' strength in predicting all-cause mortality for silicosis and asbestosis. Of 231 silicosis and 163 asbestosis included in the study, 29 silicosis (12.6%) and 28 (17.2%) asbestosis died within the five years follow-up period. Elevated baseline concentrations of CCL18, CXCL13, and OPN were observed in 231 silicosis patients and 163 asbestosis patients compared to 118 HCs. Diagnostic accuracy for silicosis or asbestosis, in order, was CCL18, OPN, and CXCL13. Combining CCL18, OPN, and CXCL13 enhanced diagnostic accuracy. In silicosis patients, these concentrations were significantly associated with lung function values. However, these biomarkers were not the risk factor for all-cause mortality. CCL18, CXCL13, and OPN stand out as promising biomarkers for diagnosing silicosis and asbestosis. Meanwhile, CCL18, CXCL13, and OPN may be used for the evaluation of silicosis conditions.
Collapse
Affiliation(s)
- Na Wu
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chaoyang District, Beijing, 100020, China
| | - Changjiang Xue
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chaoyang District, Beijing, 100020, China
| | - Shiwen Yu
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chaoyang District, Beijing, 100020, China
| | - Yuanying Wang
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chaoyang District, Beijing, 100020, China
| | - Di Sun
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chaoyang District, Beijing, 100020, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
4
|
Zhu J, Zhang X, Li L, Yang H, Liu H, Wu D, Liu Z, Liu B, Shen T. C5a-C5aR1 axis mediates lung inflammation and fibrosis induced by single-walled carbon nanotubes via promoting neutrophils recruitment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117627. [PMID: 39752913 DOI: 10.1016/j.ecoenv.2024.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025]
Abstract
A mounting number of studies have been documenting strong pro-inflammatory and pro-fibrotic effects of carbon nanotube (CNT). However, the molecular mechanisms of single-walled CNT (SWCNT)-provoked lung injury remain to be elucidated. Here, we established a mice model of SWCNT-induced lung injury by intratracheal instillation and found that C5a-C5a receptor-1 (C5aR1) signaling was significantly activated along with abundant neutrophils recruitment in lungs at early phase post SWCNT administration, which were positively correlated with early lung inflammation and late pulmonary fibrosis. C5a-C5aR1 signaling activation and neutrophils recruitment were subsequently decreased in a time-dependent manner. Furthermore, inhibition of C5a-C5aR1 axis with C5aR1 antagonist PMX205 treatment not only dramatically reduced neutrophils recruitment and inflammatory cytokines secretion at early phase, but also effectively alleviated early lung inflammation and late pulmonary fibrosis induced by SWCNT exposure. In conclusion, our study provides novel insights into the underlying biological mechanism that C5a-C5aR1 axis regulates neutrophils recruitment-mediated lung injury induced by SWCNT, may help to develop therapeutic strategies for SWCNT-provoked lung injury.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lanlan Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hongxu Yang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hang Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Danyang Wu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Bin Liu
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Zhang J, Zhang J, Yao Z, Shao W, Song Y, Tang W, Li B. GAMG ameliorates silica-induced pulmonary inflammation and fibrosis via the regulation of EMT and NLRP3/TGF-β1/Smad signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117124. [PMID: 39342756 DOI: 10.1016/j.ecoenv.2024.117124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Silicosis is an occupational disease caused by exposure to silica characterized by pulmonary inflammation and fibrosis, for which there is a lack of effective drugs. Glycyrrhetinic acid 3-O-β-D-glucuronide (GAMG) can treat silicosis due to its anti-inflammatory and anti-fibrotic properties. Here, the effect of therapeutic interventions of GAMG was evaluated in early-stage and advanced silicosis mouse models. GAMG significantly improved fibrotic pathological changes and collagen deposition in the lungs, alleviated lung inflammation in the BALF, reduced the expression of TNF-α, IL-6, NLRP3, TGF-β1, vimentin, Col-Ⅰ, N-cadherin, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Moreover, the dose of 100 mg/kg GAMG can effectively prevent early-stage silicosis, while that of 200 mg/kg was recommended for advanced silicosis. In vitro and in vivo study verified that GAMG can suppress EMT through the NLRP3/TGF-β1/Smad2/3 signaling pathway. Therefore, GAMG could be a promising preventive (early-stage silicosis) and therapeutic (advanced silicosis) strategy, which provides a new idea for formulating prevention and treatment strategies.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| | - Jiazhen Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Zongze Yao
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Shao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanchao Song
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Wenjian Tang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Bo Li
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
6
|
Ding H, Xu Z, Lu Y, Yuan Q, Li J, Sun Q. Kidney fibrosis molecular mechanisms Spp1 influences fibroblast activity through transforming growth factor beta smad signaling. iScience 2024; 27:109839. [PMID: 39323737 PMCID: PMC11422156 DOI: 10.1016/j.isci.2024.109839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 09/27/2024] Open
Abstract
Kidney fibrosis marks a critical phase in chronic kidney disease with its molecular intricacies yet to be fully understood. This study's deep dive into single-cell sequencing data of renal tissue during fibrosis pinpoints the pivotal role of fibroblasts and myofibroblasts in the fibrotic transformation. Through identifying distinct cell populations and conducting transcriptomic analysis, Spp1 emerged as a key gene associated with renal fibrosis. The study's experimental findings further confirm Spp1's vital function in promoting fibroblast to myofibroblast differentiation via the TGF-β/Smad signaling pathway, underscoring its contribution to fibrosis progression. The suppression of Spp1 expression notably hindered this differentiation process, spotlighting Spp1 as a promising therapeutic target for halting renal fibrosis. This condensed summary encapsulates the essence and findings of the original research within the specified word limit.
Collapse
Affiliation(s)
- Hao Ding
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P.R. China
| | - Zidu Xu
- Emergency Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P.R. China
| | - Ying Lu
- Department of Group Healthcare, First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P.R. China
| | - Qi Yuan
- Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing 215000, P.R. China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou 215006, P.R. China
| | - Qi Sun
- Nanjing Medical University, Nanjing 211166, P.R. China
| |
Collapse
|
7
|
Moos PJ, Cheminant JR, Cowman S, Noll J, Wang Q, Musci T, Venosa A. Spatial and phenotypic heterogeneity of resident and monocyte-derived macrophages during inflammatory exacerbations leading to pulmonary fibrosis. Front Immunol 2024; 15:1425466. [PMID: 39100672 PMCID: PMC11294112 DOI: 10.3389/fimmu.2024.1425466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Genetic mutations in critical nodes of pulmonary epithelial function are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung diseases. The slow progression of these pathologies is often intermitted and accelerated by acute exacerbations, complex non-resolving cycles of inflammation and parenchymal damage, resulting in lung function decline and death. Excess monocyte mobilization during the initial phase of an acute exacerbation, and their long-term persistence in the lung, is linked to poor disease outcome. Methods The present work leverages a clinical idiopathic PF dataset and a murine model of acute inflammatory exacerbations triggered by mutation in the alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene to spatially and phenotypically define monocyte/macrophage changes in the fibrosing lung. Results SP-C mutation triggered heterogeneous CD68+ macrophage activation, with highly active peri-injured cells relative to those sampled from fully remodeled and healthy regions. Ingenuity pathway analysis of sorted CD11b-SigF+CD11c+ alveolar macrophages defined asynchronous activation of extracellular matrix re-organization, cellular mobilization, and Apolipoprotein E (Apoe) signaling in the fibrosing lung. Cell-cell communication analysis of single cell sequencing datasets predicted pro-fibrogenic signaling (fibronectin/Fn1, osteopontin/Spp1, and Tgfb1) emanating from Trem2/TREM2 + interstitial macrophages. These cells also produced a distinct lipid signature from alveolar macrophages and monocytes, characterized by Apoe expression. Mono- and di-allelic genetic deletion of ApoE in SP-C mutant mice had limited impact on inflammation and mortality up to 42 day after injury. Discussion Together, these results provide a detailed spatio-temporal picture of resident, interstitial, and monocyte-derived macrophages during SP-C induced inflammatory exacerbations and end-stage clinical PF, and propose ApoE as a biomarker to identify activated macrophages involved in tissue remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Zhang Y, Zhang Z, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3 mediates copper oxide nanoparticle-induced pulmonary inflammation and fibrosis. J Nanobiotechnology 2024; 22:428. [PMID: 39030581 PMCID: PMC11264740 DOI: 10.1186/s12951-024-02707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The increasing production and usage of copper oxide nanoparticles (Nano-CuO) raise human health concerns. Previous studies have demonstrated that exposure to Nano-CuO could induce lung inflammation, injury, and fibrosis. However, the potential underlying mechanisms are still unclear. Here, we proposed that matrix metalloproteinase-3 (MMP-3) might play an important role in Nano-CuO-induced lung inflammation, injury, and fibrosis. RESULTS Exposure of mice to Nano-CuO caused acute lung inflammation and injury in a dose-dependent manner, which was reflected by increased total cell number, neutrophil count, macrophage count, lactate dehydrogenase (LDH) activity, and CXCL1/KC level in bronchoalveolar lavage fluid (BALF) obtained on day 3 post-exposure. The time-response study showed that Nano-CuO-induced acute lung inflammation and injury appeared as early as day 1 after exposure, peaked on day 3, and ameliorated over time. However, even on day 42 post-exposure, the LDH activity and macrophage count were still higher than those in the control group, suggesting that Nano-CuO caused chronic lung inflammation. The Nano-CuO-induced pulmonary inflammation was further confirmed by H&E staining of lung sections. Trichrome staining showed that Nano-CuO exposure caused pulmonary fibrosis from day 14 to day 42 post-exposure with an increasing tendency over time. Increased hydroxyproline content and expression levels of fibrosis-associated proteins in mouse lungs were also observed. In addition, Nano-CuO exposure induced MMP-3 overexpression and increased MMP-3 secretion in mouse lungs. Knocking down MMP-3 in mouse lungs significantly attenuated Nano-CuO-induced acute and chronic lung inflammation and fibrosis. Moreover, Nano-CuO exposure caused sustained production of cleaved osteopontin (OPN) in mouse lungs, which was also significantly decreased by knocking down MMP-3. CONCLUSIONS Our results demonstrated that short-term Nano-CuO exposure caused acute lung inflammation and injury, while long-term exposure induced chronic pulmonary inflammation and fibrosis. Knocking down MMP-3 significantly ameliorated Nano-CuO-induced pulmonary inflammation, injury, and fibrosis, and also attenuated Nano-CuO-induced cleaved OPN level. Our study suggests that MMP-3 may play important roles in Nano-CuO-induced pulmonary inflammation and fibrosis via cleavage of OPN and may provide a further understanding of the mechanisms underlying Nano-CuO-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Zhenyu Zhang
- Department of Emergency, Xiang'An Hospital of Xiamen University, Xiamen, 361104, Fujian, China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yue Zhang
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA.
| |
Collapse
|
9
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Zhu X, Ji J, Han X. Osteopontin: an essential regulatory protein in idiopathic pulmonary fibrosis. J Mol Histol 2024; 55:1-13. [PMID: 37878112 DOI: 10.1007/s10735-023-10169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic lung disease characterized by abnormal proliferation and activation of fibroblasts, excessive accumulation of extracellular matrix (ECM), inflammatory damage, and disrupted alveolar structure. Despite its increasing morbidity and mortality rates, effective clinical treatments for IPF remain elusive. Osteopontin (OPN), a multifunctional ECM protein found in various tissues, has been implicated in numerous biological processes such as bone remodeling, innate immunity, acute and chronic inflammation, and cancer. Recent studies have highlighted the pivotal role of OPN in the pathogenesis of IPF. This review aims to delve into the involvement of OPN in the inflammatory response, ECM deposition, and epithelial-mesenchymal transition (EMT) during IPF, and intends to lay a solid theoretical groundwork for the development of therapeutic strategies for IPF.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jie Ji
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
11
|
Jia Q, Ouyang Y, Yang Y, Yao S, Chen X, Hu Z. Osteopontin: A Novel Therapeutic Target for Respiratory Diseases. Lung 2024; 202:25-39. [PMID: 38060060 DOI: 10.1007/s00408-023-00665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein that is involved in physiological and pathological events. Emerging evidence suggests that OPN also plays a critical role in the pathogenesis of respiratory diseases. OPN can be produced and secreted by various cell types in lungs and overexpression of OPN has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. OPN exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis of these respiratory diseases, and genetic and pharmacological moudulation of OPN exerts therapeutic effects in the treatment of respiratory diseases. In this review, we summarize the recent evidence of multifaceted roles and underlying mechanisms of OPN in these respiratory diseases, and targeting OPN appears to be a potential therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
12
|
Li X, Zhang J, Wang M, Du C, Zhang W, Jiang Y, Zhang W, Jiang X, Ren D, Wang H, Zhang X, Zheng Y, Tang J. Pulmonary Surfactant Homeostasis Dysfunction Mediates Multiwalled Carbon Nanotubes Induced Lung Fibrosis via Elevating Surface Tension. ACS NANO 2024; 18:2828-2840. [PMID: 38101421 DOI: 10.1021/acsnano.3c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have been widely used in many disciplines and raised great concerns about their negative health impacts, especially environmental and occupational exposure. MWCNTs have been reported to induce fibrotic responses; however, the underlying mechanisms remain largely veiled. Here, we reported that MWCNTs inhalation induced lung fibrosis together with decreased lung compliance, increased elastance in the mice model, and elevated surface tension in vitro. Specifically, MWCNTs increased surface tension by impairing the function of the pulmonary surfactant. Mechanistically, MWCNTs induced lamellar body (LB) dysfunction through autophagy dysfunction, which then leads to surface tension elevated by pulmonary surfactant dysfunction in the context of lung fibrosis. This is a study to investigate the molecular mechanism of MWCNTs-induced lung fibrosis and focus on surface tension. A direct mechanistic link among impaired LBs, surface tension, and fibrosis has been established. This finding elucidates the detailed molecular mechanisms of lung fibrosis induced by MWCNTs. It also highlights that pulmonary surfactants are expected to be potential therapeutic targets for the prevention and treatment of lung fibrosis induced by MWCNTs.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianzhong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Mingyue Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chao Du
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenjing Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yingying Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xinmin Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Hongmei Wang
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinglong Tang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Tang Z, Xia Z, Wang X, Liu Y. The critical role of osteopontin (OPN) in fibrotic diseases. Cytokine Growth Factor Rev 2023; 74:86-99. [PMID: 37648616 DOI: 10.1016/j.cytogfr.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is a pathological condition characterized by the excessive deposition of extracellular matrix components in tissues and organs, leading to progressive architectural remodelling and contributing to the development of various diseases. Osteopontin (OPN), a highly phosphorylated glycoprotein, has been increasingly recognized for its involvement in the progression of tissue fibrosis. This review provides a comprehensive overview of the genetic and protein structure of OPN and focuses on our current understanding of the role of OPN in the development of fibrosis in the lungs and other tissues. Additionally, special attention is given to the potential of OPN as a biomarker and a novel therapeutic target in the treatment of fibrosis.
Collapse
Affiliation(s)
- Ziyi Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zijing Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangpeng Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Faqeer A, Wang M, Alam G, Padhiar AA, Zheng D, Luo Z, Zhao IS, Zhou G, van den Beucken JJJP, Wang H, Zhang Y. Cleaved SPP1-rich extracellular vesicles from osteoclasts promote bone regeneration via TGFβ1/SMAD3 signaling. Biomaterials 2023; 303:122367. [PMID: 38465579 DOI: 10.1016/j.biomaterials.2023.122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 03/12/2024]
Abstract
Bone remodeling is a tightly coupled process between bone forming osteoblasts (OBs) and bone resorbing osteoclasts (OCs) to maintain bone architecture and systemic mineral homeostasis throughout life. However, the mechanisms responsible for the coupling between OCs and OBs have not been fully elucidated. Herein, we first validate that secreted extracellular vesicles by osteoclasts (OC-EVs) promote osteogenic differentiation of mesenchymal stem cells (MSCs) and further demonstrate the efficacy of osteoclasts and their secreted EVs in treating tibial bone defects. Furthermore, we show that OC-EVs contain several osteogenesis-promoting proteins as cargo. By employing proteomic and functional analysis, we reveal that mature osteoclasts secrete thrombin cleaved phosphoprotein 1 (SPP1) through extracellular vesicles which triggers MSCs osteogenic differentiation into OBs by activating Transforming Growth Factor β1 (TGFβ1) and Smad family member 3 (SMAD3) signaling. In conclusion, our findings prove an important role of SPP1, present as cargo in OC-derived EVs, in signaling to MSCs and driving their differentiation into OBs. This biological mechanism implies a paradigm shift regarding the role of osteoclasts and their signaling toward the treatment of skeletal disorders which require bone formation.
Collapse
Affiliation(s)
- Abdullah Faqeer
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Mengzhen Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Gulzar Alam
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Arshad Ahmed Padhiar
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, 518015, China; Department of Ecology and Evoluitonary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Dexiu Zheng
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Zhiming Luo
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Irene Shuping Zhao
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Guangqian Zhou
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, 518015, China
| | - Jeroen J J P van den Beucken
- Department of Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, 6525EX, the Netherlands; Research Institute for Medical Innovation, Radboudumc, 6500HB, Nijmegen, the Netherlands.
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yang Zhang
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518015, China.
| |
Collapse
|
15
|
Fastrès A, Roels E, Tutunaru AC, Bolen G, Merveille A, Day MJ, Garigliany M, Antoine N, Clercx C. Osteopontin and fibronectin in lung tissue, serum, and bronchoalveolar lavage fluid of dogs with idiopathic pulmonary fibrosis and control dogs. J Vet Intern Med 2023; 37:2468-2477. [PMID: 37853926 PMCID: PMC10658509 DOI: 10.1111/jvim.16870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) affects West Highland white terriers (WHWTs). Osteopontin (SPP1) and fibronectin (FN1) are associated with human IPF and are overexpressed by bronchoalveolar lavage fluid (BALF) macrophages in dogs with IPF. OBJECTIVE To investigate the value of these proteins as biomarkers of IPF. ANIMALS West Highland white terriers (WHWTs) with IPF, control WHWTs, and terriers. METHODS Cross-sectional observational study. Immunohistochemistry was used to localize SPP1 and FN1 in lung tissue. Serum and BALF SPP1 and FN1 concentrations were measured using canine ELISA kits and compared between groups. RESULTS Osteopontin stained ciliated epithelial cells, smooth muscular cells, and macrophages of all included dogs, and type-II pneumocytes and extracellular matrix of all 12 diseased WHWTs, 4/6 control WHWTs, and none of the 3 terriers. Osteopontin serum concentration was higher in diseased WHWTs (n = 22; 2.15 ng/mL [0.74-5.30]) compared with control WHWTs (n = 13; 0.63 ng/mL [0.41-1.63]; P = .005) and terriers (n = 15; 0.31 ng/mL [0.19-0.51]; P < .0001), and in control WHWTs compared with terriers (P = .005). Osteopontin BALF concentrations were higher in diseased (0.27 ng/mL [0.14-0.43]) and control WHWTs (0.25 ng/mL [0.14-0.40]), compared with terriers (0.02 ng/mL [0.01-0.08]; P < .0001 and P = .003, respectively). Fibronectin (FN1) serum concentrations were lower in diseased dogs (1.03 ng/mL [0.35-1.48]) and control WHWTs (0.61 ng/mL [0.24-0.65]) compared with terriers (2.72 ng/mL [0.15-5.21]; P < .0001 and P = .0001, respectively). There was no difference in FN1 immunostaining and FN1 BALF concentrations between groups. CONCLUSIONS Results suggest that SPP1 is involved in pathogenesis of IPF and could predispose that breed to the disease. Osteopontin serum concentration could serve as a diagnostic biomarker of IPF.
Collapse
Affiliation(s)
- Aline Fastrès
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Elodie Roels
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Alexandru C. Tutunaru
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Géraldine Bolen
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Anne‐Christine Merveille
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Michael J. Day
- School of Veterinary SciencesUniversity of BristolLangfordUnited Kingdom
| | - Mutien‐Marie Garigliany
- Department of Morphology and Pathology, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Nadine Antoine
- Department of Morphology and Pathology, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| | - Cécile Clercx
- Department of Clinical Sciences, FARAH, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| |
Collapse
|
16
|
Ouyang JF, Mishra K, Xie Y, Park H, Huang KY, Petretto E, Behmoaras J. Systems level identification of a matrisome-associated macrophage polarisation state in multi-organ fibrosis. eLife 2023; 12:e85530. [PMID: 37706477 PMCID: PMC10547479 DOI: 10.7554/elife.85530] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
Tissue fibrosis affects multiple organs and involves a master-regulatory role of macrophages which respond to an initial inflammatory insult common in all forms of fibrosis. The recently unravelled multi-organ heterogeneity of macrophages in healthy and fibrotic human disease suggests that macrophages expressing osteopontin (SPP1) associate with lung and liver fibrosis. However, the conservation of this SPP1+ macrophage population across different tissues and its specificity to fibrotic diseases with different etiologies remain unclear. Integrating 15 single-cell RNA-sequencing datasets to profile 235,930 tissue macrophages from healthy and fibrotic heart, lung, liver, kidney, skin, and endometrium, we extended the association of SPP1+ macrophages with fibrosis to all these tissues. We also identified a subpopulation expressing matrisome-associated genes (e.g., matrix metalloproteinases and their tissue inhibitors), functionally enriched for ECM remodelling and cell metabolism, representative of a matrisome-associated macrophage (MAM) polarisation state within SPP1+ macrophages. Importantly, the MAM polarisation state follows a differentiation trajectory from SPP1+ macrophages and is associated with a core set of regulon activity. SPP1+ macrophages without the MAM polarisation state (SPP1+MAM-) show a positive association with ageing lung in mice and humans. These results suggest an advanced and conserved polarisation state of SPP1+ macrophages in fibrotic tissues resulting from prolonged inflammatory cues within each tissue microenvironment.
Collapse
Affiliation(s)
- John F Ouyang
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Kunal Mishra
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Yi Xie
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Harry Park
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Kevin Y Huang
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU)NanjingChina
| | - Jacques Behmoaras
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
17
|
Enomoto Y, Katsura H, Fujimura T, Ogata A, Baba S, Yamaoka A, Kihara M, Abe T, Nishimura O, Kadota M, Hazama D, Tanaka Y, Maniwa Y, Nagano T, Morimoto M. Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis. Nat Commun 2023; 14:4956. [PMID: 37653024 PMCID: PMC10471635 DOI: 10.1038/s41467-023-40617-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
The molecular etiology of idiopathic pulmonary fibrosis (IPF) has been extensively investigated to identify new therapeutic targets. Although anti-inflammatory treatments are not effective for patients with IPF, damaged alveolar epithelial cells play a critical role in lung fibrogenesis. Here, we establish an organoid-based lung fibrosis model using mouse and human lung tissues to assess the direct communication between damaged alveolar type II (AT2)-lineage cells and lung fibroblasts by excluding immune cells. Using this in vitro model and mouse genetics, we demonstrate that bleomycin causes DNA damage and activates p53 signaling in AT2-lineage cells, leading to AT2-to-AT1 transition-like state with a senescence-associated secretory phenotype (SASP). Among SASP-related factors, TGF-β plays an exclusive role in promoting lung fibroblast-to-myofibroblast differentiation. Moreover, the autocrine TGF-β-positive feedback loop in AT2-lineage cells is a critical cellular system in non-inflammatory lung fibrogenesis. These findings provide insights into the mechanism of IPF and potential therapeutic targets.
Collapse
Affiliation(s)
- Yasunori Enomoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Hiroaki Katsura
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takashi Fujimura
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., 5-1-35 Saitoaokita, Minoh, 562-0029, Japan
| | - Akira Ogata
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Saori Baba
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Akira Yamaoka
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic Engineering (LARGE), RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering (LARGE), RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Daisuke Hazama
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yugo Tanaka
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
18
|
Hou Z, Zhang X, Gao Y, Geng J, Jiang Y, Dai H, Wang C. Serum Osteopontin, KL-6, and Syndecan-4 as Potential Biomarkers in the Diagnosis of Coal Workers' Pneumoconiosis: A Case-Control Study. Pharmgenomics Pers Med 2023; 16:537-549. [PMID: 37284491 PMCID: PMC10241210 DOI: 10.2147/pgpm.s409644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Background Coal worker's pneumoconiosis (CWP) is a chronic occupational disease mainly caused by coal dust inhalation in miners. This study aimed to investigate the clinical value of Osteopontin (OPN), KL-6, Syndecan-4 and Gremlin-1 as serum biomarkers in CWP. Patients and Methods We integrated reported lung tissues transcriptome data in pneumoconiosis patients with silica-exposed alveolar macrophage microarray data to identify four CWP-associated serum biomarkers. The serum concentrations of Osteopontin, Krebs von den Lungen-6 (KL-6), Syndecan-4 and Gremlin-1 were measured in 100 healthy controls (HCs), 100 dust-exposed workers (DEWs) and 200 patients of CWP. Receiver operating characteristic (ROC) curve analysis was used to determine the sensitivity, specificity, cut-off value and area under the curve (AUC) value of biomarkers. Results The pulmonary function parameters decreased sequentially, and the serum OPN, KL-6, Syndecan-4 and Gremlin-1 concentrations were increased sequentially among the HC, DEW and CWP groups. Among all participants, multivariable analysis revealed that these four biomarkers were negatively correlated with the pulmonary function parameters (all p<0.05). Compared with HCs, patients with higher OPN, KL-6, Syndecan-4 and Gremlin-1 had higher risk for CWP. The combination of OPN, KL-6, and Syndecan-4 can improve the diagnostic sensitivity and specificity of CWP patients differentiated from HCs or DEWs. Conclusion OPN, KL-6 and Syndecan-4 are novel biomarkers that can be used for CWP auxiliary diagnosis. The combination of three biomarkers can improve the diagnostic values of CWP.
Collapse
Affiliation(s)
- Zhifei Hou
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xinran Zhang
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yong Gao
- Department of Pulmonary and Critical Care Medicine, Sinopharm Tongmei General Hospital, Datong, Shanxi Province, People’s Republic of China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yu Jiang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Huaping Dai
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Chen Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Zhang Y, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3-mediated cleavage of OPN is involved in copper oxide nanoparticle-induced activation of fibroblasts. Part Fibre Toxicol 2023; 20:22. [PMID: 37217992 PMCID: PMC10201731 DOI: 10.1186/s12989-023-00532-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis. METHODS A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation. RESULTS Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system. CONCLUSIONS Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| |
Collapse
|
20
|
Lim CS, Veltri B, Kashon M, Porter DW, Ma Q. Multi-walled carbon nanotubes induce arachidonate 5-lipoxygenase expression and enhance the polarization and function of M1 macrophages in vitro. Nanotoxicology 2023; 17:249-269. [PMID: 37115655 DOI: 10.1080/17435390.2023.2204161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Fibrogenic carbon nanotubes (CNTs) induce the polarization of M1 and M2 macrophages in mouse lungs. Polarization of the macrophages regulates the production of proinflammatory and pro-resolving lipid mediators (LMs) to mediate acute inflammation and its resolution in a time-dependent manner. Here we examined the molecular mechanism by which multi-walled CNTs (MWCNTs, Mitsui-7) induce M1 polarization in vitro. Treatment of murine macrophages (J774A.1) with Mitsui-7 MWCNTs increased the expression of Alox5 mRNA and protein in a concentration- and time-dependent manner. The MWCNTs induced the expression of CD68 and that induction persisted for up to 3 days post-exposure. The expression and activity of inducible nitric oxide synthase, an intracellular marker of M1, were increased by MWCNTs. Consistent with M1 polarization, the MWCNTs induced the production and secretion of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β, and proinflammatory LMs leukotriene B4 (LTB4) and prostaglandin E2 (PGE2). The cell-free media from MWCNT-polarized macrophages induced the migration of neutrophilic cells (differentiated from HL-60), which was blocked by Acebilustat, a specific leukotriene A4 hydrolase inhibitor, or LY239111, an LTB4 receptor antagonist, but not NS-398, a cyclooxygenase 2 inhibitor, revealing LTB4 as a major mediator of neutrophil chemotaxis from MWCNT-polarized macrophages. Knockdown of Alox5 using specific small hairpin-RNA suppressed MWCNT-induced M1 polarization, LTB4 secretion, and migration of neutrophils. Taken together, these findings demonstrate the polarization of M1 macrophages by Mitsui-7 MWCNTs in vitro and that induction of Alox5 is an important mechanism by which the MWCNTs promote proinflammatory responses by boosting M1 polarization and production of proinflammatory LMs.
Collapse
Affiliation(s)
- Chol Seung Lim
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Brandon Veltri
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Michael Kashon
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Dale W Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
21
|
Su X, Kong X, Yu X, Zhang X. Incidence and influencing factors of occupational pneumoconiosis: a systematic review and meta-analysis. BMJ Open 2023; 13:e065114. [PMID: 36858466 PMCID: PMC9980323 DOI: 10.1136/bmjopen-2022-065114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES To determine the incidence of pneumoconiosis worldwide and its influencing factors. DESIGN Systematic review and meta-analysis. SETTING Cohort studies on occupational pneumoconiosis. PARTICIPANTS PubMed, Embase, the Cochrane Library and Web of Science were searched until November 2021. Studies were selected for meta-analysis if they involved at least one variable investigated as an influencing factor for the incidence of pneumoconiosis and reported either the parameters and 95% CIs of the risk fit to the data, or sufficient information to allow for the calculation of those values. PRIMARY OUTCOME MEASURES The pooled incidence of pneumoconiosis and risk ratio (RR) and 95% CIs of influencing factors. RESULTS Our meta-analysis included 19 studies with a total of 335 424 participants, of whom 29 972 developed pneumoconiosis. The pooled incidence of pneumoconiosis was 0.093 (95% CI 0.085 to 0.135). We identified the following influencing factors: (1) male (RR 3.74; 95% CI 1.31 to 10.64; p=0.01), (2) smoking (RR 1.80; 95% CI 1.34 to 2.43; p=0.0001), (3) tunnelling category (RR 4.75; 95% CI 1.96 to 11.53; p<0.0001), (4) helping category (RR 0.07; 95% CI 0.13 to 0.16; p<0.0001), (5) age (the highest incidence occurs between the ages of 50 and 60), (6) duration of dust exposure (RR 4.59, 95% CI 2.41 to 8.74, p<0.01) and (7) cumulative total dust exposure (CTD) (RR 34.14, 95% CI 17.50 to 66.63, p<0.01). A dose-response analysis revealed a significant positive linear dose-response association between the risk of pneumoconiosis and duration of exposure and CTD (P-non-linearity=0.10, P-non-linearity=0.16; respectively). The Pearson correlation analysis revealed that silicosis incidence was highly correlated with cumulative silica exposure (r=0.794, p<0.001). CONCLUSION The incidence of pneumoconiosis in occupational workers was 0.093 and seven factors were found to be associated with the incidence, providing some insight into the prevention of pneumoconiosis. PROSPERO REGISTRATION NUMBER CRD42022323233.
Collapse
Affiliation(s)
- Xuesen Su
- The First College for Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaomei Kong
- The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao Yu
- The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinri Zhang
- The National Health Commission Key Laboratory of Pneumoconiosis (Shanxi, China) Project, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pulmonary and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
22
|
Zhang X, Hu X, Zhang Y, Liu B, Pan H, Liu Z, Yao Z, Zhu Q, Wu C, Shen T. Impaired autophagy-accelerated senescence of alveolar type II epithelial cells drives pulmonary fibrosis induced by single-walled carbon nanotubes. J Nanobiotechnology 2023; 21:69. [PMID: 36849924 PMCID: PMC9970859 DOI: 10.1186/s12951-023-01821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The rapid increase in production and application of carbon nanotubes (CNTs) has led to wide public concerns in their potential risks to human health. Single-walled CNTs (SWCNTs), as an extensively applied type of CNTs, have shown strong capacity to induce pulmonary fibrosis in animal models, however, the intrinsic mechanisms remain uncertain. RESULTS In vivo experiments, we showed that accelerated senescence of alveolar type II epithelial cells (AECIIs) was associated with pulmonary fibrosis in SWCNTs-exposed mice, as well as SWCNTs-induced fibrotic lungs exhibited impaired autophagic flux in AECIIs in a time dependent manner. In vitro, SWCNTs exposure resulted in profound dysfunctions of MLE-12 cells, characterized by impaired autophagic flux and accelerated cellular senescence. Furthermore, the conditioned medium from SWCNTs-exposed MLE-12 cells promoted fibroblast-myofibroblast transdifferentiation (FMT). Additionally, restoration of autophagy flux with rapamycin significantly alleviated SWCNTs-triggered senescence and subsequent FMT whereas inhibiting autophagy using 3-MA aggravated SWCNTs-triggered senescence in MLE-12 cells and FMT. CONCLUSION SWCNTs trigger senescence of AECIIs by impairing autophagic flux mediated pulmonary fibrosis. The findings raise the possibility of senescence-related cytokines as potential biomarkers for the hazard of CNTs exposure and regulating autophagy as an appealing target to halt CNTs-induced development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xinxin Hu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuqing Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Liu
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Haihong Pan
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhuomeng Yao
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Qixing Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Heath and Medical Sciences, University of Surrey, Surrey, Guildford, UK
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
23
|
Ren G, Xu G, Li R, Xie H, Cui Z, Wang L, Zhang C. Modulation of Bleomycin-induced Oxidative Stress and Pulmonary Fibrosis by Ginkgetin in Mice via AMPK. Curr Mol Pharmacol 2023; 16:217-227. [PMID: 35249515 DOI: 10.2174/1874467215666220304094058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ginkgetin, a flavonoid extracted from Ginkgo biloba, has been shown to exhibit broad anti-inflammatory, anticancer, and antioxidative bioactivity. Moreover, the extract of Ginkgo folium has been reported on attenuating bleomycin-induced pulmonary fibrosis, but the anti-fibrotic effects of ginkgetin are still unclear. This study was intended to investigate the protective effects of ginkgetin against experimental pulmonary fibrosis and its underlying mechanism. METHODS In vivo, bleomycin (5 mg/kg) in 50 μL saline was administrated intratracheally in mice. One week after bleomycin administration, ginkgetin (25 or 50 mg/kg) or nintedanib (40 mg/kg) was administrated intragastrically daily for 14 consecutive days. In vitro, the AMPK-siRNA transfection in primary lung fibroblasts further verified the regulatory effect of ginkgetin on AMPK. RESULTS Administration of bleomycin caused characteristic histopathology structural changes with elevated lipid peroxidation, pulmonary fibrosis indexes, and inflammatory mediators. The bleomycin- induced alteration was normalized by ginkgetin intervention. Moreover, this protective effect of ginkgetin (20 mg/kg) was equivalent to that of nintedanib (40 mg/kg). AMPK-siRNA transfection in primary lung fibroblasts markedly blocked TGF-β1-induced myofibroblasts transdifferentiation and abolished oxidative stress. CONCLUSION All these results suggested that ginkgetin exerted ameliorative effects on bleomycininduced oxidative stress and lung fibrosis mainly through an AMPK-dependent manner.
Collapse
Affiliation(s)
- Guoqing Ren
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Gonghao Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Haifeng Xie
- Chengdu Biopurify Phytochemicals Ltd., Chengdu, P.R. China
| | - Zhengguo Cui
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Department of Environmental Health, 23-3 Matsuoka Shimoaizuki, Eiheiji,Fukui 910-1193, Japan
| | - Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
24
|
Zhang XL, Li B, Zhang X, Zhu J, Xie Y, Shen T, Tang W, Zhang J. 18β-Glycyrrhetinic acid monoglucuronide (GAMG) alleviates single-walled carbon nanotubes (SWCNT)-induced lung inflammation and fibrosis in mice through PI3K/AKT/NF-κB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113858. [PMID: 35809393 DOI: 10.1016/j.ecoenv.2022.113858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) have become far and wide used in a number of technical and merchant applications as a result of substantial advances in nanotechnology, therein single-walled carbon nanotubes (SWCNT) are one of the most promising nanoparticles. Inhaling CNTs has been linked to a variety of health problems, including lung fibrosis. Glycyrrhetinic acid 3-O-mono-β-D-glucuronide (GAMG), a natural sweetener, has anti-inflammatory and antioxidant capacities. The purpose of this study was to evaluate the potential for GAMG to alleviate SWCNT-induced lung inflammation and fibrosis. During days 3-28 after SWCNT intratracheal administration, we observed a remarkable increase of IL-1β, IL-6 and TNF-α in bronchoalveolar lavage fluid (BALF) on day 3 and collagen deposition on day 28. GAMG treatment remarkably ameliorated SWCNT-induced pulmonary fibrosis and attenuated SWCNT-induced inflammation and collagen deposition, and suppressed the activation of PI3K/AKT/NF-κB signaling pathway in the lungs. Therefore, GAMG has a therapeutic potential for the treatment of SWCNT-induced pulmonary fibrosis. Targeting PI3K/AKT/NF-κB signaling pathway may be a potential therapeutic approach to treat pulmonary fibrosis in mice with SWCNT.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China.
| | - Bo Li
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei 230022, China.
| | - Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China.
| | - Jiaojiao Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China.
| | - Yunfeng Xie
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei 230022, China.
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China.
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei 230022, China.
| |
Collapse
|
25
|
Wang W, Ding W, Zhang X, Wu S, Yu T, Cui X, Xie Y, Yang D, Lin C. Intratunical injection of rat-derived bone marrow mesenchymal stem cells prevents fibrosis and is associated with increased Smad7 expression in a rat model of Peyronie's disease. Stem Cell Res Ther 2022; 13:390. [PMID: 35908015 PMCID: PMC9338499 DOI: 10.1186/s13287-022-03090-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Peyronie’s disease (PD) is a fibrotic disorder of the penis, but effective treatments are lacking. Here, we observed the effects of rat-derived bone marrow mesenchymal stem cells (BMSCs) injection in the active phase and chronic phase in a rat model of PD, and the possible mechanism was analysed with fibroblasts derived from rat penile tunica albuginea (TA). Methods Thirty-two male Sprague-Dawley rats were divided into four groups. In sham group, the rats were injected with 50 µL of vehicle. In the PD group, the rats were injected with 50 µg TGF-β1. In the PD + BMSCs early treatment group, the rats were injected with 50 µg TGF-β1 and injected with 1 × 106 BMSCs after 1 day. In the PD + BMSCs late treatment group, the rats were injected with 50 µg TGF-β1 and injected with 1 × 106 BMSCs after 28 days. Twenty-seven days after the last injection, the erectile function of the rats was measured, and then, penile fibrosis was analysed by histology and western blot. In vitro, fibroblasts derived from rat penile TA were used to identify a possible antifibrotic mechanism of BMSCs, and a Smad7 expression vector was used as a positive control. Fibroblasts were pretreated with the Smad7 expression vector or BMSCs for 48 h and then activated with 10 ng/mL TGF-β1 for 24 h. Cells viability was assessed, and Smad7, collagen 3, elastase-2B and osteopontin expression levels were analysed by immunofluorescence and western blot. Furthermore, fibroblasts were transfected with Smad7 siRNA or scramble control to observe whether the effects of BMSCs could be offset. Results Erectile function obviously improved, and fibrosis of penile TA was prevented after BMSCs treatment compared with that in the rats with PD. Furthermore, the effects of BMSCs treatment in the active phase were better than those in the chronic phase. After cocultured with BMSCs, cell viability was not affected, Smad7 expression was upregulated, and collagen 3, elastase-2B and osteopontin levels were decreased in the TGF-β1-treated fibroblasts. After transfection with Smad7 siRNA, the antifibrotic effects of BMSCs were offset. Conclusions The antifibrotic effects of BMSCs treatment in the active phase of the PD rat model were better than those in the chronic phase. A possible mechanism of BMSCs treatment was related to increased Smad7 expression, suggesting a possible effective and safe procedure for the treatment of PD. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03090-w.
Collapse
Affiliation(s)
- Wenting Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, China
| | - Weifang Ding
- Department of Health Care, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, China
| | - Xuebao Zhang
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, China
| | - Shuang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, China
| | - Tianxi Yu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, China.,School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China
| | - Xin Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, China.,School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China
| | - Yaqi Xie
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, China.,Binzhou Medical University, Yantai, 264000, China
| | - Diandong Yang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, China.
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, China.
| |
Collapse
|
26
|
Kumar A, Elko E, Bruno SR, Mark ZF, Chamberlain N, Mihavics BK, Chandrasekaran R, Walzer J, Ruban M, Gold C, Lam YW, Ghandikota S, Jegga AG, Gomez JL, Janssen-Heininger YM, Anathy V. Inhibition of PDIA3 in club cells attenuates osteopontin production and lung fibrosis. Thorax 2022; 77:669-678. [PMID: 34400514 PMCID: PMC8847543 DOI: 10.1136/thoraxjnl-2021-216882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The role of club cells in the pathology of idiopathic pulmonary fibrosis (IPF) is not well understood. Protein disulfide isomerase A3 (PDIA3), an endoplasmic reticulum-based redox chaperone required for the functions of various fibrosis-related proteins; however, the mechanisms of action of PDIA3 in pulmonary fibrosis are not fully elucidated. OBJECTIVES To examine the role of club cells and PDIA3 in the pathology of pulmonary fibrosis and the therapeutic potential of inhibition of PDIA3 in lung fibrosis. METHODS Role of PDIA3 and aberrant club cells in lung fibrosis was studied by analyses of human transcriptome dataset from Lung Genomics Research Consortium, other public resources, the specific deletion or inhibition of PDIA3 in club cells and blocking SPP1 downstream of PDIA3 in mice. RESULTS PDIA3 and club cell secretory protein (SCGB1A1) signatures are upregulated in IPF compared with control patients. PDIA3 or SCGB1A1 increases also correlate with a decrease in lung function in patients with IPF. The bleomycin (BLM) model of lung fibrosis showed increases in PDIA3 in SCGB1A1 cells in the lung parenchyma. Ablation of Pdia3, specifically in SCGB1A1 cells, decreases parenchymal SCGB1A1 cells along with fibrosis in mice. The administration of a PDI inhibitor LOC14 reversed the BLM-induced parenchymal SCGB1A1 cells and fibrosis in mice. Evaluation of PDIA3 partners revealed that SPP1 is a major interactor in fibrosis. Blocking SPP1 attenuated the development of lung fibrosis in mice. CONCLUSIONS Our study reveals a new relationship with distally localised club cells, PDIA3 and SPP1 in lung fibrosis and inhibition of PDIA3 or SPP1 attenuates lung fibrosis.
Collapse
Affiliation(s)
- Amit Kumar
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Evan Elko
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sierra R Bruno
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Zoe F Mark
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Nicolas Chamberlain
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | | - Ravishankar Chandrasekaran
- Department of Pulmonary, Critical Care Medicine, Larner College of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Joseph Walzer
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mona Ruban
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Clarissa Gold
- Department of Biology & Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont, USA
| | - Ying Wai Lam
- Department of Biology & Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont, USA
| | - Sudhir Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Computer Science, University of Cincinnati College of Engineering and Applied Science, Cincinnati, Ohio, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Computer Science, University of Cincinnati College of Engineering and Applied Science, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jose L Gomez
- Internal Medicine-Pulmonary, Critical Care and Sleep Section, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Vikas Anathy
- Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
27
|
da Silva LMAV, Cintra LTA, de Alcântara S, Machado NEDS, Benetti F, Ervolino E, Briso ALF. Influence of violet LED associated or not with peroxide gel on inflammation, mineralization, and collagen fiber maturation in dentin and pulp tissue. Photodiagnosis Photodyn Ther 2022; 39:102959. [PMID: 35691564 DOI: 10.1016/j.pdpdt.2022.102959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To evaluate the influence of violet LED, associated or not with a 17.5% hydrogen peroxide (HP) bleaching gel, on inflammation, mineralization in pulp tissue, and collagen fiber maturation in dentin and pulp tissue. MATERIALS AND METHODS The maxillary molars of eighty Wistar rats were distributed into four groups (n = 10): CONT - without treatment; HP - 30-minute application of 17.5% HP; LED - 20-minute application of violet LED; and HP+LED - application of PH and violet LED. Rats were euthanized and jaws were processed for histologic and immunohistochemical evaluation (IL-17, IL-23, and osteocalcin) and picrosirius red immediately after (T0), and at 7 (T1), 15 (T2), and 30 days (T3) post-treatment, with Wilcoxon, Mann-Whitney, paired T-test, and T-test (α = 0.05). RESULTS HP and HP+LED presented necrosis and severe inflammatory infiltrate. When compared to CONT group, LED presented severe osteocalcin (OCN) immunostaining in T2 and less immature fibers in T2 and T3. CONCLUSION The violet LED caused no severe damage to the pulp tissue, increased IL-17 and IL-23 expression in T0 when associated with HP, and had no influence on pulp tissue mineralization, besides accelerating the maturation of collagen fibers of dentin. CLINICAL RELEVANCE Violet LED therapy induced no inflammation in the pulp tissue of rats and played no role in pulp tissue fibrosis, besides accelerating the maturation of dentin collagen fibers.
Collapse
Affiliation(s)
- Livia Maria Alves Valentim da Silva
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry Araçatuba, José Bonifácio, Vila Mendonça, Araçatuba, São Paulo 1193, Brazil
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry Araçatuba, José Bonifácio, Vila Mendonça, Araçatuba, São Paulo 1193, Brazil
| | - Sibele de Alcântara
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry Araçatuba, José Bonifácio, Vila Mendonça, Araçatuba, São Paulo 1193, Brazil
| | - Nathália Evelyn da Silva Machado
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry Araçatuba, José Bonifácio, Vila Mendonça, Araçatuba, São Paulo 1193, Brazil
| | - Francine Benetti
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - André Luiz Fraga Briso
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry Araçatuba, José Bonifácio, Vila Mendonça, Araçatuba, São Paulo 1193, Brazil.
| |
Collapse
|
28
|
Anti-fibrotic mechanism of SPP1 knockdown in atrial fibrosis associates with inhibited mitochondrial DNA damage and TGF-β/SREBP2/PCSK9 signaling. Cell Death Dis 2022; 8:246. [PMID: 35508610 PMCID: PMC9068627 DOI: 10.1038/s41420-022-00895-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Atrial fibrosis occurs frequently with structural heart disease and is considered as a major cause of arrhythmia. Microarray-based profiling predicted the differential expression of SPP1 in atrial fibrosis. Herein, we aimed to analyze the role of shRNA-mediated SPP1 knockdown in the progression of atrial fibrosis as well as the downstream mechanism. In vivo model in mice and in vitro HL-1 cell model of atrial fibrosis were developed by the angiotensin II (Ang II) method, where SPP1 expression was validated by RT-qPCR. Gain- and loss-of-function experiments were performed in Ang II-induced mice and HL-1 cells to evaluate the effect of the SPP1/TGF-β/SREBP2/PCSK9 axis on cell viability, apoptosis, collagen production and mitochondrial DNA (mtDNA) damage in atrial fibrosis. Expression of SPP1, TGF-β, SREBP2 and PCSK9 was increased in Ang II-induced mice and HL-1 cells. Silencing of SPP1 inhibited the occurrence of atrial fibrosis, as reflected by attenuated cell viability and collagen production as well as increased cell apoptosis. Conversely, upregulated SPP1 enhanced atrial fibrosis, which was related to upregulation of TGF-β. In addition, TGF-β elevated the expression of SREBP2, which promoted mtDNA damage and the consequent atrial fibrosis by augmenting the expression of PCSK9. This study uncovers previously unrecognized pro-fibrotic activities of SPP1 in atrial fibrosis, which is achieved through activation of the TGF-β/SREBP2/PCSK9 signaling pathway and promotion of mtDNA damage.
Collapse
|
29
|
Sager TM, Umbright CM, Mustafa GM, Roberts JR, Orandle MS, Cumpston JL, McKinney WG, Boots T, Kashon ML, Joseph P. Pulmonary toxicity and gene expression changes in response to whole-body inhalation exposure to multi-walled carbon nanotubes in rats. Inhal Toxicol 2022; 34:200-218. [PMID: 35648795 PMCID: PMC9885491 DOI: 10.1080/08958378.2022.2081386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purpose: To investigate the molecular mechanisms underlying the pulmonary toxicity induced by exposure to one form of multi-walled carbon nanotubes (MWCNT-7).Materials and methods: Rats were exposed, by whole-body inhalation, to air or an aerosol containing MWCNT-7 particles at target cumulative doses (concentration x time) ranging from 22.5 to 180 (mg/m3)h over a three-day (6 hours/day) period and toxicity and global gene expression profiles were determined in the lungs.Results: MWCNT-7 particles, associated with alveolar macrophages (AMs), were detected in rat lungs following the exposure. Mild to moderate lung pathological changes consisting of increased cellularity, thickening of the alveolar wall, alveolitis, fibrosis, and granuloma formation were detected. Bronchoalveolar lavage (BAL) toxicity parameters such as lactate dehydrogenase activity, number of AMs and polymorphonuclear leukocytes (PMNs), intracellular oxidant generation by phagocytes, and levels of cytokines were significantly (p < 0.05) increased in response to exposure to MWCNT-7. Global gene expression profiling identified several significantly differentially expressed genes (fold change >1.5 and FDR p value <0.05) in all the MWCNT-7 exposed rats. Bioinformatic analysis of the gene expression data identified significant enrichment of several diseases/biological function categories (for example, cancer, leukocyte migration, inflammatory response, mitosis, and movement of phagocytes) and canonical pathways (for example, kinetochore metaphase signaling pathway, granulocyte and agranulocyte adhesion and diapedesis, acute phase response, and LXR/RXR activation). The alterations in the lung toxicity parameters and gene expression changes exhibited a dose-response to the MWCNT exposure.Conclusions: Taken together, the data provided insights into the molecular mechanisms underlying the pulmonary toxicity induced by inhalation exposure of rats to MWCNT-7.
Collapse
Affiliation(s)
- Tina M. Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Christina M. Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Gul Mehnaz Mustafa
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Jenny R. Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Marlene S. Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Jared L. Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Walter G. McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Theresa Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Michael L. Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
30
|
Development and Characterization of Alkaline Phosphatase-Positive Human Umbilical Cord Perivascular Cells. Cells 2021; 10:cells10113011. [PMID: 34831233 PMCID: PMC8616437 DOI: 10.3390/cells10113011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
Human umbilical cord perivascular cells (HUCPVCs), harvested from human umbilical cord perivascular tissue, show potential for future use as an alternative to mesenchymal stromal cells. Here, we present the results for the characterization of the properties alkaline phosphatase-positive HUCPVCs (ALP(+)-HUCPVCs). These ALP(+)-HUCPVCs were created from HUCPVCs in this study by culturing in the presence of activated vitamin D3, an inhibitor of bone morphogenetic protein signaling and transforming growth factor-beta1 (TGF-β1). The morphological characteristics, cell proliferation, gene expression, and mineralization-inducing ability of ALP(+)-HUCPVCs were investigated at the morphological, biological, and genetic levels. ALP(+)-HUCPVCs possess high ALP gene expression and activity in cells and a slow rate of cell growth. The morphology of ALP(+)-HUCPVCs is fibroblast-like, with an increase in actin filaments containing alpha-smooth muscle actin. In addition to ALP expression, the gene expression levels of type I collagen, osteopontin, elastin, fibrillin-1, and cluster of differentiation 90 are increased in ALP(+)-HUCPVCs. ALP(+)-HUCPVCs do not have the ability to induce mineralization nodules, which may be due to the restriction of phosphate uptake into matrix vesicles. Moreover, ALP(+)-HUCPVCs may produce anti-mineralization substances. We conclude that ALP(+)-HUCPVCs induced from HUCPVCs by a TGF-β1 stimulation possess myofibroblast-like properties that have little mineralization-inducing ability.
Collapse
|
31
|
Ning J, Du H, Zhang Y, Liu Q, Jiang T, Pang Y, Tian X, Yan L, Niu Y, Zhang R. N6-methyladenosine modification of CDH1 mRNA promotes PM2.5-induced pulmonary fibrosis via mediating epithelial mesenchymal transition. Toxicol Sci 2021; 185:143-157. [PMID: 34735003 DOI: 10.1093/toxsci/kfab133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The association between ambient airborne fine particulate matter (PM2.5) exposure and respiratory diseases has been investigated in epidemiological studies. To explore the potential mechanism of PM2.5-induced pulmonary fibrosis, sixty mice were divided into 3 groups to expose to different levels of PM2.5 for 8 and 16 weeks: filtered air (FA), unfiltered air (UA) and concentrated PM2.5 air (CA), respectively. BEAS-2B cells were treated with 0, 25, 50 and 100 μg/ml PM2.5 for 24 h. The biomarkers of pulmonary fibrosis, epithelial-mesenchymal transition (EMT), N6-methyladenosine (m6A) modification and metabolism of mRNAs were detected to characterize the effect of PM2.5 exposure. The results illustrated that PM2.5 exposure induced pathological alteration and pulmonary fibrosis in mice. The expression of E-cadherin (E-cad) was decreased whereas vimentin and N-cadherin (N-cad) expression were increased in a dose- and time-dependent manner after PM2.5 exposure. Mechanistically, PM2.5 exposure increased the levels of METTL3-mediated m6A modification of CDH1 mRNA. As a target gene of miR-494-3p, YTHDF2 was up-regulated by miR-494-3p down-regulation and then recognized m6A-modified CDH1 mRNA to inhibit the E-cad expression, consequently induced the EMT progression after PM2.5 exposure. Our study indicated that PM2.5 exposure triggered EMT progression to promote the pulmonary fibrosis via miR-494-3p/YTHDF2 recognized and METTL3 mediated m6A modification.
Collapse
Affiliation(s)
- Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Hairong Du
- Guangming District Center for Disease Control and Prevention, Shenzhen, 518016, China Guangdong PR
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Tao Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiaochen Tian
- Department of Orthopaedic Surgery, Shijiazhuang People's Hospital, Shijiazhuang, 050011, PR China
| | - Liqun Yan
- Departments of Radiology, Second Hospital of Hebei Medical University, Shijiazhuang, PR, 050000, China
| | - Yujie Niu
- Department of Occupation Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China.,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China.,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| |
Collapse
|
32
|
Han B, Wang X, Wu P, Jiang H, Yang Q, Li S, Li J, Zhang Z. Pulmonary inflammatory and fibrogenic response induced by graphitized multi-walled carbon nanotube involved in cGAS-STING signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125984. [PMID: 34020360 DOI: 10.1016/j.jhazmat.2021.125984] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Graphitized multi-walled carbon nanotubes (GMWCNTs) are a new type of nanomaterial. Recently, their production and application in biological medicine have grown rapidly. However, GMWCNTs may cause adverse health effects, including the common occupational disease of pulmonary fibrosis. Pulmonary fibrosis is a serious progressive disease that often leads to lung failure, high mortality, and disability, and there is no effective therapy currently available. Therefore, identifying new biomarkers of the disease is important to better understand the disease mechanisms and explore new therapeutic strategies. In this study, 40 μg of GMWCNTs was used to treat mice in vivo by pharyngeal aspiration, and different genes were screened by transcriptome sequencing. Activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signal pathway had an important effect on the development of pulmonary inflammation and fibrosis. GMWCNTs were then administered to the mice with a STING inhibitor (C-176). Inhibition of STING effectively decreased pulmonary inflammation and fibrosis in mice induced by GMWCNTs. Collectively, activation of the cGAS-STING signaling pathway is involved in GMWCNT-induced pulmonary inflammation and fibrosis in mice.
Collapse
Affiliation(s)
- Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
33
|
Ganesan R, Vasantha-Srinivasan P, Sadhasivam DR, Subramanian R, Vimalraj S, Suk KT. Carbon Nanotubes Induce Metabolomic Profile Disturbances in Zebrafish: NMR-Based Metabolomics Platform. Front Mol Biosci 2021; 8:688827. [PMID: 34277704 PMCID: PMC8283261 DOI: 10.3389/fmolb.2021.688827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
The present study aims to investigate the metabolic effects of single-walled carbon nanotubes (SWCNT) on zebrafish (Danio rerio) using 1H nuclear magnetic resonance (1H-NMR) spectroscopy. However, there is no significant information available regarding the characterization of organic molecules, and metabolites with SWCNT exposure. Noninvasive biofluid methods have improved our understanding of SWCNT metabolism in zebrafish in recent years. Here, we used targeted metabolomics to quantify a set of metabolites within biological systems. SWCNT at various concentrations was given to zebrafish, and the metabolites were extracted using two immiscible solvent systems, methanol and chloroform. Metabolomics profiling was used in association with univariate and multivariate data analysis to determine metabolomic phenotyping. The metabolites, malate, oxalacetate, phenylaniline, taurine, sn-glycero-3-phosphate, glycine, N-acetyl mate, lactate, ATP, AMP, valine, pyruvate, ADP, serine, niacinamide are significantly impacted. The metabolism of amino acids, energy and nucleotides are influenced by SWCNT which might indicate a disturbance in metabolic reaction networks. In conclusion, using high-throughput analytical methods, we provide a perspective of metabolic impacts and the underlying associated metabolic pathways.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea.,Department of Biological Sciences, Pusan National University, Busan, Korea.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | | | - Raghunandhakumar Subramanian
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Selvaraj Vimalraj
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.,Center for Biotechnology, Anna University, Chennai, India
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| |
Collapse
|
34
|
Hatipoglu OF, Uctepe E, Opoku G, Wake H, Ikemura K, Ohtsuki T, Inagaki J, Gunduz M, Gunduz E, Watanabe S, Nishinaka T, Takahashi H, Hirohata S. Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biomed Pharmacother 2021; 139:111633. [PMID: 34243624 DOI: 10.1016/j.biopha.2021.111633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and most deadly form of interstitial lung disease. Osteopontin (OPN), a matricellular protein with proinflammatory and profibrotic properties, plays a major role in several fibrotic diseases, including IPF; OPN is highly upregulated in patients' lung samples. In this study, we knocked down OPN in a bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model using small interfering RNA (siRNA) to determine whether the use of OPN siRNA is an effective therapeutic strategy for IPF. We found that fibrosing areas were significantly smaller in specimens from OPN siRNA-treated mice. The number of alveolar macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid was also reduced in OPN siRNA-treated mice. Regarding the expression of epithelial-mesenchymal transition (EMT)-related proteins, the administration of OPN-siRNA to BLM-treated mice upregulated E-cadherin expression and downregulated vimentin expression. Moreover, in vitro, we incubated the human alveolar adenocarcinoma cell line A549 with transforming growth factor (TGF)-β1 and subsequently transfected the cells with OPN siRNA. We found a significant upregulation of Col1A1, fibronectin, and vimentin after TGF-β1 stimulation in A549 cells. In contrast, a downregulation of Col1A1, fibronectin, and vimentin mRNA levels was observed in TGF-β1-stimulated OPN knockdown A549 cells. Therefore, the downregulation of OPN effectively reduced pulmonary fibrotic and EMT changes both in vitro and in vivo. Altogether, our results indicate that OPN siRNA exerts a protective effect on BLM-induced PF in mice. Our results provide a basis for the development of novel targeted therapeutic strategies for IPF.
Collapse
Affiliation(s)
| | - Eyyup Uctepe
- Acıbadem Labmed Ankara Tissue Typing Laboratory, Turkey
| | - Gabriel Opoku
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Kentaro Ikemura
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Takashi Ohtsuki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Junko Inagaki
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Mehmet Gunduz
- Department of Otolaryngology, Moriya Keiyu Hospital, Japan
| | - Esra Gunduz
- Department of Otolaryngology, Moriya Keiyu Hospital, Japan
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan.
| |
Collapse
|
35
|
SPP1 derived from silica-exposed macrophage exosomes triggers fibroblast transdifferentiation. Toxicol Appl Pharmacol 2021; 422:115559. [PMID: 33961903 DOI: 10.1016/j.taap.2021.115559] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
The occurrence and development of silicosis is related to the interaction of multiple cells through signal transmission caused by silica dust. Including inflammatory changes reduced by macrophages and phenotypic transdifferentiation reduced by lung fibroblasts. As a communication medium between cells, exosomes have become a hot research topic. To explore the role of exosomal proteins in the occurrence and development of silicosis and the possible intervention targets, this study conducted proteomic analysis of macrophage-derived exosomes induced by silica, to identify specific proteins for intervention. In this study, we used proteomic analysis to screen exosomal protein profiles from the RAW264.7 macrophages exposed to silica. A total of 291 proteins were differentially expressed, of which 178 were upregulated and 113 were downregulated. By performing functional annotation and analysis of the differentially expressed proteins, we identified proteins SPP1, HMGB3, and HNRNPAB, which were consistent with the proteomics analysis. The involvement of SPP1 protein in fibrosis was studied further. Knocking down the expression of SPP1 in exosomes resulted in a decrease in fibrosis-related indicators. These results help to understand that exosomal protein can mediate cell communication and play a key role in the transition from fibroblasts to myofibroblasts. Further, this study also provided strategies and scientific basis for future studies on the intervention of silicosis.
Collapse
|
36
|
Zhang X, Luo M, Zhang J, Yao Z, Zhu J, Yang S, Zhu Q, Shen T. Carbon nanotubes promote alveolar macrophages toward M2 polarization mediated epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Nanotoxicology 2021; 15:588-604. [PMID: 33840345 DOI: 10.1080/17435390.2021.1905098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With substantial progress of nanotechnology, carbon nanotubes (CNTs) are widely used in a variety of industrial and commercial applications. There is rising concern about potential adverse health effects, such as pulmonary fibrosis, related to inhalation of CNTs. The detailed cellular and molecular mechanisms of pulmonary fibrosis induced by CNTs are still not clear. Epithelial-mesenchymal transition (EMT) and fibroblast-to-myofibroblast transdifferentiation (FMT) are considered as critical events in pathogenesis of pulmonary fibrosis. Alveolar macrophages (AMs) polarization plays a key role of regulating EMT and FMT in pulmonary fibrosis. In this study, we applied CNTs to stimulate primary mouse AMs under M1 or M2 polarization conditions, then analyzed the proportion of F4/80+CD11c+ or F4/80+CD206+ AMs, mRNA expression and activities of iNOS or Arg-1, as well as mRNA expression and content of TNF-α and IL-6 or TGF-β and IL-10 to evaluate dynamic phenotypic and functional changes of AMs. Single-walled CNT (SWCNT), short-type multi-walled CNT (MWCNT), and long-type MWCNT exposure at dose of 50 µg/ml promote AMs polarization toward M1 phenotype at early stage, while promote AMs polarization toward M2 phenotype at late stage. The roles of AMs polarization during development of EMT and FMT were further investigated by conditioned medium (CM) experiments. CNTs-activated M2 AMs promote progression of EMT and FMT via secreting TGF-β. Furthermore, up-regulating IRF4 may be involved in CNTs-induced M2 AMs polarization. In conclusion, this study demonstrates a new insight that CNTs exposure promotes AMs polarization toward M2 phenotype which facilitate EMT and FMT through secreting TGF-β.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Min Luo
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Zhuomeng Yao
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Jiaojiao Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Shuxin Yang
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, PR China
| |
Collapse
|
37
|
Cai W, Zhang B, Li T, Jin F, Li Y, Xu H, Yang F. Transcriptomic analysis identifies upregulation of secreted phosphoprotein 1 in silicotic rats. Exp Ther Med 2021; 21:579. [PMID: 33850551 PMCID: PMC8027763 DOI: 10.3892/etm.2021.10011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Silicosis is caused by exposure to crystalline silica and the molecular mechanism of silicotic fibrosis remains unclear. Therefore, the present study investigated the mRNA profiles of rats exposed to crystalline silica. RNA-sequencing techniques were used to observe differential expression of mRNAs in silicotic rats induced by chronic inhalation of crystalline silica particulates. Prediction of mRNA functions and signaling pathways was conducted using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Certain differentially expressed mRNAs were verified in lung tissue of silicotic rats by quantitative polymerase chain reaction (qPCR). Secreted phosphoprotein 1 (SPP1) was measured in serum from silicosis patients, lungs of silicotic rats and NR8383 macrophages treated with silica. A total of 1,338 mRNAs were revealed to be differentially expressed in silicotic rat lungs, including 912 upregulated and 426 downregulated mRNAs. In GO analysis of significant changes in mRNAs, the most affected processes were the defense response, extracellular space and chemokine activity in terms of biological process, cellular component and molecular function. In KEGG pathway analysis, dysregulated mRNAs were involved in systemic lupus erythematosus, staphylococcus aureus infection, complement and coagulation cascades, alcoholism and pertussis. qPCR demonstrated that expression of Spp1, Mmp12, Ccl7, Defb5, Fabp4 and Slc26a4 was increased in silicotic rats, while Lpo, Itln1, Lcn2 and Dlk1 expression was decreased. It was also found that SPP1 was increased in serum from silicosis patients, silicotic rats and silica-treated NR8383 macrophages. The expression of mRNAs was altered significantly in silicotic rats, which suggested that certain genes are novel targets for the diagnosis and treatment of silicosis.
Collapse
Affiliation(s)
- Wenchen Cai
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Bonan Zhang
- Basic Medicine College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Tian Li
- Basic Medicine College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Fuyu Jin
- Basic Medicine College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yaqian Li
- Basic Medicine College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hong Xu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Fang Yang
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
38
|
Migneault F, Hébert MJ. Autophagy, tissue repair, and fibrosis: a delicate balance. Matrix Biol 2021; 100-101:182-196. [PMID: 33454422 DOI: 10.1016/j.matbio.2021.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Tissue repair and fibrosis, an abnormal form of repair, occur in most human organs in response to injury or inflammation. Fibroblasts play a major role in the normal repair process by differentiating into myofibroblasts that synthesize extracellular matrix (ECM) components and favor tissue remodeling to reestablish normal function and integrity. However, their persistent accumulation at the site of injury is a hallmark of fibrosis. Autophagy is a catabolic process that occurs in eukaryotic cells as a stress response to allow cell survival and maintenance of cellular homeostasis by degrading and recycling intracellular components. Recent advances identify autophagy as an important regulator of myofibroblast differentiation, tissue remodeling, and fibrogenesis. In this mini-review, we provide an overview of the interactions between autophagy, ECM, and fibrosis, and emphasize the molecular mechanisms involved in myofibroblast differentiation. We also describe the emerging concept of secretory autophagy as a new avenue for intercellular communication at the site of tissue injury and repair.
Collapse
Affiliation(s)
- Francis Migneault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada
| | - Marie-Josée Hébert
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada; Département de médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
39
|
Asada R, Nakatsuka Y, Kanamaru H, Kawakita F, Fujimoto M, Miura Y, Shiba M, Yasuda R, Toma N, Suzuki H. Higher Plasma Osteopontin Concentrations Associated with Subsequent Development of Chronic Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2021; 12:808-816. [PMID: 33423213 DOI: 10.1007/s12975-020-00886-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023]
Abstract
A matricellular protein osteopontin (OPN) is considered to exert neuroprotective and healing effects on neurovascular injuries in an acute phase of aneurysmal subarachnoid hemorrhage (SAH). However, the relationships between OPN expression and chronic shunt-dependent hydrocephalus (SDHC) have never been investigated. In 166 SAH patients (derivation and validation cohorts, 110 and 56, respectively), plasma OPN levels were serially measured at days1-3, 4-6, 7-9, and 10-12 after aneurysmal obliteration. The OPN levels and clinical factors were compared between patients with and without subsequent development of chronic SDHC. Plasma OPN levels in the SDHC patients increased from days 1-3 to days 4-6 and remained high thereafter, while those in the non-SDHC patients peaked at days 4-6 and then decreased over time. Plasma OPN levels had no correlation with serum levels of C-reactive protein (CRP), a systemic inflammatory marker. Univariate analyses showed that age, modified Fisher grade, acute hydrocephalus, cerebrospinal fluid drainage, and OPN and CRP levels at days 10-12 were significantly different between patients with and without SDHC. Multivariate analyses revealed that higher plasma OPN levels at days 10-12 were an independent factor associated with the development of SDHC, in addition to a more frequent use of cerebrospinal fluid drainage and higher modified Fisher grade at admission. Plasma OPN levels at days 10-12 maintained similar discrimination power in the validation cohort and had good calibration on the Hosmer-Lemeshow goodness-of-fit test. Prolonged higher expression of OPN may contribute to the development of post-SAH SDHC, possibly by excessive repairing effects promoting fibrosis in the subarachnoid space.
Collapse
Affiliation(s)
- Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshinari Nakatsuka
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoichi Miura
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | | |
Collapse
|
40
|
Pulmonary toxicants and fibrosis: innate and adaptive immune mechanisms. Toxicol Appl Pharmacol 2020; 409:115272. [PMID: 33031836 PMCID: PMC9960630 DOI: 10.1016/j.taap.2020.115272] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/04/2023]
Abstract
Pulmonary fibrosis is characterized by destruction and remodeling of the lung due to an accumulation of collagen and other extracellular matrix components in the tissue. This results in progressive irreversible decreases in lung capacity, impaired gas exchange and eventually, hypoxemia. A number of inhaled and systemic toxicants including bleomycin, silica, asbestos, nanoparticles, mustard vesicants, nitrofurantoin, amiodarone, and ionizing radiation have been identified. In this article, we review the role of innate and adaptive immune cells and mediators they release in the pathogenesis of fibrotic pathologies induced by pulmonary toxicants. A better understanding of the pathogenic mechanisms underlying fibrogenesis may lead to the development of new therapeutic approaches for patients with these debilitating and largely irreversible chronic diseases.
Collapse
|
41
|
Fastrès A, Pirottin D, Fievez L, Tutunaru AC, Bolen G, Merveille AC, Marichal T, Desmet CJ, Bureau F, Clercx C. Identification of Pro-Fibrotic Macrophage Populations by Single-Cell Transcriptomic Analysis in West Highland White Terriers Affected With Canine Idiopathic Pulmonary Fibrosis. Front Immunol 2020; 11:611749. [PMID: 33384697 PMCID: PMC7770158 DOI: 10.3389/fimmu.2020.611749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Canine idiopathic pulmonary fibrosis (CIPF) affects old dogs from the West Highland white terrier (WHWT) breed and mimics idiopathic pulmonary fibrosis (IPF) in human. The disease results from deposition of fibrotic tissue in the lung parenchyma causing respiratory failure. Recent studies in IPF using single-cell RNA sequencing (scRNA-seq) revealed the presence of profibrotic macrophage populations in the lung, which could be targeted for therapeutic purpose. In dogs, scRNA-seq was recently validated for the detection of cell populations in bronchoalveolar lavage fluid (BALF) from healthy dogs. Here we used the scRNA-seq to characterize disease-related heterogeneity within cell populations of macrophages/monocytes (Ma/Mo) in the BALF from five WHWTs affected with CIPF in comparison with three healthy WHWTs. Gene set enrichment analysis was also used to assess pro-fibrotic capacities of Ma/Mo populations. Five clusters of Ma/Mo were identified. Gene set enrichment analyses revealed the presence of pro-fibrotic monocytes in higher proportion in CIPF WHWTs than in healthy WHWTs. In addition, monocyte-derived macrophages enriched in pro-fibrotic genes in CIPF compared with healthy WHWTs were also identified. These results suggest the implication of Ma/Mo clusters in CIPF processes, although, further research is needed to understand their role in disease pathogenesis. Overexpressed molecules associated with pulmonary fibrosis processes were also identified that could be used as biomarkers and/or therapeutic targets in the future.
Collapse
Affiliation(s)
- Aline Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - Dimitri Pirottin
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Alexandru-Cosmin Tutunaru
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - Géraldine Bolen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - Anne-Christine Merveille
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, Department Functional Sciences and GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Cécile Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, Liège, Belgium
| |
Collapse
|
42
|
Dong J. Signaling Pathways Implicated in Carbon Nanotube-Induced Lung Inflammation. Front Immunol 2020; 11:552613. [PMID: 33391253 PMCID: PMC7775612 DOI: 10.3389/fimmu.2020.552613] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a tissue response to a variety of harmful stimuli, such as pathogens, irritants, and injuries, and can eliminate insults and limit tissue damage. However, dysregulated inflammation is recognized as a cause of many human diseases, exemplified by organ fibrosis and cancer. In this regard, inflammation-promoted fibrosis is commonly observed in human lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis. Carbon nanotubes (CNTs) are a type of nanomaterials with unique properties and various industrial and commercial applications. On the other hand, certain forms of CNTs are potent inducers of inflammation and fibrosis in animal lungs. Notably, acute inflammation is a remarkable phenotype elicited by CNTs in the lung during the early acute phase post-exposure; whereas a type 2 immune response is evidently activated and dominates during the late acute and chronic phases, leading to type 2 inflammation and lung fibrosis. Numerous studies demonstrate that these immune responses involve distinct immune cells, various pathologic factors, and specific functions and play crucial roles in the initiation and progression of inflammation and fibrosis in the lung exposed to CNTs. Thus, the mechanistic understanding of the immune responses activated by CNTs has drawn great attention in recent years. This article reviews the major findings on the cell signaling pathways that are activated in immune cells and exert functions in promoting immune responses in CNT-exposed lungs, which would provide new insights into the understanding of CNT-induced lung inflammation and inflammation-driven fibrosis, the application of CNT-induced lung inflammation and fibrosis as a new disease model, and the potential of targeting immune cells as a therapeutic strategy for relevant human lung diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
43
|
Sager TM, Umbright CM, Mustafa GM, Yanamala N, Leonard HD, McKinney WG, Kashon ML, Joseph P. Tobacco Smoke Exposure Exacerbated Crystalline Silica-Induced Lung Toxicity in Rats. Toxicol Sci 2020; 178:375-390. [PMID: 32976597 PMCID: PMC7825013 DOI: 10.1093/toxsci/kfaa146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Smoking may modify the lung response to silica exposure including cancer and silicosis. Nevertheless, the precise role of exposure to tobacco smoke (TS) on the lung response to crystalline silica (CS) exposure and the underlying mechanisms need further clarification. The objectives of the present study were to determine the role of TS on lung response to CS exposure and the underlying mechanism(s). Male Fischer 344 rats were exposed by inhalation to air, CS (15 mg/m3, 6 h/day, 5 days), TS (80 mg/m3, 3 h/day, twice weekly, 6 months), or CS (15 mg/m3, 6 h/day, 5 days) followed by TS (80 mg/m3, 3 h/day, twice weekly, 6 months). The rats were euthanized 6 months and 3 weeks following initiation of the first exposure and the lung response was assessed. Silica exposure resulted in significant lung toxicity as evidenced by lung histological changes, enhanced neutrophil infiltration, increased lactate dehydrogenase levels, enhanced oxidant production, and increased cytokine levels. The TS exposure alone had only a minimal effect on these toxicity parameters. However, the combined exposure to TS and CS exacerbated the lung response, compared with TS or CS exposure alone. Global gene expression changes in the lungs correlated with the lung toxicity severity. Bioinformatic analysis of the gene expression data demonstrated significant enrichment in functions, pathways, and networks relevant to the response to CS exposure which correlated with the lung toxicity detected. Collectively our data demonstrated an exacerbation of CS-induced lung toxicity by TS exposure and the molecular mechanisms underlying the exacerbated toxicity.
Collapse
Affiliation(s)
- Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Christina M Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Gul Mehnaz Mustafa
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Naveena Yanamala
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Howard D Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Walter G McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| |
Collapse
|
44
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
45
|
Leung ELH, Pan HD, Huang YF, Fan XX, Wang WY, He F, Cai J, Zhou H, Liu L. The Scientific Foundation of Chinese Herbal Medicine against COVID-19. ENGINEERING (BEIJING, CHINA) 2020; 6:1099-1107. [PMID: 33520331 PMCID: PMC7833648 DOI: 10.1016/j.eng.2020.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 05/04/2023]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic outbreak has caused a serious global health emergency. Supporting evidence shows that COVID-19 shares a genomic similarity with other coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and that the pathogenesis and treatment strategies that were applied 17 years ago in combating SARS-CoV and other viral infections could be taken as references in today's antiviral battle. According to the clinical pathological features of COVID-19 patients, patients can suffer from five steps of progression, starting with severe viral infection and suppression of the immune system and eventually progressing to cytokine storm, multi-organ damage, and lung fibrosis, which is the cause of mortality. Therefore, early prevention of disease progression is important. However, no specific effective drugs and vaccination are currently available, and the World Health Organization is urging the development of novel prevention and treatment strategies. Traditional Chinese medicine could be used as an alternative treatment option or in combination with Western medicine to treat COVID-19, due to its basis on historical experience and holistic pharmacological action. Here, we summarize the potential uses and therapeutic mechanisms of Chinese herbal formulas (CHFs) from the reported literature, along with patent drugs that have been recommended by institutions at the national and provincial levels in China, in order to verify their scientific foundations for treating COVID-19. In perspective, more basic and clinical studies with multiple high-tech and translational technologies are suggested to further confirm the therapeutic efficacies of CHFs.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Yu-Feng Huang
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Wan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Fang He
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Jun Cai
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
46
|
Ma Q. Polarization of Immune Cells in the Pathologic Response to Inhaled Particulates. Front Immunol 2020; 11:1060. [PMID: 32625201 PMCID: PMC7311785 DOI: 10.3389/fimmu.2020.01060] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
Polarization of immune cells is commonly observed in host responses associated with microbial immunity, inflammation, tumorigenesis, and tissue repair and fibrosis. In this process, immune cells adopt distinct programs and perform specialized functions in response to specific signals. Accumulating evidence indicates that inhalation of micro- and nano-sized particulates activates barrier immune programs in the lung in a time- and context-dependent manner, including type 1 and type 2 inflammation, and T helper (Th) 17 cell, regulatory T cell (Treg), innate lymphoid cell (ILC), and myeloid-derived suppressor cell (MDSC) responses, which highlight the polarization of several major immune cell types. These responses facilitate the pulmonary clearance and repair under physiological conditions. When exposure persists and overwhelms the clearance capacity, they foster the chronic progression of inflammation and development of progressive disease conditions, such as fibrosis and cancer. The pulmonary response to insoluble particulates thus represents a distinctive disease process wherein non-infectious, persistent exposures stimulate the polarization of immune cells to orchestrate dynamic inflammatory and immune reactions, leading to pulmonary and pleural chronic inflammation, fibrosis, and malignancy. Despite large variations in particles and their associated disease outcomes, the early response to inhaled particles often follows a common path. The initial reactions entail a barrier immune response dominated by type 1 inflammation that features active phagocytosis by M1 macrophages and recruitment of neutrophils, both of which are fueled by Th1 and proinflammatory cytokines. Acute inflammation is immediately followed by resolution and tissue repair mediated through specialized pro-resolving mediators (SPMs) and type 2 cytokines and cells including M2 macrophages and Th2 lymphocytes. As many particles and fibers cannot be digested by phagocytes, resolution is often extended and incomplete, and type 2 inflammation becomes heightened, which promotes interstitial fibrosis, granuloma formation, and tumorigenesis. Recent studies also reveal the involvement of Th17-, Treg-, ILC-, and MDSC-mediated responses in the pathogenesis caused by inhaled particulates. This review synopsizes the progress in understanding the interplay between inhaled particles and the pulmonary immune functions in disease pathogenesis, with focus on particle-induced polarization of immune cells and its role in the development of chronic inflammation, fibrosis, and cancer in the lung.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
47
|
Lim CS, Porter DW, Orandle MS, Green BJ, Barnes MA, Croston TL, Wolfarth MG, Battelli LA, Andrew ME, Beezhold DH, Siegel PD, Ma Q. Resolution of Pulmonary Inflammation Induced by Carbon Nanotubes and Fullerenes in Mice: Role of Macrophage Polarization. Front Immunol 2020; 11:1186. [PMID: 32595644 PMCID: PMC7303302 DOI: 10.3389/fimmu.2020.01186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary exposure to certain engineered nanomaterials (ENMs) causes chronic lesions like fibrosis and cancer in animal models as a result of unresolved inflammation. Resolution of inflammation involves the time-dependent biosynthesis of lipid mediators (LMs)-in particular, specialized pro-resolving mediators (SPMs). To understand how ENM-induced pulmonary inflammation is resolved, we analyzed the inflammatory and pro-resolving responses to fibrogenic multi-walled carbon nanotubes (MWCNTs, Mitsui-7) and low-toxicity fullerenes (fullerene C60, C60F). Pharyngeal aspiration of MWCNTs at 40 μg/mouse or C60F at a dose above 640 μg/mouse elicited pulmonary effects in B6C3F1 mice. Both ENMs stimulated acute inflammation, predominated by neutrophils, in the lung at day 1, which transitioned to histiocytic inflammation by day 7. By day 28, the lesion in MWCNT-exposed mice progressed to fibrotic granulomas, whereas it remained as alveolar histiocytosis in C60F-exposed mice. Flow cytometric profiling of whole lung lavage (WLL) cells revealed that neutrophil recruitment was the greatest at day 1 and declined to 36.6% of that level in MWCNT- and 16.8% in C60F-treated mice by day 7, and to basal levels by day 28, suggesting a rapid initiation phase and an extended resolution phase. Both ENMs induced high levels of proinflammatory leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) with peaks at day 1, and high levels of SPMs resolvin D1 (RvD1) and E1 (RvE1) with peaks at day 7. MWCNTs and C60F induced time-dependent polarization of M1 macrophages with a peak at day 1 and subsequently of M2 macrophages with a peak at day 7 in the lung, accompanied by elevated levels of type 1 or type 2 cytokines, respectively. M1 macrophages exhibited preferential induction of arachidonate 5-lipoxygenase activating protein (ALOX5AP), whereas M2 macrophages had a high level expression of arachidonate 15-lipoxygenase (ALOX15). Polarization of macrophages in vitro differentially induced ALOX5AP in M1 macrophages or ALOX15 in M2 macrophages resulting in increased preferential biosynthesis of proinflammatory LMs or SPMs. MWCNTs increased the M1- or M2-specific production of LMs accordingly. These findings support a mechanism by which persistent ENM-induced neutrophilic inflammation is actively resolved through time-dependent polarization of macrophages and enhanced biosynthesis of specialized LMs via distinct ALOX pathways.
Collapse
Affiliation(s)
- Chol Seung Lim
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Dale W. Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Marlene S. Orandle
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Brett J. Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Mark A. Barnes
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Tara L. Croston
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Michael G. Wolfarth
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Lori A. Battelli
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Michael E. Andrew
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Donald H. Beezhold
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Paul D. Siegel
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
48
|
Malur A, Mohan A, Barrington RA, Leffler N, Malur A, Muller-Borer B, Murray G, Kew K, Zhou C, Russell J, Jones JL, Wingard CJ, Barna BP, Thomassen MJ. Peroxisome Proliferator-activated Receptor-γ Deficiency Exacerbates Fibrotic Response to Mycobacteria Peptide in Murine Sarcoidosis Model. Am J Respir Cell Mol Biol 2020; 61:198-208. [PMID: 30741559 DOI: 10.1165/rcmb.2018-0346oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We established a murine model of multiwall carbon nanotube (MWCNT)-elicited chronic granulomatous disease that bears similarities to human sarcoidosis pathology, including alveolar macrophage deficiency of peroxisome proliferator-activated receptor γ (PPARγ). Because lymphocyte reactivity to mycobacterial antigens has been reported in sarcoidosis, we hypothesized that addition of mycobacterial ESAT-6 (early secreted antigenic target protein 6) to MWCNT might exacerbate pulmonary granulomatous pathology. MWCNTs with or without ESAT-6 peptide 14 were instilled by the oropharyngeal route into macrophage-specific PPARγ-knockout (KO) or wild-type mice. Control animals received PBS or ESAT-6. Lung tissues, BAL cells, and BAL fluid were evaluated 60 days after instillation. PPARγ-KO mice receiving MWCNT + ESAT-6 had increased granulomas and significantly elevated fibrosis (trichrome staining) compared with wild-type mice or PPARγ-KO mice that received only MWCNT. Immunostaining of lung tissues revealed elevated fibronectin and Siglec F expression on CD11c+ infiltrating alveolar macrophages in the presence of MWCNT + ESAT-6 compared with MWCNT alone. Analyses of BAL fluid proteins indicated increased levels of transforming growth factor (TGF)-β and the TGF-β pathway mediator IL-13 in PPARγ-KO mice that received MWCNT + ESAT-6 compared with wild-type or PPARγ-KO mice that received MWCNT. Similarly, mRNA levels of matrix metalloproteinase 9, another requisite factor for TGF-β production, was elevated in PPARγ-KO mice by MWCNT + ESAT-6. Analysis of ESAT-6 in lung tissues by mass spectrometry revealed ESAT-6 retention in lung tissues of PPARγ-KO but not wild-type mice. These data indicate that PPARγ deficiency promotes pulmonary ESAT-6 retention, exacerbates macrophage responses to MWCNT + ESAT-6, and intensifies pulmonary fibrosis. The present findings suggest that the model may facilitate understanding of the effects of environmental factors on sarcoidosis-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Anagha Malur
- 1Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Arjun Mohan
- 1Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Robert A Barrington
- 2Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama
| | - Nancy Leffler
- 1Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Amrita Malur
- 1Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine
| | | | | | - Kim Kew
- 5Department of Chemistry, East Carolina University, Greenville, North Carolina
| | | | - Josh Russell
- 7Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina; and
| | - Jacob L Jones
- 7Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina; and
| | - Christopher J Wingard
- 8Department of Physical Therapy, School of Movement and Rehabilitation Sciences, College of Health Professions, Bellarmine University, Louisville, Kentucky
| | - Barbara P Barna
- 1Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Mary Jane Thomassen
- 1Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine
| |
Collapse
|
49
|
Terayama AM, Benetti F, de Araújo Lopes JM, Barbosa JG, Silva IJP, Sivieri-Araújo G, Briso ALF, Cintra LTA. Influence of low-level laser therapy on inflammation, collagen fiber maturation, and tertiary dentin deposition in the pulp of bleached teeth. Clin Oral Investig 2020; 24:3911-3921. [PMID: 32198660 DOI: 10.1007/s00784-020-03258-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We evaluated the effects of low-level laser therapy (LLLT) using an infrared laser (IRL) and a red laser (RL) on the pulp of molar teeth in rats after dental bleaching to assess inflammation, collagen fiber maturation, and tertiary dentin formation. MATERIALS AND METHODS Eighty Wistar rats (Rattus norvegicus, albinus) were randomly divided into eight groups with 10 hemimaxillae in each of the following: control; bleached (Ble, 35% hydrogen peroxide [H2O2]); Ble-1IRL and Ble-1RL (one IRL [808 nm, 30 s, 3 J] or RL [660 nm, 15 s, 1.5 J] application immediately after H2O2); Ble-3IRL and Ble-3RL (three [immediately, 24 h, and 48 h] IRL or RL applications after H2O2); and 3IRL and 3RL (three IRL or RL applications without bleaching). The rats were euthanized after 2 and 30 days for histological evaluation of inflammation (hematoxylin-eosin) and maturation of collagen fibers (picrosirius red). Additionally, the dentin deposition in the specimens obtained at 30 days was quantified via microtomography of the pulp chamber volume. Statistical analyses were performed (P < 0.05). RESULTS Initially, severe damages to the pulp were observed in the Ble and Ble-1RL groups. Ble-1IRL and Ble-3RL groups showed lower inflammation. The bleached groups had a greater amount of mature collagen fibers than the control group. The Ble-3IRL group had a greater number of immature fibers than the Ble group. At 30 days, there was an absence of inflammation and equal proportion of mature and immature collagen fibers. All bleached groups showed a reduction in the volume of the pulp chamber. CONCLUSION Three consecutive applications of RL and one IRL application can minimize damage to the pulp of bleached teeth, whereas three IRL applications can minimize pulp fibrosis. However, LLLT did not prevent deposition of tertiary dentin. CLINICAL RELEVANCE This study describes LLLT protocols capable of minimizing inflammation and maturation of collagen fibers in pulp tissue after dental bleaching. However, the protocols proved insufficient for reducing the formation of tertiary dentin in bleached teeth.
Collapse
Affiliation(s)
- Amanda Miyuki Terayama
- Endodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Francine Benetti
- Endodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil.,Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | | | | | - Gustavo Sivieri-Araújo
- Endodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - André Luiz Fraga Briso
- Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | | |
Collapse
|
50
|
Dong J. Microenvironmental Alterations in Carbon Nanotube-Induced Lung Inflammation and Fibrosis. Front Cell Dev Biol 2020; 8:126. [PMID: 32185174 PMCID: PMC7059188 DOI: 10.3389/fcell.2020.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/13/2020] [Indexed: 12/30/2022] Open
Abstract
Carbon nanotube (CNT)-induced pulmonary inflammation and fibrosis have been intensively observed and characterized in numerous animal studies in the past decade. Remarkably, CNT-induced fibrotic lesions highly resemble some human fibrotic lung diseases, such as IPF and pneumoconiosis, regarding disease development and pathological features. This notion leads to a serious concern over the health impact of CNTs in exposed human populations, considering the rapidly expanding production of CNT materials for diverse industrial and commercial applications, and meanwhile provides the rationale for exploring CNT-induced pathologic effects in the lung. Accumulating mechanistic understanding of CNT lung pathology at the systemic, cellular, and molecular levels has demonstrated the potential of using CNT-exposed animals as a new disease model for the studies on inflammation, fibrosis, and the interactions between these two disease states. Tissue microenvironment plays critical roles in maintaining homeostasis and physiological functions of organ systems. When aberrant microenvironment forms under intrinsic or extrinsic stimulation, tissue abnormality, organ dysfunction, and pathological outcomes are induced, resulting in disease development. In this article, the cellular and molecular alterations that are induced in tissue microenvironment and implicated in the initiation and progression of inflammation and fibrosis in CNT-exposed lungs, including effector cells, soluble mediators, and functional events exemplified by cell differentiation and extracellular matrix (ECM) modification, are summarized and discussed. This analysis would provide new insights into the mechanistic understanding of lung inflammation and fibrosis induced by CNTs, as well as the development of CNT-exposed animals as a new model for human lung diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|