1
|
Zhou Y, Qiu C, Zhou Z, Zhang D, Cai Y, Yuan J, Mao S. Influence of paeoniflorin dietary supplementation on growth performance, antioxidant status, blood parameters, carcass characteristics and meat quality in broiler chickens. Vet Anim Sci 2025; 28:100450. [PMID: 40256759 PMCID: PMC12008132 DOI: 10.1016/j.vas.2025.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
Paeonia lactiflora Pall, known for its antioxidative and anti-apoptotic properties, is a traditional Chinese medicine. To address the growing demand for animal protein, large-scale commercial broiler production systems often induce excessive stress responses in chickens, impacting their performance and immune function. This study examined the effects of adding paeoniflorin at doses of 150, 300, and 450 mg/kg to broiler diets on antioxidant activities, blood biochemical parameters, carcass characteristics, and meat quality. The results showed that different levels of paeoniflorin significantly enhanced the activity of antioxidant enzyme in serum and liver, and decreased in malondialdehyde level both in serum and meat tissue compared with basal diet broilers (P < 0.05). Paeoniflorin supplementation markedly decreased levels of creatinine, uric acid, aspartate aminotransferase, alanine aminotransferase, total cholesterol, and triglycerides (P < 0.05). Diets containing different levels of paeoniflorin significantly increased the eviscerated yield percentage of birds and reduced abdominal fat (P < 0.05). Furthermore, paeoniflorin supplementation notably enhanced the redness and reduced the yellowness of pectoral and thigh muscles, while also significantly decreasing drip and cooking loss in the pectoral muscle (P < 0.05). Although the levels of crude protein, ether extract, and crude ash in the pectoral and thigh muscles did not significantly vary between treatments (P > 0.05), paeoniflorin significantly increased the nucleotide 5'-monophosphate content in meat muscles (P < 0.05). Therefore, the data suggest that paeoniflorin can be an effective natural feed additive for broiler diets, with an optimal dosage of 150-300 mg/kg.
Collapse
Affiliation(s)
- Yefei Zhou
- Department of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Cunyi Qiu
- Gansu Polytechnic College of Animal Husbandry & Engineering, Wuwei, 733006, China
| | - Zhiding Zhou
- Key Laboratory of Marine Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Dunlin Zhang
- Department of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Yao Cai
- Department of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Jun Yuan
- Department of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Shanguo Mao
- Department of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| |
Collapse
|
2
|
Szymczak M, Heidecke H, Żabińska M, Janek Ł, Wronowicz J, Kujawa K, Bukowiec-Marek K, Gołębiowski T, Skalec K, Schulze-Forster K, Konieczny A, Banasik M. The Influence of Anti-ETAR and Anti-CXCR3 Antibody Levels on the Course of Specific Glomerulonephritis Types. J Clin Med 2024; 13:7752. [PMID: 39768675 PMCID: PMC11679591 DOI: 10.3390/jcm13247752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Anti-ETAR (endothelin A receptor) antibodies and anti-CXCR3 (C-X-C motif chemokine receptor 3) antibodies are types of non-HLA (human leukocyte antigens) antibodies that could have some influence on the course of glomerulonephritis. The authors aimed to study the influence of these antibodies' levels on the course of specific glomerulonephritis types. Methods: We evaluated the anti-ETAR and anti-CXCR3 antibody levels in the serum of patients with membranous nephropathy (n = 18), focal and segmental glomerulosclerosis (FSGS) (n = 25), systemic lupus erythematosus (n = 17), IgA nephropathy (n = 14), mesangiocapillary glomerulonephritis (n = 6), anti-neutrophil cytoplasmic antibodies (c-ANCA) vasculitis (n = 40), and perinuclear anti-neutrophil cytoplasmic antibodies (p-ANCA) vasculitis (n = 16), and we compared their levels with the control group (n = 22). Next, we observed the patients' clinical parameters (serum creatinine, albumin, total protein) for 2 years and checked the correlation of the clinical course markers with basic receptor antibody level. Results: Our results indicate lower anti-ETAR antibody levels in patients with FSGS and IgA nephropathy compared to the control group. Both types of antibodies correlated with creatinine levels after 2 years of observation in IgA nephropathy. Both types of antibodies seemed to negatively influence the total protein and albumin levels in systemic lupus erythematosus. Conclusions: This prospective observation showed that anti-ETAR and anti-CXCR 3 antibody levels are connected with the course of IgA nephropathy and lupus nephritis.
Collapse
Affiliation(s)
- Maciej Szymczak
- Clinical Department of Nephrology, Transplantation Medicine and Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.B.-M.); (T.G.); (A.K.); (M.B.)
| | - Harald Heidecke
- CellTrendGmbh, Im Biotechnologiepark 3 TGZ II, 14943 Luckenwalde, Germany; (H.H.); (K.S.-F.)
| | - Marcelina Żabińska
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wrocław University of Science and Technology, 58-376 Wroclaw, Poland;
| | - Łucja Janek
- Statistical Analysis Center, Wroclaw Medical University, 50-368 Wroclaw, Poland; (Ł.J.); (J.W.); (K.K.)
| | - Jakub Wronowicz
- Statistical Analysis Center, Wroclaw Medical University, 50-368 Wroclaw, Poland; (Ł.J.); (J.W.); (K.K.)
| | - Krzysztof Kujawa
- Statistical Analysis Center, Wroclaw Medical University, 50-368 Wroclaw, Poland; (Ł.J.); (J.W.); (K.K.)
| | - Karolina Bukowiec-Marek
- Clinical Department of Nephrology, Transplantation Medicine and Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.B.-M.); (T.G.); (A.K.); (M.B.)
| | - Tomasz Gołębiowski
- Clinical Department of Nephrology, Transplantation Medicine and Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.B.-M.); (T.G.); (A.K.); (M.B.)
| | - Karolina Skalec
- Clinical Department of Nephrology, Transplantation Medicine and Internal Diseases, University Clinical Hospital, 50-556 Wroclaw, Poland;
| | - Kai Schulze-Forster
- CellTrendGmbh, Im Biotechnologiepark 3 TGZ II, 14943 Luckenwalde, Germany; (H.H.); (K.S.-F.)
| | - Andrzej Konieczny
- Clinical Department of Nephrology, Transplantation Medicine and Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.B.-M.); (T.G.); (A.K.); (M.B.)
| | - Mirosław Banasik
- Clinical Department of Nephrology, Transplantation Medicine and Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.B.-M.); (T.G.); (A.K.); (M.B.)
| |
Collapse
|
3
|
Li L, Zhang Y, Wang Z, Chen X, Fang M. Glycyrrhizin attenuates renal inflammation in a mouse Con A-hepatitis model via the IL-25/M2 axis. Ren Fail 2024; 46:2356023. [PMID: 38785317 PMCID: PMC11133957 DOI: 10.1080/0886022x.2024.2356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1β by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyue Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyan Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Chen
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Min Fang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Xing D, Ma Y, Lu M, Liu W, Zhou H. Paeoniflorin alleviates hypoxia/reoxygenation injury in HK-2 cells by inhibiting apoptosis and repressing oxidative damage via Keap1/Nrf2/HO-1 pathway. BMC Nephrol 2023; 24:314. [PMID: 37884904 PMCID: PMC10601317 DOI: 10.1186/s12882-023-03366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Acute kidney injury (AKI) is a serious disorder associated with significant morbidity and mortality. AKI and ischemia/reperfusion (hypoxia/reoxygenation, H/R) injury can be induced due to several reasons. Paeoniflorin (PF) is a traditional herbal medicine derived from Paeonia lactiflora Pall. It exerts diverse therapeutic effects, including anti-inflammatory, antioxidative, antiapoptotic, and immunomodulatory properties; thus, it is considered valuable for treating several diseases. However, the effects of PF on H/R injury-induced AKI remain unknown. In this study, we established an in vitro H/R model using COCL2 and investigated the functions and underlying mechanisms of PF on H/R injury in HK-2 cells. The cell vitality was evaluated using the cell count kit-8 assay. The DCFH-DA fluorescence probe was used to measure the levels of reactive oxygen species (ROS). Oxidative damage was detected using superoxide dismutase (SOD) and malondialdehyde (MDA) assay kits. Apoptotic relative protein and Keap1/Nrf2/HO-1 signaling were evaluated by Western blotting. Our results indicated that PF increased cell viability and SOD activity and decreased the ROS and MDA levels in HK-2 cells with H/R injury. PF inhibits apoptosis by increasing Bcl-2 and decreasing Bax. Furthermore, PF significantly upregulated the expression of HO-1 and Nrf2, but downregulated the expression of HIF-1α and Keap1. PF considerably increased Nrf2 nuclear translocation and unregulated the HO-1 expression. The Nrf2 inhibitor (ML385) could reverse the abovementioned protective effects of PF, suggesting that Nrf2 can be a critical target of PF. To conclude, we found that PF attenuates H/R injury-induced AKI by decreasing the oxidative damage via the Nrf2/HO-1 pathway and inhibiting apoptosis.
Collapse
Affiliation(s)
- Di Xing
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Yihua Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Miaomiao Lu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Wenlin Liu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China
| | - Hongli Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, China.
| |
Collapse
|
5
|
Ma B, Mao Y, Chang L, Dai T, Xin X, Ma F, Wang Z, Shen Z, Mei Q, Zhu Y. S-Propargyl-cysteine prevents concanavalin A-induced immunological liver injury in mice. PHARMACEUTICAL BIOLOGY 2022; 60:1169-1176. [PMID: 35701112 PMCID: PMC9225694 DOI: 10.1080/13880209.2022.2080234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT S-Propargyl-cysteine (SPRC), an endogenous H2S modulator, exerts anti-inflammatory effects on cardiovascular and neurodegenerative disease, but it remains unknown whether SPRC can prevent autoimmune hepatitis. OBJECTIVE To evaluate the preventive effect of SPRC on concanavalin A (Con A)-induced liver injury and uncover the underlying mechanisms. MATERIALS AND METHODS Mice were randomly divided into five groups: control, Con A, SPRC (5 and 10 mg/kg injected intravenously once a day for 7 days), and propargylglycine (PAG; 50 mg/kg injected intraperitoneally 0.5 h before SPRC for 7 days). All mice except the controls were intravenously injected with Con A (20 mg/kg) on day 7. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were evaluated using kits. Inflammatory cytokines (TNF-α and IFN-γ) in the blood and in the liver were detected by ELISA Kit and real-time PCR, respectively. The expression of mitogen-activated protein kinase (MAPK) pathway proteins (p-JNK and p-Akt) and apoptosis proteins (Bax and Bcl-2) was detected using western blotting. RESULTS SPRC reduced the levels of AST (p < 0.05) and ALT (p < 0.01) and decreased the release of the inflammatory cytokines. Mechanistically, SPRC increased H2S level (p < 0.05) and promoted cystathionine γ-lyase (CSE) expression (p < 0.05). SPRC inhibited the MAPK pathway activation and the apoptosis pathway. All the effects of SPRC were blocked by the CSE inhibitor PAG. CONCLUSIONS SPRC prevents Con A-induced liver injury in mice by promoting CSE expression and producing endogenous H2S. The mechanisms include reducing the release of inflammatory cytokines, attenuating MAPK pathway activation, and alleviating apoptosis.
Collapse
Affiliation(s)
- Beilei Ma
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Lingling Chang
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Dai
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoming Xin
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Fenfen Ma
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhijun Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhuqing Shen
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Qibing Mei
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yizhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
6
|
Lu PH, Yu MC, Wei MJ, Kuo KL. The Therapeutic Strategies for Uremic Toxins Control in Chronic Kidney Disease. Toxins (Basel) 2021; 13:573. [PMID: 34437444 PMCID: PMC8402511 DOI: 10.3390/toxins13080573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Uremic toxins (UTs) are mainly produced by protein metabolized by the intestinal microbiota and converted in the liver or by mitochondria or other enzymes. The accumulation of UTs can damage the intestinal barrier integrity and cause vascular damage and progressive kidney damage. Together, these factors lead to metabolic imbalances, which in turn increase oxidative stress and inflammation and then produce uremia that affects many organs and causes diseases including renal fibrosis, vascular disease, and renal osteodystrophy. This article is based on the theory of the intestinal-renal axis, from bench to bedside, and it discusses nonextracorporeal therapies for UTs, which are classified into three categories: medication, diet and supplement therapy, and complementary and alternative medicine (CAM) and other therapies. The effects of medications such as AST-120 and meclofenamate are described. Diet and supplement therapies include plant-based diet, very low-protein diet, probiotics, prebiotics, synbiotics, and nutraceuticals. The research status of Chinese herbal medicine is discussed for CAM and other therapies. This review can provide some treatment recommendations for the reduction of UTs in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Ping-Hsun Lu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (P.-H.L.); (M.-C.Y.); (M.-J.W.)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97048, Taiwan
| | - Min-Chien Yu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (P.-H.L.); (M.-C.Y.); (M.-J.W.)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97048, Taiwan
| | - Meng-Jiun Wei
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan; (P.-H.L.); (M.-C.Y.); (M.-J.W.)
| | - Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 97048, Taiwan
| |
Collapse
|
7
|
Chen CC, Chang ZY, Tsai FJ, Chen SY. Resveratrol Pretreatment Ameliorates Concanavalin A-Induced Advanced Renal Glomerulosclerosis in Aged Mice through Upregulation of Sirtuin 1-Mediated Klotho Expression. Int J Mol Sci 2020; 21:ijms21186766. [PMID: 32942691 PMCID: PMC7554923 DOI: 10.3390/ijms21186766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Aging kidneys are characterized by an increased vulnerability to glomerulosclerosis and a measurable decline in renal function. Evidence suggests that renal and systemic klotho and sirtuin 1 (SIRT1) deficiencies worsen kidney damage induced by exogenous stresses. The aim of this study was to explore whether resveratrol would attenuate concanavalin A (Con A)-induced renal oxidative stress and advanced glomerulosclerosis in aged mice. Aged male C57BL/6 mice were treated orally with resveratrol (30 mg/kg) seven times (12 h intervals) prior to the administration of a single tail-vein injection of Con A (20 mg/kg). The plasma and urinary levels of kidney damage markers were evaluated. The kidney histopathology, renal parameters, and oxidative stress levels were measured. Furthermore, klotho was downregulated in mouse kidney mesangial cells that were pretreated with 25 µM resveratrol followed by 20 µg/mL Con A. The urinary albumin/creatinine ratio, blood urea nitrogen, kidney mesangial matrix expansion, tubulointerstitial fibrosis, and renal levels of α-smooth muscle actin, transforming growth factor beta, fibronectin, procollagen III propeptide, and collagen type I significantly increased in Con A-treated aged mice. Aged mice kidneys also showed markedly increased levels of 8-hydroxydeoxyguanosine (8-OH-dG) and reactive oxygen species (ROS), with reduced superoxide dismutase activity and levels of glutathione, klotho, and SIRT1 after Con A challenge. Furthermore, in kidney mesangial cells, klotho silencing abolished the effects of resveratrol on the Con A-mediated elevation of the indices of oxidative stress and the expression of glomerulosclerosis-related factors. These findings suggest that resveratrol protects against Con A-induced advanced glomerulosclerosis in aged mice, ameliorating renal oxidative stress via the SIRT1-mediated klotho expression.
Collapse
Affiliation(s)
- Chin-Chang Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-C.C.); (Z.-Y.C.)
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-C.C.); (Z.-Y.C.)
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Genetics Center, Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 404, Taiwan
| | - Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Genetics Center, Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Kawata R, Oda S, Koya Y, Kajiyama H, Yokoi T. Macrophage-derived extracellular vesicles regulate concanavalin A-induced hepatitis by suppressing macrophage cytokine production. Toxicology 2020; 443:152544. [PMID: 32739513 DOI: 10.1016/j.tox.2020.152544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Acute liver failure is a clinical syndrome of severe hepatic dysfunction. Immune cells play an important role in acute liver failure. In recent years, the immunoregulatory function of extracellular vesicles (EVs) has been reported; therefore, it is inferred that EVs play a role in immune-mediated hepatitis. In this study, we investigated the immunoregulatory function of EVs in concanavalin A (Con A)-induced hepatitis. The mouse model was prepared by a single intravenous administration of 15 mg/kg Con A, in which there was a significant increase in the serum EVs number. In an in vitro study, the number of secreted EVs was also significantly increased in Con A-treated RAW264.7 cells, a mouse macrophage cell line, but not in Hepa1-6 cells, a mouse hepatoma cell line. In an in vitro EVs treatment study, EVs from Con A-treated mouse serum and Con A-treated RAW264.7 cells suppressed inflammatory cytokine production in Con A-stimulated RAW264.7 cells. miRNA sequencing analysis showed that the expression of mmu-miR-122-5p and mmu-miR-148a-3p was commonly increased in these EVs and EVs-treated cells. The pathways enriched in the predicted miRNA target genes included inflammatory response pathways. The mRNA levels of the target genes in these pathways (mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt and Rho/Rho-associated coiled-coil containing protein kinase pathways) were decreased in the EVs-treated cells. In an in vivo RNA interference study, the knockdown of liver RAB27A, an EVs secretion regulator, significantly exacerbated Con A-induced hepatitis. These data suggest that macrophage-derived EVs play an important role in Con A-induced hepatitis through immunoregulation.
Collapse
Affiliation(s)
- Reo Kawata
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Investigative Toxicology, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, Japan.
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Koya
- Bell Research Center Obstetrics and Gynecology, Academic Research & Industrial-Academia Collaboration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
9
|
Pan X, Zhou J, Chen Y, Xie X, Rao C, Liang J, Zhang Y, Peng C. Classification, hepatotoxic mechanisms, and targets of the risk ingredients in traditional Chinese medicine-induced liver injury. Toxicol Lett 2020; 323:48-56. [PMID: 32017980 DOI: 10.1016/j.toxlet.2020.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/29/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Traditional Chinese medicine (TCM) has become a crucial cause of drug-induced liver injury (DILI). Differ from chemical medicines, TCM feature more complex and mostly indefinite components. This review aimed to clarify the classification, underlying mechanisms and targets of the risk components in TCM-induced liver injury to further guide the secure application of TCM. Relevant studies or articles published on the PubMed database from January 2008 to December 2019 were searched. Based on the different chemical structures of the risk ingredients in TCM, they are divided into alkaloids, glycosides, toxic proteins, terpenoids and lactones, anthraquinones, and heavy metals. According to whether drug metabolism is activated or hepatocytes are directly attacked during TCM-induced liver injury, the high-risk substances can be classified into metabolic activation, non-metabolic activation, and mixed types. Mechanisms of the hepatotoxic ingredients in TCM-induced hepatotoxicity, including cytochrome P450 (CYP450) induction, mitochondrial dysfunction, oxidative damage, apoptosis, and idiosyncratic reaction, were also summarized. The targets involved in the risk ingredient-induced hepatocellular injury mainly include metabolic enzymes, nuclear receptors, transporters, and signaling pathways. Our periodic review and summary on the risk signals of TCM-induced liver injury must be beneficial to the integrated analysis on the multi-component, multi-target, and multi-effect characteristics of TCM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jie Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaofang Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jie Liang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ying Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
10
|
Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther 2019; 207:107452. [PMID: 31836457 DOI: 10.1016/j.pharmthera.2019.107452] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
As a Traditional Chinese Medicine, Paeonia lactiflora Pallas has been used to treat pain, inflammation and immune disorders for more than 1000 years in China. Total glycoside of paeony (TGP) is extracted from the dried root of Paeonia lactiflora Pallas. Paeoniflorin (Pae) is the major active component of TGP. Our research group has done a lot of work in the pharmacological mechanisms of Pae and found that Pae possessed extensive anti-inflammatory and immune regulatory effects. Pae could inhibit inflammation in the animal models of autoimmune diseases, such as experimental arthritis, psoriatic mice and experimental autoimmune encephalomyelitis, and so on. Pae modulates the functions and activation of immune cells, decreases inflammatory medium production, and restores abnormal signal pathway. Pae could balance the subsets of immune cells through inhibiting abnormal activated cell subsets and restoring regulatory cell subsets. Pae could regulate signaling pathways (GPCR pathway, MAPKs /NF-κB patway, PI3K /Akt /mTOR pathway, JAK2 /STAT3 pathway, TGFβ /Smads, and etc.). TGP is composed of Pae, hydroxyl-paeoniflorin, paeonin, albiflorin and benzoylpaeoniflorin etc. Pae accounts for more than 40% of TGP. Like Pae, TGP has anti-inflammatory and immune regulatory effects. TGP has been widely used to treat autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, allergic contact dermatitis, and etc. in China. Furthermore, TGP has some superior features with immune regulation, gentle effect, many indications and few adverse drug reactions. These findings suggest that TGP may be a promising anti-inflammatory and immune drug with soft regulation and has more superiority in the treatment of AIDs. Currently, TGP is used for the treatment of RA, SLE and other AIDs in more than 1000 hospitals in China, which obtained great social and economic benefits.
Collapse
|
11
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
12
|
Li R, Zhang JF, Wu YZ, Li YC, Xia GY, Wang LY, Qiu BL, Ma M, Lin S. Structures and Biological Evaluation of Monoterpenoid Glycosides from the Roots of Paeonia lactiflora. JOURNAL OF NATURAL PRODUCTS 2018; 81:1252-1259. [PMID: 29741372 DOI: 10.1021/acs.jnatprod.8b00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fractionation of an aqueous extract of the air-dried roots of a traditional Chinese medicinal plant, Paeonia lactiflora, yielded the new monoterpenoid glycosides 1-10. Their structures were assigned via spectroscopic techniques, and the absolute configurations of 1, 4-6, and 8 were verified via chemical methods, specific rotation, and electronic circular dichroism data. Compounds 1-4 are rare compared to the reported cage-like paeoniflorin derivatives; that is, they comprised two monoterpenoidal moieties. In the in vitro assay, compounds 5, 8, and 9 showed weak inhibitions against lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophages, with IC50 values of 64.8, 60.1, and 97.5 μM, respectively.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Jing-Fang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Yu-Zhuo Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Yan-Cheng Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Gui-Yang Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Ling-Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Bo-Lin Qiu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Min Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Sheng Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| |
Collapse
|
13
|
Renoprotective Effects of Total Glucosides from Paeony against Nephrotoxicity Induced by Total Alkaloids from Semen Strychni. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8256278. [PMID: 29234433 PMCID: PMC5671718 DOI: 10.1155/2017/8256278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 01/17/2023]
Abstract
Semen Strychni have been shown to have therapeutic effect in improving blood circulation, relieving rheumatic pain, and treating cancer. However, Semen Strychni could cause severe nephrotoxicity. The present study was designed to evaluate whether treatment with total glucosides from paeony (TGP) has renoprotective effect against nephrotoxicity induced by total alkaloids from Semen Strychni (TAS). The levels of blood urea nitrogen (BUN) and creatinine (Cr) were determined and histopathological changes were also examined to evaluate renal injury. Moreover, a HPLC-MS method was developed and validated to investigate the comparative toxicokinetics of strychnine and brucine in rats plasma after oral administration of TAS and pretreatment with TGP. Results demonstrated that the levels of BUN and Cr were significantly increased (p < 0.05) in TAS group, together with tubule epithelium cloudy swelling, degeneration, and glomerular atrophy in rats' kidneys. The TAS-induced kidney damage was alleviated after pretreatment with TGP. Besides, Tmax of strychnine and brucine were increased and T1/2 of strychnine and brucine were decreased after pretreatment with TGP. The toxicokinetics study showed that pretreatment with TGP could attenuate the absorption of strychnine and brucine, as well as accelerate their elimination. These results suggest that TGP possesses renoprotective effects.
Collapse
|
14
|
Abdel-Zaher AO, Farghaly HSM, El-Refaiy AEM, Abd-Eldayem AM. Protective effect of the standardized extract of ginkgo biloba (EGb761) against hypertension with hypercholesterolemia-induced renal injury in rats: Insights in the underlying mechanisms. Biomed Pharmacother 2017; 95:944-955. [PMID: 28915536 DOI: 10.1016/j.biopha.2017.08.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/01/2017] [Accepted: 08/20/2017] [Indexed: 02/01/2023] Open
Abstract
The potential protective role of the standardized leaf extract of ginkgo biloba (EGb761) on hypertension with hypercholesterolemia-induced renal injury was investigated in rats. Hypertension was induced by L-N(G)-nitroarginine methyl ester (L-NAME) and hypercholesterolemia was induced by feeding rats with a diet containing 1% cholesterol. In these animals repeated treatment with EGb761 produced a progressive reduction in the systolic, diastolic and mean arterial blood pressure (BP). EGb761 increased the progressive reduction in the systolic, diastolic and mean arterial BP induced by repeated administration of losartan with simvastatin. EGb761 corrected the compromised serum lipid profile and enhanced the effect of losartan with simvastatin on lipid profile. EGb761 protected against hypertension with hypercholesterolemia-induced renal injury as assessed by measurement of serum renal function markers and by histopathological examination. EGb761 enhanced the renoprotective effect of losartan with simvastatin in these rats. Concomitantly, hypertension with hypercholesterolemia-induced elevation of renal tissue malondialdehyde (MDA) and nitrite levels and reduction of intracellular reduced glutathione (GSH) level were inhibited by repeated treatment with EGb761. In addition, hypertension with hypercholesterolemia-induced increases in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels in renal tissues were inhibited by treatment with EGb761. Also, EGb761 inhibited hypertension with hypercholesterolemia-induced decrease in endothelial nitric oxide synthase (eNOS) protein expression and increase in the protein expressions of inducible NO synthase (iNOS), TNF-α, IL-6 and IL-1β in the kidney tissues. Losartan with simvastatin produced similar effects on renal tissues oxidative stress, nitrite and inflammatory markers levels and on protein expressions of eNOS, iNOS, TNF-α, IL-6 and IL-1β. EGb761 enhanced losartan with simvastatin effects. These results indicate that EGb761 has the ability to protect against hypertension with hypercholesterolemia-induced renal injury. The ability of EGb761 to provide this renoprotective effect may positively correlate, besides its antihypertensive and antihypercholesterolemic effects, to its ability to suppress renal oxidative stress, nitrosative stress and inflammation.
Collapse
Affiliation(s)
- Ahmed O Abdel-Zaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Hanan S M Farghaly
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer E M El-Refaiy
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed M Abd-Eldayem
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Liu XR, Xu J, Wang YM, Ji MS, Liu FS. The effects of paeoniflorin injection on soluble triggering receptor expressed on myeloid-1 (sTREM-1) levels in severe septic rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:565-571. [PMID: 27847433 PMCID: PMC5106390 DOI: 10.4196/kjpp.2016.20.6.565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/15/2022]
Abstract
Paeoniflorin (PAE) is the most abundant compound in Xuebijing injection widely used to treat sepsis. We aimed to investigate effect of PAE on expression of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in a rat model of sepsis. Wistar rats were divided into Normal, Model, and PAE groups (n=20 each). Endotoxin was administrated at 5 mg/ml/kg in Model and PAE rats to establish rat sepsis model. 1 h after endotoxin administration, PAE was administrated at 4 ml/kg in PAE group once per day for 3 days. Routine blood tests and biochemical indexes were assessed, including aspartate aminotransferase (AST) and creatine kinase-MB (CK-MB). The plasma sTREM-1 level was measured using quantitative ELISA. At the end of experiment, the small intestine, liver, kidney and lung were subjected to pathological examinations. A rat model of sepsis-induced multiple organ dysfunction syndrome (MODS) was established successfully with endotoxin administration (5 mg/ml/kg), evidenced by histo-pathological examinations, routine blood tests and biochemical indexes: platelet count decreased and white blood cell count increased (p<0.05), CK-MB and AST increased (p<0.05). PAE treatment significantly reduced the plasma levels of AST, CK-MB, and sTREM-1, compared to Model group (p<0.05). Meanwhile, sepsis-induced damages in the liver, lung, stomach and intestinal mucosa were also markedly ameliorated by PAE treatment. PAE demonstrated a significantly protective effect in a rat model of sepsis by decreasing plasma sTREM-1 level, reducing inflammation, preventing MODS and protecting organ functions.
Collapse
Affiliation(s)
| | - Jie Xu
- ICU, Tianjin TEDA Hospital, Tianjin 300457, China
| | - Yi-Min Wang
- ICU, Tianjin TEDA Hospital, Tianjin 300457, China
| | - Ming-Suo Ji
- ICU, Tianjin TEDA Hospital, Tianjin 300457, China
| | - Fu-Shan Liu
- ICU, Tianjin TEDA Hospital, Tianjin 300457, China
| |
Collapse
|
16
|
Luo WM, Kong J, Gong Y, Liu XQ, Yang RX, Zhao YX. Tongxinluo Protects against Hypertensive Kidney Injury in Spontaneously-Hypertensive Rats by Inhibiting Oxidative Stress and Activating Forkhead Box O1 Signaling. PLoS One 2015; 10:e0145130. [PMID: 26673167 PMCID: PMC4686063 DOI: 10.1371/journal.pone.0145130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022] Open
Abstract
Hypertension is an independent risk factor for the progression of chronic renal failure, and oxidative stress plays a critical role in hypertensive renal damage. Forkbox O1(FoxO1) signaling protects cells against oxidative stress and may be a useful target for treating oxidative stress-induced hypertension. Tongxinluo is a traditional Chinese medicine with cardioprotective and renoprotective functions. Therefore, this study aimed to determine the effects of Tongxinluo in hypertensive renal damage in spontaneously hypertensive rats(SHRs)and elucidate the possible involvement of oxidative stress and FoxO1 signaling in its molecular mechanisms. SHRs treated with Tongxinluo for 12 weeks showed a reduction in systolic blood pressure. In addition to increasing creatinine clearance, Tongxinluo decreased urinary albumin excretion, oxidative stress injury markers including malondialdehyde and protein carbonyls, and expression of nicotinamide adenine dinucleotide phosphate oxidase subunits and its activity in SHR kidneys. While decreasing phosphorylation of FoxO1, Tongxinluo also inhibited the phosphorylation of extracellular signal-regulated kinase1/2 and p38 and enhanced manganese superoxide dismutase and catalase activities in SHR kidneys. Furthermore, histology revealed attenuation of glomerulosclerosis and renal podocyte injury, while Tongxinluo decreased the expression of α-smooth muscle actin, extracellular matrixprotein, transforming growth factor β1 and small mothers against decapentaplegic homolog 3,and improved tubulointerstitial fibrosis in SHR kidneys. Finally, Tongxinluo inhibited inflammatory cell infiltration as well as expression of tumor necrosis factor-α and interleukin-6. In conclusion, Tongxinluo protected SHRs against hypertension-induced renal injury by exerting antioxidant, antifibrotic, and anti-inflammatory activities. Moreover, the underlying mechanisms of these effects may involve inhibition of oxidative stress and functional activation of FoxO1 signaling.
Collapse
Affiliation(s)
- Wei-min Luo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jing Kong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Gong
- Department of Magnetic Resonance Imaging, Jinan hospital of infectious diseases, Jinan, Shandong, China
| | - Xiao-qiong Liu
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Rui-xue Yang
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yu-xia Zhao
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
17
|
Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice. Int J Mol Sci 2015; 16:27252-69. [PMID: 26580602 PMCID: PMC4661879 DOI: 10.3390/ijms161126021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 12/23/2022] Open
Abstract
Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography-diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones.
Collapse
|