1
|
Badve C, Nirappel A, Lo S, Orringer DA, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines for the role of imaging in newly diagnosed WHO grade II diffuse glioma in adults: update. J Neurooncol 2025:10.1007/s11060-025-05043-8. [PMID: 40338482 DOI: 10.1007/s11060-025-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
TARGET POPULATION Adult patients with suspected or histologically proven WHO Grade II diffuse glioma. QUESTION 1: In adult patients with suspected or histologically proven WHO Grade II diffuse glioma, do advanced MRI techniques using magnetic resonance spectroscopy, perfusion weighted imaging or diffusion weighted imaging provide superior assessment of tumor grade, margins, progression, treatment-related effects, and prognosis compared to standard neuroimaging? RECOMMENDATION Level II: The use of diffusion imaging and dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE) and arterial spin labeling (ASL) sequences are suggested to differentiate WHO Grade II diffuse glioma from higher grade gliomas when this is not accomplished by T2 weighted and pre- and post-gadolinium contrast enhanced T1 weighted imaging. LEVEL III The use of diffusion and perfusion is suggested for obtaining information in genomics, prognosis, and post treatment monitoring when this information would be of value to the clinician and is not obtained through other methods. LEVEL III The use of MR Spectroscopy is suggested to differentiate WHO Grade II diffuse glioma from higher grade gliomas when this is not accomplished by standard MRI, perfusion and diffusion techniques and when such information would be of value to the clinician. QUESTION 2: In adult patients with suspected or histologically proven WHO Grade II diffuse glioma, does molecular imaging using amino acid PET tracers provide superior assessment of tumor grade, margins, progression, treatment-related effects, and prognosis compared to standard neuroimaging? RECOMMENDATION Level III: If not already evident by MRI studies, the addition of amino acid PET with FET and FDOPA as a tracer is suggested to help determine if a brain lesion is a low grade glioma or high grade glioma. LEVEL III If the standard clinical prognostic parameters are unclear and novel PET tracers are available, the clinician may consider FET to assist in determination of prognosis in an individual with grade II diffuse glioma. LEVEL III Clinicians may use FDOPA PET in addition to MRI if additional information is required for detection of tumor progression.
Collapse
Affiliation(s)
- Chaitra Badve
- University Hospitals Cleveland Medical Center, Cleveland, USA.
- Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Abraham Nirappel
- Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Simon Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Daniel A Orringer
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Mai W, Tang Y, He W, Zhu C, Feng B, Lyu J, Chen Z. Construction and Evaluation of a Prognostic Columnar Graphic Model for Adult Patients with Diffuse Midline Gliomas. World Neurosurg 2025; 197:123901. [PMID: 40090411 DOI: 10.1016/j.wneu.2025.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE To explore the prognostic factors of adult patients with diffuse midline glioma (DMG), and to further construct and evaluate prognostic columnar graphic models to provide some reference for the clinical management of this group of patients. METHODS We included adult patients with histologically confirmed DMG from the SEER (Surveillance Epidemiology and End Results) database (2004-2015), dividing them into training and validation sets (7:3 ratio). Using Kaplan-Meier and Cox regression analyses, we determined independent prognostic factors for overall survival (OS) and cancer-specific survival (CSS). Prognostic column-line graphic models were developed for OS and CSS, incorporating patient demographics and clinical characteristics. The models underwent internal and external validation, with performance assessed using the Concordance Index, area under the curve values, and calibration plots. RESULTS The study encompassed 226 patients, showing age, tumor extension, and World Health Organization grades as significant prognostic factors. The constructed models for OS and CSS showed moderate reliability and predictive accuracy, with Concordance Index values of 0.786 (OS) and 0.79 (CSS) in the training set and 0.743 (OS) and 0.787 (CSS) in the validation set. Calibration plots and decision curve analysis confirmed the clinical usefulness of the models. CONCLUSIONS The column-line graphic prediction models for OS and CSS have moderately reliable predictive efficacy and help clinicians to better assess the prognosis and provide individualized treatment options for adults with DMG.
Collapse
Affiliation(s)
- Wangxiang Mai
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yuting Tang
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Weiyi He
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Changsen Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Bing Feng
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
| | - Zhuoming Chen
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Maity S, Bhuyan T, Jewell C, Kawakita S, Sharma S, Nguyen HT, Najafabadi AH, Ermis M, Falcone N, Chen J, Mandal K, Khorsandi D, Yilgor C, Choroomi A, Torres E, Mecwan M, John JV, Akbari M, Wang Z, Moniz-Garcia D, Quiñones-Hinojosa A, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Developments in Glioblastoma-On-A-Chip for Advanced Drug Screening Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405511. [PMID: 39535474 PMCID: PMC11719323 DOI: 10.1002/smll.202405511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of cancer, comprising ≈80% of malignant brain tumors. However, there are no effective treatments for GBM due to its heterogeneity and the presence of the blood-brain barrier (BBB), which restricts the delivery of therapeutics to the brain. Despite in vitro models contributing to the understanding of GBM, conventional 2D models oversimplify the complex tumor microenvironment. Organ-on-a-chip (OoC) models have emerged as promising platforms that recapitulate human tissue physiology, enabling disease modeling, drug screening, and personalized medicine. There is a sudden increase in GBM-on-a-chip models that can significantly advance the knowledge of GBM etiology and revolutionize drug development by reducing animal testing and enhancing translation to the clinic. In this review, an overview of GBM-on-a-chip models and their applications is reported for drug screening and discussed current challenges and potential future directions for GBM-on-a-chip models.
Collapse
Affiliation(s)
- Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Department of Orthopedic Surgery, Duke University School of
Medicine, Duke University, Durham, NC 27705
| | - Tamanna Bhuyan
- Department of Applied Biology, School of Biological
Sciences, University of Science & Technology Meghalaya, Meghalaya, 793101,
India
| | - Christopher Jewell
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Center of Excellence in Biomaterials and Tissue
Engineering, Middle East Technical University, Ankara, Turkey
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Laboratoryfor Innovations in Micro Engineering (LiME),
Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2,
Canada
- Biotechnology Center, Silesian University of Technology,
Akademicka 2A, 44-100 Gliwice, Poland
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| |
Collapse
|
4
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
5
|
Roach JT, Riviere-Cazaux C, Wells BA, Boop FA, Daniels DJ. Epigenetics to clinicopathological features: a bibliometric analysis of H3 G34-mutant diffuse hemispheric glioma literature. Childs Nerv Syst 2024; 40:2009-2017. [PMID: 38613587 PMCID: PMC11771222 DOI: 10.1007/s00381-024-06395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Pediatric-type diffuse high-grade gliomas are the leading cause of cancer-related morbidity and mortality in children. More than 30% of diffuse hemispheric gliomas (DHG) in adolescents harbor histone H3 G34 mutations and are recognized by the World Health Organization as a distinct tumor entity. By reporting bibliometric characteristics of the most cited publications on H3 G34-mutant DHG (H3 G34 DHG), we provide an overview of emerging literature and speculate where future research efforts may lead. METHODS One hundred fourteen publications discussing H3 G34 DHG were identified, categorized as basic science (BSc), clinical (CL), or review (R), and ranked by citation number. Various bibliometric parameters were summarized, and a comparison between article types was performed. RESULTS Articles within this study represent principal investigators from 15 countries and were published across 63 journals between 2012 and 2024, with 36.84% of articles originating in the United States. Overall median values were as follows: citation count, 20 (range, 0-2591), number of authors, 9 (range, 2-78), and year of publication, 2020 (range, 2012-2024). Among the top ten most cited articles, BSc articles accounted for all ten reports. Compared to CL and R articles, BSc articles were published in journals with higher impact factors. CONCLUSION We establish variability in bibliometric parameters for the most cited publications on H3 G34 DHG. Our findings demonstrate a paucity of high-impact and highly cited CL reports and acknowledge an unmet need to intersect basic mechanism with clinical data to inform novel therapeutic approaches.
Collapse
Affiliation(s)
- Jordan T Roach
- Department of Developmental Neurobiology, Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Cecile Riviere-Cazaux
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Frederick A Boop
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David J Daniels
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Deng Y, Zeng K, Wu D, Ling Y, Tian Y, Zheng Y, Fang S, Jiang X, Zhu G, Tu Y. FBLIM1 mRNA is a novel prognostic biomarker and is associated with immune infiltrates in glioma. Open Med (Wars) 2023; 18:20230863. [PMID: 38152333 PMCID: PMC10751895 DOI: 10.1515/med-2023-0863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023] Open
Abstract
Glioma is the most common primary brain tumor. Filamin-binding LIM protein 1 (FBLIM1) has been identified in multiple cancers and is suspected of playing a part in the development of tumors. However, the potential function of FBLIM1 mRNA in glioma has not been investigated. In this study, the clinical information and transcriptome data of glioma patients were, respectively, retrieved from the TCGA and CGGA databases. The expression level of FBLIM1 mRNA was shown to be aberrant in a wide variety of malignancies. Significantly, when glioma samples were compared to normal brain samples, FBLIM1 expression was shown to be significantly elevated in the former. A poor prognosis was related to high FBLIM1 expression, which was linked to more advanced clinical stages. Notably, multivariate analyses demonstrated that FBLIM1 expression was an independent predictor for the overall survival of glioma patients. Immune infiltration analysis disclosed that FBLIM1 expression had relevance with many immune cells. The results of RT-PCR suggested that FBLIM1 expression was markedly elevated in glioma specimens. Functional experiments unveiled that the knockdown of FBLIM1 mRNA suppressed glioma cell proliferation. In general, we initially discovered that FBLIM1 mRNA might be a possible prognostic marker in glioma.
Collapse
Affiliation(s)
- Yifan Deng
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Kailiang Zeng
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Diancheng Wu
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yunzhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yu Tian
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yi Zheng
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Shumin Fang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaocong Jiang
- Department of Radiotherapy, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Gang Zhu
- Department of Neurosurgery, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
7
|
Nguyen AV, Soto JM, Gonzalez SM, Murillo J, Trumble ER, Shan FY, Huang JH. H3G34-Mutant Gliomas-A Review of Molecular Pathogenesis and Therapeutic Options. Biomedicines 2023; 11:2002. [PMID: 37509641 PMCID: PMC10377039 DOI: 10.3390/biomedicines11072002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The 2021 World Health Organization Classification of Tumors of the Central Nervous System reflected advances in understanding of the roles of oncohistones in gliomagenesis with the introduction of the H3.3-G34R/V mutant glioma to the already recognized H3-K27M altered glioma, which represent the diagnoses of pediatric-type diffuse hemispheric glioma and diffuse midline glioma, respectively. Despite advances in research regarding these disease entities, the prognosis remains poor. While many studies and clinical trials focus on H3-K27M-altered-glioma patients, those with H3.3-G34R/V mutant gliomas represent a particularly understudied population. Thus, we sought to review the current knowledge regarding the molecular mechanisms underpinning the gliomagenesis of H3.3-G34R/V mutant gliomas and the diagnosis, treatment, long-term outcomes, and possible future therapeutics.
Collapse
Affiliation(s)
- Anthony V Nguyen
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Jose M Soto
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Sarah-Marie Gonzalez
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Jennifer Murillo
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
- Department of Neurology, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Eric R Trumble
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Frank Y Shan
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
- Department of Pathology, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX 76508, USA
| |
Collapse
|
8
|
Piperi C, Markouli M, Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Deciphering glioma epitranscriptome: focus on RNA modifications. Oncogene 2023; 42:2197-2206. [PMID: 37322070 DOI: 10.1038/s41388-023-02746-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Gliomas are highly malignant tumors accounting for the majority of brain neoplasms. They are characterized by nuclear atypia, high mitotic rate and cellular polymorphism that often contributes to aggressiveness and resistance to standard therapy. They often associate with challenging treatment approaches and poor outcomes. New treatment strategies or regimens to improve the efficacy of glioma treatment require a deeper understanding of glioma occurrence and development as well as elucidation of their molecular biological characteristics. Recent studies have revealed RNA modifications as a key regulatory mechanism involved in tumorigenesis, tumor progression, immune regulation, and response to therapy. The present review discusses research advances on several RNA modifications involved in glioma progression and tumor microenvironment (TME) immunoregulation as well as in the development of adaptive drug resistance, summarizing current progress on major RNA modification targeting strategies.
Collapse
Affiliation(s)
- Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biopathology, 'Eginition' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Dono A, Moosvi AM, Goli PS, Bellman AC, Aung PP, Esquenazi Y, Ballester LY. TERT Immunohistochemistry as a Surrogate Marker for TERT Promoter Mutations in Infiltrating Gliomas. Appl Immunohistochem Mol Morphol 2023; 31:288-294. [PMID: 36952585 PMCID: PMC10393218 DOI: 10.1097/pai.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2023] [Indexed: 03/25/2023]
Abstract
Genomic alterations are critical for the diagnosis, prognostication, and treatment of patients with infiltrating gliomas. Telomerase reverse transcriptase promoter ( TERT p) mutations are among such crucial alterations. Although DNA sequencing is the preferred method for identifying TERT p mutations, it has limitations related to cost and accessibility. We tested telomerase reverse transcriptase (TERT) immunohistochemistry (IHC) as a surrogate for TERT p mutations in infiltrating gliomas. Thirty-one infiltrating gliomas were assessed by IHC using an anti-TERT Y182 antibody. IHC results were analyzed by a board-certified neuropathologist. Tumors were analyzed by targeted next-generation sequencing. A literature review of the use of TERT antibodies as a surrogate for TERT p mutations was performed. Eighteen gliomas harbored TERT p mutations. Overall, TERT IHC demonstrated a sensitivity of 61.1% and a specificity of 69.2% for identifying TERT p mutations. Among the 19 IDH1/IDH2 -wild-type gliomas, 16 (84%) harbored TERT p mutations, and TERT IHC had a sensitivity of 62.5% and a specificity of 33.3%. Among the 12 IDH1/IDH2 -mutant gliomas, 2 (17%) harbored TERT p mutations, and TERT IHC had a sensitivity of 50% and a specificity of 80%. TERT IHC had low positive and negative likelihood values in the identification of TERT p mutations. The literature review included 5 studies with 645 patients and 4 different TERT antibodies. The results consistently showed poor sensitivity and specificity of TERT IHC for identifying TERT p mutations. TERT IHC is a suboptimal surrogate marker for TERT p mutations in infiltrating gliomas. The need remains for cost-effective, efficient, and accessible alternatives to next-generation sequencing for the evaluation of TERT p mutations in gliomas.
Collapse
Affiliation(s)
- Antonio Dono
- Department of Pathology and Laboratory Medicine
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston
| | | | | | | | - Phyu P. Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
- Memorial Hermann Hospital—TMC, Houston, TX
| | - Leomar Y. Ballester
- Department of Pathology and Laboratory Medicine
- Department of Pathology, The University of Texas MD Anderson Cancer Center
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
10
|
Fan H, Zhang S, Yuan Y, Chen S, Li W, Wang Z, Xiang Y, Li J, Ma X, Liu Y. Glutamine metabolism-related genes predict prognosis and reshape tumor microenvironment immune characteristics in diffuse gliomas. Front Neurol 2023; 14:1104738. [PMID: 36970537 PMCID: PMC10036600 DOI: 10.3389/fneur.2023.1104738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundDiffuse gliomas possess a kind of malignant brain tumor with high mortality. Glutamine represents the most abundant and versatile amino acid in the body. Glutamine not only plays an important role in cell metabolism but also involves in cell survival and malignancies progression. Recent studies indicate that glutamine could also affect the metabolism of immune cells in the tumor microenvironment (TME).Materials and methodsThe transcriptome data and clinicopathological information of patients with glioma were acquired from TCGA, CGGA, and West China Hospital (WCH). The glutamine metabolism-related genes (GMRGs) were retrieved from the Molecular Signature Database. Consensus clustering analysis was used to discover expression patterns of GMRGs, and glutamine metabolism risk scores (GMRSs) were established to model tumor aggressiveness-related GMRG expression signature. ESTIMATE and CIBERSORTx were applied to depict the TME immune landscape. The tumor immunological phenotype analysis and TIDE were utilized for predicting the therapeutic response of immunotherapy.ResultsA total of 106 GMRGs were retrieved. Two distinct clusters were established by consensus clustering analysis, which showed a close association with the IDH mutational status of gliomas. In both IDH-mutant and IDH-wildtype gliomas, cluster 2 had significantly shorter overall survival compared with cluster 1, and the differentially expressed genes between the two clusters enriched in pathways related to malignant transformation as well as immunity. In silico TME analysis of the two IDH subtypes revealed not only significantly different immune cell infiltrations and immune phenotypes between the GMRG expression clusters but also different predicted responses to immunotherapy. After the screening, a total of 10 GMRGs were selected to build the GMRS. Survival analysis demonstrated the independent prognostic role of GMRS. Prognostic nomograms were established to predict 1-, 2-, and 3-year survival rates in the four cohorts.ConclusionDifferent subtypes of glutamine metabolism could affect the aggressiveness and TME immune features of diffuse glioma, despite their IDH mutational status. The expression signature of GMRGs could not only predict the outcome of patients with glioma but also be combined into an accurate prognostic nomogram.
Collapse
Affiliation(s)
- Huanhuan Fan
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shuxin Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenhao Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Li
- Department of Neurosurgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Xiaohong Ma
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Yanhui Liu
| |
Collapse
|
11
|
Quesnel A, Coles N, Angione C, Dey P, Polvikoski TM, Outeiro TF, Islam M, Khundakar AA, Filippou PS. Glycosylation spectral signatures for glioma grade discrimination using Raman spectroscopy. BMC Cancer 2023; 23:174. [PMID: 36809974 PMCID: PMC9942363 DOI: 10.1186/s12885-023-10588-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Gliomas are the most common brain tumours with the high-grade glioblastoma representing the most aggressive and lethal form. Currently, there is a lack of specific glioma biomarkers that would aid tumour subtyping and minimally invasive early diagnosis. Aberrant glycosylation is an important post-translational modification in cancer and is implicated in glioma progression. Raman spectroscopy (RS), a vibrational spectroscopic label-free technique, has already shown promise in cancer diagnostics. METHODS RS was combined with machine learning to discriminate glioma grades. Raman spectral signatures of glycosylation patterns were used in serum samples and fixed tissue biopsy samples, as well as in single cells and spheroids. RESULTS Glioma grades in fixed tissue patient samples and serum were discriminated with high accuracy. Discrimination between higher malignant glioma grades (III and IV) was achieved with high accuracy in tissue, serum, and cellular models using single cells and spheroids. Biomolecular changes were assigned to alterations in glycosylation corroborated by analysing glycan standards and other changes such as carotenoid antioxidant content. CONCLUSION RS combined with machine learning could pave the way for more objective and less invasive grading of glioma patients, serving as a useful tool to facilitate glioma diagnosis and delineate biomolecular glioma progression changes.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
| | - Nathan Coles
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
| | - Claudio Angione
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
- School of Computing, Engineering & Digital Technologies, Teesside University, Darlington, UK
- Centre for Digital Innovation, Teesside University, Darlington, UK
| | - Priyanka Dey
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2UP, Portsmouth, UK
| | - Tuomo M Polvikoski
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Meez Islam
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
| | - Ahmad A Khundakar
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK.
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK.
| |
Collapse
|
12
|
Retzer A, Baddeley E, Sivell S, Scott H, Nelson A, Bulbeck H, Seddon K, Grant R, Adams R, Watts C, Aiyegbusi OL, Kearns P, Rivera SC, Dirven L, Calvert M, Byrne A. Development of a core outcome set for use in adult primary glioma phase III interventional trials: A mixed methods study. Neurooncol Adv 2023; 5:vdad096. [PMID: 37719788 PMCID: PMC10503650 DOI: 10.1093/noajnl/vdad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background Glioma interventional studies should collect data aligned with patient priorities, enabling treatment benefit assessment and informed decision-making. This requires effective data synthesis and meta-analyses, underpinned by consistent trial outcome measurement, analysis, and reporting. Development of a core outcome set (COS) may contribute to a solution. Methods A 5-stage process was used to develop a COS for glioma trials from the UK perspective. Outcome lists were generated in stages 1: a trial registry review and systematic review of qualitative studies and 2: interviews with glioma patients and caregivers. In stage 3, the outcome lists were de-duplicated with accessible terminology, in stage 4 outcomes were rated via a 2-round Delphi process, and stage 5 comprised a consensus meeting to finalize the COS. Patient-reportable COS outcomes were identified. Results In Delphi round 1, 96 participants rated 35 outcomes identified in stages 1 and 2, to which a further 10 were added. Participants (77/96) rated the resulting 45 outcomes in round 2. Of these, 22 outcomes met a priori threshold for inclusion in the COS. After further review, a COS consisting of 19 outcomes grouped into 7 outcome domains (survival, adverse events, activities of daily living, health-related quality of life, seizure activity, cognitive function, and physical function) was finalized by 13 participants at the consensus meeting. Conclusions A COS for glioma trials was developed, comprising 7 outcome domains. Additional research will identify appropriate measurement tools and further validate this COS.
Collapse
Affiliation(s)
- Ameeta Retzer
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Applied Research Collaboration West Midlands (ARC WM), Birmingham, UK
- NIHR Birmingham Biomedical Research Centre (BRC), University of Birmingham, Birmingham, UK
| | - Elin Baddeley
- Marie Curie Palliative Care Research Centre, Division of Population Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Stephanie Sivell
- Marie Curie Palliative Care Research Centre, Division of Population Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Hannah Scott
- Division of Research and Evaluation, Office for Standards in Education, Childrens' Services and Skills (OFSTED), Bristol, UK
| | - Annmarie Nelson
- Marie Curie Palliative Care Research Centre, Division of Population Medicine, Cardiff University School of Medicine, Cardiff, UK
| | | | | | - Robin Grant
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard Adams
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Olalekan Lee Aiyegbusi
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Applied Research Collaboration West Midlands (ARC WM), Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre (BRC), University of Birmingham, Birmingham, UK
- NIHR Birmingham-Oxford Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
| | - Pamela Kearns
- Institute of Cancer and Genomic Sciences, University of Birmingham , UK
- NIHR Birmingham Biomedical Research Centre (BRC), University of Birmingham, Birmingham, UK
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham , UK
| | - Samantha Cruz Rivera
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Melanie Calvert
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Applied Research Collaboration West Midlands (ARC WM), Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre (BRC), University of Birmingham, Birmingham, UK
- Midlands Health Data Research UK, Birmingham, UK
- NIHR Birmingham-Oxford Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
| | - Anthony Byrne
- Marie Curie Palliative Care Research Centre, Division of Population Medicine, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
13
|
Noushmehr H, Herrgott G, Morosini NS, Castro AV. Noninvasive approaches to detect methylation-based markers to monitor gliomas. Neurooncol Adv 2022; 4:ii22-ii32. [PMID: 36380867 PMCID: PMC9650474 DOI: 10.1093/noajnl/vdac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
In this review, we summarize the current approaches used to detect glioma tissue-derived DNA methylation markers in liquid biopsy specimens with the aim to diagnose, prognosticate and potentially track treatment response and evolution of patients with gliomas.
Collapse
Affiliation(s)
- Houtan Noushmehr
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Grayson Herrgott
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Natalia S Morosini
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Ana Valeria Castro
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
14
|
Retzer A, Sivell S, Scott H, Nelson A, Bulbeck H, Seddon K, Grant R, Adams R, Watts C, Aiyegbusi OL, Kearns P, Cruz Rivera S, Dirven L, Baddeley E, Calvert M, Byrne A. Development of a core outcome set and identification of patient-reportable outcomes for primary brain tumour trials: protocol for the COBra study. BMJ Open 2022; 12:e057712. [PMID: 36180121 PMCID: PMC9528585 DOI: 10.1136/bmjopen-2021-057712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Primary brain tumours, specifically gliomas, are a rare disease group. The disease and treatment negatively impacts on patients and those close to them. The high rates of physical and cognitive morbidity differ from other cancers causing reduced health-related quality of life. Glioma trials using outcomes that allow holistic analysis of treatment benefits and risks enable informed care decisions. Currently, outcome assessment in glioma trials is inconsistent, hindering evidence synthesis. A core outcome set (COS) - an agreed minimum set of outcomes to be measured and reported - may address this. International initiatives focus on defining core outcomes assessments across brain tumour types. This protocol describes the development of a COS involving UK stakeholders for use in glioma trials, applicable across glioma types, with provision to identify subsets as required. Due to stakeholder interest in data reported from the patient perspective, outcomes from the COS that can be patient-reported will be identified. METHODS AND ANALYSIS Stage I: (1) trial registry review to identify outcomes collected in glioma trials and (2) systematic review of qualitative literature exploring glioma patient and key stakeholder research priorities. Stage II: semi-structured interviews with glioma patients and caregivers. Outcome lists will be generated from stages I and II. Stage III: study team will remove duplicate items from the outcome lists and ensure accessible terminology for inclusion in the Delphi survey. Stage IV: a two-round Delphi process whereby the outcomes will be rated by key stakeholders. Stage V: a consensus meeting where participants will finalise the COS. The study team will identify the COS outcomes that can be patient-reported. Further research is needed to match patient-reported outcomes to available measures. ETHICS AND DISSEMINATION Ethical approval was obtained (REF SMREC 21/59, Cardiff University School of Medicine Research Ethics Committee). Study findings will be disseminated widely through conferences and journal publication. The final COS will be adopted and promoted by patient and carer groups and its use by funders encouraged. PROSPERO REGISTRATION NUMBER CRD42021236979.
Collapse
Affiliation(s)
- Ameeta Retzer
- Centre for Patient Reported Outcomes Research, Institute for Applied Health Research, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Applied Research Centre, West Midlands, Birmingham, UK
| | - Stephanie Sivell
- Marie Curie Palliative Care Research Centre, Division of Population Medicine, Cardiff University School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Hannah Scott
- Cambridge Public Health, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Annmarie Nelson
- Marie Curie Palliative Care Research Centre, Division of Population Medicine, Cardiff University School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | | | - Robin Grant
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard Adams
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Olalekan Lee Aiyegbusi
- Centre for Patient Reported Outcomes Research, Institute for Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Pamela Kearns
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Samantha Cruz Rivera
- Centre for Patient Reported Outcomes Research, Institute for Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
- Department of Neurology, Medical Centre Haaglanden, Den Haag, The Netherlands
| | - Elin Baddeley
- Marie Curie Palliative Care Research Centre, Division of Population Medicine, Cardiff University School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Melanie Calvert
- Centre for Patient Reported Outcomes Research, Institute for Applied Health Research, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Applied Research Centre, West Midlands, Birmingham, UK
| | - Anthony Byrne
- Marie Curie Palliative Care Research Centre, Division of Population Medicine, Cardiff University School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Jia Y, Liu Z, Cheng X, Liu R, Li P, Kong D, Liang W, Liu B, Wang H, Bu X, Gao Y. DRAXIN as a Novel Diagnostic Marker to Predict the Poor Prognosis of Glioma Patients. J Mol Neurosci 2022; 72:2136-2149. [PMID: 36040678 PMCID: PMC9596576 DOI: 10.1007/s12031-022-02054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
An increasing number of evidences have shown that the carcinogenic effect of DRAXIN plays an important role in the malignant process of tumors, but the mechanism of its involvement in glioma has not yet been revealed. The main aim of this study is to explore the relationship between DRAXIN and the prognosis and pathogenesis of glioma through a large quality of data analysis. Firstly, thousands of tissue samples with clinical information were collected based on various public databases. Then, a series of bioinformatics analyses were performed to mine data from information of glioma samples extracted from several reputable databases to reveal the key role of DRAXIN in glioma development and progression, with the confirmation of basic experiments. Our results showed that high expression of the oncogene DRAXIN in tumor tissue and cells could be used as an independent risk factor for poor prognosis in glioma patients and was strongly associated with clinical risk features. The reverse transcription-quantitative PCR technique was then utilized to validate the DRAXIN expression results we obtained. In addition, co-expression analysis identified, respectively, top 10 genes that were closely associated with DRAXIN positively or negatively. Finally, in vitro experiments demonstrated that knockdown of DRAXIN significantly inhibited proliferation and invasion of glioma cell. To sum up, this is the first report of DRAXIN being highly expressed in gliomas and leading to poor prognosis of glioma patients. DRAXIN may not only benefit to explore the pathogenesis of gliomas, but also serve as a novel biological target for the treatment of glioma.
Collapse
Affiliation(s)
- Yulong Jia
- Department of Neurosurgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, Zhengzhou, China
| | - Zhendong Liu
- Department of Orthopedics, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, Zhengzhou, Henan, China.,Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingbo Cheng
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Runze Liu
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,People's Hospital of Henan University, Henan Provincial People's Hospital, Henan Province, 450003, China
| | - Pengxu Li
- Department of Orthopedics, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, Zhengzhou, Henan, China.,Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Defu Kong
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenjia Liang
- People's Hospital of Henan University, Henan Provincial People's Hospital, Henan Province, 450003, China
| | - Binfeng Liu
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongbo Wang
- People's Hospital of Henan University, Henan Provincial People's Hospital, Henan Province, 450003, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, Zhengzhou, 453003, China.
| |
Collapse
|
16
|
Karami Fath M, Azami J, Masoudi A, Mosaddeghi Heris R, Rahmani E, Alavi F, Alagheband Bahrami A, Payandeh Z, Khalesi B, Dadkhah M, Pourzardosht N, Tarhriz V. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int 2022; 22:262. [PMID: 35989351 PMCID: PMC9394011 DOI: 10.1186/s12935-022-02642-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the ability in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and functional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor understanding. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their potential as diagnostic biomarkers are analyzed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Alireza Masoudi
- Department of Laboratory Sciences, Faculty of Alied Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | | | - Elnaz Rahmani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research, Tabriz, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Stapińska-Syniec A, Grabiec M, Rylski M, Acewicz A, Sobstyl M. DNA hydroxymethylation in high-grade gliomas. J Neurol Surg A Cent Eur Neurosurg 2021; 83:568-572. [PMID: 34872125 DOI: 10.1055/a-1713-7699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Background and Study Aims Since the new WHO classification of nervous system tumors (2016 revised 4th edition) has been released, gliomas are classified depending on molecular and genetic markers in connection with histopathology, instead of histopathology itself as it was in the previous classification. Over the last years, epigenetic analysis has taken on increased importance in the diagnosis and treatment of different cancers. Multiple studies confirmed that DNA methylation and hydroxymethylation play an important role in the regulation of gene expression during carcinogenesis. In this review, we aim to present the current state of knowledge on DNA hydroxymethylation in human high-grade gliomas (WHO grade III and IV). Results The correlation of DNA hydroxymethylation and survival in glioblastoma patients was evaluated by different studies. The majority of them showed that the expression of 5-hydroxymethylcytosine (5-hmC) and Ten-eleven translocation (TET) enzymes were significantly reduced, sometimes almost undetectable in high-grade gliomas in comparison with the control brain. A decreased level of 5-hmC was associated with poor survival in patients, but high expression of the TET3 enzyme was related to a better prognosis for GBM patients. This points to the relevance of DNA hydroxymethylation in molecular diagnostics of human gliomas, including survival estimation or differentiating patients in terms of response to the treatment. Conclusion Future studies may shed some more light on this epigenetic mechanism involved in the pathogenesis of human high-grade gliomas and help to develop new targeted therapies.
Collapse
Affiliation(s)
| | - Marta Grabiec
- Department of Clinical Cytology, Centrum Medyczne Ksztalcenia Podyplomowego, Warszawa, Poland
| | - Marcin Rylski
- Department of Clinical Cytology, Centrum Medyczne Ksztalcenia Podyplomowego, Warszawa, Poland.,Department of Neuroradiology, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| | - Albert Acewicz
- Department of Neuropathology, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| | - Michał Sobstyl
- Department of Neurosurgery, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| |
Collapse
|
18
|
Sunderland G, Foster MT, Pizer B, Hennigan D, Pettorini B, Mallucci C. Evolution of surgical attitudes to paediatric thalamic tumours: the alder hey experience. Childs Nerv Syst 2021; 37:2821-2830. [PMID: 34128121 DOI: 10.1007/s00381-021-05223-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Attitudes to surgery for paediatric thalamic tumours have evolved due to improved preoperative imaging modalities and the advent of intraoperative MRI (iMRI) as well as enhanced understanding of tumour biology. We review the developments in our local practice over the last three decades with particular attention to the impact of iMRI. METHODS We identified all paediatric patients from a prospectively maintained neuro-oncology database who received surgery for a thalamic tumour (n = 30). All children were treated in a single UK tertiary paediatric neurosurgery centre between January 1991 and June 2020. Twenty patients underwent surgical resection, the remainder (10) undergoing biopsy only. Pre-operative surgical intent (biopsy versus debulking, near-total resection, or complete resection) as well as the use of iMRI were prospectively recorded. Complications recorded in clinical documentation between postoperative days 0 and 30 were retrospectively graded using a modified version of the Clavien Dindo scale. The extent of resection with respect to the pre-determined surgical aim was also recorded. Data on patient survival and disease progression status were obtained retrospectively. RESULTS In our series, there were 42 procedures (25 craniotomies, 17 biopsies) performed on 30 patients (17 male, with a median age of 8 at surgery). Of the 25 surgical resections performed, complete resection was achieved in 9 (36%), near-total resection in 10 (40%), and limited debulking in 6 (24%). The predetermined surgical aim was achieved or exceeded in 91.3% of cases. The proportion of craniotomies for which substantial resection was achieved, increased from 37.5 to 94.2% with use of iMRI (p = 0.014). Surgical morbidity was not associated with greater extent of surgical resection. High-grade histology is identified as the only independent significant factor influencing overall survival as calculated by Cox proportional hazards model (p = 0.006). CONCLUSION We note a significant change in the rate and extent of attempted resection of paediatric thalamic tumours that has developed over the last 3 decades. Use of iMRI is associated with a significant increase in substantial tumour resection surgeries. This is not associated with any significant level of surgical morbidity. Improvements in pre- and intra-operative imaging alongside better understanding of tumour biology facilitate patient selection and a surgically more aggressive approach in selected cases whilst maintaining safety and avoiding operative morbidity.
Collapse
Affiliation(s)
- Geraint Sunderland
- Department of Paediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| | - Mitchell T Foster
- Department of Paediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.,Cancer Research UK Brain Tumour Centre of Excellence, The University of Edinburgh, Edinburgh, UK
| | - Barry Pizer
- Department of Paediatric Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Dawn Hennigan
- Department of Paediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Benedetta Pettorini
- Department of Paediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Conor Mallucci
- Department of Paediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
19
|
Eslahi M, Maleki Dana P, Sadoughi F, Hallajzadeh J, Asemi Z, Sharifi M, Mansournia MA, Yousefi B. The Effects of Sterol-Related Signaling Pathways on Glioma. Nutr Cancer 2021; 74:1527-1537. [PMID: 34338098 DOI: 10.1080/01635581.2021.1957488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gliomas are considered as one of the important brain tumors in adults due to their impact on life quality and cognitive functions. Current methods that are used for treating glioma are not satisfying enough. Understanding cellular and molecular events underlying its pathogenesis and progression may lead to the discovery of novel therapeutic approaches. Sterols are a subtype of steroids and are essential for the physiologic functions of eukaryotic cells. Sterols can be produced by protozoans and microheterotrophs. Moreover, they are found in some natural sources, such as plants, animals, fungi, microalgae, and yeasts. Besides the roles of sterols in physiologic processes, studies have shown that they are involved in pathologic processes, including tumorigenesis and tumor progression. As investigations have revealed, sterol-related signaling pathways are involved in glioma and targeting them may result in new therapeutic options for patients. Thus, we summarized some of the sterol-related signaling pathways in glioma and how they can be associated with other signaling pathways, including EGFR/PI3K/Akt/mTOR, P53, and retinoblastoma protein.
Collapse
Affiliation(s)
- Masoumeh Eslahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Pei L, Jones KA, Shboul ZA, Chen JY, Iftekharuddin KM. Deep Neural Network Analysis of Pathology Images With Integrated Molecular Data for Enhanced Glioma Classification and Grading. Front Oncol 2021; 11:668694. [PMID: 34277415 PMCID: PMC8282424 DOI: 10.3389/fonc.2021.668694] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
Gliomas are primary brain tumors that originate from glial cells. Classification and grading of these tumors is critical to prognosis and treatment planning. The current criteria for glioma classification in central nervous system (CNS) was introduced by World Health Organization (WHO) in 2016. This criteria for glioma classification requires the integration of histology with genomics. In 2017, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) was established to provide up-to-date recommendations for CNS tumor classification, which in turn the WHO is expected to adopt in its upcoming edition. In this work, we propose a novel glioma analytical method that, for the first time in the literature, integrates a cellularity feature derived from the digital analysis of brain histopathology images integrated with molecular features following the latest WHO criteria. We first propose a novel over-segmentation strategy for region-of-interest (ROI) selection in large histopathology whole slide images (WSIs). A Deep Neural Network (DNN)-based classification method then fuses molecular features with cellularity features to improve tumor classification performance. We evaluate the proposed method with 549 patient cases from The Cancer Genome Atlas (TCGA) dataset for evaluation. The cross validated classification accuracies are 93.81% for lower-grade glioma (LGG) and high-grade glioma (HGG) using a regular DNN, and 73.95% for LGG II and LGG III using a residual neural network (ResNet) DNN, respectively. Our experiments suggest that the type of deep learning has a significant impact on tumor subtype discrimination between LGG II vs. LGG III. These results outperform state-of-the-art methods in classifying LGG II vs. LGG III and offer competitive performance in distinguishing LGG vs. HGG in the literature. In addition, we also investigate molecular subtype classification using pathology images and cellularity information. Finally, for the first time in literature this work shows promise for cellularity quantification to predict brain tumor grading for LGGs with IDH mutations.
Collapse
Affiliation(s)
- Linmin Pei
- Vision Lab, Department of Electrical & Computer Engineering, Old Dominion University, Norfolk, VA, United States
| | - Karra A. Jones
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Zeina A. Shboul
- Vision Lab, Department of Electrical & Computer Engineering, Old Dominion University, Norfolk, VA, United States
| | - James Y. Chen
- Department of Radiology, Division of Neuroradiology, San Diego VA Medical Center, La Jolla, CA, United States
- Department of Radiology, Division of Neuroradiology, UC San Diego Health System, San Diego, CA, United States
| | - Khan M. Iftekharuddin
- Vision Lab, Department of Electrical & Computer Engineering, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
21
|
Gene Regulatory Network of ETS Domain Transcription Factors in Different Stages of Glioma. J Pers Med 2021; 11:jpm11020138. [PMID: 33671331 PMCID: PMC7922321 DOI: 10.3390/jpm11020138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 12/30/2022] Open
Abstract
The ETS domain family of transcription factors is involved in a number of biological processes, and is commonly misregulated in various forms of cancer. Using microarray datasets from patients with different grades of glioma, we have analyzed the expression profiles of various ETS genes, and have identified ETV1, ELK3, ETV4, ELF4, and ETV6 as novel biomarkers for the identification of different glioma grades. We have further analyzed the gene regulatory networks of ETS transcription factors and compared them to previous microarray studies, where Elk-1-VP16 or PEA3-VP16 were overexpressed in neuroblastoma cell lines, and we identify unique and common regulatory networks for these ETS proteins.
Collapse
|
22
|
Markouli M, Strepkos D, Papavassiliou KA, Papavassiliou AG, Piperi C. Bivalent Genes Targeting of Glioma Heterogeneity and Plasticity. Int J Mol Sci 2021; 22:540. [PMID: 33430434 PMCID: PMC7826605 DOI: 10.3390/ijms22020540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas account for most primary Central Nervous System (CNS) neoplasms, characterized by high aggressiveness and low survival rates. Despite the immense research efforts, there is a small improvement in glioma survival rates, mostly attributed to their heterogeneity and complex pathophysiology. Recent data indicate the delicate interplay of genetic and epigenetic mechanisms in regulating gene expression and cell differentiation, pointing towards the pivotal role of bivalent genes. Bivalency refers to a property of chromatin to acquire more than one histone marks during the cell cycle and rapidly transition gene expression from an active to a suppressed transcriptional state. Although first identified in embryonal stem cells, bivalent genes have now been associated with tumorigenesis and cancer progression. Emerging evidence indicates the implication of bivalent gene regulation in glioma heterogeneity and plasticity, mainly involving Homeobox genes, Wingless-Type MMTV Integration Site Family Members, Hedgehog protein, and Solute Carrier Family members. These genes control a wide variety of cellular functions, including cellular differentiation during early organism development, regulation of cell growth, invasion, migration, angiogenesis, therapy resistance, and apoptosis. In this review, we discuss the implication of bivalent genes in glioma pathogenesis and their potential therapeutic targeting options.
Collapse
Affiliation(s)
| | | | | | | | - Christina Piperi
- Correspondence: (A.G.P.); (C.P.); Tel.: +30-210-7462610 (C.P.); Fax: +30-210-7462703 (C.P.)
| |
Collapse
|
23
|
Three-Dimensional Nuclear Telomere Profiling as a Biomarker for Recurrence in Oligodendrogliomas: A Pilot Study. Int J Mol Sci 2020; 21:ijms21228539. [PMID: 33198352 PMCID: PMC7696868 DOI: 10.3390/ijms21228539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mechanisms of recurrence in oligodendrogliomas are poorly understood. Recurrence might be driven by telomere dysfunction-mediated genomic instability. In a pilot study, we investigated ten patients with oligodendrogliomas at the time of diagnosis (first surgery) and after recurrence (second surgery) using three-dimensional nuclear telomere analysis performed with quantitative software TeloView® (Telo Genomics Corp, Toronto, Ontario, Canada). 1p/19q deletion status of each patient was determined by fluorescent in situ hybridization on touch preparation slides. We found that a very specific 3D telomeric profile was associated with two pathways of recurrence in oligodendrogliomas independent of their 1p/19q status: a first group of 8 patients displayed significantly different 3D telomere profiles between both surgeries (p < 0.0001). Their recurrence happened at a mean of 231.375 ± 117.42 days and a median time to progression (TTP) of 239 days, a period defined as short-term recurrence; and a second group of three patients displayed identical 3D telomere profiles between both surgery samples (p > 0.05). Their recurrence happened at a mean of 960.666 ± 86.19 days and a median TTP of 930 days, a period defined as long-term recurrence. Our results suggest a potential link between nuclear telomere architecture and telomere dysfunction with time to recurrence in oligodendrogliomas, independently of the 1p/19q status.
Collapse
|
24
|
Han S, Zhen W, Guo T, Zou J, Li F. SETDB1 promotes glioblastoma growth via CSF-1-dependent macrophage recruitment by activating the AKT/mTOR signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:218. [PMID: 33059737 PMCID: PMC7560339 DOI: 10.1186/s13046-020-01730-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Background Glioblastoma is a common disease of the central nervous system (CNS), with high morbidity and mortality. In the infiltrate in the tumor microenvironment, tumor-associated macrophages (TAMs) are abundant, which are important factors in glioblastoma progression. However, the exact details of TAMs in glioblastoma progression have yet to be determined. Methods The clinical relevance of SET domain bifurcated 1 (SETDB1) was analyzed by immunohistochemistry, real-time PCR and Western blotting of glioblastoma tissues. SETDB1-induced cell proliferation, migration and invasion were investigated by CCK-8 assay, colony formation assay, wound healing and Transwell assay. The relationship between SETDB1 and colony stimulating factor 1 (CSF-1), as well as TAMs recruitment was examined by Western blotting, real-time PCR and syngeneic mouse model. Results Our findings showed that SETDB1 upregulated in glioblastoma and relative to poor progression. Gain and loss of function approaches showed the SETDB1 overexpression promotes cell proliferation, migration and invasion in glioblastoma cells. However, knockdown SETDB1 exerted opposite effects in vitro. Moreover, SETDB1 promotes AKT/mTOR-dependent CSF-1 induction and secretion, which leads to macrophage recruitment in the tumor, resulted in tumor growth. Conclusion Our research clarified that SETDB1 regulates of tumor microenvironment and hence presents a potential therapeutic target for treating glioblastoma.
Collapse
Affiliation(s)
- Shuai Han
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Zhen
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Tongqi Guo
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Jianjun Zou
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Fuyong Li
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China.
| |
Collapse
|
25
|
Abstract
Gliomas are a diverse group of primary central nervous system tumors with astrocytic, oligodendroglial, and/or ependymal features and are an important cause of morbidity/mortality in pediatric patients. Glioma classification relies on integrating tumor histology with key molecular alterations. This approach can help establish a diagnosis, guide treatment, and determine prognosis. New categories of pediatric glioma have been recognized in recent years, due to increasing application of molecular profiling in brain tumors. The aim of this review is to alert pediatric pathologists to emerging diagnostic concepts in pediatric glioma neuropathology, emphasizing the incorporation of molecular features into diagnostic practice.
Collapse
Affiliation(s)
- Melanie H Hakar
- Department of Pathology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, L-113, Portland, OR 97239, USA
| | - Matthew D Wood
- Department of Pathology, Oregon Health & Science University and Knight Cancer Institute, 3181 Southwest Sam Jackson Park Road, L-113, Portland, OR 97239, USA.
| |
Collapse
|
26
|
Lebrun L, Meléndez B, Blanchard O, De Nève N, Van Campenhout C, Lelotte J, Balériaux D, Riva M, Brotchi J, Bruneau M, De Witte O, Decaestecker C, D’Haene N, Salmon I. Clinical, radiological and molecular characterization of intramedullary astrocytomas. Acta Neuropathol Commun 2020; 8:128. [PMID: 32771057 PMCID: PMC7414698 DOI: 10.1186/s40478-020-00962-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/08/2020] [Indexed: 01/12/2023] Open
Abstract
Intramedullary astrocytomas (IMAs) are rare tumors, and few studies specific to the molecular alterations of IMAs have been performed. Recently, KIAA1549-BRAF fusions and the H3F3A p.K27M mutation have been described in low-grade (LG) and high-grade (HG) IMAs, respectively. In the present study, we collected clinico-radiological data and performed targeted next-generation sequencing for 61 IMAs (26 grade I pilocytic, 17 grade II diffuse, 3 LG, 3 grade III and 12 grade IV) to identify KIAA1549-BRAF fusions and mutations in 33 genes commonly implicated in gliomas and the 1p/19q regions. One hundred seventeen brain astrocytomas were analyzed for comparison. While we did not observe a difference in clinico-radiological features between LG and HG IMAs, we observed significantly different overall survival (OS) and event-free survival (EFS). Multivariate analysis showed that the tumor grade was associated with better OS while EFS was strongly impacted by tumor grade and surgery, with higher rates of disease progression in cases in which only biopsy could be performed. For LG IMAs, EFS was only impacted by surgery and not by grade. The most common mutations found in IMAs involved TP53, H3F3A p.K27M and ATRX. As in the brain, grade I pilocytic IMAs frequently harbored KIAA1549-BRAF fusions but with different fusion types. Non-canonical IDH mutations were observed in only 2 grade II diffuse IMAs. No EGFR or TERT promoter alterations were found in IDH wild-type grade II diffuse IMAs. These latter tumors seem to have a good prognosis, and only 2 cases underwent anaplastic evolution. All of the HG IMAs presented at least one molecular alteration, with the most frequent one being the H3F3A p.K27M mutation. The H3F3A p.K27M mutation showed significant associations with OS and EFS after multivariate analysis. This study emphasizes that IMAs have distinct clinico-radiological, natural evolution and molecular landscapes from brain astrocytomas.
Collapse
|
27
|
Valtorta S, Salvatore D, Rainone P, Belloli S, Bertoli G, Moresco RM. Molecular and Cellular Complexity of Glioma. Focus on Tumour Microenvironment and the Use of Molecular and Imaging Biomarkers to Overcome Treatment Resistance. Int J Mol Sci 2020; 21:E5631. [PMID: 32781585 PMCID: PMC7460665 DOI: 10.3390/ijms21165631] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023] Open
Abstract
This review highlights the importance and the complexity of tumour biology and microenvironment in the progression and therapy resistance of glioma. Specific gene mutations, the possible functions of several non-coding microRNAs and the intra-tumour and inter-tumour heterogeneity of cell types contribute to limit the efficacy of the actual therapeutic options. In this scenario, identification of molecular biomarkers of response and the use of multimodal in vivo imaging and in particular the Positron Emission Tomography (PET) based molecular approach, can help identifying glioma features and the modifications occurring during therapy at a regional level. Indeed, a better understanding of tumor heterogeneity and the development of diagnostic procedures can favor the identification of a cluster of patients for personalized medicine in order to improve the survival and their quality of life.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Daniela Salvatore
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Paolo Rainone
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| |
Collapse
|
28
|
Chen Z, Chen G, Zhao H. FDPS promotes glioma growth and macrophage recruitment by regulating CCL20 via Wnt/β-catenin signalling pathway. J Cell Mol Med 2020; 24:9055-9066. [PMID: 32596949 PMCID: PMC7417684 DOI: 10.1111/jcmm.15542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Glioma is one of the most lethal tumours and common malignant in the central nervous system (CNS), which exhibits diffuse invasion and aggressive growth. Several studies have reported the association of FDPS to tumour development and progression. However, the role of FDPS in progression of glioma and macrophage recruitment is not well‐elucidated. In the current study, a remarkable enhancement in FDPS level was observed in glioma tissues and associated with poor prognosis, contributed to tumour growth. FDPS was correlated with macrophage infiltration in glioma and pharmacological deletion of macrophages largely abrogated the oncogenic functions of FDPS in glioma. Mechanistically, FDPS activated Wnt/β‐catenin signalling pathway and ultimately facilitates macrophage infiltration by inducing CCL20 expression. In conclusion, overexpressed FDPS exhibits an immunomodulatory role in glioma. Therefore, targeting FDPS may be an effective therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Zhuo Chen
- Neurosurgery Department, The Third Hospital of Jilin University, Changchun, China
| | - Guangyong Chen
- Neurosurgery Department, The Third Hospital of Jilin University, Changchun, China
| | - Hang Zhao
- Neurosurgery Department, The Third Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Panza S, Russo U, Giordano F, Leggio A, Barone I, Bonofiglio D, Gelsomino L, Malivindi R, Conforti FL, Naimo GD, Giordano C, Catalano S, Andò S. Leptin and Notch Signaling Cooperate in Sustaining Glioblastoma Multiforme Progression. Biomolecules 2020; 10:biom10060886. [PMID: 32526957 PMCID: PMC7356667 DOI: 10.3390/biom10060886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of glioma, which represents one of the commonly occurring tumors of the central nervous system. Despite the continuous development of new clinical therapies against this malignancy, it still remains a deadly disease with very poor prognosis. Here, we demonstrated the existence of a biologically active interaction between leptin and Notch signaling pathways that sustains GBM development and progression. We found that the expression of leptin and its receptors was significantly higher in human glioblastoma cells, U-87 MG and T98G, than in a normal human glial cell line, SVG p12, and that activation of leptin signaling induced growth and motility in GBM cells. Interestingly, flow cytometry and real-time RT-PCR assays revealed that GBM cells, grown as neurospheres, displayed stem cell-like properties (CD133+) along with an enhanced expression of leptin receptors. Leptin treatment significantly increased the neurosphere forming efficiency, self-renewal capacity, and mRNA expression levels of the stemness markers CD133, Nestin, SOX2, and GFAP. Mechanistically, we evidenced a leptin-mediated upregulation of Notch 1 receptor and the activation of its downstream effectors and target molecules. Leptin-induced effects on U-87 MG and T98G cells were abrogated by the selective leptin antagonist, the peptide LDFI (Leu-Asp-Phe-Ile), as well as by the specific Notch signaling inhibitor, GSI (Gamma Secretase Inhibitor) and in the presence of a dominant-negative of mastermind-like-1. Overall, these findings demonstrate, for the first time, a functional interaction between leptin and Notch signaling in GBM, highlighting leptin/Notch crosstalk as a potential novel therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Umberto Russo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (S.C.); (S.A.); Tel.: +39-0984-496207 (S.C.); +39-0984-496201 (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (S.C.); (S.A.); Tel.: +39-0984-496207 (S.C.); +39-0984-496201 (S.A.)
| |
Collapse
|
30
|
Perepechaeva ML, Grishanova AY. The Role of Aryl Hydrocarbon Receptor (AhR) in Brain Tumors. Int J Mol Sci 2020; 21:ijms21082863. [PMID: 32325928 PMCID: PMC7215596 DOI: 10.3390/ijms21082863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
Primary brain tumors, both malignant and benign, are diagnosed in adults at an incidence rate of approximately 23 people per 100 thousand. The role of AhR in carcinogenesis has been a subject of debate, given that this protein may act as either an oncogenic protein or a tumor suppressor in different cell types and contexts. Lately, there is growing evidence that aryl hydrocarbon receptor (AhR) plays an important part in the development of brain tumors. The role of AhR in brain tumors is complicated, depending on the type of tumor, on ligands that activate AhR, and other features of the pathological process. In this review, we summarize current knowledge about AhR in relation to brain tumors and provide an overview of AhR’s potential as a therapeutic target.
Collapse
|
31
|
Kong S, Fang Y, Wang B, Cao Y, He R, Zhao Z. miR-152-5p suppresses glioma progression and tumorigenesis and potentiates temozolomide sensitivity by targeting FBXL7. J Cell Mol Med 2020; 24:4569-4579. [PMID: 32150671 PMCID: PMC7176889 DOI: 10.1111/jcmm.15114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
A generally used chemotherapeutic drug for glioma, a frequently diagnosed brain tumour, is temozolomide (TMZ). Our study investigated the activity of FBXL7 and miR-152-5p in glioma. Levels of microRNA-152-5p (miR-152-5p) and the transcript and protein of FBXL7 were assessed by real-time PCR and Western blotting, respectively. The migratory and invasive properties of cells were measured by Transwell migration and invasion assay and their viability were examined using CCK-8 assay. Further, the putative interaction between FBXL7 and miR-152-5p were analysed bioinformatically and by luciferase assay. The activities of FBXL7, TMZ and miR-152-5p were analysed in vivo singly or in combination, on mouse xenografts, in glioma tumorigenesis. The expression of FBXL7 in glioma tissue is significantly up-regulated, which is related to the poor prognosis and the grade of glioma. TMZ-induced cytotoxicity, proliferation, migration and invasion in glioma cells were impeded by the knock-down of FBXL7 or overexpressed miR-152-5p. Furthermore, the expression of miR-152-5p reduced remarkably in glioma cells and it exerted its activity through targeted FBXL7. Overexpression of miR-152-5p and knock-down of FBXL7 in glioma xenograft models enhanced TMZ-mediated anti-tumour effect and impeded tumour growth. Thus, the miR-152-5p suppressed the progression of glioma and associated tumorigenesis, targeted FBXL7 and increased the effect of TMZ-induced cytotoxicity in glioma cells, further enhancing our knowledge of FBXL7 activity in glioma.
Collapse
Affiliation(s)
- Shiqi Kong
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yanwei Fang
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Bingqian Wang
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Runzhi He
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Zongmao Zhao
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
32
|
Kong S, Cao Y, Li X, Li Z, Xin Y, Meng Y. MiR-3116 sensitizes glioma cells to temozolomide by targeting FGFR1 and regulating the FGFR1/PI3K/AKT pathway. J Cell Mol Med 2020; 24:4677-4686. [PMID: 32181582 PMCID: PMC7176860 DOI: 10.1111/jcmm.15133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/11/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is a brain tumour that is often diagnosed, and temozolomide (TMZ) is a common chemotherapeutic drug used in glioma. Yet, resistance to TMZ is a chief hurdle towards curing the malignancy. The current work explores the pathways and involvement of miR-3116 in the TMZ resistance. miR-3116 and FGFR1 mRNA were quantified by real-time PCR in malignant samples and cell lines. Appropriate assays were designed for apoptosis, viability, the ability to form colonies and reporter assays to study the effects of the miR-3116 or FGFR1. The involvement of PI3K/AKT signalling was assessed using Western blotting. Tumorigenesis was evaluated in an appropriate xenograft mouse model in vivo. This work revealed that the levels of miR-3116 dipped in samples resistant to TMZ, while increased miR-3116 caused an inhibition of the tumour features mentioned above to hence augment TMZ sensitivity. miR-3116 was found to target FGFR1. When FGFR1 was overexpressed, resistance to TMZ was augmented and reversed the sensitivity caused by miR-3116. Our findings further confirmed PI3K/AKT signalling pathway is involved in this action. In conclusion, miR-3116 sensitizes glioma cells to TMZ through FGFR1 downregulation and the PI3K/AKT pathway inactivation. Our results provide a strategy to overcome TMZ resistance in glioma treatment.
Collapse
Affiliation(s)
- Shiqi Kong
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Xin Li
- Department of NeurosurgeryThe First People's Hospital of ShenyangShenyangChina
| | - Zhenzhong Li
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yuling Xin
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yan Meng
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| |
Collapse
|
33
|
Gong H, Gao S, Yu C, Li M, Liu P, Zhang G, Song J, Zheng J. Effect and mechanism of YB-1 knockdown on glioma cell growth, migration, and apoptosis. Acta Biochim Biophys Sin (Shanghai) 2020; 52:168-179. [PMID: 32047913 DOI: 10.1093/abbs/gmz161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 12/13/2022] Open
Abstract
Y-box binding protein 1 (YB-1) is manifested as its involvement in cell proliferation and differentiation and malignant cell transformation. Overexpression of YB-1 is associated with glioma progression and patient survival. The aim of this study is to investigate the influence of YB-1 knockdown on glioma cell progression and reveal the mechanisms of YB-1 knockdown on glioma cell growth, migration, and apoptosis. It was found that the knockdown of YB-1 decreased the mRNA and protein levels of YB-1 in U251 glioma cells. The knockdown of YB-1 significantly inhibited cell proliferation, colony formation, and migration in vitro and tumor growth in vivo. Proteome and phosphoproteome data revealed that YB-1 is involved in glioma progression through regulating the expression and phosphorylation of major proteins involved in cell cycle, adhesion, and apoptosis. The main regulated proteins included CCNB1, CCNDBP1, CDK2, CDK3, ADGRG1, CDH-2, MMP14, AIFM1, HO-1, and BAX. Furthermore, it was also found that YB-1 knockdown is associated with the hypo-phosphorylation of ErbB, mTOR, HIF-1, cGMP-PKG, and insulin signaling pathways, and proteoglycans in cancer. Our findings indicated that YB-1 plays a key role in glioma progression in multiple ways, including regulating the expression and phosphorylation of major proteins associated with cell cycle, adhesion, and apoptosis.
Collapse
Affiliation(s)
- Huilin Gong
- Department of Pathology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Shan Gao
- Department of Kidney Transplant, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Chenghuan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Meihe Li
- Department of Kidney Transplant, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Ping Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Guanjun Zhang
- Department of Pathology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jinning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jin Zheng
- Department of Kidney Transplant, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
34
|
Dissecting Molecular Features of Gliomas: Genetic Loci and Validated Biomarkers. Int J Mol Sci 2020; 21:ijms21020685. [PMID: 31968687 PMCID: PMC7014190 DOI: 10.3390/ijms21020685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, several studies focused on the genetics of gliomas. This allowed identifying several germline loci that contribute to individual risk for tumor development, as well as various somatic mutations that are key for disease classification. Unfortunately, none of the germline loci clearly confers increased risk per se. Contrariwise, somatic mutations identified within the glioma tissue define tumor genotype, thus representing valid diagnostic and prognostic markers. Thus, genetic features can be used in glioma classification and guided therapy. Such copious genomic variabilities are screened routinely in glioma diagnosis. In detail, Sanger sequencing or pyrosequencing, fluorescence in-situ hybridization, and microsatellite analyses were added to immunohistochemistry as diagnostic markers. Recently, Next Generation Sequencing was set-up as an all-in-one diagnostic tool aimed at detecting both DNA copy number variations and mutations in gliomas. This approach is widely used also to detect circulating tumor DNA within cerebrospinal fluid from patients affected by primary brain tumors. Such an approach is providing an alternative cost-effective strategy to genotype all gliomas, which allows avoiding surgical tissue collection and repeated tumor biopsies. This review summarizes available molecular features that represent solid tools for the genetic diagnosis of gliomas at present or in the next future.
Collapse
|
35
|
Pekov SI, Eliferov VA, Sorokin AA, Shurkhay VA, Zhvansky ES, Vorobyev AS, Potapov AA, Nikolaev EN, Popov IA. Inline cartridge extraction for rapid brain tumor tissue identification by molecular profiling. Sci Rep 2019; 9:18960. [PMID: 31831871 PMCID: PMC6908710 DOI: 10.1038/s41598-019-55597-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
The development of perspective diagnostic techniques in medicine requires efficient high-throughput biological sample analysis methods. Here, we present an inline cartridge extraction that facilitates the screening rate of mass spectrometry shotgun lipidomic analysis of tissue samples. We illustrate the method by its application to tumor tissue identification in neurosurgery. In perspective, this high-performance method provides new possibilities for the investigation of cancer pathogenesis and metabolic disorders.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Vasily A Eliferov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Vsevolod A Shurkhay
- Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Evgeny S Zhvansky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexander S Vorobyev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexander A Potapov
- Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery» of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - Eugene N Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation.
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation.
| |
Collapse
|
36
|
Phipps K, Kirkman MA, Aquilina K, Gaze M, Michalski A, Wade A, Hayward R. Childhood medulloblastoma-a single institution's historical perspective on survival and functional morbidity. Childs Nerv Syst 2019; 35:2327-2338. [PMID: 31686139 DOI: 10.1007/s00381-019-04402-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To compare results from a third (1995-2010) cohort of children with medulloblastoma with two previous series (J Neurosurg 86:13-21, 1997; Arch Dis Child 54:200-203, 1979) to analyse the effects of management changes aimed at improving both overall and event-free survivals (OS and EFS) and functional outcomes. METHODS Review of neuro-oncology and imaging databases and previously published results. RESULTS There was no statistically significant improvement in the 5-year OS for 104 children diagnosed 1995-2010, 61.5% (95% CI, 52.9, 71.6), compared with 50% of the 80 children presenting 1980-1990 (J Neurosurg 86:13-21, 1997) (difference 11.5%; 95% CI, 2.8, 25.4). Five-year OS for 96 children suitable for risk-stratification was overall 66% (95% CI, 57.9, 75.8); standard risk 77.8% (95% CI, 67.4, 89.7); high risk < 3 years 50.0% (95% CI, 32.3, 77.5); high risk ≥ 3 years 54.5% (95% CI, 37.2, 79.9); 5-year EFS were standard risk 68.5% (95% CI, 57.2, 82.1); high risk < 3 years 40.0% (95% CI, 23.4, 68.4); and high risk ≥ 3 years 36.4% (95% CI, 20.9, 63.2); overall 55.2% (95% CI, 46.1, 66.1). Of 62/63 ≥ 5-year survivor, 9 died later from tumour relapse and 4 from second malignancy. Functional outcomes of 62 of the 63 ≥ 5-year survivors: 67.7% had educational issues requiring remedial input; 18% restricted mobility indoors and outdoors; 59.7% hearing impairment (42% prescribed aids). CONCLUSIONS 1. Comparison of this single-institution series with its predecessor found that revised chemotherapy and RT protocols and greater accuracy of risk stratification did not result in statistically significant improvements in either survival or treatment-related functional disability. 2. Extended (> 5-year) follow-up is essential if 20% of late deaths from relapse and second malignancies are not to be overlooked.
Collapse
Affiliation(s)
- Kim Phipps
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK
| | - Matthew A Kirkman
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK.,Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK
| | - Mark Gaze
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK.,Department of Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK
| | - Antony Michalski
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK
| | - Angie Wade
- Population, Policy and Practice Programme, Great Ormond Street Institute of Child Health, UCL, 30 Guilford Street, London, WC1N 1EH, UK
| | - Richard Hayward
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC2N 3JH, UK.
| |
Collapse
|
37
|
Mutant-allele tumor heterogeneity in malignant glioma effectively predicts neoplastic recurrence. Oncol Lett 2019; 18:6108-6116. [PMID: 31788085 PMCID: PMC6865645 DOI: 10.3892/ol.2019.10978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Intra-tumor heterogeneity (ITH) is one of the most important causes of therapy resistance, which eventually leads to the poor outcomes observed in patients with glioma. Mutant-allele tumor heterogeneity (MATH) values are based on whole-exon sequencing and precisely reflect genetic ITH. However, the significance of MATH values in predicting glioma recurrence remains unclear. Information of patients with glioma was obtained from The Cancer Genome Atlas database. The present study calculated the MATH value for each patient, analyzed the distributions of MATH values in different subtypes and investigated the rates of clinical recurrence in patients with different MATH values. Gene enrichment and Cox regression analyses were performed to determine which factors influenced recurrence. A nomogram table was established to predict 1-, 2- and 5-year recurrence probabilities. MATH values were increased in patients with glioma with the wild-type isocitrate dehydrogenase (NADP(+)) (IDH)1/2 (IDH-wt) gene (P=0.001) and glioblastoma (GBM; P=0.001). MATH values were negatively associated with the 2- and 5-year recurrence-free survival (RFS) rates in patients with glioma, particularly in the IDH1/2-wt and GBM cohorts (P=0.001 and P=0.017, respectively). Furthermore, glioma cases with different MATH levels had distinct patterns of gene mutation frequencies and gene expression enrichment. Finally, a nomogram table that contained MATH values could be used to accurately predict the probabilities of the 1-, 2- and 5-year RFS of patients with glioma. In conclusion, the MATH value of a patient may be an independent predictor that influences glioma recurrence. The nomogram model presented in the current study was an appropriate method to predict 1-, 2- and 5-year RFS probabilities in patients with glioma.
Collapse
|
38
|
Tan AP, Tan CL, Pang YH, Kei PL. Anaplastic Oligodendroglioma with Transdural Extension. World Neurosurg 2019; 130:10-12. [PMID: 31254692 DOI: 10.1016/j.wneu.2019.06.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022]
Abstract
Oligodendrogliomas, the third most common primary gliomas, have a strict molecular definition, characterized by the combined presence of isocitrate dehydrogenase mutation and 1p19q codeletion. Herein, we describe an extremely unusual case of molecularly defined anaplastic oligodendroglioma with transdural extension into the frontal and ethmoid sinuses, without prior neurosurgical intervention or radiotherapy. The molecular profile of the tumor is also provided. To the best of our knowledge, this has never been reported before. Most of the previously reported glial tumors with transdural extension were cases of histologically proven glioblastomas and gliosarcomas, typically seen in the context of prior neurosurgical intervention and/or radiotherapy. This case adds to the limited literature on oligodendrogliomas with transdural extension. Further studies are necessary to elucidate the relationship between the incidence of transdural extension and molecular subtypes of oligodendrogliomas.
Collapse
Affiliation(s)
- Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore.
| | - Char Loo Tan
- Department of Pathology, National University Health System, Singapore
| | - Yin Huei Pang
- Department of Pathology, National University Health System, Singapore
| | - Pin Lin Kei
- Department of Diagnostic Radiology, Ng Teng Fong General Hospital, Singapore
| |
Collapse
|