1
|
Wang S, Feng D, Zheng Y, Lu Y, Shi K, Yang R, Ma W, Li N, Liu M, Wang Y, Hong Y, McClung CR, Zhao J. EARLY FLOWERING 3 alleles affect the temperature responsiveness of the circadian clock in Chinese cabbage. PLANT PHYSIOLOGY 2025; 197:kiae505. [PMID: 39545809 DOI: 10.1093/plphys/kiae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 11/17/2024]
Abstract
Temperature is an environmental cue that entrains the circadian clock, adapting it to local thermal and photoperiodic conditions that characterize different geographic regions. Circadian clock thermal adaptation in leafy vegetables such as Chinese cabbage (Brassica rapa ssp. pekinensis) is poorly understood but essential to sustain and increase vegetable production under changing climates. We investigated circadian rhythmicity in natural Chinese cabbage accessions grown at 14, 20, and 28 °C. The circadian period was significantly shorter at 20 °C than at either 14 or 28 °C, and the responses to increasing temperature and temperature compensation (Q10) were associated with population structure. Genome-wide association studies mapping identified variation responsible for temperature compensation as measured by Q10 value for temperature increase from 20 to 28 °C. Haplotype analysis indicated that B. rapa EARLY FLOWERING 3 H1 Allele (BrELF3H1) conferred a significantly higher Q10 value at 20 to 28 °C than BrELF3H2. Co-segregation analyses of an F2 population derived from a BrELF3H1 × BrELF3H2 cross revealed that variation among BrELF3 alleles determined variation in the circadian period of Chinese cabbage at 20 °C. However, their differential impact on circadian oscillation was attenuated at 28 °C. Transgenic complementation in Arabidopsis thaliana elf3-8 mutants validated the involvement of BrELF3 in the circadian clock response to thermal cues, with BrELF3H1 conferring a higher Q10 value than BrELF3 H2 at 20 to 28 °C. Thus, BrELF3 is critical to the circadian clock response to ambient temperature in Chinese cabbage. These findings have clear implications for breeding new varieties with enhanced resilience to extreme temperatures.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yakun Zheng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yin Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Kailin Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yiguo Hong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Takahashi S, Nakano Y, Sumitomo K, Hisamatsu T, Oda A, Onoue N, Mizubayashi T, Yamakawa H. Photoperiodic flowering and AFT/FTL3 gene expression in flowering-time varieties in chrysanthemum. PHYSIOLOGIA PLANTARUM 2025; 177:e70086. [PMID: 39887355 DOI: 10.1111/ppl.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a short-day plant, and flowering is stimulated when the photoperiod is shorter than a variety-specific threshold (critical day length). In Japan, summer-to-autumn-flowering cultivars (SA-cvs.) flower from July to September. Little research has been conducted to understand why SA-cvs. bloom earlier than autumn-flowering cultivars (A-cvs.). We conducted a comparative study of the relationship between the photoperiodic response of flowering and the gene expression of florigen FLOWERING LOCUS T-like 3 (FTL3) and antiflorigen anti-florigenic FT/TFL1 (AFT). SA-cvs. had a longer critical day length than A-cvs. However, in both groups, a decrease in AFT and increase in FTL3 were consistently observed below the critical day length when flowering was promoted. The opposite responses (less flowering, low FTL3, and high AFT) were observed for longer than the critical day lengths. This indicated that flowering in SA-cvs. was controlled by the regulation of AFT/FTL3 expression, similar to that in A-cvs. Next, we studied the mechanism that causes a variation in critical day lengths. In SA-cvs., the photosensitive phase, which occurs at night, occurs earlier than that in A-cvs. This indicates a variation in the endogenous time-keeping mechanism. This was supported by the fact that the circadian rhythmicity of leaf movement was weaker in SA-cvs. than that in A-cvs. Thus, variation in the endogenous time-keeping mechanism may cause a longer critical day length and earlier flowering time in SA-cvs.
Collapse
Affiliation(s)
- Shigekazu Takahashi
- Institute of Vegetable and Floriculture Science, NARO, Ibaraki, Japan
- Genome Editing Innovation Center, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Nakano
- Institute of Vegetable and Floriculture Science, NARO, Ibaraki, Japan
| | | | - Tamotsu Hisamatsu
- Institute of Vegetable and Floriculture Science, NARO, Ibaraki, Japan
| | - Atsushi Oda
- Institute of Vegetable and Floriculture Science, NARO, Ibaraki, Japan
| | - Noriyuki Onoue
- Institute of Fruit Tree and Tea Science, NARO, Hiroshima, Japan
| | | | | |
Collapse
|
3
|
de Los Reyes P, Serrano-Bueno G, Romero-Campero FJ, Gao H, Romero JM, Valverde F. CONSTANS alters the circadian clock in Arabidopsis thaliana. MOLECULAR PLANT 2024; 17:1204-1220. [PMID: 38894538 DOI: 10.1016/j.molp.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.
Collapse
Affiliation(s)
- Pedro de Los Reyes
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Francisco J Romero-Campero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - He Gao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain; Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, Seville, Spain
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
4
|
Oskam L, Snoek BL, Pantazopoulou CK, van Veen H, Matton SEA, Dijkhuizen R, Pierik R. A low-cost open-source imaging platform reveals spatiotemporal insight into leaf elongation and movement. PLANT PHYSIOLOGY 2024; 195:1866-1879. [PMID: 38401532 PMCID: PMC11213255 DOI: 10.1093/plphys/kiae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Plant organs move throughout the diurnal cycle, changing leaf and petiole positions to balance light capture, leaf temperature, and water loss under dynamic environmental conditions. Upward movement of the petiole, called hyponasty, is one of several traits of the shade avoidance syndrome (SAS). SAS traits are elicited upon perception of vegetation shade signals such as far-red light (FR) and improve light capture in dense vegetation. Monitoring plant movement at a high temporal resolution allows studying functionality and molecular regulation of hyponasty. However, high temporal resolution imaging solutions are often very expensive, making this unavailable to many researchers. Here, we present a modular and low-cost imaging setup, based on small Raspberry Pi computers that can track leaf movements and elongation growth with high temporal resolution. We also developed an open-source, semiautomated image analysis pipeline. Using this setup, we followed responses to FR enrichment, light intensity, and their interactions. Tracking both elongation and the angle of the petiole, lamina, and entire leaf in Arabidopsis (Arabidopsis thaliana) revealed insight into R:FR sensitivities of leaf growth and movement dynamics and the interactions of R:FR with background light intensity. The detailed imaging options of this system allowed us to identify spatially separate bending points for petiole and lamina positioning of the leaf.
Collapse
Affiliation(s)
- Lisa Oskam
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Chrysoula K Pantazopoulou
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Hans van Veen
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6700 AA, The Netherlands
| | - Rens Dijkhuizen
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
5
|
Agrofoglio YC, Iglesias MJ, Perez-Santángelo S, de Leone MJ, Koester T, Catalá R, Salinas J, Yanovsky MJ, Staiger D, Mateos JL. Arginine methylation of SM-LIKE PROTEIN 4 antagonistically affects alternative splicing during Arabidopsis stress responses. THE PLANT CELL 2024; 36:2219-2237. [PMID: 38518124 PMCID: PMC11132874 DOI: 10.1093/plcell/koae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2024] [Indexed: 03/24/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5) post-translationally modifies RNA-binding proteins by arginine (R) methylation. However, the impact of this modification on the regulation of RNA processing is largely unknown. We used the spliceosome component, SM-LIKE PROTEIN 4 (LSM4), as a paradigm to study the role of R-methylation in RNA processing. We found that LSM4 regulates alternative splicing (AS) of a suite of its in vivo targets identified here. The lsm4 and prmt5 mutants show a considerable overlap of genes with altered AS raising the possibility that splicing of those genes could be regulated by PRMT5-dependent LSM4 methylation. Indeed, LSM4 methylation impacts AS, particularly of genes linked with stress response. Wild-type LSM4 and an unmethylable version complement the lsm4-1 mutant, suggesting that methylation is not critical for growth in normal environments. However, LSM4 methylation increases with abscisic acid and is necessary for plants to grow under abiotic stress. Conversely, bacterial infection reduces LSM4 methylation, and plants that express unmethylable-LSM4 are more resistant to Pseudomonas than those expressing wild-type LSM4. This tolerance correlates with decreased intron retention of immune-response genes upon infection. Taken together, this provides direct evidence that R-methylation adjusts LSM4 function on pre-mRNA splicing in an antagonistic manner in response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yamila Carla Agrofoglio
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Soledad Perez-Santángelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - María José de Leone
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Tino Koester
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Rafael Catalá
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julieta L Mateos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
6
|
Dwivedi SL, Quiroz LF, Spillane C, Wu R, Mattoo AK, Ortiz R. Unlocking allelic variation in circadian clock genes to develop environmentally robust and productive crops. PLANTA 2024; 259:72. [PMID: 38386103 PMCID: PMC10884192 DOI: 10.1007/s00425-023-04324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
MAIN CONCLUSION Molecular mechanisms of biological rhythms provide opportunities to harness functional allelic diversity in core (and trait- or stress-responsive) oscillator networks to develop more climate-resilient and productive germplasm. The circadian clock senses light and temperature in day-night cycles to drive biological rhythms. The clock integrates endogenous signals and exogenous stimuli to coordinate diverse physiological processes. Advances in high-throughput non-invasive assays, use of forward- and inverse-genetic approaches, and powerful algorithms are allowing quantitation of variation and detection of genes associated with circadian dynamics. Circadian rhythms and phytohormone pathways in response to endogenous and exogenous cues have been well documented the model plant Arabidopsis. Novel allelic variation associated with circadian rhythms facilitates adaptation and range expansion, and may provide additional opportunity to tailor climate-resilient crops. The circadian phase and period can determine adaptation to environments, while the robustness in the circadian amplitude can enhance resilience to environmental changes. Circadian rhythms in plants are tightly controlled by multiple and interlocked transcriptional-translational feedback loops involving morning (CCA1, LHY), mid-day (PRR9, PRR7, PRR5), and evening (TOC1, ELF3, ELF4, LUX) genes that maintain the plant circadian clock ticking. Significant progress has been made to unravel the functions of circadian rhythms and clock genes that regulate traits, via interaction with phytohormones and trait-responsive genes, in diverse crops. Altered circadian rhythms and clock genes may contribute to hybrid vigor as shown in Arabidopsis, maize, and rice. Modifying circadian rhythms via transgenesis or genome-editing may provide additional opportunities to develop crops with better buffering capacity to environmental stresses. Models that involve clock gene‒phytohormone‒trait interactions can provide novel insights to orchestrate circadian rhythms and modulate clock genes to facilitate breeding of all season crops.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland.
| | - Rongling Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing, 101408, China
| | - Autar K Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD, 20705-2350, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvagen, 10, Box 190, SE 23422, Lomma, Sweden.
| |
Collapse
|
7
|
McMinn R, Salmela MJ, Weinig C. Naturally segregating genetic variation in circadian period exhibits a regional elevational and climatic cline. PLANT, CELL & ENVIRONMENT 2022; 45:2696-2707. [PMID: 35686466 DOI: 10.1111/pce.14377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Circadian clocks confer adaptation to predictable 24-h fluctuations in the exogenous environment, but it has yet to be determined what ecological factors maintain natural genetic variation in endogenous circadian period outside of the hypothesized optimum of 24 h. We estimated quantitative genetic variation in circadian period in leaf movement in 30 natural populations of the Arabidopsis relative Boechera stricta sampled within only 1° of latitude but across an elevation gradient spanning 2460-3300 m in the Rocky Mountains. Measuring ~3800 plants from 473 maternal families (7-20 per population), we found that genetic variation was of similar magnitude among versus within populations, with population means varying between 21.9 and 24.9 h and maternal family means within populations varying by up to ~6 h. After statistically accounting for spatial autocorrelation at a habitat extreme, we found that elevation explained a significant proportion of genetic variation in the circadian period, such that higher-elevation populations had shorter mean period lengths and reduced intrapopulation ranges. Environmental data indicate that these spatial trends could be related to steep regional climatic gradients in temperature, precipitation, and their intra-annual variability. Our findings suggest that spatially fine-grained environmental heterogeneity contributes to naturally occurring genetic variation in circadian traits in wild populations.
Collapse
Affiliation(s)
- Rob McMinn
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | | | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
8
|
Marie TRJG, Leonardos ED, Lanoue J, Hao X, Micallef BJ, Grodzinski B. A Perspective Emphasizing Circadian Rhythm Entrainment to Ensure Sustainable Crop Production in Controlled Environment Agriculture: Dynamic Use of LED Cues. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
World-wide, sustainable crop production is increasingly dependent on the protection of crops from adverse local climate conditions by using controlled environment agriculture (CEA) facilities. Today's greenhouses and plant factories are becoming very technologically advanced. Important breakthroughs in our understanding of the deployment of affordable artificial lighting systems that can supplement and even replace solar radiation is the subject of this perspective article. The key to improving sustainable CEA is to synchronize those environmental cues that best entrain the natural circadian rhythm of the crop. Patterns of circadian rhythms reflect the balance of daily metabolic cycles and phenological stages of development that integrate and anticipate environmental changes for all complex organisms. Within the last decade, our understanding of the use of light-emitting diodes (LEDs) as spectrally tunable tools for stimulating plant responses has expanded rapidly. This perspective proposes that extending the photoperiod in CEA is an economically sustainable goal to for year-round productivity of tomato, using dynamic LED shifts that entrain the circadian rhythm. When the photoperiod is extended too far, tomato experiences injury. To avoid yield reduction, we look to nature for clues, and how circadian rhythms evolved in general to long-photoperiods during the summer in high-latitudes. It follows that circadian rhythm traits are good targets for breeders to select new tomato cultivars suitable for CEA. Circadian rhythm entrainment, using dynamic LED cues, can be tailored to any latitude-of-origin crop, and thus expands the strategies ensuring sustainable food security including healthy diets locally in any region of the world.
Collapse
|
9
|
A Point Mutation in Phytochromobilin synthase Alters the Circadian Clock and Photoperiodic Flowering of Medicago truncatula. PLANTS 2022; 11:plants11030239. [PMID: 35161220 PMCID: PMC8839385 DOI: 10.3390/plants11030239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
Plants use seasonal cues to initiate flowering at an appropriate time of year to ensure optimal reproductive success. The circadian clock integrates these daily and seasonal cues with internal cues to initiate flowering. The molecular pathways that control the sensitivity of flowering to photoperiods (daylengths) are well described in the model plant Arabidopsis. However, much less is known for crop species, such as legumes. Here, we performed a flowering time screen of a TILLING population of Medicago truncatula and found a line with late-flowering and altered light-sensing phenotypes. Using RNA sequencing, we identified a nonsense mutation in the Phytochromobilin synthase (MtPΦBS) gene, which encodes an enzyme that carries out the final step in the biosynthesis of the chromophore required for phytochrome (phy) activity. The analysis of the circadian clock in the MtpΦbs mutant revealed a shorter circadian period, which was shared with the MtphyA mutant. The MtpΦbs and MtphyA mutants showed downregulation of the FT floral regulators MtFTa1 and MtFTb1/b2 and a change in phase for morning and night core clock genes. Our findings show that phyA is necessary to synchronize the circadian clock and integration of light signalling to precisely control the timing of flowering.
Collapse
|
10
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
11
|
Xie Q, Wang Y, Yuan L, Xu X. Measurement of Luciferase Rhythms in Soybean Hairy Roots. Methods Mol Biol 2022; 2398:65-73. [PMID: 34674168 DOI: 10.1007/978-1-0716-1912-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Firefly luciferase is widely used as a bioluminescence reporter, which is simple, high signal-to-noise ratio and especially suitable for the long-term analysis of circadian clock-regulated gene expression. Here, we report the method of tracking circadian rhythms in Agrobacterium rhizogenes-induced soybean hairy roots via TopCount™ Microplate Scintillation Counter or Deep-Cooled CCD camera. Using transgenic soybean hairy roots, we monitored the endogenous 24-h oscillations of clock genes expression and investigated the precise parameters of circadian rhythmicity. Researchers can easily analyze the circadian phenotype in legumes and non-legumes using bioluminescence reporters carried by the hairy roots, avoiding time-consuming transgenic work.
Collapse
Affiliation(s)
- Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Yu Wang
- College of Biological Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Agrobacterium-Mediated Seedling Transformation to Measure Circadian Rhythms in Arabidopsis. Methods Mol Biol 2022; 2398:57-64. [PMID: 34674167 DOI: 10.1007/978-1-0716-1912-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circadian clocks are endogenous timing mechanisms that allow an organism to adapt cellular processes in anticipation of predictable changes in the environment. Luciferase reporters are well utilized as an effective, nondestructive method to measure circadian rhythms of promoter activity in Arabidopsis. Obtaining stable transgenic reporter lines can be laborious. Here, we report a protocol for Agrobacterium-mediated seedling transformation tailored for plant circadian studies. We show that period estimates generated from wild-type and clock-mutant seedlings transformed with circadian luciferase reporters are similar to rhythms obtained from equivalent stable transgenic seedlings. These experiments demonstrate the versatility and robustness of the protocol for testing new constructs or quickly assessing circadian effects in any genotype of interest.
Collapse
|
13
|
Lou P, Greenham K, McClung CR. Rhythmic Leaf and Cotyledon Movement Analysis. Methods Mol Biol 2022; 2494:125-134. [PMID: 35467204 DOI: 10.1007/978-1-0716-2297-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The first descriptions of circadian rhythms were of the rhythmic leaf movements of plants. Rhythmic leaf movements offer a sensitive, noninvasive, nondestructive, and non-transgenic assay of plant circadian rhythms that can be readily automated, greatly facilitating genetic studies. Rhythmic leaf movement is particularly useful for the assessment of standing variation in clock function and can be readily applied to a diverse array of dicotyledonous plants, including both wild species and domesticated crops.
Collapse
Affiliation(s)
- Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Kathleen Greenham
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
14
|
Geldhof B, Pattyn J, Eyland D, Carpentier S, Van de Poel B. A digital sensor to measure real-time leaf movements and detect abiotic stress in plants. PLANT PHYSIOLOGY 2021; 187:1131-1148. [PMID: 34618089 PMCID: PMC8566216 DOI: 10.1093/plphys/kiab407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 05/31/2023]
Abstract
Plant and plant organ movements are the result of a complex integration of endogenous growth and developmental responses, partially controlled by the circadian clock, and external environmental cues. Monitoring of plant motion is typically done by image-based phenotyping techniques with the aid of computer vision algorithms. Here we present a method to measure leaf movements using a digital inertial measurement unit (IMU) sensor. The lightweight sensor is easily attachable to a leaf or plant organ and records angular traits in real-time for two dimensions (pitch and roll) with high resolution (measured sensor oscillations of 0.36 ± 0.53° for pitch and 0.50 ± 0.65° for roll). We were able to record simple movements such as petiole bending, as well as complex lamina motions, in several crops, ranging from tomato to banana. We also assessed growth responses in terms of lettuce rosette expansion and maize seedling stem movements. The IMU sensors are capable of detecting small changes of nutations (i.e. bending movements) in leaves of different ages and in different plant species. In addition, the sensor system can also monitor stress-induced leaf movements. We observed that unfavorable environmental conditions evoke certain leaf movements, such as drastic epinastic responses, as well as subtle fading of the amplitude of nutations. In summary, the presented digital sensor system enables continuous detection of a variety of leaf motions with high precision, and is a low-cost tool in the field of plant phenotyping, with potential applications in early stress detection.
Collapse
Affiliation(s)
- Batist Geldhof
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - Jolien Pattyn
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - David Eyland
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
| | - Sebastien Carpentier
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
- Bioversity International, Leuven, 3001, Belgium
| | - Bram Van de Poel
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| |
Collapse
|
15
|
Kaur B, Sandhu KS, Kamal R, Kaur K, Singh J, Röder MS, Muqaddasi QH. Omics for the Improvement of Abiotic, Biotic, and Agronomic Traits in Major Cereal Crops: Applications, Challenges, and Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1989. [PMID: 34685799 PMCID: PMC8541486 DOI: 10.3390/plants10101989] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
Omics technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, are becoming an integral part of virtually every commercial cereal crop breeding program, as they provide substantial dividends per unit time in both pre-breeding and breeding phases. Continuous advances in omics assure time efficiency and cost benefits to improve cereal crops. This review provides a comprehensive overview of the established omics methods in five major cereals, namely rice, sorghum, maize, barley, and bread wheat. We cover the evolution of technologies in each omics section independently and concentrate on their use to improve economically important agronomic as well as biotic and abiotic stress-related traits. Advancements in the (1) identification, mapping, and sequencing of molecular/structural variants; (2) high-density transcriptomics data to study gene expression patterns; (3) global and targeted proteome profiling to study protein structure and interaction; (4) metabolomic profiling to quantify organ-level, small-density metabolites, and their composition; and (5) high-resolution, high-throughput, image-based phenomics approaches are surveyed in this review.
Collapse
Affiliation(s)
- Balwinder Kaur
- Everglades Research and Education Center, University of Florida, 3200 E. Palm Beach Rd., Belle Glade, FL 33430, USA;
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Kawalpreet Kaur
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Jagmohan Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Quddoos H. Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| |
Collapse
|
16
|
Dong X, Peng B, Sieckenius S, Raman R, Conley MM, Leskovar DI. Leaf water potential of field crops estimated using NDVI in ground-based remote sensing-opportunities to increase prediction precision. PeerJ 2021; 9:e12005. [PMID: 34466291 PMCID: PMC8380031 DOI: 10.7717/peerj.12005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Remote-sensing using normalized difference vegetation index (NDVI) has the potential of rapidly detecting the effect of water stress on field crops. However, this detection has typically been accomplished only after the stress effect led to significant changes in crop green biomass, leaf area index, angle and position, and few studies have attempted to estimate the uncertainties of the regression models. These have limited the informed interpretation of NDVI data in agricultural applications. We built a ground-based sensing cart and used it to calibrate the relationships between NDVI and leaf water potential (LWP) for wheat, corn, and cotton growing under field conditions. Both the methods of ordinary least-squares (OLS) and weighted least-squares (WLS) were employed in data analysis, and measurement errors in both LWP and NDVI were considered. We also used statistical resampling to test the effect of measurement errors of LWP on the uncertainties of model coefficients. Our data showed that obtaining a high value of the coefficient of determination did not guarantee a high prediction precision in the obtained regression models. Large prediction uncertainties were estimated for all three crops, and the regressions obtained were not always significant. The best models were obtained for cotton with a prediction uncertainty of 27%. We found that considering measurement errors for both LWP and NDVI led to reduced uncertainties in model coefficients. Also, reducing the sample size of LWP measurement led to significantly increased uncertainties in the coefficients of the linear models describing the LWP-NDVI relationship. Finally, potential strategies for reducing the uncertainty relative to the range of NDVI measurement are discussed.
Collapse
Affiliation(s)
- Xuejun Dong
- Texas A&M AgriLife Research and Extension Center at Uvalde, Uvalde, TX, United States
| | - Bin Peng
- Yancheng Institute of Technology, Yancheng City, Jiangsu, China
| | - Shane Sieckenius
- Texas A&M AgriLife Research and Extension Center at Uvalde, Uvalde, TX, United States
| | - Rahul Raman
- Texas A&M AgriLife Research and Extension Center at Uvalde, Uvalde, TX, United States.,Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Matthew M Conley
- USDA-ARS, U.S. Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Daniel I Leskovar
- Texas A&M AgriLife Research and Extension Center at Uvalde, Uvalde, TX, United States
| |
Collapse
|
17
|
Wang X, Xu Y, Zhou M, Wang W. Assessing Global Circadian Rhythm Through Single-Time-Point Transcriptomic Analysis. Methods Mol Biol 2021; 2328:215-225. [PMID: 34251629 DOI: 10.1007/978-1-0716-1534-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Plant circadian clock has emerged as a central hub integrating various endogenous signals and exogenous stimuli to coordinate diverse plant physiological processes. The intimate relationship between crop circadian clock and key agronomic traits has been increasingly appreciated. However, due to the lack of fundamental genetic resources, more complex genome structures and the high cost of large-scale time-course circadian expression profiling, our understanding of crop circadian clock is still very limited. To study plant circadian clock, conventional methods rely on time-course experiments, which can be expensive and time-consuming. Different from these conventional approaches, the molecular timetable method can estimate the global rhythm using single-time-point transcriptome datasets, which has shown great promises in accelerating studies of crop circadian clock. Here we describe the application of the molecular timetable method in soybean and provide key technical caveats as well as related R Markdown scripts.
Collapse
Affiliation(s)
- Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Yufeng Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Beijing, China.
| |
Collapse
|
18
|
Leinonen PH, Salmela MJ, Greenham K, McClung CR, Willis JH. Populations Are Differentiated in Biological Rhythms without Explicit Elevational Clines in the Plant Mimulus laciniatus. J Biol Rhythms 2020; 35:452-464. [PMID: 32628567 PMCID: PMC7534027 DOI: 10.1177/0748730420936408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Environmental variation along an elevational gradient can yield phenotypic differentiation resulting from varying selection pressures on plant traits related to seasonal responses. Thus, genetic clines can evolve in a suite of traits, including the circadian clock, that drives daily cycling in varied traits and that shares its genetic background with adaptation to seasonality. We used populations of annual Mimulus laciniatus from different elevations in the Sierra Nevada in California to explore among-population differentiation in the circadian clock, flowering responses to photoperiod, and phenological traits (days to cotyledon emergence, days to flowering, and days to seed ripening) in controlled common-garden conditions. Further, we examined correlations of these traits with environmental variables related to temperature and precipitation. We observed that the circadian period in leaf movement was differentiated among populations sampled within about 100 km, with population means varying by 1.6 h. Significant local genetic variation occurred within 2 populations in which circadian period among families varied by up to 1.8 h. Replicated treatments with variable ecologically relevant photoperiods revealed marked population differentiation in critical day length for flowering that ranged from 11.0 to 14.1 h, corresponding to the time period between late February and mid-May in the wild. Flowering time varied among populations in a 14-h photoperiod. Regardless of this substantial population-level diversity, obvious linear clinality in trait variability across elevations could not be determined based on our genotypic sample; it is possible that more complex spatial patterns of variation arise in complex terrains such as those in the Sierra Nevada. Moreover, we did not find statistically significant bivariate correlations between population means of different traits. Our research contributes to the understanding of genetic variation in the circadian clock and in seasonal responses in natural populations, highlighting the need for more comprehensive investigations on the association between the clock and other adaptive traits in plants.
Collapse
Affiliation(s)
- Päivi H Leinonen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Department of Biology, Duke University, Durham, North Carolina, USA
| | - Matti J Salmela
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Kathleen Greenham
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - John H Willis
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
19
|
A Low-Cost Method for Phenotyping Wilting and Recovery of Wheat Leaves under Heat Stress Using Semi-Automated Image Analysis. PLANTS 2020; 9:plants9060718. [PMID: 32516905 PMCID: PMC7355443 DOI: 10.3390/plants9060718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
Leaf wilting is the most common symptom of dehydration stress. Methods to analyze this phenomenon are particularly relevant to evaluate crop agronomic performance, to genetically dissect out the wilting process, and for functional analysis of genetically modified plants. In this study, a low-cost, semi-automated method to quantify leaf folding of wilting plants is described that can replace visual analysis. Standardized heat-stress conditions were applied with a thermostatic drier, on plantlets or excised leaves from three wheat genotypes (Trinakria, Cappelli, and a Water-mutant of Trinakria). The best time–temperature binomial to record both the leaf wilting and recovery phases was identified using a free time-lapse application, by a smartphone camera. The quantitative description of the wilting phenomenon was obtained through the Kinovea software, which automatically tracked the leaf angle changes over time, computed various kinematic data (angular velocity, centripetal acceleration, total degrees of displacement) and constructed the graphs. The possibility of applying standardized heat-stress conditions and quantitatively describe the leaf folding kinematics means that this instrumentation and its use represents a very low cost tool for objective phenotyping of the degree of the heat-stress tolerance of wheat and of morphologically similar species.
Collapse
|
20
|
Mir RR, Reynolds M, Pinto F, Khan MA, Bhat MA. High-throughput phenotyping for crop improvement in the genomics era. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 282:60-72. [PMID: 31003612 DOI: 10.1016/j.plantsci.2019.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/10/2018] [Accepted: 01/09/2019] [Indexed: 05/24/2023]
Abstract
Tremendous progress has been made with continually expanding genomics technologies to unravel and understand crop genomes. However, the impact of genomics data on crop improvement is still far from satisfactory, in large part due to a lack of effective phenotypic data; our capacity to collect useful high quality phenotypic data lags behind the current capacity to generate high-throughput genomics data. Thus, the research bottleneck in plant sciences is shifting from genotyping to phenotyping. This article review the current status of efforts made in the last decade to systematically collect phenotypic data to alleviate this 'phenomics bottlenecks' by recording trait data through sophisticated non-invasive imaging, spectroscopy, image analysis, robotics, high-performance computing facilities and phenomics databases. These modern phenomics platforms and tools aim to record data on traits like plant development, architecture, plant photosynthesis, growth or biomass productivity, on hundreds to thousands of plants in a single day, as a phenomics revolution. It is believed that this revolution will provide plant scientists with the knowledge and tools necessary for unlocking information coded in plant genomes. Efforts have been also made to present the advances made in the last 10 years in phenomics platforms and their use in generating phenotypic data on different traits in several major crops including rice, wheat, barley, and maize. The article also highlights the need for phenomics databases and phenotypic data sharing for crop improvement. The phenomics data generated has been used to identify genes/QTL through QTL mapping, association mapping and genome-wide association studies (GWAS) for genomics-assisted breeding (GAB) for crop improvement.
Collapse
Affiliation(s)
- Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Wadura Campus, Sopore-193201, Kashmir, India.
| | - Mathew Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Mexico, D.F., Mexico
| | - Francisco Pinto
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Mexico, D.F., Mexico
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Wadura Campus, Sopore-193201, Kashmir, India
| | - Mohd Ashraf Bhat
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Wadura Campus, Sopore-193201, Kashmir, India
| |
Collapse
|
21
|
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation. Genes (Basel) 2018; 9:genes9120616. [PMID: 30544736 PMCID: PMC6315869 DOI: 10.3390/genes9120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana.
Collapse
|
22
|
Yin X, Liu X, Chen J, Kramer DM. Joint Multi-Leaf Segmentation, Alignment, and Tracking for Fluorescence Plant Videos. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2018; 40:1411-1423. [PMID: 28715326 DOI: 10.1109/tpami.2017.2728065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This paper proposes a novel framework for fluorescence plant video processing. The plant research community is interested in the leaf-level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves, estimate their structures, and track them over time. We identify this as a joint multi-leaf segmentation, alignment, and tracking problem. First, leaf segmentation and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf candidates. Second, leaf tracking is applied on the remaining frames with leaf candidate transformation from the previous frame. We form two optimization problems with shared terms in their objective functions for leaf alignment and tracking respectively. A quantitative evaluation framework is formulated to evaluate the performance of our algorithm with four metrics. Two models are learned to predict the alignment accuracy and detect tracking failure respectively in order to provide guidance for subsequent plant biology analysis. The limitation of our algorithm is also studied. Experimental results show the effectiveness, efficiency, and robustness of the proposed method.
Collapse
|
23
|
Salmela MJ, McMinn RL, Guadagno CR, Ewers BE, Weinig C. Circadian Rhythms and Reproductive Phenology Covary in a Natural Plant Population. J Biol Rhythms 2018; 33:245-254. [DOI: 10.1177/0748730418764525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Robby L. McMinn
- Department of Botany, University of Wyoming, Laramie, Wyoming
- Program in Ecology, University of Wyoming, Laramie, Wyoming
| | | | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, Wyoming
- Program in Ecology, University of Wyoming, Laramie, Wyoming
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, Wyoming
- Program in Ecology, University of Wyoming, Laramie, Wyoming
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
24
|
Apelt F, Breuer D, Olas JJ, Annunziata MG, Flis A, Nikoloski Z, Kragler F, Stitt M. Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement. PLANT PHYSIOLOGY 2017; 174:1949-1968. [PMID: 28559360 PMCID: PMC5490918 DOI: 10.1104/pp.17.00503] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
We used Phytotyping4D to investigate the contribution of clock and light signaling to the diurnal regulation of rosette expansion growth and leaf movement in Arabidopsis (Arabidopsis thaliana). Wild-type plants and clock mutants with a short (lhycca1) and long (prr7prr9) period were analyzed in a T24 cycle and in T-cycles that were closer to the mutants' period. Wild types also were analyzed in various photoperiods and after transfer to free-running light or darkness. Rosette expansion and leaf movement exhibited a circadian oscillation, with superimposed transients after dawn and dusk. Diurnal responses were modified in clock mutants. lhycca1 exhibited an inhibition of growth at the end of night and growth rose earlier after dawn, whereas prr7prr9 showed decreased growth for the first part of the light period. Some features were partly rescued by a matching T-cycle, like the inhibition in lhycca1 at the end of the night, indicating that it is due to premature exhaustion of starch. Other features were not rescued, revealing that the clock also regulates expansion growth more directly. Expansion growth was faster at night than in the daytime, whereas published work has shown that the synthesis of cellular components is faster in the day than at nighttime. This temporal uncoupling became larger in short photoperiods and may reflect the differing dependence of expansion and biosynthesis on energy, carbon, and water. While it has been proposed that leaf expansion and movement are causally linked, we did not observe a consistent temporal relationship between expansion and leaf movement.
Collapse
Affiliation(s)
- Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - David Breuer
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | | | | | - Anna Flis
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
25
|
Greenham K, Lou P, Puzey JR, Kumar G, Arnevik C, Farid H, Willis JH, McClung CR. Geographic Variation of Plant Circadian Clock Function in Natural and Agricultural Settings. J Biol Rhythms 2017; 32:26-34. [PMID: 27920227 DOI: 10.1177/0748730416679307] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The increasing demand for improved agricultural production will require more efficient breeding for traits that maintain yield under heterogeneous environments. The internal circadian oscillator is essential for perceiving and coordinating environmental cues such as day length, temperature, and abiotic stress responses within physiological processes. To investigate the contribution of the circadian clock to local adaptability, we have analyzed circadian period by leaf movement in natural populations of Mimulus guttatus and domesticated cultivars of Glycine max. We detected consistent variation in circadian period along a latitudinal gradient in annual populations of the wild plant and the selectively bred crop, and this provides novel evidence of natural and artificial selection for circadian performance. These findings provide new support that the circadian clock acts as a central regulator of plant adaptability and further highlight the potential of applying circadian clock gene variation to marker-assisted breeding programs in crops.
Collapse
Affiliation(s)
- Kathleen Greenham
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Joshua R Puzey
- Biology Department, College of William and Mary, Williamsburg, Virginia
| | | | | | - Hany Farid
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| | - John H Willis
- Biology Department, Duke University, Durham, North Carolina
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
26
|
Wagner L, Schmal C, Staiger D, Danisman S. The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana. PLANT METHODS 2017; 13:2. [PMID: 28053647 PMCID: PMC5209843 DOI: 10.1186/s13007-016-0153-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/01/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. RESULTS We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 (srr1-1). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. CONCLUSIONS PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.
Collapse
Affiliation(s)
- Lucas Wagner
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christoph Schmal
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin, Berlin, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Selahattin Danisman
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
27
|
Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. THE NEW PHYTOLOGIST 2016; 212:269-81. [PMID: 27258481 DOI: 10.1111/nph.14027] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/22/2016] [Indexed: 05/22/2023]
Abstract
Light interception and radiation-use efficiency (RUE) are essential components of plant performance. Their genetic dissections require novel high-throughput phenotyping methods. We have developed a suite of methods to evaluate the spatial distribution of incident light, as experienced by hundreds of plants in a glasshouse, by simulating sunbeam trajectories through glasshouse structures every day of the year; the amount of light intercepted by maize (Zea mays) plants via a functional-structural model using three-dimensional (3D) reconstructions of each plant placed in a virtual scene reproducing the canopy in the glasshouse; and RUE, as the ratio of plant biomass to intercepted light. The spatial variation of direct and diffuse incident light in the glasshouse (up to 24%) was correctly predicted at the single-plant scale. Light interception largely varied between maize lines that differed in leaf angles (nearly stable between experiments) and area (highly variable between experiments). Estimated RUEs varied between maize lines, but were similar in two experiments with contrasting incident light. They closely correlated with measured gas exchanges. The methods proposed here identified reproducible traits that might be used in further field studies, thereby opening up the way for large-scale genetic analyses of the components of plant performance.
Collapse
Affiliation(s)
| | | | - Nicolas Brichet
- UMR LEPSE, INRA, Montpellier SupAgro, F-34060, Montpellier, France
| | - Claude Welcker
- UMR LEPSE, INRA, Montpellier SupAgro, F-34060, Montpellier, France
| | - Benoît Suard
- UMR LEPSE, INRA, Montpellier SupAgro, F-34060, Montpellier, France
| | - François Tardieu
- UMR LEPSE, INRA, Montpellier SupAgro, F-34060, Montpellier, France
| |
Collapse
|
28
|
Salmela MJ, Greenham K, Lou P, McClung CR, Ewers BE, Weinig C. Variation in circadian rhythms is maintained among and within populations in Boechera stricta. PLANT, CELL & ENVIRONMENT 2016; 39:1293-303. [PMID: 26514754 DOI: 10.1111/pce.12670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 05/13/2023]
Abstract
Circadian clocks have evolved independently in all three domains of life, and fitness benefits of a functional clock have been demonstrated in experimental genotypes in controlled conditions. Still, little is known about genetic variation in the clock and its fitness consequences in natural populations from heterogeneous environments. Using Wyoming populations of the Arabidopsis relative Boechera stricta as our study system, we demonstrate that genetic variation in the clock can occur at multiple levels: means of circadian period among populations sampled at different elevations differed by less than 1 h, but means among families sampled within populations varied by as much as 3.5 h. Growth traits also varied among and within populations. Within the population with the most circadian variation, we observed evidence for a positive correlation between period and growth and a negative correlation between period and root-to-shoot ratio. We then tested whether performance tradeoffs existed among families of this population across simulated seasonal settings. Growth rankings of families were similar across seasonal environments, but for root-to-shoot ratio, genotype × environment interactions contributed significantly to total variation. Therefore, further experiments are needed to identify evolutionary mechanisms that preserve substantial quantitative genetic diversity in the clock in this and other species.
Collapse
Affiliation(s)
- Matti J Salmela
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Kathleen Greenham
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming
- Department of Molecular Biology, University of Wyoming
| |
Collapse
|
29
|
Yarkhunova Y, Edwards CE, Ewers BE, Baker RL, Aston TL, McClung CR, Lou P, Weinig C. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa. THE NEW PHYTOLOGIST 2016; 210:133-44. [PMID: 26618783 DOI: 10.1111/nph.13758] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement.
Collapse
Affiliation(s)
- Yulia Yarkhunova
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Christine E Edwards
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, 63166, USA
| | - Brent E Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Robert L Baker
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | | | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Cynthia Weinig
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|