1
|
Yang CT, Cho IC, Yu CF, Cheah E, Liu T, Lin YP, Hu SY, Jheng JW, Kempson I, Chao TC, Lee SH, Bezak E, Thierry B. 3D printed microtissue cassettes enabling high throughput proton radiobiological assays. Anal Chim Acta 2025; 1356:344027. [PMID: 40288869 DOI: 10.1016/j.aca.2025.344027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The concept of Relative Biological Effectiveness (RBE) enables to translate the clinical experience for photon treatments to proton beam therapy. However, uncertainties in the proton RBE across the spread-out Bragg peak (SOBP) (typically assumed to be 1.1) may lead to suboptimal treatment plans and unwarranted toxicity to organs-at-risk. Herein, we report a reliable analytical method to determine the proton RBE in vitro along the SOBP and distal fall-off region. The 3D microtissue cassette enables the high throughput assessment of biological assays including clonogenic assay and γ-H2AX assay following a single proton irradiation. RESULTS Proton RBE values determined using the standard clonogenic assay at 90 %, 50 % and 10 % of cell survival were calculated to be 1.3, 1.5 and 1.6, respectively. This was found to be consistent with the RBE determined using the γ-H2AX for double-strand DNA break repair (1.58 for 10 % cell survival). In addition, we also observed that the high spatial resolution of the cassette can distinguish the minute but significant γ-H2AX foci changes (number, area) in response to small differences in proton radiation dose fraction. SIGNIFICANCE The results validate the reliability of the 3D printed cassette in addressing critical radiobiological issues. This methodology enables high throughput irradiation workflow and consequently reduce the time and resource burden for clinical facilities. This approach could be readily extended to investigate the radiobiological unknown of other emerging radiation therapy modalities based on charged particles.
Collapse
Affiliation(s)
- Chih-Tsung Yang
- Future Industries Institute, University of South Australia, Adelaide, Australia.
| | - I-Chun Cho
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Radiation Research Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Fang Yu
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Edward Cheah
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Tesi Liu
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Yi-Ping Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Sing-Yu Hu
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Jyun-Wei Jheng
- Radiation Research Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Tsi-Chian Chao
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Sen-Hao Lee
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Eva Bezak
- Allied Health and Human, University of South Australia, Adelaide, Australia; Department of Physics, University of Adelaide, Adelaide, SA, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, Australia
| |
Collapse
|
2
|
Shaaban SG, LeCompte M, Chen H, Lubelski D, Bydon A, Theodore N, Khan M, Lee S, Kebaish K, Kleinberg L, Hooker T, Li H, Redmond KJ. Comparison of Proton Versus Photon SBRT for Treatment of Spinal Metastases Using Variable RBE Models. Int J Part Ther 2025; 16:100743. [PMID: 40144347 PMCID: PMC11932874 DOI: 10.1016/j.ijpt.2025.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Purpose Study of proton stereotactic body radiation therapy (SBRT) for spinal metastasis has been limited, largely due to concerns of increased risk of spinal cord injury given the challenges of end of range relative biological effectiveness (RBE). Although the 1.1 RBE constant for proton beam has been adopted for clinical use, data indicate that proton RBE is variable and dependent on technical-, tissue-, and patient factors. To better understand the safety of proton SBRT for spinal metastasis, this dosimetric analysis compares plans using photon robotic techniques and proton therapy accounting for RBE-weighted dose (D_{RBE}). Materials and Methods Nine patients with spinal metastasis were selected to be representative of a broad range of complex clinical practice (3 cervical, 3 thoracic, 3 lumbar) that are uniquely challenging to treat with SBRT were identified. Each vertebral level contained a case with paraspinal extension, a reirradiation case, and a case with high-grade epidural disease (Bilsky grade ≥1c) given that such complex cases in current practice often require target volume under-coverage with photon SBRT (PH-SBRT) in order to meet organ at risk (OAR) dose constraints. All selected patients were treated with PH-SBRT using a robotic system to a prescription dose of 30 Gy in 5 fractions despite our institutional preference for further dose escalation, because further dose escalation was not feasible in the original planning process while keeping normal tissues below acceptable dose constraints. To see if superior target coverage could be achieved with proton treatment, comparative intensity modulated proton therapy (IMPT) plans were generated with the same prescription dose as what was clinically delivered using the 1.1 RBE constant. Dose escalated IMPT plans were then generated to 45 Gy(RBE) in 5 fractions. Variable RBE models (Carabe, McNamara, and Wedenberg) were then utilized to generate RBE-weighted dose D_{RBE} distribution for 30 Gy(RBE) and 45 Gy(RBE) plans using the α/β value (which was 3.76 in this study), physical dose, linear energy transfer (LET) value, and dose per fraction parameters. Proton plans used the robust optimization parameters of ±3.5% range and 2-mm setup uncertainties. Planning target volume (PTV) coverage and OARs sparing were compared using the Wilcoxon signed-rank test. Results Planning target volume coverage was significantly improved when comparing PH-SBRT at 30 Gy in 5 fractions (median: 25 Gy) to IMPT at 30 Gy[RBE] in 5 fractions (median: 30.3 Gy[RBE], P = .02) and 45 Gy(RBE) in 5 fractions (median 35.6 Gy[RBE], P = .001). Maximum dose of the spinal cord (cord Dmax) was significantly lower with IMPT at 30 Gy(RBE) (median: 17.6 Gy[RBE], P = .04) and 45 Gy(RBE) (median: 16.1 Gy[RBE], P = .04) compared to conventional plan at 30 Gy (median: 18 Gy). Spinal cord expansion (cord + 2 mm) maximum dose did not change in both photon (median 21.5 Gy) and proton plans (median 22.5, P = .27). Other OARs were better spared with the same and dose-escalated proton plans. No difference was seen in cord Dmax when comparing the PH-SBRT at 30 Gy to D_{RBE} at 30 and 45 Gy(RBE) using Carabe-, McNamara-, or Wedenberg models. However, for spinal cord expansion (cord + 2 mm), there was significant difference between PH-SBRT and D_{RBE} at 30 Gy(RBE) and 45 Gy(RBE) in 5 fractions using Carabe- (median: 25.4 Gy[RBE], P = .002), McNamara- (median: 25.1 Gy[RBE], P = .003), or Wedenberg (median: 24.8 Gy[RBE], P = .0001) models. The average increase in the spinal cord expansion maximum dose using these models compared to the fixed RBE plans was 5.3%. Conclusion We report the first dosimetric analysis of proton SBRT for spine metastasis using variable RBE dose models. Compared to photon SBRT, IMPT may provide improved target coverage and better spare adjacent OARs, though fixed RBE models can underestimate the maximum dose to adjacent OARs. Future prospective studies are needed to validate these results.
Collapse
Affiliation(s)
- Sherif G. Shaaban
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Michael LeCompte
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Hao Chen
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | - Ali Bydon
- Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | | | - Majid Khan
- Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sang Lee
- Orthopedic Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Khaled Kebaish
- Orthopedic Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Lawrence Kleinberg
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ted Hooker
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Heng Li
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristin J. Redmond
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Saigusa Y, Little MP, Azimzadeh O, Hamada N. Biological effects of high-LET irradiation on the circulatory system. Int J Radiat Biol 2025; 101:429-452. [PMID: 40063776 PMCID: PMC12011529 DOI: 10.1080/09553002.2025.2470947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE High-linear energy transfer (LET) radiation is generally thought to be more biologically effective in various tissues than low-LET radiation, but whether this also applies to the circulatory system remains unclear. We therefore reviewed biological studies about the effects of high-LET radiation on the circulatory system. CONCLUSIONS We identified 76 relevant papers (24 in vitro, 2 ex vivo, 51 in vivo, one overlapping). In vitro studies used human, bovine, porcine or chick vascular endothelial cells or cardiomyocytes, while ex vivo studies used porcine hearts. In vivo studies used mice, rats, rabbits, dogs or pigs. The types of high-LET radiation used were neutrons, α particles, heavy ions and negative pions. Most studies used a single dose, although some investigated fractionation effects. Twenty-one studies estimated the relative biological effectiveness (RBE) that ranged from 0.1 to 130, depending on radiation quality and endpoint. A meta-analysis of 6 in vitro and 8 in vivo studies (selected based on the feasibility of estimating the RBE and its uncertainty) suggested an RBE of 6.69 (95% confidence intervals (CI): 2.51, 10.88) for in vitro studies and 1.14 (95% CI: 0.91, 1.37) for in vivo studies. The meta-analysis of these 14 studies yielded an RBE of 2.88 (95% CI: 1.52, 4.25). This suggests that high-LET radiation is only slightly more effective than low-LET radiation, although substantial inter-study heterogeneity complicates interpretation. Therapeutic effects have also been reported in disease models. Further research is needed to better understand the effects on the cardiovascular system and to improve radiation protection.
Collapse
Affiliation(s)
- Yumi Saigusa
- Dosimetry Facility Management Section, Department of Nuclear Emergency Preparedness, Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-0024, Japan
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA
- Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba 270-1194, Japan
| |
Collapse
|
4
|
Winter SF, Gardner MM, Karschnia P, Vaios EJ, Grassberger C, Bussière MR, Nikolic K, Pongpitakmetha T, Ehret F, Kaul D, Boehmerle W, Endres M, Shih HA, Parsons MW, Dietrich J. Unique brain injury patterns after proton vs photon radiotherapy for WHO grade 2-3 gliomas. Oncologist 2024; 29:e1748-e1761. [PMID: 39126664 PMCID: PMC11630789 DOI: 10.1093/oncolo/oyae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury following brain-directed radiotherapy remains a major challenge. Proton radiotherapy (PRT) minimizes radiation to healthy brain, potentially limiting sequelae. We characterized CNS radiotoxicity, including radiation-induced leukoencephalopathy (RIL), brain tissue necrosis (TN), and cerebral microbleeds (CMB), in glioma patients treated with PRT or photons (XRT). PATIENTS AND METHODS Thirty-four patients (19 male; median age 39.6 years) with WHO grade 2-3 gliomas treated with partial cranial radiotherapy (XRT [n = 17] vs PRT[n = 17]) were identified and matched by demographic/clinical criteria. Radiotoxicity was assessed longitudinally for 3 years post-radiotherapy via serial analysis of T2/FLAIR- (for RIL), contrast-enhanced T1- (for TN), and susceptibility (for CMB)-weighted MRI sequences. RIL was rated at whole-brain and hemispheric levels using a novel Fazekas scale-informed scoring system. RESULTS The scoring system proved reliable (ICC > 0.85). Both groups developed moderate-to-severe RIL (62%[XRT]; 71%[PRT]) within 3 years; however, XRT was associated with persistent RIL increases in the contralesional hemisphere, whereas contralesional hemispheric RIL plateaued with PRT at 1-year post-radiotherapy (t = 2.180; P = .037). TN rates were greater with PRT (6%[XRT] vs 18%[PRT]; P = ns). CMB prevalence (76%[XRT]; 71%[PRT]) and burden (mean #CMB: 4.0[XRT]; 4.2[PRT]) were similar; however, XRT correlated with greater contralesional hemispheric CMB burden (27%[XRT]; 17%[PRT]; X2 = 4.986; P = .026), whereas PRT-specific CMB clustered at the radiation field margin (X2 = 14.7; P = .002). CONCLUSIONS CNS radiotoxicity is common and progressive in glioma patients. Injury patterns suggest radiation modality-specificity as RIL, TN, and CMB exhibit unique spatiotemporal differences following XRT vs PRT, likely reflecting underlying dosimetric and radiobiological differences. Familiarity with such injury patterns is essential to improve patient management. Prospective studies are needed to validate these findings and assess their impacts on neurocognitive function.
Collapse
Affiliation(s)
- Sebastian F Winter
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117 Berlin, Germany
| | - Melissa M Gardner
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Philipp Karschnia
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke Cancer Institute, Durham, NC 27710, United States
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Marc R Bussière
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Katarina Nikolic
- Department of Neurology, Universitätsklinikum St. Pölten, 3100 Sankt Pölten, Austria
| | - Thanakit Pongpitakmetha
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, 10330 Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, 10330 Bangkok, Thailand
| | - Felix Ehret
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David Kaul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfgang Boehmerle
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Center for Stroke Research Berlin, 10117 Berlin, Germany
- ExcellenceCluster NeuroCure, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Mental Health (DZPH), Partner Site Berlin, 10117 Berlin, Germany
| | - Helen A Shih
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Michael W Parsons
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Jorg Dietrich
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
5
|
Youssef I, Mohamed N, Kallini D, Zakeri K, Lin H, Han D, Qi H, Nosov A, Riaz N, Chen L, Yu Y, Dunn LA, Sherman EJ, Wray R, Schöder H, Lee NY. An Analysis of Positron Emission Tomography Maximum Standard Uptake Value Among Patients With Head and Neck Cancer Receiving Photon and Proton Radiation. Int J Radiat Oncol Biol Phys 2024; 120:1326-1331. [PMID: 38499254 DOI: 10.1016/j.ijrobp.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE One main advantage of proton therapy versus photon therapy is its precise radiation delivery to targets without exit dose, resulting in lower dose to surrounding healthy tissues. This is critical, given the proximity of head and neck tumors to normal structures. However, proton planning requires careful consideration of factors, including air-tissue interface, anatomic uncertainties, surgical artifacts, weight fluctuations, rapid tumor response, and daily variations in setup and anatomy, as these heterogeneities can lead to inaccuracies in targeting and creating unwarranted hotspots to a greater extent than photon radiation. In addition, the elevated relative biological effectiveness at the Bragg peak's distal end can also increase hot spots within and outside the target area. METHODS AND MATERIALS The purpose of this study was to evaluate for a difference in positron emission tomography (PET) standard uptake value (SUV) after definitive treatment, between intensity modulated proton therapy (IMPT) and intensity modulated photon therapy (IMRT). In addition, we compared the biologic dose between PET areas of high and low uptake within the clinical target volume-primary of patients treated with IMPT. This work is assuming that the greater SUV may potentially result in greater toxicities. For the purposes of this short communication, we are strictly focusing on the SUV and do not have correlation with toxicity outcomes. To accomplish this, we compared the 3- and 6-month posttreatment fluorodeoxyglucose PET scans for 100 matched patients with oropharyngeal cancer treated definitively without surgery using either IMPT (n = 50) or IMRT (n = 50). RESULTS Our study found a significant difference in biologic dose between the high- and low-uptake regions on 3-month posttreatment scans of IMPT. However, this difference did not translate to a significant difference in PET uptake in the clinical target volume-primary at 3 and 6 months' follow-up between patients who received IMPT versus IMRT. CONCLUSIONS Studies have proposed that proton's greater relative biological effectiveness at the Bragg peak could lead to tissue inflammation. Our study did not corroborate these findings. This study's conclusion underscores the need for further investigations with ultimate correlation with clinical toxicity outcomes.
Collapse
Affiliation(s)
- Irini Youssef
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; New York Proton Center, New York, New York
| | - Nader Mohamed
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Kallini
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Haibo Lin
- New York Proton Center, New York, New York
| | - Dong Han
- New York Proton Center, New York, New York
| | - Hang Qi
- New York Proton Center, New York, New York
| | - Anton Nosov
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Linda Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lara Ann Dunn
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric J Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rick Wray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; New York Proton Center, New York, New York.
| |
Collapse
|
6
|
Musielak M, Graczyk K, Liszka M, Papalanis E, Suchorska W, Piotrowski T, Stenerlöw B, Malicki J. Heterogeneity in biological response of MDA-MB-231 cells after proton irradiation along different parts of the depth-dose curve: before, within, and behind the Bragg peak. Rep Pract Oncol Radiother 2024; 29:478-487. [PMID: 39895957 PMCID: PMC11785386 DOI: 10.5603/rpor.102129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/16/2024] [Indexed: 02/04/2025] Open
Abstract
Background Proton therapy has garnered attention as an advanced radiation treatment modality for breast cancer due to its ability to deliver highly precise doses to the target area while minimizing exposure to surrounding healthy tissues. The aim was to detect potential variations in radiobiological response along different parts of the proton depth-dose curve. Materials and methods MDA-MB-231 cells were specifically irradiated before, within, and beyond the Bragg peak with a 5 Gy dose, with photons used as a reference. The radiobiological response was evaluated using clonogenic assays, relative γH2AX levels, and quantitative polymerase chain reaction (qPCR) analysis of DNA damage response genes. Results A trend of increasing magnitude in radiobiological response was observed with increasing depth of cell irradiation, accompanied by a decrease in survival fraction. Furthermore, differences were noted, particularly in γH2AX levels along the Bragg peak, with higher values of DNA double-strand breaks (DNA DSB) observed at the end of the depth-dose curve. Conclusions These findings suggest that despite administering a consistent proton dose to the target area, there can be a range of different biological reactions, which might have significant indications for clinical procedures.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Kinga Graczyk
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
- The Skandion Clinic, Uppsala, Sweden
| | | | - Eleftherios Papalanis
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Wiktoria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Tomasz Piotrowski
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Julian Malicki
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
7
|
Denbeigh JM, Howard ME, Garcia DA, Debrot EK, Cole KC, Remmes NB, Beltran CJ. Characterizing Proton-Induced Biological Effects in a Mouse Spinal Cord Model: A Comparison of Bragg Peak and Entrance Beam Response in Single and Fractionated Exposures. Int J Radiat Oncol Biol Phys 2024; 119:924-935. [PMID: 38310485 DOI: 10.1016/j.ijrobp.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE Proton relative biological effectiveness (RBE) is a dynamic variable influenced by factors like linear energy transfer (LET), dose, tissue type, and biological endpoint. The standard fixed proton RBE of 1.1, currently used in clinical planning, may not accurately represent the true biological effects of proton therapy (PT) in all cases. This uncertainty can contribute to radiation-induced normal tissue toxicity in patients. In late-responding tissues such as the spinal cord, toxicity can cause devastating complications. This study investigated spinal cord tolerance in mice subjected to proton irradiation and characterized the influence of fractionation on proton- induced myelopathy at entrance (ENT) and Bragg peak (BP) positions. METHODS AND MATERIALS Cervical spinal cords of 8-week-old C57BL/6J female mice were irradiated with single- or multi-fractions (18x) using lateral opposed radiation fields at 1 of 2 positions along the Bragg curve: ENT (dose-mean LET = 1.2 keV/μm) and BP (LET = 6.9 keV/μm). Mice were monitored over 1 year for changes in weight, mobility, and general health, with radiation-induced myelopathy as the primary biological endpoint. Calculations of the RBE of the ENT and BP curve (RBEENT/BP) were performed. RESULTS Single-fraction RBEENT/BP for 50% effect probability (tolerance dose (TD50), grade II paresis, determined using log-logistic model fitting) was 1.10 ± 0.06 (95% CI) and for multifraction treatments it was 1.19 ± 0.05 (95% CI). Higher incidence and faster onset of paralysis were seen in mice treated at the BP compared with ENT. CONCLUSIONS The findings challenge the universally fixed RBE value in PT, indicating up to a 25% mouse spinal cord RBEENT/BP variation for multifraction treatments. These results highlight the importance of considering fractionation in determining RBE for PT. Robust characterization of proton-induced toxicity, aided by in vivo models, is paramount for refining clinical decision-making and mitigating potential patient side effects.
Collapse
Affiliation(s)
- Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida.
| | - Michelle E Howard
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Darwin A Garcia
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Emily K Debrot
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Kristin C Cole
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
8
|
Dok R, Vanderwaeren L, Verstrepen KJ, Nuyts S. Radiobiology of Proton Therapy in Human Papillomavirus-Negative and Human Papillomavirus-Positive Head and Neck Cancer Cells. Cancers (Basel) 2024; 16:1959. [PMID: 38893080 PMCID: PMC11171379 DOI: 10.3390/cancers16111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Photon-based radiotherapy (XRT) is one of the most frequently used treatment modalities for HPV-negative and HPV-positive locally advanced head and neck squamous cell carcinoma (HNSCC). However, locoregional recurrences and normal RT-associated toxicity remain major problems for these patients. Proton therapy (PT), with its dosimetric advantages, can present a solution to the normal toxicity problem. However, issues concerning physical delivery and the lack of insights into the underlying biology of PT hamper the full exploitation of PT. Here, we assessed the radiobiological processes involved in PT in HPV-negative and HPV-positive HNSCC cells. We show that PT and XRT activate the DNA damage-repair and stress response in both HPV-negative and HPV-positive cells to a similar extent. The activation of these major radiobiological mechanisms resulted in equal levels of clonogenic survival and mitotic cell death. Altogether, PT resulted in similar biological effectiveness when compared to XRT. These results emphasize the importance of dosimetric parameters when exploiting the potential of increased clinical effectiveness and reduced normal tissue toxicity in PT treatment.
Collapse
Affiliation(s)
- Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Harken AD, Deoli NT, Perez Campos C, Ponnaiya B, Garty G, Lee GS, Casper MJ, Dhingra S, Li W, Johnson GW, Amundson SA, Grabham PW, Hillman EMC, Brenner DJ. Combined ion beam irradiation platform and 3D fluorescence microscope for cellular cancer research. BIOMEDICAL OPTICS EXPRESS 2024; 15:2561-2577. [PMID: 38633084 PMCID: PMC11019671 DOI: 10.1364/boe.522969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
To improve particle radiotherapy, we need a better understanding of the biology of radiation effects, particularly in heavy ion radiation therapy, where global responses are observed despite energy deposition in only a subset of cells. Here, we integrated a high-speed swept confocally-aligned planar excitation (SCAPE) microscope into a focused ion beam irradiation platform to allow real-time 3D structural and functional imaging of living biological samples during and after irradiation. We demonstrate dynamic imaging of the acute effects of irradiation on 3D cultures of U87 human glioblastoma cells, revealing characteristic changes in cellular movement and intracellular calcium signaling following ionizing irradiation.
Collapse
Affiliation(s)
- Andrew D Harken
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Naresh T Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Citlali Perez Campos
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Grace S Lee
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Malte J Casper
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Shikhar Dhingra
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenze Li
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Gary W Johnson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Peter W Grabham
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - David J Brenner
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
10
|
Qiu X, Gao J, Hu J, Yang J, Hu W, Huang Q, Zhang H, Lu JJ, Kong L. Particle beam radiotherapy in the treatment of WHO grade 2 and 3 meningiomas: an early experience from Shanghai Proton and Heavy Ion Center. J Neurooncol 2023; 165:241-250. [PMID: 37976030 DOI: 10.1007/s11060-023-04401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/17/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To investigate the efficacy and safety of particle beam radiotherapy (PBRT) in the management of patients with WHO grade 2 and 3 meningiomas. METHODS Thirty-six consecutive and non-selected patients with WHO grade 2 (n = 28) and grade 3 (n = 8) meningiomas were treated at the Shanghai Proton and Heavy Ion Center, from May 2015 to March 2022. The median age of the cohort at PBRT was 48 years. There were 25 and 11 patients treated with PBRT in the setting of newly diagnosed diseases and progressive/recurrent diseases, respectively. PBRT was utilized as re-irradiation in 5 patients. Proton radiotherapy (PRT) and carbon-ion radiotherapy (CIRT), with a median dose of 60 Gy-Equivalent (GyE), were provided to 30 and 6 patients, respectively. RESULTS With a median follow-up of 23.3 months, the local control rates were 92.0%, 82.0%, and 82.0% at 1, 2, and 3 years for the entire cohort, respectively. Patients with WHO grade 2 meningiomas (100%, 94.1%, 94,1% at 1,2,3 years) had a much better local control than those with WHO grade 3 meningiomas (50%, 25%, 25% at 1,2,3 years; P < 0.001). Three patients, all with WHO grade 3 meningiomas, had deceased at the time of this analysis. Multivariate analyses revealed that WHO grade (grade 2 vs. 3) (p = 0.016) was a significant prognosticator for local control. No severe toxicities (G3 or above) were observed. CONCLUSIONS Treatment-induced efficacy and toxicities to PBRT in WHO grade 2 and 3 meningiomas were both highly acceptable. Longer follow-up is needed to evaluate the long-term outcome in terms of disease control, survival, as well as potential late effects.
Collapse
Affiliation(s)
- Xianxin Qiu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Gao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiyi Hu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Yang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weixu Hu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qingting Huang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Haojiong Zhang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Proton and Heavy Ion Center, Heyou International Hospital, Tumor, Guangdong, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.
| |
Collapse
|
11
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Sioen S, Vanhove O, Vanderstraeten B, De Wagter C, Engelbrecht M, Vandevoorde C, De Kock E, Van Goethem MJ, Vral A, Baeyens A. Impact of proton therapy on the DNA damage induction and repair in hematopoietic stem and progenitor cells. Sci Rep 2023; 13:16995. [PMID: 37813904 PMCID: PMC10562436 DOI: 10.1038/s41598-023-42362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Proton therapy is of great interest to pediatric cancer patients because of its optimal depth dose distribution. In view of healthy tissue damage and the increased risk of secondary cancers, we investigated DNA damage induction and repair of radiosensitive hematopoietic stem and progenitor cells (HSPCs) exposed to therapeutic proton and photon irradiation due to their role in radiation-induced leukemia. Human CD34+ HSPCs were exposed to 6 MV X-rays, mid- and distal spread-out Bragg peak (SOBP) protons at doses ranging from 0.5 to 2 Gy. Persistent chromosomal damage was assessed with the micronucleus assay, while DNA damage induction and repair were analyzed with the γ-H2AX foci assay. No differences were found in induction and disappearance of γ-H2AX foci between 6 MV X-rays, mid- and distal SOBP protons at 1 Gy. A significantly higher number of micronuclei was found for distal SOBP protons compared to 6 MV X-rays and mid- SOBP protons at 0.5 and 1 Gy, while no significant differences in micronuclei were found at 2 Gy. In HSPCs, mid-SOBP protons are as damaging as conventional X-rays. Distal SOBP protons showed a higher number of micronuclei in HSPCs depending on the radiation dose, indicating possible changes of the in vivo biological response.
Collapse
Affiliation(s)
- Simon Sioen
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Oniecha Vanhove
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Barbara Vanderstraeten
- Medical Physics, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Carlos De Wagter
- Medical Physics, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Monique Engelbrecht
- Separated Sector Cyclotron Laboratory, Radiation Biophysics Division, iThemba LABS (NRF), Cape Town, 7131, South Africa
| | - Charlot Vandevoorde
- Separated Sector Cyclotron Laboratory, Radiation Biophysics Division, iThemba LABS (NRF), Cape Town, 7131, South Africa
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Evan De Kock
- Separated Sector Cyclotron Laboratory, Radiation Biophysics Division, iThemba LABS (NRF), Cape Town, 7131, South Africa
| | - Marc-Jan Van Goethem
- Department of Radiation Oncology and Particle Therapy Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne Vral
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ans Baeyens
- Radiobiology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
13
|
Audouin J, Hofverberg P, Ngono-Ravache Y, Desorgher L, Baldacchino G. Intermediate LET-like effect in distal part of proton Bragg peak revealed by track-ends imaging during super-Fricke radiolysis. Sci Rep 2023; 13:15460. [PMID: 37726376 PMCID: PMC10509149 DOI: 10.1038/s41598-023-42639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Upstream of the efficiency of proton or carbon ion beams in cancer therapy, and to optimize hadrontherapy results, we analysed the chemistry of Fricke solutions in track-end of 64-MeV protons and 1.14-GeV carbon ions. An original optical setup is designed to determine the primary track-segment yields along the last millimetres of the ion track with a sub-millimetre resolution. The Fe3+-yield falls in the Bragg peak to (4.9 ± 0.4) × 10-7 mol/J and 1.9 × 10-7 mol/J, under protons and carbon ions respectively. Beyond the Bragg peak, a yield recovery is observed over 1 mm for proton beams. It is attributed to the intermediate-LET of protons in this region where their energy decreases and energy distribution becomes broader, in relation with the longitudinal straggling of the beam. Consequently to this LET decrease in the distal part of the Bragg peak, Fe3+-yield increases. For the first time, this signature is highlighted at the chemical level under proton irradiation. Nevertheless, this phenomenon is not identified for carbon ion beams since their straggling is lower. It would need a greater spatial resolution to be observed.
Collapse
Affiliation(s)
- J Audouin
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | | | - Y Ngono-Ravache
- CIMAP, CEA-CNRS-ENSICAEN-UNICAEN, Normandy University, Cedex 04, 14050, Caen, France
| | - L Desorgher
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007, Lausanne, Switzerland
| | - G Baldacchino
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Guerra Liberal FDC, Thompson SJ, Prise KM, McMahon SJ. High-LET radiation induces large amounts of rapidly-repaired sublethal damage. Sci Rep 2023; 13:11198. [PMID: 37433844 PMCID: PMC10336062 DOI: 10.1038/s41598-023-38295-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
There is agreement that high-LET radiation has a high Relative Biological Effectiveness (RBE) when delivered as a single treatment, but how it interacts with radiations of different qualities, such as X-rays, is less clear. We sought to clarify these effects by quantifying and modelling responses to X-ray and alpha particle combinations. Cells were exposed to X-rays, alpha particles, or combinations, with different doses and temporal separations. DNA damage was assessed by 53BP1 immunofluorescence, and radiosensitivity assessed using the clonogenic assay. Mechanistic models were then applied to understand trends in repair and survival. 53BP1 foci yields were significantly reduced in alpha particle exposures compared to X-rays, but these foci were slow to repair. Although alpha particles alone showed no inter-track interactions, substantial interactions were seen between X-rays and alpha particles. Mechanistic modelling suggested that sublethal damage (SLD) repair was independent of radiation quality, but that alpha particles generated substantially more sublethal damage than a similar dose of X-rays, [Formula: see text]. This high RBE may lead to unexpected synergies for combinations of different radiation qualities which must be taken into account in treatment design, and the rapid repair of this damage may impact on mechanistic modelling of radiation responses to high LETs.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
15
|
Redmond KJ, Schaub SK, Lo SFL, Khan M, Lubelski D, Bilsky M, Yamada Y, Fehlings M, Gogineni E, Vajkoczy P, Ringel F, Meyer B, Amin AG, Combs SE, Lo SS. Radiotherapy for Mobile Spine and Sacral Chordoma: A Critical Review and Practical Guide from the Spine Tumor Academy. Cancers (Basel) 2023; 15:cancers15082359. [PMID: 37190287 DOI: 10.3390/cancers15082359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Chordomas are rare tumors of the embryologic spinal cord remnant. They are locally aggressive and typically managed with surgery and either adjuvant or neoadjuvant radiation therapy. However, there is great variability in practice patterns including radiation type and fractionation regimen, and limited high-level data to drive decision making. The purpose of this manuscript was to summarize the current literature specific to radiotherapy in the management of spine and sacral chordoma and to provide practice recommendations on behalf of the Spine Tumor Academy. A systematic review of the literature was performed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) approach. Medline and Embase databases were utilized. The primary outcome measure was the rate of local control. A detailed review and interpretation of eligible studies is provided in the manuscript tables and text. Recommendations were defined as follows: (1) consensus: approved by >75% of experts; (2) predominant: approved by >50% of experts; (3) controversial: not approved by a majority of experts. Expert consensus supports dose escalation as critical in optimizing local control following radiation therapy for chordoma. In addition, comprehensive target volumes including sites of potential microscopic involvement improve local control compared with focal targets. Level I and high-quality multi-institutional data comparing treatment modalities, sequencing of radiation and surgery, and dose/fractionation schedules are needed to optimize patient outcomes in this locally aggressive malignancy.
Collapse
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Stephanie K Schaub
- Department of Radiation Oncology, The University of Washington, Seattle, WA 98195, USA
| | - Sheng-Fu Larry Lo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra, Hempstead, NY 11549, USA
| | - Majid Khan
- Department of Radiology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel Lubelski
- Department of Neurological Surgery, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Mark Bilsky
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Fehlings
- Department of Neurosurgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charite University Hospital, 10117 Berlin, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, 80333 Munich, Germany
| | - Anubhav G Amin
- Department of Neurological Surgery, University of Washington, Seattle, WA 98115, USA
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, 81675 Munich, Germany
| | - Simon S Lo
- Department of Radiation Oncology, The University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Răileanu M, Straticiuc M, Iancu DA, Andrei RF, Radu M, Bacalum M. Proton irradiation induced reactive oxygen species promote morphological and functional changes in HepG2 cells. J Struct Biol 2022; 214:107919. [PMID: 36356881 DOI: 10.1016/j.jsb.2022.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
The increased use of proton therapy has led to the need of better understanding the cellular mechanisms involved. The aim of this study was to investigate the effects induced by the accelerated proton beam in hepatocarcinoma cells. An existing facility in IFIN-HH, a 3 MV Tandetron™ accelerator, was used to irradiate HepG2 human hepatocarcinoma cells with doses between 0 and 3 Gy. Colony formation was used to assess the influence of radiation on cell long-term replication. Also, the changes induced at the mitochondrial level were shown by increased ROS and ATP levels as well as a decrease in the mitochondrial membrane potential. An increased dose has induced DNA damages and G2/M cell cycle arrest which leads to caspase 3/7 mediated apoptosis and senescence induction. Finally, the morphological and ultrastructural changes were observed at the membrane level and the nucleus of the irradiated cells. Thus, proton irradiation induces both morphological and functional changes in HepG2 cells.
Collapse
Affiliation(s)
- Mina Răileanu
- University of Bucharest, Faculty of Physics, Atomistilor 405, Măgurele, Romania; Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, Reactorului 30, Măgurele, Romania
| | - Mihai Straticiuc
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Applied Nuclear Physics, Reactorului 30, Măgurele, Romania
| | - Decebal-Alexandru Iancu
- University of Bucharest, Faculty of Physics, Atomistilor 405, Măgurele, Romania; Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Applied Nuclear Physics, Reactorului 30, Măgurele, Romania
| | - Radu-Florin Andrei
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Applied Nuclear Physics, Reactorului 30, Măgurele, Romania; University of POLITEHNICA of Bucharest, Faculty of Applied Sciences, Splaiul Independentei 313, Romania
| | - Mihai Radu
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, Reactorului 30, Măgurele, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, Reactorului 30, Măgurele, Romania.
| |
Collapse
|
17
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Gu B, Muñoz-Santiburcio D, Da Pieve F, Cleri F, Artacho E, Kohanoff J. Bragg's additivity rule and core and bond model studied by real-time TDDFT electronic stopping simulations: The case of water vapor. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Garbacz M, Gajewski J, Durante M, Kisielewicz K, Krah N, Kopeć R, Olko P, Patera V, Rinaldi I, Rydygier M, Schiavi A, Scifoni E, Skóra T, Skrzypek A, Tommasino F, Rucinski A. Quantification of biological range uncertainties in patients treated at the Krakow proton therapy centre. Radiat Oncol 2022; 17:50. [PMID: 35264184 PMCID: PMC8905899 DOI: 10.1186/s13014-022-02022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Variable relative biological effectiveness (vRBE) in proton therapy might significantly modify the prediction of RBE-weighted dose delivered to a patient during proton therapy. In this study we will present a method to quantify the biological range extension of the proton beam, which results from the application of vRBE approach in RBE-weighted dose calculation. METHODS AND MATERIALS The treatment plans of 95 patients (brain and skull base patients) were used for RBE-weighted dose calculation with constant and the McNamara RBE model. For this purpose the Monte Carlo tool FRED was used. The RBE-weighted dose distributions were analysed using indices from dose-volume histograms. We used the volumes receiving at least 95% of the prescribed dose (V95) to estimate the biological range extension resulting from vRBE approach. RESULTS The vRBE model shows higher median value of relative deposited dose and D95 in the planning target volume by around 1% for brain patients and 4% for skull base patients. The maximum doses in organs at risk calculated with vRBE was up to 14 Gy above dose limit. The mean biological range extension was greater than 0.4 cm. DISCUSSION Our method of estimation of biological range extension is insensitive for dose inhomogeneities and can be easily used for different proton plans with intensity-modulated proton therapy (IMPT) optimization. Using volumes instead of dose profiles, which is the common method, is more universal. However it was tested only for IMPT plans on fields arranged around the tumor area. CONCLUSIONS Adopting a vRBE model results in an increase in dose and an extension of the beam range, which is especially disadvantageous in cancers close to organs at risk. Our results support the need to re-optimization of proton treatment plans when considering vRBE.
Collapse
Affiliation(s)
- Magdalena Garbacz
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland.
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | - Marco Durante
- GSI Helmholtzzentrum fur Schwerionenforschung, 64291, Darmstadt, Germany
- The Technical University of Darmstadt, 64289, Darmstadt, Germany
| | - Kamil Kisielewicz
- National Oncology Institute, National Research Institute, Krakow Branch, 31115, Kraków, Poland
| | - Nils Krah
- University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, France
- University of Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | - Vincenzo Patera
- INFN - Section of Rome, 00185, Rome, Italy
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy
| | | | - Marzena Rydygier
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | | | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, 38123, Povo, Trento, Italy
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, 31115, Kraków, Poland
| | | | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, 38123, Povo, Trento, Italy
- Department of Physics, University of Trento, 38123, Povo, Trento, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| |
Collapse
|
20
|
Koh WYC, Tan HQ, Ng YY, Lin YH, Ang KW, Lew WS, Lee JCL, Park SY. Quantifying Systematic RBE-Weighted Dose Uncertainty Arising from Multiple Variable RBE Models in Organ at Risk. Adv Radiat Oncol 2022; 7:100844. [PMID: 35036633 PMCID: PMC8749202 DOI: 10.1016/j.adro.2021.100844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Relative biological effectiveness (RBE) uncertainties have been a concern for treatment planning in proton therapy, particularly for treatment sites that are near organs at risk (OARs). In such a clinical situation, the utilization of variable RBE models is preferred over constant RBE model of 1.1. The problem, however, lies in the exact choice of RBE model, especially when current RBE models are plagued with a host of uncertainties. This paper aims to determine the influence of RBE models on treatment planning, specifically to improve the understanding of the influence of the RBE models with regard to the passing and failing of treatment plans. This can be achieved by studying the RBE-weighted dose uncertainties across RBE models for OARs in cases where the target volume overlaps the OARs. Multi-field optimization (MFO) and single-field optimization (SFO) plans were compared in order to recommend which technique was more effective in eliminating the variations between RBE models. METHODS Fifteen brain tumor patients were selected based on their profile where their target volume overlaps with both the brain stem and the optic chiasm. In this study, 6 RBE models were analyzed to determine the RBE-weighted dose uncertainties. Both MFO and SFO planning techniques were adopted for the treatment planning of each patient. RBE-weighted dose uncertainties in the OARs are calculated assuming( α β ) x of 3 Gy and 8 Gy. Statistical analysis was used to ascertain the differences in RBE-weighted dose uncertainties between MFO and SFO planning. Additionally, further investigation of the linear energy transfer (LET) distribution was conducted to determine the relationship between LET distribution and RBE-weighted dose uncertainties. RESULTS The results showed no strong indication on which planning technique would be the best for achieving treatment planning constraints. MFO and SFO showed significant differences (P <.05) in the RBE-weighted dose uncertainties in the OAR. In both clinical target volume (CTV)-brain stem and CTV-chiasm overlap region, 10 of 15 patients showed a lower median RBE-weighted dose uncertainty in MFO planning compared with SFO planning. In the LET analysis, 8 patients (optic chiasm) and 13 patients (brain stem) showed a lower mean LET in MFO planning compared with SFO planning. It was also observed that lesser RBE-weighted dose uncertainties were present with MFO planning compared with SFO planning technique. CONCLUSIONS Calculations of the RBE-weighted dose uncertainties based on 6 RBE models and 2 different( α β ) x revealed that MFO planning is a better option as opposed to SFO planning for cases of overlapping brain tumor with OARs in eliminating RBE-weighted dose uncertainties. Incorporation of RBE models failed to dictate the passing or failing of a treatment plan. To eliminate RBE-weighted dose uncertainties in OARs, the MFO planning technique is recommended for brain tumor when CTV and OARs overlap.
Collapse
Affiliation(s)
- Wei Yang Calvin Koh
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Yan Yee Ng
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Yen Hwa Lin
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Khong Wei Ang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Wen Siang Lew
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | - James Cheow Lei Lee
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
21
|
Comparing Geant4 physics models for proton-induced dose deposition and radiolysis enhancement from a gold nanoparticle. Sci Rep 2022; 12:1779. [PMID: 35110613 PMCID: PMC8810973 DOI: 10.1038/s41598-022-05748-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles (GNPs) are materials that make the tumor cells more radiosensitive when irradiated with ionizing radiation. The present study aimed to evaluate the impact of different physical interaction models on the dose calculations and radiochemical results around the GNP. By applying the Geant4 Monte Carlo (MC) toolkit, a single 50-nm GNP was simulated, which was immersed in a water phantom and irradiated with 5, 50, and 150 MeV proton beams. The present work assessed various parameters including the secondary electron spectra, secondary photon spectra, radial dose distribution (RDD), dose enhancement factor (DEF), and radiochemical yields around the GNP. The results with an acceptable statistical uncertainty of less than 1% indicated that low-energy electrons deriving from the ionization process formed a significant part of the total number of secondary particles generated in the presence of GNP; the Penelope model produced a larger number of these electrons by a factor of about 30%. Discrepancies of the secondary electron spectrum between Livermore and Penelope were more obvious at energies of less than 1 keV and reached the factor of about 30% at energies between 250 eV and 1 keV. The RDDs for Livermore and Penelope models were very similar with small variations within the first 6 nm from NP surface by a factor of 10%. In addition, neither the G-value nor the REF was affected by the choice of physical interaction models with the same energy cut-off. This work illustrated the similarity of the Livermore and Penelope models (within 15%) available in Geant4 for future simulation studies of GNP enhanced proton therapy with physical, physicochemical, and chemical mechanisms.
Collapse
|
22
|
Multi-institutional Comparison of Intensity Modulated Photon Versus Proton Radiation Therapy in the Management of Squamous Cell Carcinoma of the Anus. Adv Radiat Oncol 2021; 6:100744. [PMID: 34646965 PMCID: PMC8498697 DOI: 10.1016/j.adro.2021.100744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/05/2021] [Accepted: 06/12/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Concurrent chemoradiation therapy is a curative treatment for squamous cell carcinoma of the anus, but patients can suffer from significant treatment-related toxicities. This study was undertaken to determine whether intensity modulated proton therapy (IMPT) is associated with less acute toxicity than intensity modulated radiation therapy (IMRT) using photons. Materials and Methods We performed a multi-institutional retrospective study comparing toxicity and oncologic outcomes of IMRT versus IMPT. Patients with stage I-IV (for positive infrarenal para-aortic or common iliac nodes only) squamous cell carcinoma of the anus, as defined by the American Joint Committee on Cancer's AJCC Staging Manual, eighth edition, were included. Patients with nonsquamous histology or mixed IMPT and IMRT treatment courses were excluded. Acute nonhematologic toxicities, per the National Cancer Institute's Common Terminology Criteria for Adverse Events (CTCAE), version 4, were recorded prospectively at all sites. Acute and late toxicities, dose metrics, and oncologic outcomes were compared between IMRT and IMPT using univariable and multivariable statistical methods. To improve the robustness of our analysis, we also analyzed the data using propensity score weighting methods. Results A total of 208 patients were treated with either IMPT (58 patients) or IMRT (150 patients). Of the 208 total patients, 13% had stage I disease, 36% stage II, 50% stage III, and 1% stage IV. IMPT reduced the volume of normal tissue receiving low-dose radiation but not high-dose radiation to bladder and bowel. There was no significant difference between treatment groups in overall grade 3 or greater acute toxicity (IMRT, 68%; IMPT, 67%; P = .96) or 2-year overall grade 3 or greater late toxicity (IMRT, 3.5%; IMPT, 1.8%; P = .88). There was no significant difference in 2-year progression-free survival (hazard ratio, 0.8; 95% CI, 0.3-2.0). Conclusions Despite reducing the volume of normal tissue receiving low-dose radiation, IMPT was not associated with decreased grade 3 or greater acute toxicity as measured by CTCAE. Additional follow-up is needed to assess whether important differences arise in late toxicities and if further prospective evaluation is warranted.
Collapse
|
23
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
24
|
Howard ME, Denbeigh JM, Debrot EK, Garcia DA, Remmes NB, Herman MG, Beltran CJ. Dosimetric Assessment of a High Precision System for Mouse Proton Irradiation to Assess Spinal Cord Toxicity. Radiat Res 2021; 195:541-548. [PMID: 33826742 DOI: 10.1667/rade-20-00153.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
The uncertainty associated with the relative biological effectiveness (RBE) in proton therapy, particularly near the Bragg peak (BP), has led to the shift towards biological-based treatment planning. Proton RBE uncertainty has recently been reported as a possible cause for brainstem necrosis in pediatric patients treated with proton therapy. Despite this, in vivo studies have been limited due to the complexity of accurate delivery and absolute dosimetry. The purpose of this investigation was to create a precise and efficient method of treating the mouse spinal cord with various portions of the proton Bragg curve and to quantify associated uncertainties for the characterization of proton RBE. Mice were restrained in 3D printed acrylic boxes, shaped to their external contour, with a silicone insert extending down to mold around the mouse. Brass collimators were designed for parallel opposed beams to treat the spinal cord while shielding the brain and upper extremities of the animal. Up to six animals may be accommodated for simultaneous treatment within the restraint system. Two plans were generated targeting the cervical spinal cord, with either the entrance (ENT) or the BP portion of the beam. Dosimetric uncertainty was measured using EBT3 radiochromic film with a dose-averaged linear energy transfer (LETd) correction. Positional uncertainty was assessed by collecting a library of live mouse scans (n = 6 mice, two independent scans per mouse) and comparing the following dosimetric statistics from the mouse cervical spinal cord: Volume receiving 90% of the prescription dose (V90); mean dose to the spinal cord; and LETd. Film analysis results showed the dosimetric uncertainty to be ±1.2% and ±5.4% for the ENT and BP plans, respectively. Preliminary results from the mouse library showed the V90 to be 96.3 ± 4.8% for the BP plan. Positional uncertainty of the ENT plan was not measured due to the inherent robustness of that treatment plan. The proposed high-throughput mouse proton irradiation setup resulted in accurate dose delivery to mouse spinal cords positioned along the ENT and BP. Future directions include adapting the setup to account for weight fluctuations in mice undergoing fractionated irradiation.
Collapse
Affiliation(s)
| | - Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Darwin A Garcia
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Current Situation of Proton Therapy for Hodgkin Lymphoma: From Expectations to Evidence. Cancers (Basel) 2021; 13:cancers13153746. [PMID: 34359647 PMCID: PMC8345146 DOI: 10.3390/cancers13153746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Consolidative radiation therapy (RT) is of prime importance for early-stage Hodgkin lymphoma (HL) management since it significantly increases progression-free survival (PFS). Nevertheless, first-generation techniques, relying on large irradiation fields, delivered significant radiation doses to critical organs-at-risk (OARs, such as the heart, to the lung or the breasts) when treating mediastinal HL; consequently, secondary cancers, and cardiac and lung toxicity were substantially increased. Fortunately, HL RT has drastically evolved and, nowadays, state-of-the-art RT techniques efficiently spare critical organs-at-risks without altering local control or overall survival. Recently, proton therapy has been evaluated for mediastinal HL treatment, due to its possibility to significantly reduce integral dose to OARs, which is expected to limit second neoplasm risk and reduce late toxicity. Nevertheless, clinical experience for this recent technique is still limited worldwide. Based on current literature, this critical review aims to examine the current practice of proton therapy for mediastinal HL irradiation.
Collapse
|
26
|
Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin WG, Incerti S, Petrović I, Ristić Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. Int J Radiat Biol 2021; 97:1229-1240. [PMID: 34187289 DOI: 10.1080/09553002.2021.1948140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed. MATERIALS AND METHODS In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions. RESULTS With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties. CONCLUSIONS In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.
Collapse
Affiliation(s)
- Otilija Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Pablo Cirrone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
- Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Catania, Italy
| | - Giada Petringa
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Institute of Physics (IoP) of the Czech Academy of Science (CAS), ELI-Beamlines, Prague, Czech Republic
| | - Giacomo Cuttone
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nuceare, Catania, Italy
- Physics and Astronomy Department "E. Majorana", University of Catania, Catania, Italy
| | - Dousatsu Sakata
- Department of Accelerator and Medical Physics, NIRS, Chiba, QST, Japan
| | - Wook-Geun Shin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | | | - Ivan Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
27
|
Balakin VE, Rozanova OM, Smirnova EN, Belyakova TA, Shemyakov AE, Strelnikova NS. Assessment of the Relative Biological Efficiency of Pencil Beam Scanning of Protons in Mice in Vivo. DOKL BIOCHEM BIOPHYS 2021; 499:215-219. [PMID: 34426914 DOI: 10.1134/s1607672921040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022]
Abstract
The effect of proton pencil beam scanning in the dose range of 4.5-15 Gy on the radiosensitivity of mice under irradiation in two regions of the Bragg curve was studied according to the criteria of 30-day survival, dynamics of death, and average lifespan of mice. The relative biological effectiveness (RBE) value of protons relative to X-ray radiation before and at the Bragg peak determined by the LD50/30 index was 0.86 and 0.94, respectively, and by the criterion of 30-day survival at a dose of 6.5 Gy it was 0.83 and 0.84, respectively. With similar RBE values for protons in different regions of the Bragg curve, significant differences in the dynamics of the course of radiation sickness were revealed, which indicates different damage to critical systems and organs of animals and the induction of compensatory mechanisms involved in the formation of stress responses at the organismal level.
Collapse
Affiliation(s)
- V E Balakin
- Physical Technical Center, Lebedev Physical Institute, Russian Academy of Sciences, Protvino, Russia.
| | - O M Rozanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - E N Smirnova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - T A Belyakova
- Physical Technical Center, Lebedev Physical Institute, Russian Academy of Sciences, Protvino, Russia
| | - A E Shemyakov
- Physical Technical Center, Lebedev Physical Institute, Russian Academy of Sciences, Protvino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - N S Strelnikova
- Physical Technical Center, Lebedev Physical Institute, Russian Academy of Sciences, Protvino, Russia
| |
Collapse
|
28
|
Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021; 13:2997. [PMID: 34203882 PMCID: PMC8232608 DOI: 10.3390/cancers13122997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
This study uses the yields of double-strand breaks (DSBs) to determine the relative biological effectiveness (RBE) of proton beams, using cell survival as a biological endpoint. DSB induction is determined when cells locate at different depths (6 positions) along the track of 62 MeV proton beams. The DNA damage yields are estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes are estimated using Monte Carlo excision repair (MCER) simulations. The RBE for cell survival at different oxygen concentrations is calculated using the repair-misrepair-fixation (RMF) model. Using 60Co γ-rays (linear energy transfer (LET) = 2.4 keV/μm) as the reference radiation, the RBE for DSB induction and enzymatic DSB under aerobic condition (21% O2) are in the range 1.0-1.5 and 1.0-1.6 along the track depth, respectively. In accord with RBE obtained from experimental data, RMF model-derived RBE values for cell survival are in the range of 1.0-3.0. The oxygen enhancement ratio (OER) for cell survival (10%) decreases from 3.0 to 2.5 as LET increases from 1.1 to 22.6 keV/μm. The RBE values for severe hypoxia (0.1% O2) are in the range of 1.1-4.4 as LET increases, indicating greater contributions of direct effects for protons. Compared with photon therapy, the overall effect of 62 MeV proton beams results in greater cell death and is further intensified under hypoxic conditions.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital—Linkou Branch, Taoyuan 33305, Taiwan
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
29
|
Clinical Progress in Proton Radiotherapy: Biological Unknowns. Cancers (Basel) 2021; 13:cancers13040604. [PMID: 33546432 PMCID: PMC7913745 DOI: 10.3390/cancers13040604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Proton radiation therapy is a more recent type of radiotherapy that uses proton beams instead of classical photon or X-rays beams. The clinical benefit of proton therapy is that it allows to treat tumors more precisely. As a result, proton radiotherapy induces less toxicity to healthy tissue near the tumor site. Despite the experience in the clinical use of protons, the response of cells to proton radiation, the radiobiology, is less understood. In this review, we describe the current knowledge about proton radiobiology. Abstract Clinical use of proton radiation has massively increased over the past years. The main reason for this is the beneficial depth-dose distribution of protons that allows to reduce toxicity to normal tissues surrounding the tumor. Despite the experience in the clinical use of protons, the radiobiology after proton irradiation compared to photon irradiation remains to be completely elucidated. Proton radiation may lead to differential damages and activation of biological processes. Here, we will review the current knowledge of proton radiobiology in terms of induction of reactive oxygen species, hypoxia, DNA damage response, as well as cell death after proton irradiation and radioresistance.
Collapse
|
30
|
Biological Effects of Scattered Versus Scanned Proton Beams on Normal Tissues in Total Body Irradiated Mice: Survival, Genotoxicity, Oxidative Stress and Inflammation. Antioxidants (Basel) 2020; 9:antiox9121170. [PMID: 33255388 PMCID: PMC7761103 DOI: 10.3390/antiox9121170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Side effects of proton therapy are poorly studied. Moreover, the differences in the method of dose delivery on normal tissues are not taken into account when proton beams are scanned instead of being scattered. We proposed here to study the effects of both modalities of proton beam delivery on blood; skin; lung and heart in a murine model. In that purpose; C57BL/6 mice were total body irradiated by 190.6 MeV proton beams either by Double Scattering (DS) or by Pencil Beam Scanning (PBS) in the plateau phase before the Bragg Peak. Mouse survival was evaluated. Blood and organs were removed three months after irradiation. Biomarkers of genotoxicity; oxidative stress and inflammation were measured. Proton irradiation was shown to increase lymphocyte micronucleus frequency; lung superoxide dismutase activity; erythrocyte and skin glutathione peroxidase activity; erythrocyte catalase activity; lung; heart and skin oxidized glutathione level; erythrocyte and lung lipid peroxidation and erythrocyte protein carbonylation even 3 months post-irradiation. When comparing both methods of proton beam delivery; mouse survival was not different. However, PBS significantly increased lymphocyte micronucleus frequency; erythrocyte glutathione peroxidase activity and heart oxidized glutathione level compared to DS. These results point out the necessity to take into account the way of delivering dose in PT as it could influence late side effects.
Collapse
|
31
|
Increase of mtDNA number and its mutant copies in rat brain after exposure to 150 MeV protons. Mol Biol Rep 2020; 47:4815-4820. [PMID: 32388700 DOI: 10.1007/s11033-020-05491-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Proton beam therapy is widely used for treating brain tumor. Despite the efficacy of treatment, the use of this therapy has met some limitations associated with possible damage to normal brain tissues located beyond the tumor site. In this context, the exploration of the harmful effects of protons on the normal brain tissues is of particular interest. We have investigated changes in the total mitochondrial DNA (mtDNA) copy number and identified mtDNA mutant copies in three brain regions (the hippocampus, cortex and cerebellum) of rats after irradiation their whole-head with 150 MeV protons at doses of 3 and 5 Gy. The study was performed in 2-months old male Spraque Dawley rats (n = 5 each group). The mtDNA copy numbers were determined by real-time PCR. The level of mtDNA heteroplasmy was estimated using Surveyor nuclease technology. Our results show that after head exposure to protons, levels of mtDNA copy number in three rat brain regions increase significantly as the levels of mtDNA mutant copies increase. The most significant elevation is observed in the hippocampus. In conclusion, an increase in mtDNA mutant copies may contribute to mitochondrial dysfunction accompanied by increased oxidative stress in different brain regions and promote the development of neurodegenerative diseases and the induction of carcinogenesis.
Collapse
|
32
|
Schaefer IM, Hong K, Kalbasi A. How Technology Is Improving the Multidisciplinary Care of Sarcoma. Am Soc Clin Oncol Educ Book 2020; 40:445-462. [PMID: 32421448 PMCID: PMC8009691 DOI: 10.1200/edbk_280729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sarcomas are rare tumors but comprise a wide histologic spectrum. Advances in technology have emerged to address the biologic complexity and challenging diagnosis and treatment of this disease. The diagnostic approach to sarcomas has historically been based on morphologic features, but technologic advances in immunohistochemistry and cytogenetic/molecular testing have transformed the interdisciplinary work-up of mesenchymal neoplasms in recent years. On the therapeutic side, technologic advances in the delivery of radiation have made it a linchpin in the treatment of localized and oligometastatic sarcoma. In this review, we discuss recent advances in the pathologic diagnosis of sarcomas and discuss select sarcoma types that illustrate how newly discovered diagnostic, prognostic, and predictive biomarkers have refined existing classification schemes and substantially shaped our diagnostic approach. Such examples include conventional and epithelioid malignant peripheral nerve sheath tumors (MPNSTs), emerging entities in the group of round cell sarcomas, and other mesenchymal neoplasms with distinct cytogenetic aberrations. Recent advances in radiation oncology, including intensity-modulated, stereotactic, MRI-guided, and proton radiotherapy (RT), will be reviewed in the context of neoadjuvant or adjuvant localized soft-tissue sarcoma and oligometastatic or oligoprogressive disease. Innovations in translational research are expected to be introduced into clinical practice over the next few years and will likely continue to affect the rapidly evolving field of sarcoma diagnostics and therapy.
Collapse
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
| | - Kelvin Hong
- Division of Vascular & Interventional Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD
| | - Anusha Kalbasi
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, Jonsson Comprehensive Cancer Center Sarcoma Program, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
33
|
Beltran C, Schultz HL, Anand A, Merrell K. Radiation biology considerations of proton therapy for gastrointestinal cancers. J Gastrointest Oncol 2020; 11:225-230. [PMID: 32175125 DOI: 10.21037/jgo.2019.06.08] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clinical enthusiasm for proton therapy (PT) is high, with an exponential increase in the number of centers offering treatment. Attraction for this charged particle therapy modality stems from the favorable proton dose distribution, with low radiation dose absorption on entry and maximum radiation deposition at the Bragg peak. The current clinical convention is to use a fixed relative biological effectiveness (RBE) value of 1.1 in order to correct the physical dose relative to photon therapy (i.e., proton radiation is 10% more biologically effective then photon radiation). In recent years, concerns about the potential side effects of PT have emerged. Various studies and review articles have sought to better quantify the RBE of PT and shine some light on the complexity of this problem. Reduction in biologic hot spots of non-target tissue is paramount in proton radiation therapy (RT) planning as the primary benefit of proton RT is a reduction in organ at risk (OAR) irradiation. New and emerging clinical data is in support of variable proton biological effectiveness and demonstrate late toxicity, presumably associated with high biological dose, to OAR. Overall, PT has promise to treat many cancer sites with similar efficacy as conventional RT but with fewer acute and late toxicities. However, further knowledge of biologic effective dose and its impact on both cancer and adjacent OAR is paramount for effective and safe treatment of patients with PT.
Collapse
Affiliation(s)
- Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Aman Anand
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Kenneth Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Rabus H, Ngcezu SA, Braunroth T, Nettelbeck H. “Broadscale” nanodosimetry: Nanodosimetric track structure quantities increase at distal edge of spread-out proton Bragg peaks. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Mohiuddin M, Lynch C, Gao M, Hartsell W. Early clinical results of proton spatially fractionated GRID radiation therapy (SFGRT). Br J Radiol 2019; 93:20190572. [PMID: 31651185 DOI: 10.1259/bjr.20190572] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Approximately 70 patients with large and bulky tumors refractory to prior treatments were treated with photon spatially fractionated GRID radiation (SFGRT). We identified 10 additional patients who clinically needed GRID but could not be treated with photons due to adjacent critical organs. We developed a proton SFGRT technique, and we report treatment of these 10 patients. METHODS Subject data were reviewed for clinical results and dosimetric data. 50% of the patients were metastatic at the time of treatment and five had previous photon radiation to the local site but not via GRID. They were treated with 15-20 cobalt Gray equivalent using a single proton GRID field with an average beamlet count of 22.6 (range 7-51). 80% received an average adjuvant radiation dose to the GRID region of 40.8Gy (range 13.7-63.8Gy). Four received subsequent systemic therapy. RESULTS The median follow-up time was 5.9 months (1.1-18.9). At last follow-up, seven patients were alive and three had died. Two patients who had died from metastatic disease had local shrinkage of tumor. Of those alive, four had complete or partial response, two had partial response but later progressed, and one had no response. For all patients, the tumor regression/local symptom improvement rate was 80%. 50% had acute side-effects of grade1/2 only and all were well-tolerated. CONCLUSION In circumstances where patients cannot receive photon GRID, proton SFGRT is clinically feasible and effective, with a similar side-effect profile. ADVANCES IN KNOWLEDGE Proton GRID should be considered as a treatment option earlier in the disease course for patients who cannot be treated by photon GRID.
Collapse
Affiliation(s)
- Majid Mohiuddin
- Northwestern Medicine Chicago Proton Center 4455 Weaver Pkwy, Warrenville, IL 60555.,Radiation Oncology Consultants, Ltd. 700 Commerce Drive, Suite 500, Oak Brook, IL 60523
| | - Connor Lynch
- Northwestern Medicine Chicago Proton Center 4455 Weaver Pkwy, Warrenville, IL 60555
| | - Mingcheng Gao
- Northwestern Medicine Chicago Proton Center 4455 Weaver Pkwy, Warrenville, IL 60555
| | - William Hartsell
- Northwestern Medicine Chicago Proton Center 4455 Weaver Pkwy, Warrenville, IL 60555.,Radiation Oncology Consultants, Ltd. 700 Commerce Drive, Suite 500, Oak Brook, IL 60523
| |
Collapse
|
36
|
Zhao L, He X, Chen X, Shang Y, Mi D, Sun Y. Fitting the Generalized Target Model to Cell Survival Data of Proton Radiation Reveals Dose-Dependent RBE and Inspires an Alternative Method to Estimate RBE in High-Dose Regions. Radiat Res 2019; 192:507-516. [PMID: 31418641 DOI: 10.1667/rr15428.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The imprecise estimation of the relative biological effectiveness (RBE) of proton radiation has been one of the main challenges for further calculating the biologically effective dose in proton therapy. Since dose levels can greatly influence the proton RBE, the relationship between the two should be clarified first. In addition, since the dose-response curves are usually too complex to readily assess RBE in high-dose regions, a reliable and simple method is needed to predict the RBE of proton radiation accurately in clinically relevant doses. The standard linear-quadratic (LQ) model is widely used to determine the RBE of particles for clinical applications. However, there has been some debate over its use when modeling the cell survival curves in high-dose regions, since those survival curves usually show linear behavior in the semilogarithmic plot. By considering both cellular repair effects and indirect effects of radiation, we have proposed a generalized target model with linear-quadratic linear (LQL) characteristics. For the more accurate evaluation of proton RBE in radiotherapy, here we used this generalized target model to fit the cell survival data in V79 and C3H 10T1/2 cells exposed to proton radiation with different LETs. The fitting results show that the generalized target model works as well as the LQ model in general. Based on the fitting parameters of the generalized target model, the RBE of six given doses DT (RBET) could be calculated in the corresponding cell lines with different LETs. The results show that the RBET gradually decreases with increased dose in both cell types. In addition, inspired by the calculation method of the maximum values of RBE (RBEM) in the low-dose region, a novel method was proposed for estimating the RBE in the high-dose region (RBEH) based on the slope ratio of the dose-response curves in this region. Linear regression analysis indicated a significant linear correlation between the proposed RBEH and the RBET in high-dose regions, which suggests that the current method can be used as an alternative tool, which is both simple and robust, to estimate RBE in high-dose regions.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Xinpeng Chen
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Yuxuan Shang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering
| |
Collapse
|
37
|
Sánchez‐Parcerisa D, López‐Aguirre M, Dolcet Llerena A, Udías JM. MultiRBE: Treatment planning for protons with selective radiobiological effectiveness. Med Phys 2019; 46:4276-4284. [DOI: 10.1002/mp.13718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel Sánchez‐Parcerisa
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | - Miguel López‐Aguirre
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| | | | - José Manuel Udías
- Grupo de Física Nuclear & IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica CEI Moncloa Universidad Complutense de Madrid 28040Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) Madrid Spain
| |
Collapse
|
38
|
The Role of Particle Therapy for the Treatment of Skull Base Tumors and Tumors of the Central Nervous System (CNS). Top Magn Reson Imaging 2019; 28:49-61. [PMID: 31022048 DOI: 10.1097/rmr.0000000000000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Radiation therapy (RT) is a mainstay in the interdisciplinary treatment of brain tumors of the skull base and brain. Technical innovations during the past 2 decades have allowed for increasingly precise treatment with better sparing of adjacent healthy tissues to prevent treatment-related side effects that influence patients' quality of life. Particle therapy with protons and charged ions offer favorable kinetics with sharp dose deposition in a well-defined depth (Bragg-Peak) and a steep radiation fall-off beyond that maximum. This review highlights the role of particle therapy in the management of primary brain tumors and tumors of the skull base.
Collapse
|
39
|
Comparison of Proton and Photon Beam Irradiation in Radiation-Induced Intestinal Injury Using a Mouse Model. Int J Mol Sci 2019; 20:ijms20081894. [PMID: 30999572 PMCID: PMC6514697 DOI: 10.3390/ijms20081894] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
When radiotherapy is applied to the abdomen or pelvis, normal tissue toxicity in the gastrointestinal (GI) tract is considered a major dose-limiting factor. Proton beam therapy has a specific advantage in terms of reduced doses to normal tissues. This study investigated the fundamental differences between proton- and X-ray-induced intestinal injuries in mouse models. C57BL/6J mice were irradiated with 6-MV X-rays or 230-MeV protons and were sacrificed after 84 h. The number of surviving crypts per circumference of the jejunum was identified using Hematoxylin and Eosin staining. Diverse intestinal stem cell (ISC) populations and apoptotic cells were analyzed using immunohistochemistry (IHC) and a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay, respectively. The crypt microcolony assay revealed a radiation-dose-dependent decrease in the number of regenerative crypts in the mouse jejunum; proton irradiation was more effective than X-ray irradiation with a relative biological effectiveness of 1.14. The jejunum is the most sensitive to radiations, followed by the ileum and the colon. Both types of radiation therapy decreased the number of radiosensitive, active cycling ISC populations. However, a higher number of radioresistant, reserve ISC populations and Paneth cells were eradicated by proton irradiation than X-ray irradiation, as shown in the IHC analyses. The TUNEL assay revealed that proton irradiation was more effective in enhancing apoptotic cell death than X-ray irradiation. This study conducted a detailed analysis on the effects of proton irradiation versus X-ray irradiation on intestinal crypt regeneration in mouse models. Our findings revealed that proton irradiation has a direct effect on ISC populations, which may result in an increase in the risk of GI toxicity during proton beam therapy.
Collapse
|
40
|
Parisi A, Chiriotti S, De Saint-Hubert M, Van Hoey O, Vandevoorde C, Beukes P, de Kock EA, Symons J, Camero JN, Slabbert J, Mégret P, Debrot E, Bolst D, Rosenfeld A, Vanhavere F. A novel methodology to assess linear energy transfer and relative biological effectiveness in proton therapy using pairs of differently doped thermoluminescent detectors. Phys Med Biol 2019; 64:085005. [PMID: 30650402 DOI: 10.1088/1361-6560/aaff20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new methodology for assessing linear energy transfer (LET) and relative biological effectiveness (RBE) in proton therapy beams using thermoluminescent detectors is presented. The method is based on the different LET response of two different lithium fluoride thermoluminescent detectors (LiF:Mg,Ti and LiF:Mg,Cu,P) for measuring charged particles. The relative efficiency of the two detector types was predicted using the recently developed Microdosimetric d(z) Model in combination with the Monte Carlo code PHITS. Afterwards, the calculated ratio of the expected response of the two detector types was correlated with the fluence- and dose- mean values of the unrestricted proton LET. Using the obtained proton dose mean LET as input, the RBE was assessed using a phenomenological biophysical model of cell survival. The aforementioned methodology was benchmarked by exposing the detectors at different depths within the spread out Bragg peak (SOBP) of a clinical proton beam at iThemba LABS. The assessed LET values were found to be in good agreement with the results of radiation transport computer simulations performed using the Monte Carlo code GEANT4. Furthermore, the estimated RBE values were compared with the RBE values experimentally determined by performing colony survival measurements with Chinese Hamster Ovary (CHO) cells during the same experimental run. A very good agreement was found between the results of the proposed methodology and the results of the in vitro study.
Collapse
Affiliation(s)
- Alessio Parisi
- Belgian Nuclear Research Centre SCK·CEN, Mol, Belgium. University of Mons, Faculty of Engineering, Mons, Belgium. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
[Endocrine deficiency after radiotherapy of brain tumors in children and young adults]. Strahlenther Onkol 2019; 195:450-452. [PMID: 30809690 DOI: 10.1007/s00066-019-01442-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Abstract
Purpose: Neutrons were an active field of radiobiology at the time of publication of the first issues of the International Journal of Radiation Biology in 1959. Three back-to-back papers published by Neary and his colleagues contain key elements of interest at the time. The present article aims to put these papers into context with the discovery of the neutron 27 years previously and then give a feel for how the field has progressed to the present day. It does not intend to provide a comprehensive review of this enormous field, but rather to provide selective summaries of main driving forces and developments. Conclusions: Neutron radiobiology has continued as a vigorous field of study throughout the past 84 years. Main driving forces have included concern for protection from the harmful effects of neutrons, exploitation and optimization for cancer therapy (fast beam therapy, brachytherapy and boron capture therapy), and scientific curiosity about the mechanisms of radiation action. Effort has fluctuated as the emphasis has shifted from time to time, but all three areas remain active today. Whatever the future holds for the various types of neutron therapy, the health protection aspects will remain with us permanently because of natural environmental exposure to neutrons as well as increased additional exposures from a variety of human activities.
Collapse
|
43
|
Oeck S, Szymonowicz K, Wiel G, Krysztofiak A, Lambert J, Koska B, Iliakis G, Timmermann B, Jendrossek V. Relating Linear Energy Transfer to the Formation and Resolution of DNA Repair Foci After Irradiation with Equal Doses of X-ray Photons, Plateau, or Bragg-Peak Protons. Int J Mol Sci 2018; 19:ijms19123779. [PMID: 30486506 PMCID: PMC6320817 DOI: 10.3390/ijms19123779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
Proton beam therapy is increasingly applied for the treatment of human cancer, as it promises to reduce normal tissue damage. However, little is known about the relationship between linear energy transfer (LET), the type of DNA damage, and cellular repair mechanisms, particularly for cells irradiated with protons. We irradiated cultured cells delivering equal doses of X-ray photons, Bragg-peak protons, or plateau protons and used this set-up to quantitate initial DNA damage (mainly DNA double strand breaks (DSBs)), and to analyze kinetics of repair by detecting γH2A.X or 53BP1 using immunofluorescence. The results obtained validate the reliability of our set-up in delivering equal radiation doses under all conditions employed. Although the initial numbers of γH2A.X and 53BP1 foci scored were similar under the different irradiation conditions, it was notable that the maximum foci level was reached at 60 min after irradiation with Bragg-peak protons, as compared to 30 min for plateau protons and photons. Interestingly, Bragg-peak protons induced larger and irregularly shaped γH2A.X and 53BP1 foci. Additionally, the resolution of these foci was delayed. These results suggest that Bragg-peak protons induce DNA damage of increased complexity which is difficult to process by the cellular repair apparatus.
Collapse
Affiliation(s)
- Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, New Haven, CT 06520, USA.
| | - Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| | - Gesa Wiel
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| | - Jamil Lambert
- West German Proton Therapy Centre Essen, University Hospital Essen, Am Muehlenbach 1, 45147 Essen, Germany.
| | - Benjamin Koska
- West German Proton Therapy Centre Essen, University Hospital Essen, Am Muehlenbach 1, 45147 Essen, Germany.
| | - George Iliakis
- Institute of Medical Radiation Biology; University of Duisburg-Essen; Medical School; Hufelandstr. 55, 45122 Essen, Germany.
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, University Hospital Essen, Am Muehlenbach 1, 45147 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Virchowstrasse 173, 45122 Essen, Germany.
| |
Collapse
|
44
|
Szabó ER, Brand M, Hans S, Hideghéty K, Karsch L, Lessmann E, Pawelke J, Schürer M, Beyreuther E. Radiobiological effects and proton RBE determined by wildtype zebrafish embryos. PLoS One 2018; 13:e0206879. [PMID: 30408095 PMCID: PMC6224071 DOI: 10.1371/journal.pone.0206879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
The increasing use of proton radiotherapy during the last decade and the rising number of long-term survivors has given rise to a vital discussion on potential effects on normal tissue. So far, deviations from clinically applied generic RBE (relative biological effectiveness) of 1.1 were only obtained by in vitro studies, whereas indications from in vivo trials and clinical studies are rare. In the present work, wildtype zebrafish embryos (Danio rerio) were used to characterize the effects of plateau and mid-SOBP (spread-out Bragg peak) proton radiation relative to that induced by clinical MV photon beam reference. Based on embryonic survival data, RBE values of 1.13 ± 0.08 and of 1.20 ± 0.04 were determined four days after irradiations with 20 Gy plateau and SOBP protons relative to 6 MV photon beams. These RBE values were confirmed by relating the rates of embryos with morphological abnormalities for the respective radiation qualities and doses. Besides survival, the rate of spine bending, as one type of developmental abnormality, and of pericardial edema, as an example for acute radiation effects, were assessed. The results revealed that independent on radiation quality both rates increased with time approaching almost 100% at the 4th day post irradiation with doses higher than 15 Gy. To sum up, the applicability of the zebrafish embryo as a robust and simple alternative model for in vivo characterization of radiobiological effects in normal tissue was validated and the obtained RBE values are comparable to previous finding in animal trials.
Collapse
Affiliation(s)
- Emília Rita Szabó
- Attosecond Light Pulse Source, ELI-HU Nonprofit Ltd., Szeged, Hungary
| | - Michael Brand
- Center for Molecular and Cellular Bioengeneering (CMCB), DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Molecular and Cellular Bioengeneering (CMCB), DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Katalin Hideghéty
- Attosecond Light Pulse Source, ELI-HU Nonprofit Ltd., Szeged, Hungary
| | - Leonhard Karsch
- Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elisabeth Lessmann
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Michael Schürer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| |
Collapse
|
45
|
Morton LM, Ricks-Santi L, West CML, Rosenstein BS. Radiogenomic Predictors of Adverse Effects following Charged Particle Therapy. Int J Part Ther 2018; 5:103-113. [PMID: 30505881 PMCID: PMC6261418 DOI: 10.14338/ijpt-18-00009.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022] Open
Abstract
Radiogenomics is the study of genomic factors that are associated with response to radiation therapy. In recent years, progress has been made toward identifying genetic risk factors linked with late radiation-induced adverse effects. These advances have been underpinned by the establishment of an international Radiogenomics Consortium with collaborative studies that expand cohort sizes to increase statistical power and efforts to improve methodologic approaches for radiogenomic research. Published studies have predominantly reported the results of research involving patients treated with photons using external beam radiation therapy. These studies demonstrate our ability to pool international cohorts to identify common single nucleotide polymorphisms associated with risk for developing normal tissue toxicities. Progress has also been achieved toward the discovery of genetic variants associated with radiation therapy-related subsequent malignancies. With the increasing use of charged particle therapy (CPT), there is a need to establish cohorts for patients treated with these advanced technology forms of radiation therapy and to create biorepositories with linked clinical data. While some genetic variants are likely to impact toxicity and second malignancy risks for both photons and charged particles, it is plausible that others may be specific to the radiation modality due to differences in their biological effects, including the complexity of DNA damage produced. In recognition that the formation of patient cohorts treated with CPT for radiogenomic studies is a high priority, efforts are underway to establish collaborations involving institutions treating cancer patients with protons and/or carbon ions as well as consortia, including the Proton Collaborative Group, the Particle Therapy Cooperative Group, and the Pediatric Proton Consortium Registry. These important radiogenomic CPT initiatives need to be expanded internationally to build on experience gained from the Radiogenomics Consortium and epidemiologists investigating normal tissue toxicities and second cancer risk.
Collapse
Affiliation(s)
- Lindsay M. Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Catharine M. L. West
- Division of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Barry S. Rosenstein
- Department of Radiation Oncology and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
46
|
Stewart RD. Induction of DNA Damage by Light Ions Relative to 60Co γ-rays. Int J Part Ther 2018; 5:25-39. [PMID: 31773018 PMCID: PMC6871587 DOI: 10.14338/ijpt-18-00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
The specific types and numbers of clusters of DNA lesions, including both DNA double-strand breaks (DSBs) and non-DSB clusters, are widely considered 1 of the most important initiating events underlying the relative biological effectiveness (RBE) of the light ions of interest in the treatment of cancer related to megavoltage x-rays and 60Co γ-rays. This review summarizes the categorization of DNA damage, reviews the underlying mechanisms of action by ionizing radiation, and quantifies the general trends in DSB and non-DSB cluster formation by light ions under normoxic and anoxic conditions, as predicted by Monte Carlo simulations that reflect the accumulated evidence from decades of research on radiation damage to DNA. The significance of the absolute and relative numbers of clusters and the local complexity of DSB and non-DSB clusters are discussed in relation to the formation of chromosome aberrations and the loss of cell reproductive capacity. Clinical implications of the dependence of DSB induction on ionization density is reviewed with an eye towards increasing the therapeutic ratio of proton and carbon ion therapy through the explicit optimization of RBE-weighted dose.
Collapse
Affiliation(s)
- Robert D. Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
47
|
Yoo GS, Yu JI, Park HC. Proton therapy for hepatocellular carcinoma: Current knowledges and future perspectives. World J Gastroenterol 2018; 24:3090-3100. [PMID: 30065555 PMCID: PMC6064962 DOI: 10.3748/wjg.v24.i28.3090] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, as few patients can be treated with currently available curative local modalities. In patients with HCC where curative modalities are not feasible, radiation therapy (RT) has emerged as an alternative or combination therapy. With the development of various technologies, RT has been increasingly used for the management of HCC. Among these advances, proton beam therapy (PBT) has several unique physical properties that give it a finite range in a distal direction, and thus no exit dose along the beam path. Therefore, PBT has dosimetric advantages compared with X-ray therapy for the treatment of HCC. Indeed, various reports in the literature have described the favorable clinical outcomes and improved safety of PBT for HCC patients compared with X-ray therapy. However, there are some technical issues regarding the use of PBT in HCC, including uncertainty of organ motion and inaccuracy during calculation of tissue density and beam range, all of which may reduce the robustness of a PBT treatment plan. In this review, we discuss the physical properties, current clinical data, technical issues, and future perspectives on PBT for the treatment of HCC.
Collapse
Affiliation(s)
- Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
| |
Collapse
|
48
|
Proton irradiation orchestrates macrophage reprogramming through NFκB signaling. Cell Death Dis 2018; 9:728. [PMID: 29950610 PMCID: PMC6021396 DOI: 10.1038/s41419-018-0757-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Abstract
Tumor-associated macrophages (TAMs) represent potential targets for anticancer treatments as these cells play critical roles in tumor progression and frequently antagonize the response to treatments. TAMs are usually associated to an M2-like phenotype, characterized by anti-inflammatory and protumoral properties. This phenotype contrasts with the M1-like macrophages, which exhibits proinflammatory, phagocytic, and antitumoral functions. As macrophages hold a high plasticity, strategies to orchestrate the reprogramming of M2-like TAMs towards a M1 antitumor phenotype offer potential therapeutic benefits. One of the most used anticancer treatments is the conventional X-ray radiotherapy (RT), but this therapy failed to reprogram TAMs towards an M1 phenotype. While protontherapy is more and more used in clinic to circumvent the side effects of conventional RT, the effects of proton irradiation on macrophages have not been investigated yet. Here we showed that M1 macrophages (THP-1 cell line) were more resistant to proton irradiation than unpolarized (M0) and M2 macrophages, which correlated with differential DNA damage detection. Moreover, proton irradiation-induced macrophage reprogramming from M2 to a mixed M1/M2 phenotype. This reprogramming required the nuclear translocation of NFκB p65 subunit as the inhibition of IκBα phosphorylation completely reverted the macrophage re-education. Altogether, the results suggest that proton irradiation promotes NFκB-mediated macrophage polarization towards M1 and opens new perspectives for macrophage targeting with charged particle therapy.
Collapse
|