1
|
Caka C, Ergenoğlu DN, Sinanoğlu N, Maslak IC, Bildik HN, Çiçek B, Esenboga S, Tezcan I, Cagdas D. A large cohort from an immunology reference center and an algorithm for the follow-up of chronic neutropenia. J Clin Immunol 2024; 45:38. [PMID: 39499404 DOI: 10.1007/s10875-024-01816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Chronic neutropenia causes involve nutritional deficiencies and inborn errors of immunity(IEI), such as severe congenital neutropenia. To classify common chronic neutropenia causes in a pediatric immunology unit. We enrolled 109 chronic neutropenia patients admitted to a pediatric immunology department between 2002-2022. We recorded clinical/laboratory features and genetic characteristics. The male/female ratio was 63/46. Fifty-eight patients had parental consanguinity(57.4%). 26.6% (n = 29) patients had at least one individual in their family with neutropenia. Common symtpoms at presentation were upper respiratory tract infections(URTI)(31.1%), oral aphthae(23.6%), skin infections(23.6%), pneumonia(20.8%), and recurrent abscesses(12.3%). Common infections during follow-up were URTI(56.8%), pneumonia(33%), skin infections(25.6%), gastroenteritis(18.3%), and recurrent abscesses(14,6%). Common long-term complications were dental problems(n = 51), osteoporosis(n = 22), growth retardation(n = 14), malignancy(n = 16)[myelodysplastic syndrome(n = 10), large granulocytic leukemia(n = 1), acute lymphoblastic leukemia(n = 1), Hodgkin lymphoma(n = 1), EBV-related lymphoma(n = 1), leiomyosarcoma(n = 1), and thyroid neoplasm(n = 1)]. We performed a genetic study in 86 patients, and 69(71%) got a genetic diagnosis. Common gene defects were HAX-1(n = 26), ELA-2 (ELANE)(n = 10), AP3B1(n = 4), and ADA-2(n = 4) gene defects. The IEI ratio(70.6%) was high. GCSF treatment(93.4%), immunoglobulin replacement therapy(18.7%), and HSCT(15.9%) were the treatment options. The mortality rate was 12.9%(n = 14). The most common long term complications were dental problems that is three times more common in patients with known genetic mutations. We prepared an algorithm for chronic neutropenia depending on the present cohort. An important rate of inborn errors of immunity, especially combined immunodeficiency(11.9%) was presented in addition to congenital phagocytic cell defects. Early diagnosis will allow us tailor the disease-specific treatment options sooner, preventing irreversible consequences.
Collapse
Affiliation(s)
- Canan Caka
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Nidanur Sinanoğlu
- Faculty of Medicine, Medical Student, Hacettepe University, Ankara, Turkey
| | - Ibrahim Cemal Maslak
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics Suleyman Demirel Univercity Faculty of Medicine, Isparta, Turkey
| | - Hacer Neslihan Bildik
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Begüm Çiçek
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Deniz Cagdas
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey.
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Napiórkowska-Baran K, Doligalska A, Drozd M, Czarnowska M, Łaszczych D, Dolina M, Szymczak B, Schmidt O, Bartuzi Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 1-Primary Immunodeficiencies. Healthcare (Basel) 2024; 12:1976. [PMID: 39408156 PMCID: PMC11476293 DOI: 10.3390/healthcare12191976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are some of the most prevalent chronic diseases that generate not only high social but also economic costs. It is becoming increasingly crucial to take into account inborn errors of immunity (IEIs, formerly known as primary immunodeficiencies (PIDs)) and secondary immunodeficiencies (SIDs) in the diagnostic and therapeutic management of cardiac patients. The number of diseases classified as IEIs is on the rise, with a current total of 485. It is essential to pay attention not only to already confirmed conditions but also to symptoms suggestive of immunodeficiencies. OBJECTIVES The aim of this article is to present IEIs with cardiovascular symptoms that may cause or exacerbate cardiovascular disease, as well as diagnostic and therapeutic procedures. RESULTS It is becoming increasingly evident that immunodeficiencies can be responsible for certain cardiovascular conditions, their hastened progression, and difficulties in their control. CONCLUSIONS Early detection of deficiencies improves not only the quality and longevity of patients, but also allows for better control of cardiovascular diseases and even prevention of their occurrence.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Dariusz Łaszczych
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marcin Dolina
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
3
|
Yazdanpanah N, Rezaei N. The multidisciplinary approach to diagnosing inborn errors of immunity: a comprehensive review of discipline-based manifestations. Expert Rev Clin Immunol 2024; 20:1237-1259. [PMID: 38907993 DOI: 10.1080/1744666x.2024.2372335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Congenital immunodeficiency is named primary immunodeficiency (PID), and more recently inborn errors of immunity (IEI). There are more than 485 conditions classified as IEI, with a wide spectrum of clinical and laboratory manifestations. AREAS COVERED Regardless of the developing knowledge of IEI, many physicians do not think of IEI when approaching the patient's complaint, which leads to delayed diagnosis, misdiagnosis, serious infectious and noninfectious complications, permanent end-organ damage, and even death. Due to the various manifestations of IEI and the wide spectrum of associated conditions, patients refer to specialists in different disciplines of medicine and undergo - mainly symptomatic - treatments, and because IEI are not included in physicians' differential diagnosis, the main disease remains undiagnosed. EXPERT OPINION A multidisciplinary approach may be a proper solution. Manifestations and the importance of a multidisciplinary approach in the diagnosis of main groups of IEI are discussed in this article.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Farmand S, Aydin SE, Wustrau K, Böhm S, Ayuk F, Escherich G, Skokowa J, Müller I, Lehmberg K. Case report: Granulocyte-macrophage colony-stimulating factor sargramostim did not rescue the neutrophil phenotype in two patients with JAGN1-mutant severe congenital neutropenia. Front Immunol 2024; 15:1373495. [PMID: 39286252 PMCID: PMC11404322 DOI: 10.3389/fimmu.2024.1373495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background Homozygous or compound heterozygous mutations in JAGN1 cause severe congenital neutropenia. JAGN1-mutant patients present with severe early-onset bacterial infections and most have been described as low-responders to recombinant granulocyte colony-stimulating factor (G-CSF) therapy. In a murine, hematopoietic JAGN1 knockout model, which displays susceptibility to Candida albicans infection in the absence of neutropenia, treatment with granulocyte-macrophage-CSF (GM-CSF) was able to restore the functional defect of neutrophils. Patients We present two unrelated patients with biallelic JAGN1 mutations, who were both treated with subcutaneous GM-CSF (sargramostim) after treatment failure to G-CSF. The first patient was an 18-year-old pregnant woman who received GM-CSF at 12 weeks of gestation up to a dose of 10 µg/kg/d for 7 days. The second patient was a 5-month-old girl who received GM-CSF for a total of 9 days at a dose of up to 20 µg/kg/d. GM-CSF did not increase neutrophil counts in our patients. Treatment was stopped when neutrophil numbers declined further, no beneficial effect was noticed, and patients presented with infections. No adverse effects were observed in either patient and the fetus. Both patients ultimately underwent successful hematopoietic stem cell transplantation. Discussion Both patients showed a high recurrence rate of severe infections on G-CSF treatment. GM-CSF therapy did not ameliorate the clinical phenotype, in contrast to the improvement of neutrophil function observed in the JAGN1 mouse model. No major additional extra-hematopoietic manifestations were evident in our patients. Conclusion In two unrelated patients, GM-CSF did not have any beneficial effect on neutrophil counts. Patients with JAGN1-mutant SCN with reduced G-CSF responsiveness and elevated infection rate should be evaluated early for stem cell transplantation.
Collapse
Affiliation(s)
- Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Eva Aydin
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Wustrau
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Svea Böhm
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Yeshareem L, Yacobovich J, Lebel A, Noy-Lotan S, Dgany O, Krasnov T, Berger Pinto G, Oniashvili N, Mardoukh J, Bielorai B, Laor R, Mandel-Shorer N, Ben Barak A, Levin C, Asleh M, Miskin H, Revel-Vilk S, Levin D, Benish M, Zuckerman T, Wolach O, Pazgal I, Brik Simon D, Gilad O, Yanir AD, Goldberg TA, Izraeli S, Tamary H, Steinberg-Shemer O. Genetic backgrounds and clinical characteristics of congenital neutropenias in Israel. Eur J Haematol 2024; 113:146-162. [PMID: 38600884 DOI: 10.1111/ejh.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Congenital neutropenias are characterized by severe infections and a high risk of myeloid transformation; the causative genes vary across ethnicities. The Israeli population is characterized by an ethnically diverse population with a high rate of consanguinity. OBJECTIVE To evaluate the clinical and genetic spectrum of congenital neutropenias in Israel. METHODS We included individuals with congenital neutropenias listed in the Israeli Inherited Bone Marrow Failure Registry. Sanger sequencing was performed for ELANE or G6PC3, and patients with wild-type ELANE/G6PC3 were referred for next-generation sequencing. RESULTS Sixty-five patients with neutropenia were included. Of 51 patients with severe congenital neutropenia, 34 were genetically diagnosed, most commonly with variants in ELANE (15 patients). Nine patients had biallelic variants in G6PC3, all of consanguineous Muslim Arab origin. Other genes involved were SRP54, JAGN1, TAZ, and SLC37A4. Seven patients had cyclic neutropenia, all with pathogenic variants in ELANE, and seven had Shwachman-Diamond syndrome caused by biallelic SBDS variants. Eight patients (12%) developed myeloid transformation, including six patients with an unknown underlying genetic cause. Nineteen (29%) patients underwent hematopoietic stem cell transplantation, mostly due to insufficient response to treatment with granulocyte-colony stimulating factor or due to myeloid transformation. CONCLUSIONS The genetic spectrum of congenital neutropenias in Israel is characterized by a high prevalence of G6PC3 variants and an absence of HAX1 mutations. Similar to other registries, for 26% of the patients, a molecular diagnosis was not achieved. However, myeloid transformation was common in this group, emphasizing the need for close follow-up.
Collapse
Affiliation(s)
- Lital Yeshareem
- Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Lebel
- Pediatric Nephrology Unit, HaEmek Medical Center, Afula, Israel
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Galit Berger Pinto
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Nino Oniashvili
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Jacques Mardoukh
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Bella Bielorai
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ruth Laor
- Hematology Service, Bnei Zion Medical Center, Haifa, Israel
| | - Noa Mandel-Shorer
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
| | - Ayelet Ben Barak
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
| | - Carina Levin
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
- Pediatric Hematology Unit and Research Laboratory, Emek Medical Center, Afula, Israel
| | - Mahdi Asleh
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Hagit Miskin
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Shoshana Revel-Vilk
- Pediatric Hematology/Oncology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Dror Levin
- Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Marganit Benish
- Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Tsila Zuckerman
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
- Hematology and Bone Marrow Transplantation Institute, Rambam Healthcare Campus, Haifa, Israel
| | - Ofir Wolach
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Idit Pazgal
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Comprehensive Center of Thalassemia, Hemoglobinopathies & Rare Anemias, Institute of Hematology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Dafna Brik Simon
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf David Yanir
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Tracie Alison Goldberg
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Shai Izraeli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| |
Collapse
|
6
|
Marois L, Le Gal C, Cros G, Falcone EL, Chapdelaine H. Refractory wound healing and cytopenias treated with a sodium-glucose cotransporter-2 inhibitor in a patient with glucose-6-phosphatase catalytic subunit 3 deficiency. JAAD Case Rep 2024; 49:22-24. [PMID: 38883182 PMCID: PMC11179171 DOI: 10.1016/j.jdcr.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Affiliation(s)
- Louis Marois
- Department of Medicine, Université de Montréal, Montréal, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Canada
- Department of Medicine, Université Laval, Québec, Canada
| | - Caridad Le Gal
- Department of Medicine, Gatineau Hospital, Gatineau, Canada
| | - Guilhem Cros
- Department of Medicine, Université de Montréal, Montréal, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Canada
| | - Emilia Liana Falcone
- Department of Medicine, Université de Montréal, Montréal, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Canada
| | - Hugo Chapdelaine
- Department of Medicine, Université de Montréal, Montréal, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Canada
| |
Collapse
|
7
|
Oyarbide U, Crane GM, Corey SJ. The metabolic basis of inherited neutropenias. Br J Haematol 2024; 204:45-55. [PMID: 38049194 DOI: 10.1111/bjh.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Neutrophils are the shortest-lived blood cells, which requires a prodigious degree of proliferation and differentiation to sustain physiologically sufficient numbers and be poised to respond quickly to infectious emergencies. More than 107 neutrophils are produced every minute in an adult bone marrow-a process that is tightly regulated by a small group of cytokines and chemical mediators and dependent on nutrients and energy. Like granulocyte colony-stimulating factor, the primary growth factor for granulopoiesis, they stimulate signalling pathways, some affecting metabolism. Nutrient or energy deficiency stresses the survival, proliferation, and differentiation of neutrophils and their precursors. Thus, it is not surprising that monogenic disorders related to metabolism exist that result in neutropenia. Among these are pathogenic mutations in HAX1, G6PC3, SLC37A4, TAFAZZIN, SBDS, EFL1 and the mitochondrial disorders. These mutations perturb carbohydrate, lipid and/or protein metabolism. We hypothesize that metabolic disturbances may drive the pathogenesis of a subset of inherited neutropenias just as defects in DNA damage response do in Fanconi anaemia, telomere maintenance in dyskeratosis congenita and ribosome formation in Diamond-Blackfan anaemia. Greater understanding of metabolic pathways in granulopoiesis will identify points of vulnerability in production and may point to new strategies for the treatment of neutropenias.
Collapse
Affiliation(s)
- Usua Oyarbide
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA
| | - Genevieve M Crane
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Seth J Corey
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Dobrewa W, Bielska M, Bąbol-Pokora K, Janczar S, Młynarski W. Congenital neutropenia: From lab bench to clinic bedside and back. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108476. [PMID: 37989463 DOI: 10.1016/j.mrrev.2023.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Neutropenia is a hematological condition characterized by a decrease in absolute neutrophil count (ANC) in peripheral blood, typically classified in adults as mild (1-1.5 × 109/L), moderate (0.5-1 × 109/L), or severe (< 0.5 × 109/L). It can be categorized into two types: congenital and acquired. Congenital severe chronic neutropenia (SCN) arises from mutations in various genes, with different inheritance patterns, including autosomal recessive, autosomal dominant, and X-linked forms, often linked to mitochondrial diseases. The most common genetic cause is alterations in the ELANE gene. Some cases exist as non-syndromic neutropenia within the SCN spectrum, where genetic origins remain unidentified. The clinical consequences of congenital neutropenia depend on granulocyte levels and dysfunction. Infants with this condition often experience recurrent bacterial infections, with approximately half facing severe infections within their first six months of life. These infections commonly affect the respiratory system, digestive tract, and skin, resulting in symptoms like fever, abscesses, and even sepsis. The severity of these symptoms varies, and the specific organs and systems affected depend on the genetic defect. Congenital neutropenia elevates the risk of developing acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS), particularly with certain genetic variants. SCN patients may acquire CSF3R and RUNX1 mutations, which can predict the development of leukemia. It is important to note that high-dose granulocyte colony-stimulating factor (G-CSF) treatment may have the potential to promote leukemogenesis. Treatment for neutropenia involves antibiotics, drugs that boost neutrophil production, or bone marrow transplants. Immediate treatment is essential due to the heightened risk of severe infections. In severe congenital or cyclic neutropenia (CyN), the primary therapy is G-CSF, often combined with antibiotics. The G-CSF dosage is gradually increased to normalize neutrophil counts. Hematopoietic stem cell transplants are considered for non-responders or those at risk of AML/MDS. In cases of WHIM syndrome, CXCR4 inhibitors can be effective. Future treatments may involve gene editing and the use of the diabetes drug empagliflozin to alleviate neutropenia symptoms.
Collapse
Affiliation(s)
- Weronika Dobrewa
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| | - Marta Bielska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| |
Collapse
|
9
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
10
|
Moradian N, Zoghi S, Rayzan E, Seyedpour S, Jimenez Heredia R, Boztug K, Rezaei N. Severe congenital neutropenia due to G6PC3 deficiency: early and delayed phenotype of a patient. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:51. [PMID: 37296469 DOI: 10.1186/s13223-023-00804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/06/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Severe Congenital Neutropenia type 4 (SCN4), is a rare autosomal recessive condition, due to mutations in the G6PC3 gene. The phenotype comprises neutropenia of variable severity and accompanying anomalies. CASE PRESENTATION We report a male patient with confirmed G6PC3 deficiency presented with recurrent bacterial infections and multi-systemic complications. Our case was the first with a novel homozygous frameshift mutation in G6PC3. The patient demonstrated large platelets on his peripheral blood smear which is a rare presentation of this disease. CONCLUSION As SCN4 patients could be easily missed, it is recommended to consider G6PC3 mutation for any case of congenital, unexplained neutropenia.
Collapse
Affiliation(s)
- Negar Moradian
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zoghi
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Elham Rayzan
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Simin Seyedpour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
11
|
Veiga-da-Cunha M, Wortmann SB, Grünert SC, Van Schaftingen E. Treatment of the Neutropenia Associated with GSD1b and G6PC3 Deficiency with SGLT2 Inhibitors. Diagnostics (Basel) 2023; 13:1803. [PMID: 37238286 PMCID: PMC10217388 DOI: 10.3390/diagnostics13101803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Glycogen storage disease type Ib (GSD1b) is due to a defect in the glucose-6-phosphate transporter (G6PT) of the endoplasmic reticulum, which is encoded by the SLC37A4 gene. This transporter allows the glucose-6-phosphate that is made in the cytosol to cross the endoplasmic reticulum (ER) membrane and be hydrolyzed by glucose-6-phosphatase (G6PC1), a membrane enzyme whose catalytic site faces the lumen of the ER. Logically, G6PT deficiency causes the same metabolic symptoms (hepatorenal glycogenosis, lactic acidosis, hypoglycemia) as deficiency in G6PC1 (GSD1a). Unlike GSD1a, GSD1b is accompanied by low neutrophil counts and impaired neutrophil function, which is also observed, independently of any metabolic problem, in G6PC3 deficiency. Neutrophil dysfunction is, in both diseases, due to the accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases, which is slowly formed in the cells from 1,5-anhydroglucitol (1,5-AG), a glucose analog that is normally present in blood. Healthy neutrophils prevent the accumulation of 1,5-AG6P due to its hydrolysis by G6PC3 following transport into the ER by G6PT. An understanding of this mechanism has led to a treatment aimed at lowering the concentration of 1,5-AG in blood by treating patients with inhibitors of SGLT2, which inhibits renal glucose reabsorption. The enhanced urinary excretion of glucose inhibits the 1,5-AG transporter, SGLT5, causing a substantial decrease in the concentration of this polyol in blood, an increase in neutrophil counts and function and a remarkable improvement in neutropenia-associated clinical signs and symptoms.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Metabolic Research Group, de Duve Institute and UCLouvain, B-1200 Brussels, Belgium
| | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University, 5020 Salzburg, Austria;
- Amalia Children’s Hospital, Radboudumc, 6525 Nijmegen, The Netherlands
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | | |
Collapse
|
12
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Donadieu J. Genetics of severe congenital neutropenia as a gateway to personalized therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:658-665. [PMID: 36485107 PMCID: PMC9821599 DOI: 10.1182/hematology.2022000392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Severe congenital neutropenias (SCNs) are rare diseases, and to date about 30 subtypes have been described according to their genetic causes. Standard care aims to prevent infections and limit the risk of leukemic transformation; however, several subtypes may have additional organ dysfunction(s), requiring specialized care. Granulocyte colony-stimulating factor and hematopoietic stem cell transplantation are now the bedrock of standard care. Better understanding of SCN mechanisms now offers the possibility of adapted therapy for some entities. An inhibitor of sodium glucose cotransporter, an antidiabetic drug, may attenuate glycogen storage disease type Ib and glucose-6-phosphatase catalytic subunit 3 neutropenias by clearing 1,5-anhydroglucitol, the precursor of the phosphate ester responsible for these SCNs. Chemokine receptor CXCR4 inhibitors contribute to reversing the leukocyte defect in warts, hypoglobulinemia, infections, and myelokathexis syndrome. All these new approaches use oral drugs, which notably improve quality of life. Additionally, improved research into clonal evolution has highlighted some ways to potentially prevent leukemia, such as stimulating somatic genetic rescue, a physiological process that might limit the risk of leukemic transformation.
Collapse
Affiliation(s)
- Jean Donadieu
- Centre de Référence des Neutropénies Chroniques, Registre National des Neutropénies Congénitales, Service d'Hémato-oncologie Pédiatrique, Hôpital Armand-Trousseau, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
14
|
Hiwarkar P, Bargir U, Pandrowala A, Bodhanwala M, Thakker N, Taur P, Madkaikar M, Desai M. SLGT2 Inhibitor Rescues Myelopoiesis in G6PC3 Deficiency. J Clin Immunol 2022; 42:1653-1659. [PMID: 35838821 DOI: 10.1007/s10875-022-01323-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
The energy metabolism of myeloid cells depends primarily on glycolysis. 1,5-Anhydroglucitol (1,5AG), a natural monosaccharide, is erroneously phosphorylated by glucose-phosphorylating enzymes to produce 1,5-anhydroglucitol-6-phosphate (1,5AG6P), a powerful inhibitor of hexokinases. The endoplasmic reticulum transporter (SLC37A4/G6PT) and the phosphatase G6PC3 cooperate to dephosphorylate 1,5AG6P. Failure to eliminate 1,5AG6P is the mechanism of neutrophil dysfunction and death in G6PC3-deficient mice. Sodium glucose cotransporter 2 (SLGT2) inhibitor reduces 1,5AG level in the blood and restores the neutrophil count in G6PC3-deficient mice. In the investigator-initiated study, a 30-year-old G6PC3-deficient woman with recurrent infections, distressing gastrointestinal symptoms, and multi-lineage cytopenia was treated with an SLGT2-inhibitor. A significant increase in all the hematopoietic cell lineages and substantial improvement in the quality of life was observed.
Collapse
Affiliation(s)
- Prashant Hiwarkar
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India, 400012.
| | - Umair Bargir
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, KEM Hospital, Mumbai, India
| | - Ambreen Pandrowala
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India, 400012
| | - Minnie Bodhanwala
- Department of Pediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | | | - Prasad Taur
- Department of Inborn Errors of Immunity, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, KEM Hospital, Mumbai, India
| | - Mukesh Desai
- Department of Inborn Errors of Immunity, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| |
Collapse
|
15
|
Amyloidosis in a Patient With Congenital Neutropenia Because of G6PC3 Deficiency. J Pediatr Hematol Oncol 2022; 44:e431-e433. [PMID: 34224517 DOI: 10.1097/mph.0000000000002237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/16/2021] [Indexed: 11/25/2022]
Abstract
Glucose-6-phosphatase catalytic subunit 3 (G6PC3) deficiency is a recently identified form of congenital neutropenia associated with developmental anomalies. The severity of neutropenia and the clinical spectrum are highly variable. Aside from infectious complications and extrahematologic features, inflammatory bowel disease and autoinflammatory complications are less frequently observed manifestations. However, amyloidosis has never been reported in G6PC3 deficiency. Here, we present a 12-year-old patient with incidentally discovered neutropenia because of the p.E65A (c.194A>C) variant of the G6PC3 gene. He had recurrent aphthae and abdominal pain episodes, and developed nephrotic-range proteinuria, amyloidosis, and end-stage renal failure during follow-up.
Collapse
|
16
|
Vuyyuru SK, Kedia S, Sahu P, Ahuja V. Immune-mediated inflammatory diseases of the gastrointestinal tract: Beyond Crohn's disease and ulcerative colitis. JGH Open 2022; 6:100-111. [PMID: 35155819 PMCID: PMC8829105 DOI: 10.1002/jgh3.12706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a diverse group of complex inflammatory diseases that result from dysregulated immune pathways and can involve any system of the human body. Inflammatory bowel disease (IBD) is one such disease involving the gastrointestinal (GI) system. With high prevalence in the West and increasing incidence in newly industrialized countries, IBD poses a significant burden on health care. IMIDs of the GI system other than IBD can have similar clinical features, causing diagnostic and therapeutic challenges. Although these disorders share a common pathophysiology, the defects can occur anywhere in the complex network of cytokines, inflammatory mediators, and innate and adaptive systems, leading to unregulated inflammation. Precise knowledge about them will help determine the possible targeted therapy. Thus, it is essential to distinguish these disorders from IBD. This review describes various IMIDs of the GI tract that mimic IBD.
Collapse
Affiliation(s)
- Sudheer K Vuyyuru
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Saurabh Kedia
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Pabitra Sahu
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Vineet Ahuja
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
17
|
Chronic neutropenic colitis with complete colonic obstruction in a patient with severe congenital neutropenia associated with G6PC3 mutations. Ann Hematol 2022; 101:1583-1585. [PMID: 35084551 DOI: 10.1007/s00277-022-04772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/23/2022] [Indexed: 11/01/2022]
|
18
|
Velez-Tirado N, Yamazaki-Nakashimada MA, Lopez Valentín E, Partida-Gaytan A, Scheffler-Mendoza SC, Chaia Semerena GM, Alvarez-Cardona A, Suárez Gutiérrez MA, Medina Torres EA, Baeza Capetillo P, Hirschmugl T, Garncarz W, Espinosa-Padilla SE, Aguirre Hernández J, Klein C, Boztug K, Lugo Reyes SO. Severe congenital neutropenia due to G6PC3 deficiency: Case series of five patients and literature review. Scand J Immunol 2021; 95:e13136. [PMID: 34964150 DOI: 10.1111/sji.13136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 12/26/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVES Glucose-6-phosphate catalytic subunit 3 (G6PC3) deficiency is characterized by severe congenital neutropenia with recurrent pyogenic infections, a prominent superficial venous pattern, and cardiovascular and urogenital malformations, caused by an alteration of glucose homeostasis, with increased endoplasmic reticulum stress and cell apoptosis. METHODS We reviewed our patients with G6PC3 deficiency diagnosed along the last decade in Mexico; we also searched the PubMed/Medline database for the terms ("G6PC3 deficiency" OR "Dursun syndrome" OR "Severe congenital neutropenia type 4"), and selected articles published in English from 2009 to 2020. Results We found 89 patients reported from at least 14 countries in 4 continents. We describe five new cases from Mexico. Of the 94 patients 56% are male, 48% from Middle East countries, none of them had adverse reactions to live vaccines; all presented with at least one severe infection prior to age 2. 75% had syndromic features, mainly atrial septal defect in 55%, and prominent superficial veins in 62%. CONCLUSIONS With a total of 94 patients reported in the past decade, we delineate the most frequent laboratory and genetic features, their treatment, and outcomes, and to expand the knowledge of syndromic and non-syndromic phenotypes in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Patricia Baeza Capetillo
- Genetics Department, Genetics and Bioinformatics, Hospital Infantil de Mexico "Federico Gómez", Mexico City, Mexico.,Laboratory of Genomics, Genetics and Bioinformatics, Hospital Infantil de Mexico "Federico Gómez", Mexico City, Mexico
| | - Tatjana Hirschmugl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
| | - Wojciech Garncarz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
| | | | - Jesús Aguirre Hernández
- Laboratory of Genomics, Genetics and Bioinformatics, Hospital Infantil de Mexico "Federico Gómez", Mexico City, Mexico
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,St. Anna Children's Cancer Research Institute (CCRI).,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
19
|
Connelly JA. Diagnosis and therapeutic decision-making for the neutropenic patient. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:492-503. [PMID: 34889413 PMCID: PMC8791128 DOI: 10.1182/hematology.2021000284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determining the cause of a low neutrophil count in a pediatric or adult patient is essential for the hematologist's clinical decision-making. Fundamental to this diagnostic process is establishing the presence or lack of a mature neutrophil storage pool, as absence places the patient at higher risk for infection and the need for supportive care measures. Many diagnostic tests, eg, a peripheral blood smear and bone marrow biopsy, remain important tools, but greater understanding of the diversity of neutropenic disorders has added new emphasis on evaluating for immune disorders and genetic testing. In this article, a structure is provided to assess patients based on the mechanism of neutropenia and to prioritize testing based on patient age and hypothesized pathophysiology. Common medical quandaries including fever management, need for growth factor support, risk of malignant transformation, and curative options in congenital neutropenia are reviewed to guide medical decision-making in neutropenic patients.
Collapse
Affiliation(s)
- James A. Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
20
|
Dai R, Lv G, Li W, Tang W, Chen J, Liu Q, Yang L, Zhang M, Tian Z, Zhou L, Yan X, Wang Y, Ding Y, An Y, Zhang Z, Tang X, Zhao X. Altered Functions of Neutrophils in Two Chinese Patients With Severe Congenital Neutropenia Type 4 Caused by G6PC3 Mutations. Front Immunol 2021; 12:699743. [PMID: 34305938 PMCID: PMC8296982 DOI: 10.3389/fimmu.2021.699743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/14/2021] [Indexed: 12/05/2022] Open
Abstract
Background SCN4 is an autosomal recessive disease caused by mutations in the G6PC3 gene. The clinical, molecular, and immunological features; function of neutrophils; and prognosis of patients with SCN4 have not been fully elucidated. Methods Two Chinese pediatric patients with G6PC3 mutations were enrolled in this study. Clinical data, genetic and immunologic characteristics, and neutrophil function were evaluated in patients and controls before and after granulocyte colony-stimulating factor (G-CSF) treatment. Results Both patients had histories of pneumonia, inguinal hernia, cryptorchidism, and recurrent oral ulcers. Patient 1 also had asthma and otitis media, and patient 2 presented with prominent ectatic superficial veins and inflammatory bowel disease. DNA sequencing demonstrated that both patients harbored heterozygous G6PC3 gene mutations. Spontaneous and FAS-induced neutrophil apoptosis were significantly increased in patients, and improved only slightly after G-CSF treatment, while neutrophil respiratory burst and neutrophil extracellular traps production remained impaired in patients after G-CSF treatment. Conclusion G-CSF treatment is insufficient for patients with SCN4 patients, who remain at risk of infection. Where possible, regular G-CSF treatment, long-term prevention of infection, are the optimal methods for cure of SCN4 patients. It is important to monitor closely for signs of leukemia in SCN4 patients. Once leukemia occurs in SCN4 patients, hematopoietic stem cell transplantation is the most important choice of treatment.
Collapse
Affiliation(s)
- Rongxin Dai
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ge Lv
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Li
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Chen
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Liu
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhirui Tian
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Yan
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yating Wang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Ding
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Comprehensive multi-omics analysis of G6PC3 deficiency-related congenital neutropenia with inflammatory bowel disease. iScience 2021; 24:102214. [PMID: 33748703 PMCID: PMC7960940 DOI: 10.1016/j.isci.2021.102214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/29/2020] [Accepted: 02/17/2021] [Indexed: 11/26/2022] Open
Abstract
Autosomal recessive mutations in G6PC3 cause isolated and syndromic congenital neutropenia which includes congenital heart disease and atypical inflammatory bowel disease (IBD). In a highly consanguineous pedigree with novel mutations in G6PC3 and MPL, we performed comprehensive multi-omics analyses. Structural analysis of variant G6PC3 and MPL proteins suggests a damaging effect. A distinct molecular cytokine profile (cytokinome) in the affected proband with IBD was detected. Liquid chromatography-mass spectrometry-based proteomics analysis of the G6PC3-deficient plasma samples identified 460 distinct proteins including 75 upregulated and 73 downregulated proteins. Specifically, the transcription factor GATA4 and LST1 were downregulated while platelet factor 4 (PF4) was upregulated. GATA4 and PF4 have been linked to congenital heart disease and IBD respectively, while LST1 may have perturbed a variety of essential cell functions as it is required for normal cell-cell communication. Together, these studies provide potentially novel insights into the pathogenesis of syndromic congenital G6PC3 deficiency. Multi-omics approaches identify unique signatures Whole-exome sequencing reveals distinct cytokine profiles Expression of GATA4, PF4, and LST1 is dysregulated
Collapse
|
22
|
Metabolic abnormalities in G6PC3-deficient human neutrophils result in severe functional defects. Blood Adv 2020; 4:5888-5901. [PMID: 33259599 DOI: 10.1182/bloodadvances.2020002225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022] Open
Abstract
Severe congenital neutropenia type 4 (SCN-4) is an autosomal recessive condition in which mutations in the G6PC3 gene encoding for the catalytic 3 subunit of glucose-6-phosphatase-β result in neutropenia, neutrophil dysfunction, and other syndromic features. We report a child with SCN-4 caused by compound heterozygous mutations in G6PC3, a previously identified missense mutation in exon 6 (c.758G>A[p.R235H]), and a novel missense mutation in exon 2 (c.325G>A[p.G109S]). The patient had recurrent bacterial infections, inflammatory bowel disease, neutropenia, and intermittent thrombocytopenia. Administration of granulocyte colony-stimulating factor (G-CSF) resolved the neutropenia and allowed for detailed evaluation of human neutrophil function. Random and directed migration by the patient's neutrophils was severely diminished. Associated with this were defects in CD11b expression and F-actin assembly. Bactericidal activity at bacteria/neutrophil ratios >1:1 was also diminished and was associated with attenuated ingestion. Superoxide anion generation was <25% of control values, but phox proteins appeared quantitatively normal. Extensive metabolomics analysis at steady state and upon incubation with stable isotope-labeled tracers (U-13C-glucose, 13C,15N-glutamine, and U-13C-fructose) demonstrated dramatic impairments in early glycolysis (hexose phosphate levels), hexosemonophosphate shunt (required for the generation of the NADPH), and the total adenylate pool, which could explain the dramatic cell dysfunction displayed by the patient's neutrophils. Preliminary experiments with fructose supplementation to bypass the enzyme block demonstrated that the metabolic profile could be reversed, but was not sustained long enough for functional improvement. In human deficiency of G6PC3, metabolic defects resulting from the enzyme deficiency account for diverse neutrophil functional defects and present a major risk of infection.
Collapse
|
23
|
Goenka A, Doherty JA, Al-Farsi T, Jagger C, Banka S, Cheesman E, Fagbemi A, Hughes SM, Wynn RF, Hussell T, Arkwright PD. Neutrophil dysfunction triggers inflammatory bowel disease in G6PC3 deficiency. J Leukoc Biol 2020; 109:1147-1154. [PMID: 32930428 DOI: 10.1002/jlb.5ab1219-699rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/06/2022] Open
Abstract
The glucose-6-phosphatase catalytic subunit 3 (G6PC3) encodes a ubiquitously expressed enzyme that regulates cytoplasmic glucose availability. Loss-of-function biallelic G6PC3 mutations cause severe congenital neutropenia and a diverse spectrum of extra-hematological manifestations, among which inflammatory bowel disease (IBD) has been anecdotally reported. Neutrophil function and clinical response to granulocyte colony-stimulating factor (G-CSF) and hematopoietic stem cell transplantation (HSCT) were investigated in 4 children with G6PC3 deficiency-associated IBD. G6PC3 deficiency was associated with early-onset IBD refractory to treatment with steroids and infliximab. The symptoms of IBD progressed despite G-CSF treatment. In vitro studies on the patients' blood showed that neutrophils displayed higher levels of activation markers (CD11b, CD66b, and CD14), excessive IL-8 and reactive oxygen species, and increased apoptosis and secondary necrosis. Secondary necrosis was exaggerated after stimulation with Escherichia coli and could be partially rescued with supplemental exogenous glucose. HSCT led to normalization of neutrophil function and remission of gastrointestinal symptoms. We conclude that neutrophils in G6PC3 deficiency release pro-inflammatory mediators when exposed to gut bacteria, associated with intestinal inflammation, despite treatment with G-CSF. HSCT is an effective therapeutic option in patients with G6PC3 deficiency-associated IBD refractory to immune suppressants.
Collapse
Affiliation(s)
- Anu Goenka
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John A Doherty
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Tariq Al-Farsi
- Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| | - Christopher Jagger
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Edmund Cheesman
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew Fagbemi
- Department of Paediatric Gastroenterology, Royal Manchester Children's Hospital, Manchester, UK
| | - Stephen M Hughes
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| | - Robert F Wynn
- Department of Paediatric Haematology Royal Manchester Children's Hospital, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| |
Collapse
|
24
|
Dienel GA. Hypothesis: A Novel Neuroprotective Role for Glucose-6-phosphatase (G6PC3) in Brain-To Maintain Energy-Dependent Functions Including Cognitive Processes. Neurochem Res 2020; 45:2529-2552. [PMID: 32815045 DOI: 10.1007/s11064-020-03113-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The isoform of glucose-6-phosphatase in liver, G6PC1, has a major role in whole-body glucose homeostasis, whereas G6PC3 is widely distributed among organs but has poorly-understood functions. A recent, elegant analysis of neutrophil dysfunction in G6PC3-deficient patients revealed G6PC3 is a neutrophil metabolite repair enzyme that hydrolyzes 1,5-anhydroglucitol-6-phosphate, a toxic metabolite derived from a glucose analog present in food. These patients exhibit a spectrum of phenotypic characteristics and some have learning disabilities, revealing a potential linkage between cognitive processes and G6PC3 activity. Previously-debated and discounted functions for brain G6PC3 include causing an ATP-consuming futile cycle that interferes with metabolic brain imaging assays and a nutritional role involving astrocyte-neuron glucose-lactate trafficking. Detailed analysis of the anhydroglucitol literature reveals that it competes with glucose for transport into brain, is present in human cerebrospinal fluid, and is phosphorylated by hexokinase. Anhydroglucitol-6-phosphate is present in rodent brain and other organs where its accumulation can inhibit hexokinase by competition with ATP. Calculated hexokinase inhibition indicates that energetics of brain and erythrocytes would be more adversely affected by anhydroglucitol-6-phosphate accumulation than heart. These findings strongly support the paradigm-shifting hypothesis that brain G6PC3 removes a toxic metabolite, thereby maintaining brain glucose metabolism- and ATP-dependent functions, including cognitive processes.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Mail Slot 500, Little Rock, AR, 72205, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
25
|
Cetinkaya PG, Cagdas D, Arikoglu T, Gumruk F, Tezcan I. Three patients with glucose-6 phosphatase catalytic subunit 3 deficiency. J Pediatr Endocrinol Metab 2020; 33:957-961. [PMID: 32623377 DOI: 10.1515/jpem-2019-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/26/2020] [Indexed: 11/15/2022]
Abstract
Objectives Severe congenital neutropenia (SCN) is a primary immunodeficiency (PID) characterized by persistent severe neutropenia, recurrent infections, and oral aphthous lesions. Severe congenital neutropenia is caused by various genetic defects such as ELANE, GFI, HAX-1, JAGN1, SRP54, and glucose-6 phosphatase catalytic subunit 3 (G6PC3) deficiency. Clinical features of the patients with G6PC3 deficiency vary from neutropenia to several systemic features in addition to developmental delay. Case presentation In this report, we presented three unrelated patients diagnosed with G6PC3 deficiency. All these patients had short stature, prominent and superficial vascular tissue, cardiac abnormalities (Atrial septal defect (secondary), mitral valve prolapse with mitral insufficiency, pulmonary hypertension) and lymphopenia. Patient 1 (P1) and 2 (P2) had urogenital abnormalities, P2 and P3 had thrombocytopenia. Conclusions We have shown that lymphopenia and CD4 lymphopenia do not rarely accompany to G6PC3 deficiency. Characteristic facial appearance, systemic manifestions, neutropenia could be the clues for the diagnosis of G6PC3 deficiency.
Collapse
Affiliation(s)
- Pınar Gur Cetinkaya
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tugba Arikoglu
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Fatma Gumruk
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
26
|
Rahmani F, Rayzan E, Rahmani MR, Shahkarami S, Zoghi S, Rezaei A, Aryan Z, Najafi M, Rohlfs M, Jeske T, Aflatoonian M, Chavoshzadeh Z, Farahmand F, Motamed F, Rohani P, Alimadadi H, Mahdaviani A, Mansouri M, Tavakol M, Vanderberg M, Kotlarz D, Klein C, Rezaei N. Clinical and Mutation Description of the First Iranian Cohort of Infantile Inflammatory Bowel Disease: The Iranian Primary Immunodeficiency Registry (IPIDR). Immunol Invest 2020; 50:445-459. [PMID: 32633164 DOI: 10.1080/08820139.2020.1776725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We describe a cohort of 25 Iranian patients with infantile inflammatory bowel disease (IBD), 14 (56%) of whom had monogenic defects. After proper screening, patients were referred for whole exome sequencing (WES). Four patients had missense mutations in the IL10 RA, and one had a large deletion in the IL10 RB. Four patients had mutations in genes implicated in host:microbiome homeostasis, including TTC7A deficiency, and two patients with novel mutations in the TTC37 and NOX1. We found a novel homozygous mutation in the SRP54 in a deceased patient and the heterozygous variant in his sibling with a milder phenotype. Three patients had combined immunodeficiency: one with ZAP-70 deficiency (T+B+NK-), and two with atypical SCID due to mutations in RAG1 and LIG4. One patient had a G6PC3 mutation without neutropenia. Eleven of the 14 patients with monogenic defects were results of consanguinity and only 4 of them were alive to this date.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA.,Student's Scientific Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics' Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology & Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh Shahkarami
- Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Arezoo Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Aryan
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Najafi
- Department of Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Meino Rohlfs
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Tim Jeske
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Majid Aflatoonian
- Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infectious Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farahmand
- Department of Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Motamed
- Department of Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Alimadadi
- Department of Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mahdaviani
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mansouri
- Immunology and Allergy Department, Mofid Children Hospital, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Tavakol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mirjam Vanderberg
- Laboratory for Immunology, Dept. Of Pediatrics, Leiden University Medical Center, Netherlands
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
27
|
Abstract
There are now 354 inborn errors of immunity (primary immunodeficiency diseases (PIDDs)) with 344 distinct molecular etiologies reported according to the International Union of Immunological Sciences (IUIS) (Clin Gastroenterol Hepatol 11: p. 1050-63, 2013, Semin Gastrointest Dis 8: p. 22-32, 1997, J Clin Immunol 38: p. 96-128, 2018). Using the IUIS document as a reference and cross-checking PubMed ( www.ncbi.nlm.nih.pubmed.gov ), we found that approximately one third of the 354 diseases of impaired immunity have a gastrointestinal component [J Clin Immunol 38: p. 96-128, 2018]. Often, the gastrointestinal symptomatology and pathology is the heralding sign of a PIDD; therefore, it is important to recognize patterns of disease which may manifest along the gastrointestinal tract as a more global derangement of immune function. As such, holistic consideration of immunity is warranted in patients with clinically significant gastrointestinal disease. Here, we discuss the manifold presentations and GI-specific complications of PIDDs which could lead patients to seek advice from a variety of clinician specialists. Often, patients with these medical problems will engage general pediatricians, surgeons, gastroenterologists, rheumatologists, and clinical immunologists among others. Following delineation of the presenting concern, accurate and often molecular diagnosis is imperative and a multi-disciplinary approach warranted for optimal management. In this review, we will summarize the current state of understanding of PIDD gastrointestinal disease involvement. We will do so by focusing upon gastrointestinal disease categories (i.e., inflammatory, diarrhea, nodular lymphoid hyperplasia, liver/biliary tract, structural disease, and oncologic disease) with an intent to aid the healthcare provider who may encounter a patient with an as-yet undiagnosed PIDD who presents initially with a gastrointestinal symptom, sign, or problem.
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The development of a myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) in patients with congenital neutropenia is now the major cause of mortality. Treatment options are limited and there are no effective prevention strategies. This review focuses on mechanisms of leukemic transformation in severe congenital neutropenia (SCN) and Shwachman-Diamond syndrome (SDS), the two most common types of congenital neutropenia. RECENT FINDINGS AML/MDS that develops in the setting of congenital neutropenia has distinct molecular features. Clonal hematopoiesis because of TP53 mutations is seen in nearly 50% of patients with SDS, but is not seen in patients with SCN. Accordingly, there is a very high frequency of TP53 mutations in AML/MDS arising in the setting of SDS but not SCN. The rate of mutation accumulation in hematopoietic stem cells (HSCs) from patients with congenital neutropenia is not increased. SUMMARY Both HSC cell-intrinsic and noncell-intrinsic changes contribute to the development of clonal hematopoiesis in congenital neutropenia and likely accounts for the high rate of leukemic transformation. In SCN, the persistently high levels of granulocyte colony-stimulating factor drive expansion of HSCs carrying truncation mutations of CSF3R. In SDS, impaired ribosome biogenesis induces p53-mediated growth inhibition and drives expansion of HSCs carrying TP53 mutations.
Collapse
|
29
|
Rotulo GA, Beaupain B, Rialland F, Paillard C, Nachit O, Galambrun C, Gandemer V, Bertrand Y, Neven B, Dore E, Moshous D, Filhon B, Aladjdi N, Sicre de Fontbrune F, de la Tour RP, Ouachee M, Bellanne-Chantelot C, Dalle JH, Donadieu J. HSCT may lower leukemia risk in ELANE neutropenia: a before-after study from the French Severe Congenital Neutropenia Registry. Bone Marrow Transplant 2020; 55:1614-1622. [PMID: 31992846 PMCID: PMC7091645 DOI: 10.1038/s41409-020-0800-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/28/2019] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
Abstract
ELANE neutropenia is associated with myelodysplasia and acute leukemia (MDS–AL), and severe infections. Because the MDS–AL risk has also been shown to be associated with exposure to GCSF, since 2005, in France, patients receiving high daily GCSF doses (>15 μg/kg/day) are eligible for HSCT, in addition to classic indications (MDS–AL or GCSF refractoriness). We analyzed the effect of this policy. Among 144 prospectively followed ELANE-neutropenia patients enrolled in the French Severe Congenital Neutropenia Registry, we defined two groups according to period: “before 2005” for those born before 2005 and followed until 31/12/2004 (1588 person-years); and “after 2005” comprised of those born after 2005 or born before 2005 but followed after 2005 until 31/03/2019 (1327 person-years). Sixteen of our cohort patients underwent HSCT (14 long-term survivors) and six developed MDS–ALs. Six leukemic transformations occurred in the before-2005 group and none after 2005 (respective frequencies 3.8 × 10–3 vs. 0; P < 0.01), while four HSCTs were done before 2005 and 12 since 2005 (respective HSCT rates increased 2.5 × 10–3 vs. 9 × 10–3; P < 0.01). Our results support early HSCT for patients with ELANE mutations who received high GCSF doses, as it might lower the risk of leukemic transformation.
Collapse
Affiliation(s)
- Gioacchino Andrea Rotulo
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Hôpital Trousseau, APHP, Paris, F-75012, France.,IRCCS Giannina Gaslini and Università degli Studi di Genova, Genoa, Italy
| | - Blandine Beaupain
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Hôpital Trousseau, APHP, Paris, F-75012, France
| | | | | | - Ouahiba Nachit
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Hôpital Trousseau, APHP, Paris, F-75012, France
| | | | - Virginie Gandemer
- Department of Pediatric Hematology/Oncology, University Hospital of Rennes, Rennes, France
| | - Yves Bertrand
- Institut d'Hémato-Oncologie Pédiatrie IHOPE, Lyon, France
| | - Benedicte Neven
- Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Dore
- CHU Clermont-Ferrand, Centre Régional de Cancérologie et Thérapie Cellulaire Pédiatrique, Clermont-Ferrand, France
| | - Despina Moshous
- Unité d'Immunologie Hématologie Pédiatrique, Necker Children's Hospital, Paris, France
| | - Bruno Filhon
- Départment de Pédiatrie, Hémato-Oncologie, CHU de Bordeaux, Bordeaux, France
| | - Nathalie Aladjdi
- Départment de Pédiatrie, Hémato-Oncologie, CHU de Rouen, Rouen, France
| | - Flore Sicre de Fontbrune
- Department d'Hématologie, Service de Transplantation Médullaire, Hôpital Saint-Louis, Paris, France
| | | | - Marie Ouachee
- Institut d'Hémato-Oncologie Pédiatrie IHOPE, Lyon, France
| | | | - Jean-Hugues Dalle
- Pediatric Hematology Department, Robert-Debré Hospital, Paris, France
| | - Jean Donadieu
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Hôpital Trousseau, APHP, Paris, F-75012, France.
| |
Collapse
|
30
|
Dale DC, Bolyard AA, Steele LA, Zeidler C, Welte K, Severe Chronic Neutropenia International Registry. Registries for study of nonmalignant hematological diseases: the example of the Severe Chronic Neutropenia International Registry. Curr Opin Hematol 2020; 27:18-26. [PMID: 31764167 PMCID: PMC7236759 DOI: 10.1097/moh.0000000000000558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Registries provide 'real world' perspectives on the natural history and outcomes for many clinical conditions. The purpose of this review is to identify registries for nonmalignant hematological disease and to describe the operation of a successful long-term registry for patients with severe chronic neutropenia. RECENT FINDINGS There was an upswing in registries about 20 years ago, based on optimism about their utility to improve patient care. To show value, registries must define outcomes for populations of patients with specific medical conditions and the effects of treatment. This is challenging for many reasons. The Severe Chronic Neutropenia International Registry is an example of a successful registry. This report describes underlying reasons for its success. SUMMARY Registries are important to organize and analyze clinical information across geographic, ethnic and social boundaries. They are also challenging to organize, administer and support.
Collapse
Affiliation(s)
- David C. Dale
- University of Washington, Department of Medicine, Seattle, WA
| | - Audrey Anna Bolyard
- University of Washington, Severe Chronic Neutropenia International Registry, Seattle, WA
| | | | - Cornelia Zeidler
- Hannover Medical School, Department of Molecular Hematopoiesis, Hannover, Germany
| | - Karl Welte
- University Hospital Tübingen, Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Tübingen, Germany
| | | |
Collapse
|
31
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
32
|
Bolton C, Burch N, Morgan J, Harrison B, Pandey S, Pagnamenta AT, Taylor JC, Taylor JM, Marsh JCW, Potter V, Travis S, Uhlig HH. Remission of Inflammatory Bowel Disease in Glucose-6-Phosphatase 3 Deficiency by Allogeneic Haematopoietic Stem Cell Transplantation. J Crohns Colitis 2020; 14:142-147. [PMID: 31157858 PMCID: PMC6930000 DOI: 10.1093/ecco-jcc/jjz112] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mendelian disorders in glucose-6-phosphate metabolism can present with inflammatory bowel disease [IBD]. Using whole genome sequencing we identified a homozygous variant in the glucose-6-phosphatase G6PC3 gene [c.911dupC; p.Q305fs*82] in an adult patient with congenital neutropenia, lymphopenia and childhood-onset, therapy-refractory Crohn's disease. Because G6PC3 is expressed in several haematopoietic and non-haematopoietic cells it was unclear whether allogeneic stem cell transplantation [HSCT] would benefit this patient with intestinal inflammation. We show that HSCT resolves G6PC3-associated immunodeficiency and the Crohn's disease phenotype. It illustrates how even in adulthood, next-generation sequencing can have a significant impact on clinical practice and healthcare utilization in patients with immunodeficiency and monogenic IBD.
Collapse
Affiliation(s)
- Chrissy Bolton
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicola Burch
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - James Morgan
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Beth Harrison
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - John M Taylor
- Oxford NIHR Biomedical Research Centre, Oxford, UK
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Judith C W Marsh
- Department of Haematological Medicine, King’s College Hospital/King’s College London, London, UK
| | - Victoria Potter
- Department of Haematological Medicine, King’s College Hospital/King’s College London, London, UK
| | - Simon Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
33
|
Yılmaz Karapınar D, Patıroğlu T, Metin A, Çalışkan Ü, Celkan T, Yılmaz B, Karakaş Z, Karapınar TH, Akıncı B, Özkınay F, Onay H, Yeşilipek MA, Akar HH, Tüysüz G, Tokgöz H, Özdemir GN, Aslan Kıykım A, Karaman S, Kılınç Y, Oymak Y, Küpesiz A, Olcay L, Keskin Yıldırım Z, Aydoğan G, Gökçe M, İleri T, Aral YZ, Bay A, Atabay B, Kaya Z, Söker M, Özdemir Karadaş N, Özbek U, Özsait Selçuk B, Özdemir HH, Uygun V, Tezcan Karasu G, Yılmaz Ş. Homozygous c.130-131 ins A (pW44X) mutation in the HAX1 gene as the most common cause of congenital neutropenia in Turkey: Report from the Turkish Severe Congenital Neutropenia Registry. Pediatr Blood Cancer 2019; 66:e27923. [PMID: 31321910 DOI: 10.1002/pbc.27923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Severe congenital neutropenia is a rare disease, and autosomal dominantly inherited ELANE mutation is the most frequently observed genetic defect in the registries from North America and Western Europe. However, in eastern countries where consanguineous marriages are common, autosomal recessive forms might be more frequent. METHOD Two hundred and sixteen patients with severe congenital neutropenia from 28 different pediatric centers in Turkey were registered. RESULTS The most frequently observed mutation was HAX1 mutation (n = 78, 36.1%). A heterozygous ELANE mutation was detected in 29 patients (13.4%) in our cohort. Biallelic mutations of G6PC3 (n = 9, 4.3%), CSF3R (n = 6, 2.9%), and JAGN1 (n = 2, 1%) were also observed. Granulocyte colony-stimulating factor treatment was given to 174 patients (80.6%). Two patients died with infectious complications, and five patients developed myelodysplastic syndrome/acute myeloblastic leukemia. The mean (± mean standard error) follow-up period was 129.7 ± 76.3 months, and overall survival was 96.8% (CI, 94.4-99.1%) at the age of 15 years. In Turkey, severe congenital neutropenia mostly resulted from the p W44X mutation in the HAX1 gene. CONCLUSION In Turkey, mutation analysis should be started with HAX1, and if this is negative, ELANE and G6PC3 should be checked. Because of the very high percentage of consanguineous marriage, rare mutations should be tested in patients with a negative mutation screen.
Collapse
Affiliation(s)
| | - Türkan Patıroğlu
- Department of Pediatric Immunology, Erciyes University Faculty of Medicine, İzmir, Turkey
| | - Ayşe Metin
- Department of Pediatric Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Ümran Çalışkan
- Department of Pediatric Hematology-Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Tiraje Celkan
- Department of Pediatric Hematology, Cerrahpaşa Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Barış Yılmaz
- Department of Pediatric Hematology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Zeynep Karakaş
- Department of Pediatric Hematology-Oncology, İstanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Tuba H Karapınar
- Department of Pediatric Hematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, İzmir, Turkey
| | - Burcu Akıncı
- Department of Pediatric Hematology, Ege University Faculty of Medicine, İzmir, Turkey
| | - Ferda Özkınay
- Department of Pediatric Genetic, Ege University Faculty of Medicine, İzmir, Turkey
| | - Hüseyin Onay
- Department of Medical Genetic, Ege University Faculty of Medicine, İzmir, Turkey
| | - Mehmet Akif Yeşilipek
- Pediatric Bone Marrow Transplantation Unit, Medical Park Göztepe Hospital, Istanbul, Turkey
| | - Himmet Haluk Akar
- Department of Pediatric Immunology, Erciyes University Faculty of Medicine, İzmir, Turkey
| | - Gülen Tüysüz
- Department of Pediatric Hematology, Akdeniz University Medical School, Antalya, Turkey
| | - Hüseyin Tokgöz
- Department of Pediatric Hematology-Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Gül Nihal Özdemir
- Department of Pediatric Hematology, Cerrahpaşa Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Ayça Aslan Kıykım
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Serap Karaman
- Department of Pediatric Hematology-Oncology, İstanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Yurdanur Kılınç
- Department of Pediatric Hematology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Yeşim Oymak
- Department of Pediatric Hematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, İzmir, Turkey
| | - Alphan Küpesiz
- Department of Pediatric Hematology, Akdeniz University Medical School, Antalya, Turkey
| | - Lale Olcay
- Department of Pediatric Hematology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Zuhal Keskin Yıldırım
- Department of Pediatric Hematology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Gönül Aydoğan
- Department of Pediatric Hematology, Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Müge Gökçe
- Department of Pediatric Bone marrow Transplantation Unit, Yeni Yüzyıl Üniversitesi, Gaziosmanpaşa Hastanesi, Istanbul, Turkey
| | - Talia İleri
- Department of Pediatric Hematology, Ankara University Medical Faculty, Ankara, Turkey
| | - Yusuf Ziya Aral
- Department of Pediatric Hematology, Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - Ali Bay
- Department of Pediatric Hematology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Berna Atabay
- Department of Pediatric Hematology, Tepecik Teaching and Research Hospital, İzmir, Turkey
| | - Zuhre Kaya
- Department of Pediatric Hematology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Murat Söker
- Department of Pediatric Hematology, Dicle University Faculty of Medicine, Diyarbakır, Turkey
| | | | - Uğur Özbek
- Department of Genetics, İstanbul University Faculty of Medicine, Istanbul, Turkey
| | - Bilge Özsait Selçuk
- Department of Genetics, İstanbul University Faculty of Medicine, Istanbul, Turkey
| | - Hamiyet Hekimci Özdemir
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Vedat Uygun
- Pediatric Bone Marrow Transplantation Unit, Medical Park Antalya Hospital, Antalya, Turkey
| | - Gülsün Tezcan Karasu
- Pediatric Bone Marrow Transplantation Unit, Medical Park Antalya Hospital, Antalya, Turkey
| | - Şebnem Yılmaz
- Department of Pediatric Hematology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
34
|
Giacaman A, Salinas Sanz JA, Navarro Noguera S, Díaz de Heredia Rubio C, Martín-Santiago A. Prominent venous circulation and thick lips in an 8-year-old boy with congenital neutropenia. Pediatr Dermatol 2019; 36:e69-e70. [PMID: 31099923 DOI: 10.1111/pde.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Aniza Giacaman
- Dermatology Department, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - José Antonio Salinas Sanz
- Pediatric Hematology and Oncology Department, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Samuel Navarro Noguera
- Pediatric Hematology and Oncology Department, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | | | - Ana Martín-Santiago
- Dermatology Department, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| |
Collapse
|
35
|
Walkovich K, Connelly JA. Congenital Neutropenia and Rare Functional Phagocyte Disorders in Children. Hematol Oncol Clin North Am 2019; 33:533-551. [PMID: 31030818 DOI: 10.1016/j.hoc.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Both profound neutropenia and functional phagocyte disorders render patients susceptible to recurrent, unusual, and/or life-threatening infections. Many disorders also have nonhematologic manifestations and a substantial risk of leukemogenesis. Diagnosis relies on clinical suspicion and interrogation of the complete blood count with differential/bone marrow examination coupled with immunologic and genetic analyses. Treatment of the quantitative neutrophil disorders depends on granulocyte colony-stimulating factor, whereas management of functional phagocyte disease is reliant on antimicrobials and/or targeted therapies. Hematopoietic stem cell transplant remains the only curative option for most disorders but is not used on a routine basis.
Collapse
Affiliation(s)
- Kelly Walkovich
- Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, 1500 E. Medical Center Drive, D4202 Medical Professional Building, SPC 5718, Ann Arbor, MI 48109-5718, USA.
| | - James A Connelly
- Pediatric Hematopoietic Stem Cell Transplant, Department of Pediatrics, Vanderbilt University Medical Center, 2220 Pierce Avenue, 397 PRB, Nashville, TN 37232-6310, USA
| |
Collapse
|
36
|
Furutani E, Newburger PE, Shimamura A. Neutropenia in the age of genetic testing: Advances and challenges. Am J Hematol 2019; 94:384-393. [PMID: 30536760 DOI: 10.1002/ajh.25374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
Identification of genetic causes of neutropenia informs precision medicine approaches to medical management and treatment. Accurate diagnosis of genetic neutropenia disorders informs treatment options, enables risk stratification, cancer surveillance, and attention to associated medical complications. The rapidly expanding genetic testing options for the evaluation of neutropenia have led to exciting advances but also new challenges. This review provides a practical guide to germline genetic testing for neutropenia.
Collapse
Affiliation(s)
- Elissa Furutani
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
| | - Peter E. Newburger
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
- Department of PediatricsUniversity of Massachusetts Medical School Worcester MA
| | - Akiko Shimamura
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
| |
Collapse
|
37
|
Bakhtiar S, Shadur B, Stepensky P. The Evidence for Allogeneic Hematopoietic Stem Cell Transplantation for Congenital Neutrophil Disorders: A Comprehensive Review by the Inborn Errors Working Party Group of the EBMT. Front Pediatr 2019; 7:436. [PMID: 31709206 PMCID: PMC6821686 DOI: 10.3389/fped.2019.00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
Congenital disorders of the immune system affecting maturation and/or function of phagocytic leucocytes can result in severe infectious and inflammatory complications with high mortality and morbidity. Further complications include progression to MDS/AML in some cases. Allogeneic stem cell transplantation is the only curative treatment for most patients with these diseases. In this review, we provide a detailed update on indications and outcomes of alloHSCT for congenital neutrophil disorders, based on data from the available literature.
Collapse
Affiliation(s)
- Shahrzad Bakhtiar
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Bella Shadur
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel.,Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Graduate Research School, University of New South Wales, Kensington, NSW, Australia
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
38
|
Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol 2019; 133:149-162. [DOI: 10.1016/j.critrevonc.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
|
39
|
Müller MS, Fouyssac M, Taylor CW. Effective Glucose Uptake by Human Astrocytes Requires Its Sequestration in the Endoplasmic Reticulum by Glucose-6-Phosphatase-β. Curr Biol 2018; 28:3481-3486.e4. [PMID: 30415704 PMCID: PMC6224479 DOI: 10.1016/j.cub.2018.08.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
After its uptake into the cytosol, intracellular glucose is phosphorylated to glucose-6-phosphate (G6P), trapping it within the cell and preparing it for metabolism. In glucose-exporting tissues, like liver, G6P is transported into the ER, where it is dephosphorylated by G6Pase-α. The glucose is then returned to the cytosol for export [1, 2]. Defects in these pathways cause glycogen storage diseases [1]. G6Pase-β, an isozyme of G6Pase-α, is widely expressed [3, 4]. Its role in cells that do not export glucose is unclear, although mutations in G6Pase-β cause severe and widespread abnormalities [5, 6, 7]. Astrocytes, the most abundant cells in the brain, provide metabolic support to neurons, facilitated by astrocytic endfeet that contact blood capillaries or neurons [8, 9, 10, 11, 12]. Perivascular endfeet are the main site of glucose uptake by astrocytes [13], but in human brain they may be several millimeters away from the perineuronal processes [14]. We show that cultured human fetal astrocytes express G6Pase-β, but not G6Pase-α. ER-targeted glucose sensors [15, 16] reveal that G6Pase-β allows the ER of human astrocytes to accumulate glucose by importing G6P from the cytosol. Glucose uptake by astrocytes, ATP production, and Ca2+ accumulation by the ER are attenuated after knockdown of G6Pase-β using lentivirus-delivered shRNA and substantially rescued by expression of G6Pase-α. We suggest that G6Pase-β activity allows effective uptake of glucose by astrocytes, and we speculate that it allows the ER to function as an intracellular “highway” delivering glucose from perivascular endfeet to the perisynaptic processes. Glucose-6-phosphatase-β (G6Pase-β) is expressed in human astrocytes G6P is sequestered by ER and dephosphorylated to glucose in the lumen by G6Pase-β Loss of G6Pase-β reduces glucose uptake, intracellular ATP, and ER Ca2+ content ER may provide a protected highway for long-range glucose transport in astrocytes
Collapse
Affiliation(s)
- Margit S Müller
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| |
Collapse
|
40
|
Corey SJ, Oyarbide U. New monogenic disorders identify more pathways to neutropenia: from the clinic to next-generation sequencing. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:172-180. [PMID: 29222253 PMCID: PMC5912212 DOI: 10.1182/asheducation-2017.1.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neutrophils are the most common type of leukocyte in human circulating blood and constitute one of the chief mediators for innate immunity. Defined as a reduction from a normal distribution of values, neutropenia results from a number of congenital and acquired conditions. Neutropenia may be insignificant, temporary, or associated with a chronic condition with or without a vulnerability to life-threatening infections. As an inherited bone marrow failure syndrome, neutropenia may be associated with transformation to myeloid malignancy. Recognition of an inherited bone marrow failure syndrome may be delayed into adulthood. The list of monogenic neutropenia disorders is growing, heterogeneous, and bewildering. Furthermore, greater knowledge of immune-mediated and drug-related causes makes the diagnosis and management of neutropenia challenging. Recognition of syndromic presentations and especially the introduction of next-generation sequencing are improving the accuracy and expediency of diagnosis as well as their clinical management. Furthermore, identification of monogenic neutropenia disorders is shedding light on the molecular mechanisms of granulopoiesis and myeloid malignancies.
Collapse
Affiliation(s)
- Seth J Corey
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Usua Oyarbide
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
41
|
Mistry A, Scambler T, Parry D, Wood M, Barcenas-Morales G, Carter C, Doffinger R, Savic S. Glucose-6-Phosphatase Catalytic Subunit 3 ( G6PC3) Deficiency Associated With Autoinflammatory Complications. Front Immunol 2017; 8:1485. [PMID: 29163546 PMCID: PMC5681747 DOI: 10.3389/fimmu.2017.01485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023] Open
Abstract
G6PC3 deficiency typically causes severe congenital neutropenia, associated with susceptibility to infections, cardiac and urogenital abnormalities. However, here we describe two boys of Pakistani origin who were found to have G6PC3 deficiency due to c.130 C>T mutation, but who have clinical phenotypes that are typical for a systemic autoinflammatory syndrome. The index case presented with combination of unexplained fevers, severe mucosal ulcers, abdominal symptoms, and inflammatory arthritis. He eventually fully responded to anti-TNF therapy. In this study, we show that compared with healthy controls, neutrophils and monocytes from patients have reduced glycolytic reserve. Considering that healthy myeloid cells have been shown to switch their metabolic pathways to glycolysis in response to inflammatory cues, we studied what impact this might have on production of the inflammatory cytokines. We have demonstrated that patients’ monocytes, in response to lipopolysaccharide, show significantly increased production of IL-1β and IL-18, which is NLRP3 inflammasome dependent. Furthermore, additional whole blood assays have also shown an enhanced production of IL-6 and TNF from the patients’ cells. These cases provide further proof that autoinflammatory complications are also seen within the spectrum of primary immune deficiencies, and resulting from a wider dysregulation of the immune responses.
Collapse
Affiliation(s)
- Anoop Mistry
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Thomas Scambler
- National Institute for Health Research-Leeds Biomedical Research Centre (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), St James's University Hospital, Leeds, United Kingdom
| | - David Parry
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Wood
- Department of Paediatrics Rheumatology, Leeds General Infirmary, Leeds, United Kingdom
| | - Gabriela Barcenas-Morales
- Laboratorio de Inmunologia, FES-Cuautitlan, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clive Carter
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom.,National Institute for Health Research-Leeds Biomedical Research Centre (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
42
|
Klimiankou M, Mellor-Heineke S, Zeidler C, Welte K, Skokowa J. Role of CSF3R mutations in the pathomechanism of congenital neutropenia and secondary acute myeloid leukemia. Ann N Y Acad Sci 2017; 1370:119-25. [PMID: 27270496 DOI: 10.1111/nyas.13097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acquired mutations in the intracellular part of CSF3R (colony stimulating factor 3 receptor, granulocyte) have been detected with a frequency of more than 30% in severe congenital neutropenia (CN) patients. CN is a preleukemic syndrome with a risk of approximately 20% to develop leukemia. More than 80% of CN patients who develop acute myeloid leukemia or myelodysplastic syndrome reveal CSF3R mutations, suggesting that they are involved in leukemogenesis. Using deep-sequencing technology, we were able to analyze large cohorts of CN patients for the entire CSF3R sequence as well as to identify cell clones carrying mutations in the intracellular part of CSF3R with very high sensitivity. Acquisition of CSF3R mutations is a CN-specific phenomenon and is associated with inherited mutations causing CN or cyclic neutropenia, such as ELANE mutations. In the group of CN patients negative for known germ-line mutations, biallelic CSF3R mutations were identified. In addition, CSF3R mutant clones are highly dynamic and may disappear and reappear during continuous granulocyte colony-stimulating factor (G-CSF) therapy. The time between the first detection of CSF3R mutations and overt leukemia is highly variable.
Collapse
Affiliation(s)
- Maksim Klimiankou
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Sabine Mellor-Heineke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Cornelia Zeidler
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Karl Welte
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Tübingen, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Abstract
Neutropenia, usually defined as a blood neutrophil count <1·5 × 109 /l, is a common medical problem for children and adults. There are many causes for neutropenia, and at each stage in life the clinical pattern of causes and consequences differs significantly. I recommend utilizing the age of the child and clinical observations for the preliminary diagnosis and primary management. In premature infants, neutropenia is quite common and contributes to the risk of sepsis with necrotizing enterocolitis. At birth and for the first few months of life, neutropenia is often attributable to isoimmune or alloimmune mechanisms and predisposes to the risk of severe bacterial infections. Thereafter when a child is discovered to have neutropenia, often associated with relatively minor symptoms, it is usually attributed to autoimmune disorder or viral infection. The congenital neutropenia syndromes are usually recognized when there are recurrent infections, the neutropenia is severe and there are congenital anomalies suggesting a genetic disorder. This review focuses on the key clinical finding and laboratory tests for diagnosis with commentaries on treatment, particularly the use of granulocyte colony-stimulating factor to treat childhood neutropenia.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
44
|
Invasive Fungal Infection in Primary Immunodeficiencies Other Than Chronic Granulomatous Disease. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
A Severe Congenital Neutropenia Type 4 Case (G6PC3 Mutation) Presented With Large Platelets in the Peripheral Smear. J Pediatr Hematol Oncol 2016; 38:324-8. [PMID: 26808373 DOI: 10.1097/mph.0000000000000504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Severe congenital neutropenia type 4 is a disorder of the hematopoietic system associated with mutations in the glucose-6-phosphatase catabolic 3 (G6PC3) gene. This disorder is characterized by neutropenia, congenital heart defects, urogenital malformations, and prominent superficial veins. To our knowledge, although intermittent thrombocytopenia is observed in this mutation, the coexistence of large thrombocytes is rarely seen. Here we present a case of severe congenital neutropenia type 4 with G6PC3 mutation and large platelets in the peripheral smear.
Collapse
|
46
|
Abstract
Glucose-6-phosphatase catalytic subunit 3 (G6PC3) deficiency was recently defined as a new severe congenital neutropenia subgroup remarkable with congenital heart defects, urogenital malformations, endocrine abnormalities, and prominent superficial veins. Here, we report 3 patients with G6PC3 deficiency presenting with recurrent diarrhea, failure to thrive, and sinopulmonary infections leading to bronchiectasis. In patient I and II, a combined immune deficiency was suspected due to early-onset disease with lymphopenia, neutropenia, and thrombocytopenia, along with variable reductions in lymphocyte subpopulations and favorable response to intravenous γ-globulin therapy. Apart from neutropenia, all 3 patients had intermittent thrombocytopenia, anemia, and lymphopenia. All patients had failure to thrive and some of the classic syndromic features of G6PC3 deficiency, including cardiac abnormalities and visibility of superficial veins in all, endocrinologic problems in PI and PIII, and urogenital abnormalities in PII. Our experience suggests that a diagnosis of congenital neutropenia due to G6PC3 may not be as straightforward in such patients with combined lymphopenia and thrombocytopenia. A high index of suspicion and the other syndromic features of G6PC3 were clues to diagnosis. Screening of all combined immune deficiencies with neutropenia may help to uncover the whole spectra of G6PC3 deficiency.
Collapse
|