1
|
Rust R, Sagare AP, Zhang M, Zlokovic BV, Kisler K. The blood-brain barrier as a treatment target for neurodegenerative disorders. Expert Opin Drug Deliv 2025; 22:673-692. [PMID: 40096820 DOI: 10.1080/17425247.2025.2480654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/14/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a vascular endothelial membrane which restricts entry of toxins, cells, and microorganisms into the brain. At the same time, the BBB supplies the brain with nutrients, key substrates for DNA and RNA synthesis, and regulatory molecules, and removes metabolic waste products from brain to blood. BBB breakdown and/or dysfunction have been shown in neurogenerative disorders including Alzheimer's disease (AD). Current data suggests that these BBB changes may initiate and/or contribute to neuronal, synaptic, and cognitive dysfunction, and possibly other aspects of neurodegenerative processes. AREAS COVERED We first briefly review recent studies uncovering molecular composition of brain microvasculature and examine the BBB as a possible therapeutic target in neurodegenerative disorders with a focus on AD. Current strategies aimed at protecting and/or restoring altered BBB functions are considered. The relevance of BBB-directed approaches to improve neuronal and synaptic function, and to slow progression of neurodegenerative processes are also discussed. Lastly, we review recent advancements in drug delivery across the BBB. EXPERT OPINION BBB breakdown and/or dysfunction can significantly affect neuronal and synaptic function and neurodegenerative processes. More attention should focus on therapeutics to preserve or restore BBB functions when considering treatments of neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Adebayo G, Ayanda OI, Rottmann M, Ajibaye OS, Oduselu G, Mulindwa J, Ajani OO, Aina O, Mäser P, Adebiyi E. The Importance of Murine Models in Determining In Vivo Pharmacokinetics, Safety, and Efficacy in Antimalarial Drug Discovery. Pharmaceuticals (Basel) 2025; 18:424. [PMID: 40143200 PMCID: PMC11944934 DOI: 10.3390/ph18030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
New chemical entities are constantly being investigated towards antimalarial drug discovery, and they require animal models for toxicity and efficacy testing. Murine models show physiological similarities to humans and are therefore indispensable in the search for novel antimalarial drugs. They provide a preclinical basis (following in vitro assessments of newly identified lead compounds) for further assessment in the drug development pipeline. Specific mouse strains, non-humanized and humanized, have successfully been infected with rodent Plasmodium species and the human Plasmodium species, respectively. Infected mice provide a platform for the assessment of treatment options being sought. In vivo pharmacokinetic evaluations are necessary when determining the fate of potential antimalarials in addition to the efficacy assessment of these chemical entities. This review describes the role of murine models in the drug development pipeline. It also explains some in vivo pharmacokinetic, safety, and efficacy parameters necessary for making appropriate choices of lead compounds in antimalarial drug discovery. Despite the advantages of murine models in antimalarial drug discovery, certain limitations are also highlighted.
Collapse
Affiliation(s)
- Glory Adebayo
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Opeyemi I. Ayanda
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Olusola S. Ajibaye
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Gbolahan Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Julius Mulindwa
- Department of Biochemistry and Sports Science, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Oluwagbemiga Aina
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- African Centre of Excellence in Bioinformatics & Data Intensive Science (ACE), Kampala P.O. Box 7062, Uganda
- Infectious Diseases Institute, Makerere University, Kampala P.O. Box 22418, Uganda
| |
Collapse
|
3
|
Liu C, Chen X, Yang S, Wang X, Sun P, Wang J, Zhu G. Insight into cerebral microvessel endothelial regulation of cognitive impairment: A systematic review of the causes and consequences. Exp Neurol 2025; 385:115116. [PMID: 39675515 DOI: 10.1016/j.expneurol.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Research on cognitive impairment (CI) has increasingly focused on the central nervous system, identifying numerous neuronal targets and circuits of relevance for CI pathogenesis and treatment. Brain microvascular endothelial cells (BMECs) form a barrier between the peripheral and central nervous systems, constituting the primary component of the blood-brain barrier (BBB) and playing a vital role in maintaining neural homeostasis. Stemming from the recognition of the close link between vascular dysfunction and CI, in recent years intense research has been devoted to characterize the pathological changes and molecular mechanisms underlying BMEC dysfunction both during normal aging and in disorders of cognition such as Alzheimer's disease and vascular dementia. In this review, keywords such as "dementia", "cognitive impairment", and "endothelium" were used to search PubMed and Web of Science. Based on the literature thus retrieved, we first review some common triggers of CI, i.e., amyloid beta and tau deposition, chronic cerebral hypoperfusion, hyperglycemia, viral infections, and neuroinflammation, and describe the specific mechanisms responsible for endothelial damage. Second, we review molecular aspects of endothelial damage leading to BBB disruption, neuronal injury, and myelin degeneration, which are crucial events underlying CI. Finally, we summarize the potential targets of endothelial damage in the development of cognitive dysfunction associated with Alzheimer's disease, vascular dementia, type 2 diabetes mellitus, and physiological aging. A thorough understanding of the induction mechanism and potential outcomes of microvascular endothelial damage is of great significance for the study of CI, to guide both diagnostic and therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Chang Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoyu Chen
- Graduate School of Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peiyang Sun
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
4
|
Deng PX, Silva M, Yang N, Wang Q, Meng X, Ye KQ, Gao HC, Zheng WH. Artemisinin inhibits neuronal ferroptosis in Alzheimer's disease models by targeting KEAP1. Acta Pharmacol Sin 2025; 46:326-337. [PMID: 39251858 PMCID: PMC11747332 DOI: 10.1038/s41401-024-01378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Ferroptosis, a form of cell death characterized by lipid peroxidation, is involved in neurodegenerative diseases such as Alzheimer´s disease (AD). Recent studies have shown that a first-line antimalarial drug artemisinin is effective to counteract AD pathology. In this study, we investigated the protective effect of artemisinin against neuronal ferroptosis and the underlying mechanisms. In hippocampal HT22 cells, pretreatment with artemisinin dose-dependently protected against Erastin-induced cell death with an EC50 value of 5.032 µM, comparable to the ferroptosis inhibitor ferrostatin-1 (EC50 = 4.39 µM). We demonstrated that artemisinin (10 μM) significantly increased the nuclear translocation of Nrf2 and upregulated SLC7A11 and GPX4 in HT22 cells. Knockdown of Nrf2, SLC7A11 or GPX4 prevented the protective action of artemisinin, indicating that its anti-ferroptosis effect is mediated by the Nrf2-SLC7A11-GPX4 pathway. Molecular docking and Co-Immunoprecipitation (Co-IP) analysis revealed that artemisinin competitively binds with KEAP1, promoting the dissociation of KEAP1-Nrf2 complex and inhibiting the ubiquitination of Nrf2. Intrahippocampal injection of imidazole-ketone-Erastin (IKE) induced ferroptosis in mice accompanied by cognitive deficits evidenced by lower preference for exploration of new objects and new object locations in the NOR and NOL tests. Artemisinin (5, 10 mg/kg, i.p.) dose-dependently inhibited IKE-induced ferroptosis in hippocampal CA1 region and ameliorated learning and memory impairments. Moreover, we demonstrated that artemisinin reversed Aβ1-42-induced ferroptosis, lipid peroxidation and glutathione depletion in HT22 cells, primary hippocampal neurons, and 3×Tg mice via the KEAP1-Nrf2 pathway. Our results demonstrate that artemisinin is a novel neuronal ferroptosis inhibitor that targets KEAP1 to activate the Nrf2-SLC7A11-GPX4 pathway.
Collapse
Affiliation(s)
- Peng-Xi Deng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Marta Silva
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
| | - Na Yang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Xin Meng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke-Qiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong-Chang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wen-Hua Zheng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China.
| |
Collapse
|
5
|
Pukhov SA, Semakov AV, Pukaeva NE, Kukharskaya OA, Ivanova TV, Kryshkova VS, Bachurin SO, Kukharsky MS. Artemisinin Stimulates Neuronal Cell Viability and Possess a Neuroprotective Effect In Vitro. Molecules 2025; 30:198. [PMID: 39795253 PMCID: PMC11723108 DOI: 10.3390/molecules30010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Artemisinin is a sesquiterpene lactone derived from the plant Artemisia annua L., renowned for its antimalarial activity. Based on this compound, various derivatives and analogues have been obtained that exhibit diverse biological activities, including clinically approved drugs. Recently, increasing evidence has highlighted the neuroprotective potential of artemisinin. In this study, we evaluated the effects of artemisinin on the viability of neuronal-like cells, including primary hippocampal neuronal cultures. Artemisinin exhibited a stimulating effect on SH-SY5Y and HEK-293 cells and enhanced the survival of primary neurons at low concentrations (1 µM). In contrast, artemisinin derivatives, such as dihydroartemisinin, anhydrodihydroartemisinin, and artemisitene, did not display similar stimulatory activity, suggesting that the intact lactone ring is crucial for this property. Furthermore, artemisinin demonstrated a protective effect against endoplasmic reticulum (ER) stress induced by the proteasome inhibitor MG132 in SH-SY5Y cells. However, it did not exhibit protective activity against oxidative stress induced by sodium arsenite. Additionally, artemisinin effectively inhibited the aggregation of mutated TDP-43 protein in transfected SH-SY5Y cells. These findings suggest that artemisinin exerts neuroprotective effects by targeting key molecular pathways associated with neurodegeneration, offering potential therapeutic insights for related conditions.
Collapse
Affiliation(s)
- Sergey A. Pukhov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexey V. Semakov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
| | - Nadezhda E. Pukaeva
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Olga A. Kukharskaya
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Tatyana V. Ivanova
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Viktoriya S. Kryshkova
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
| | - Michail S. Kukharsky
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (S.A.P.); (A.V.S.); (N.E.P.); (O.A.K.); (V.S.K.); (M.S.K.)
- Department of General and Cell Biology, Faculty of Medical Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| |
Collapse
|
6
|
Wang X, Yang J, Zhang X, Cai J, Zhang J, Cai C, Zhuo Y, Fang S, Xu X, Wang H, Liu P, Zhou S, Wang W, Hu Y, Fang J. An endophenotype network strategy uncovers YangXue QingNao Wan suppresses Aβ deposition, improves mitochondrial dysfunction and glucose metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156158. [PMID: 39447228 DOI: 10.1016/j.phymed.2024.156158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), an escalating global health issue, lacks effective treatments due to its complex pathogenesis. YangXue QingNao Wan (YXQNW) is a China Food and Drug Administration (CFDA)- approved TCM formula that has been repurposed in clinical Phase II for the treatment of AD. Identifying YXQNW's active ingredients and their mechanisms is crucial for developing effective AD treatments. PURPOSE This study aims to elucidate the anti-AD effects of YXQNW and to explore its potential therapeutic mechanisms employing an endophenotype network strategy. METHODS Herein we present an endophenotype network strategy that combines active ingredient identification in rat serum, network proximity prediction, metabolomics, and in vivo experimental validation in two animal models. Specially, utilizing UPLC-Q-TOF-MS/MS, active ingredients are identified in YXQNW to build a drug-target network. We applied network proximity to identify potential AD pathological mechanisms of YXQNW via integration of drug-target network, AD endophenotype gene sets, and human protein interactome, and validated related mechanisms in two animal models. In a d-galactose-induced senescent rat model, YXQNW was administered at varying doses for cognitive and neuronal assessments through behavioral tests, Nissl staining, and transmission electron microscopy (TEM). Metabolomic analysis with LC-MS revealed YXQNW's influence on brain metabolites, suggesting therapeutic pathways. Levels of key proteins and biochemicals were measured by WB and ELISA, providing insights into YXQNW's neuroprotective mechanisms. In addition, 5×FAD model mice were used and administered YXQNW by gavage for 14 days at two doses. Amyloid-β levels, transporter expression, and cerebral blood flow have been detected by MRI and biochemical assays. RESULTS The network proximity analysis showed that the effect of YXQNW on AD was highly correlated with amyloid β, synaptic function, glucose metabolism and mitochondrial function. The results of metabolomics combined with in vivo experimental validation suggest that YXQNW has the potential to ameliorate glucose transport abnormalities in the brain by upregulating the expression of GLUT1 and GLUT3, while further enhancing glucose metabolism through increased O-GlcNAcylation and mitigating mitochondrial dysfunction via the AMPK/Sirt1 pathway, thereby improving d-galactose-induced cognitive deficits in rats. Additionally, YXQNW treatment significantly decreased Aβ1-42 levels and enhanced cerebral blood flow (CBF) in the hippocampus of 5×FAD mice. while mechanistic findings indicated that YXQNW treatment increased the expression of ABCB1, an Aβ transporter, in 5×FAD model mice to promote the clearance of Aβ from the brain and alleviate AD-like symptoms. CONCLUSIONS This study reveals that YXQNW may mitigate AD by inhibiting Aβ deposition and ameliorating mitochondrial dysfunction and glucose metabolism, thus offering a promising therapeutic approach for AD.
Collapse
Affiliation(s)
- Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinna Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Xiaolian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinyong Cai
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Jieqi Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Peng Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Wenjia Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Yunhui Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
7
|
Guizar P, Abdalla AL, Monette A, Davis K, Caballero RE, Niu M, Liu X, Ajibola O, Murooka TT, Liang C, Mouland AJ. An HIV-1 CRISPR-Cas9 membrane trafficking screen reveals a role for PICALM intersecting endolysosomes and immunity. iScience 2024; 27:110131. [PMID: 38957789 PMCID: PMC11217618 DOI: 10.1016/j.isci.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/12/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
HIV-1 hijacks host proteins involved in membrane trafficking, endocytosis, and autophagy that are critical for virus replication. Molecular details are lacking but are essential to inform on the development of alternative antiviral strategies. Despite their potential as clinical targets, only a few membrane trafficking proteins have been functionally characterized in HIV-1 replication. To further elucidate roles in HIV-1 replication, we performed a CRISPR-Cas9 screen on 140 membrane trafficking proteins. We identified phosphatidylinositol-binding clathrin assembly protein (PICALM) that influences not only infection dynamics but also CD4+ SupT1 biology. The knockout (KO) of PICALM inhibited viral entry. In CD4+ SupT1 T cells, KO cells exhibited defects in intracellular trafficking and increased abundance of intracellular Gag and significant alterations in autophagy, immune checkpoint PD-1 levels, and differentiation markers. Thus, PICALM modulates a variety of pathways that ultimately affect HIV-1 replication, underscoring the potential of PICALM as a future target to control HIV-1.
Collapse
Affiliation(s)
- Paola Guizar
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ana Luiza Abdalla
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Kristin Davis
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ramon Edwin Caballero
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Meijuan Niu
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Xinyun Liu
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Oluwaseun Ajibola
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Thomas T. Murooka
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Rady Faculty of Health Science, Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Chen Liang
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
8
|
Kiss E, Kins S, Gorgas K, Venczel Szakács KH, Kirsch J, Kuhse J. Another Use for a Proven Drug: Experimental Evidence for the Potential of Artemisinin and Its Derivatives to Treat Alzheimer's Disease. Int J Mol Sci 2024; 25:4165. [PMID: 38673751 PMCID: PMC11049906 DOI: 10.3390/ijms25084165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-derived multitarget compounds may represent a promising therapeutic strategy for multifactorial diseases, such as Alzheimer's disease (AD). Artemisinin and its derivatives were indicated to beneficially modulate various aspects of AD pathology in different AD animal models through the regulation of a wide range of different cellular processes, such as energy homeostasis, apoptosis, proliferation and inflammatory pathways. In this review, we aimed to provide an up-to-date overview of the experimental evidence documenting the neuroprotective activities of artemi-sinins to underscore the potential of these already-approved drugs for treating AD also in humans and propose their consideration for carefully designed clinical trials. In particular, the benefits to the main pathological hallmarks and events in the pathological cascade throughout AD development in different animal models of AD are summarized. Moreover, dose- and context-dependent effects of artemisinins are noted.
Collapse
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania;
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 69120 Kaiserslautern, Germany;
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| | - Kinga Hajnal Venczel Szakács
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania;
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| | - Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| |
Collapse
|
9
|
Maninger JK, Nowak K, Goberdhan S, O'Donoghue R, Connor-Robson N. Cell type-specific functions of Alzheimer's disease endocytic risk genes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220378. [PMID: 38368934 PMCID: PMC10874703 DOI: 10.1098/rstb.2022.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 02/20/2024] Open
Abstract
Endocytosis is a key cellular pathway required for the internalization of cellular nutrients, lipids and receptor-bound cargoes. It is also critical for the recycling of cellular components, cellular trafficking and membrane dynamics. The endocytic pathway has been consistently implicated in Alzheimer's disease (AD) through repeated genome-wide association studies and the existence of rare coding mutations in endocytic genes. BIN1 and PICALM are two of the most significant late-onset AD risk genes after APOE and are both key to clathrin-mediated endocytic biology. Pathological studies also demonstrate that endocytic dysfunction is an early characteristic of late-onset AD, being seen in the prodromal phase of the disease. Different cell types of the brain have specific requirements of the endocytic pathway. Neurons require efficient recycling of synaptic vesicles and microglia use the specialized form of endocytosis-phagocytosis-for their normal function. Therefore, disease-associated changes in endocytic genes will have varied impacts across different cell types, which remains to be fully explored. Given the genetic and pathological evidence for endocytic dysfunction in AD, understanding how such changes and the related cell type-specific vulnerabilities impact normal cellular function and contribute to disease is vital and could present novel therapeutic opportunities. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
| | - Karolina Nowak
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Srilakshmi Goberdhan
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Rachel O'Donoghue
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Natalie Connor-Robson
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| |
Collapse
|
10
|
Tsartsalis S, Sleven H, Fancy N, Wessely F, Smith AM, Willumsen N, Cheung TKD, Rokicki MJ, Chau V, Ifie E, Khozoie C, Ansorge O, Yang X, Jenkyns MH, Davey K, McGarry A, Muirhead RCJ, Debette S, Jackson JS, Montagne A, Owen DR, Miners JS, Love S, Webber C, Cader MZ, Matthews PM. A single nuclear transcriptomic characterisation of mechanisms responsible for impaired angiogenesis and blood-brain barrier function in Alzheimer's disease. Nat Commun 2024; 15:2243. [PMID: 38472200 PMCID: PMC10933340 DOI: 10.1038/s41467-024-46630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased β-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.
Collapse
Affiliation(s)
- Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Hannah Sleven
- Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Road, University of Oxford, Oxford, UK
| | - Nurun Fancy
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Frank Wessely
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - Amy M Smith
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Nanet Willumsen
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - To Ka Dorcas Cheung
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Michal J Rokicki
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - Vicky Chau
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Eseoghene Ifie
- Neuropathology Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Combiz Khozoie
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Olaf Ansorge
- Neuropathology Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Xin Yang
- Department of Brain Sciences, Imperial College London, London, UK
- St Edmund Hall, University of Oxford, Oxford, UK
| | - Marion H Jenkyns
- Department of Brain Sciences, Imperial College London, London, UK
| | - Karen Davey
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team ELEANOR, UMR 1219, 33000, Bordeaux, France
| | - Johanna S Jackson
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Axel Montagne
- Centre for Clinical Brain Sciences, and UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol, Bristol, UK
| | - Caleb Webber
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Road, University of Oxford, Oxford, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute Centre, Imperial College London, London, UK.
- St Edmund Hall, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
12
|
Chen Y, He Y, Han J, Wei W, Chen F. Blood-brain barrier dysfunction and Alzheimer's disease: associations, pathogenic mechanisms, and therapeutic potential. Front Aging Neurosci 2023; 15:1258640. [PMID: 38020775 PMCID: PMC10679748 DOI: 10.3389/fnagi.2023.1258640] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ), hyperphosphorylation of tau, and neuroinflammation in the brain. The blood-brain barrier (BBB) limits solutes from circulating blood from entering the brain, which is essential for neuronal functioning. Focusing on BBB function is important for the early detection of AD and in-depth study of AD pathogenic mechanisms. However, the mechanism of BBB alteration in AD is still unclear, which hinders further research on therapeutics that target the BBB to delay the progression of AD. The exact timing of the vascular abnormalities in AD and the complex cause-and-effect relationships remain uncertain. Thus, it is necessary to summarize and emphasize this process. First, in this review, the current evidence for BBB dysfunction in AD is summarized. Then, the interrelationships and pathogenic mechanisms between BBB dysfunction and the risk factors for AD, such as Aβ, tau, neuroinflammation, apolipoprotein E (ApoE) genotype and aging, were analyzed. Finally, we discuss the current status and future directions of therapeutic AD strategies targeting the BBB. We hope that these summaries or reviews will allow readers to better understand the relationship between the BBB and AD.
Collapse
Affiliation(s)
- Yanting Chen
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanfang He
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinling Han
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
13
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
14
|
Kisler K, Sagare AP, Lazic D, Bazzi S, Lawson E, Hsu CJ, Wang Y, Ramanathan A, Nelson AR, Zhao Z, Zlokovic BV. Correction: Anti-malaria drug artesunate prevents development of amyloid-β pathology in mice by upregulating PICALM at the blood-brain barrier. Mol Neurodegener 2023; 18:14. [PMID: 36829231 PMCID: PMC9960439 DOI: 10.1186/s13024-023-00606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Abhay P. Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Divna Lazic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Sam Bazzi
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Erica Lawson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Ching-Ju Hsu
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Yaoming Wang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Anita Ramanathan
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Amy R. Nelson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Zhen Zhao
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| |
Collapse
|
15
|
Yuan Y, Sun J, Dong Q, Cui M. Blood-brain barrier endothelial cells in neurodegenerative diseases: Signals from the "barrier". Front Neurosci 2023; 17:1047778. [PMID: 36908787 PMCID: PMC9998532 DOI: 10.3389/fnins.2023.1047778] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
As blood-brain barrier (BBB) disruption emerges as a common problem in the early stages of neurodegenerative diseases, the crucial roles of barrier-type brain endothelial cells (BECs), the primary part of the BBB, have been reported in the pathophysiology of neurodegenerative diseases. The mechanisms of how early vascular dysfunction contributes to the progress of neurodegeneration are still unclear, and understanding BEC functions is a promising start. Our understanding of the BBB has gone through different stages, from a passive diffusion barrier to a mediator of central-peripheral interactions. BECs serve two seemingly paradoxical roles: as a barrier to protect the delicate brain from toxins and as an interface to constantly receive and release signals, thus maintaining and regulating the homeostasis of the brain. Most previous studies about neurodegenerative diseases focus on the loss of barrier functions, and far too little attention has been paid to the active regulations of BECs. In this review, we present the current evidence of BEC dysfunction in neurodegenerative diseases and explore how BEC signals participate in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|