1
|
Yadav S, Yadav A, Mishra RK. Chronic unpredictable stress exposure disrupts testicular function by modulating germ cell-junctional dynamics and Nrf2/HO-1/IKKβ/NF-κB pathway. Reprod Toxicol 2025; 132:108845. [PMID: 39884400 DOI: 10.1016/j.reprotox.2025.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The unpredictable nature of stress complicates understanding its relationship with male infertility. In this study, we investigated testicular germ cell and junctional dynamics in male mice following exposure to chronic unpredictable stress (CUS). Adult Parkes male mice were exposed to CUS for 35 days (one complete spermatogenic cycle), with a random stressor (restraint stress, water deprivation, food deprivation, light flashing, wet bedding, cage shaking, or cage tilting) applied once per day in an intermittent and unpredictable manner to avoid repeating the same stimulus on consecutive days. CUS exposure caused behavioral alterations in mice, as observed through the forced swim test and the tail suspension test. CUS inhibited testosterone biosynthesis by decreasing steroidogenic markers (SF-1, StAR, 3β-HSD, and 17β-HSD). It also resulted in altered oxido-inflammatory and apoptotic markers, including increased LPO, Caspase-3, IKKβ, and NF-κB, along with decreased Nrf2, HO-1, SOD, and catalase in the testis. CUS exposure reduced 1 C and 4 C germ cell populations and decreased germ cell ratios (1 C:2 C, 4 C:2 C, and 4 C:S-phase), impairing sperm development. CUS disrupted meiosis initiation, chromosomal synapsis, and germ cell maintenance by reducing Stra8, SYCP3, and Piwil1 expression in the testis. It also adversely affected blood-testis barrier markers, such as ZO-1 and connexin43. These changes led to altered testicular histomorphology, reduced daily sperm production, and disrupted germ cell dynamics. The findings suggest that CUS inhibits steroidogenesis and perturbs the Nrf2/HO-1/IKKβ/NF-κB oxido-inflammatory pathway. This leads to disrupted germ cell dynamics, compromised blood-testis barrier integrity, altered histomorphology, and reduced sperm production, collectively resulting in testicular dysfunction.
Collapse
Affiliation(s)
- Shubhanshu Yadav
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anupam Yadav
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
2
|
Orso R, Creutzberg KC, Begni V, Petrillo G, Cattaneo A, Riva MA. Emotional dysregulation following prenatal stress is associated with altered prefrontal cortex responsiveness to an acute challenge in adolescence. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111162. [PMID: 39383932 DOI: 10.1016/j.pnpbp.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Exposure to prenatal stress (PNS) has the potential to elicit multiple neurobiological alterations and increase the susceptibility to psychiatric disorders. Moreover, gestational stress may sensitize the brain toward an altered response to subsequent challenges. Here, we investigated the effects of PNS in rats and assessed whether these animals exhibit an altered brain responsiveness to an acute stress (AS) during adolescence. From gestational day 14 until delivery, Sprague Dawley dams were exposed to PNS or left undisturbed. During adolescence (PND38 to PND41), offspring were tested in the social interaction and splash test. At PND44 half of the animals were exposed to 5 min of forced swim stress. Males and Females exposed to PNS showed reduced sociability and increased anhedonic-like behavior. At the molecular level, exposure of adolescent rats to AS produced increased activation of the amygdala and ventral and dorsal hippocampus. Regarding the prefrontal cortex (PFC), we observed a pronounced activation in PNS males exposed to AS. Cell-type specific transcriptional analyses revealed a significant imbalance in the activation of PFC excitatory and inhibitory neurons in PNS males and females exposed to AS. Furthermore, stressed males exhibited disrupted HPA-axis function, while females showed impairments in the modulation of antioxidant genes. Our study shows that PNS induces emotional dysregulation and alters the responsiveness of the PFC to an acute stressor. Moreover, the disruption of excitatory and inhibitory balance during adolescence could influence the ability to respond to challenging events that may contribute to precipitate a full-blown pathologic condition.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | | | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Giulia Petrillo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
3
|
Haim A, Albin-Brooks C, Brothers H, Breach M, Leuner B. Gestational stress disrupts dopamine and oxytocin signaling in the postpartum reward system of rats: implications for mood, motivation and mothering. Sci Rep 2025; 15:1450. [PMID: 39789137 PMCID: PMC11718260 DOI: 10.1038/s41598-024-84043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress. Here we employed a chronic variable stress procedure during pregnancy and evaluated behavioral measures of mood and reward along with assessments of DA and OT signaling in postpartum rats. Our results show that gestational stress induced postpartum depressive-like and anxiety-like behavior in addition to producing reward-related deficits including anhedonia, impaired maternal care, and reduced maternal motivation. Consistent with a hypodopaminergic state, histological analysis revealed reduced expression of tyrosine hydroxylase in the NAc shell and core as well as reduced expression of the dopamine transporter and dopamine D2 receptor in the NAc shell of postpartum females exposed to gestational stress. A reduction in accumbal DA content as determined by liquid chromatography-mass spectrometry was also observed in gestationally-stressed dams. Lastly, we assessed mRNA expression of OT and OT receptors (OTR) and found that gestational stress increased OT expression in the hypothalamus but reduced OTR expression in the postpartum ventral tegmental area (VTA), a target of hypothalamic OT neurons. In the VTA, a reduction in OT-immunoreactive fibers following gestational stress was also seen. Taken together, these data demonstrate that the DA and OT systems within the postpartum reward circuit are sensitive to gestational stress and suggest that mood and maternal disruptions in PPD may arise from dysfunctional oxytocinergic regulation of the dopaminergic reward system.
Collapse
Affiliation(s)
- Achikam Haim
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Christopher Albin-Brooks
- Department of Psychology, The Ohio State University, 051 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA
| | - Holly Brothers
- Department of Psychology, The Ohio State University, 051 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA
| | - Michaela Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Benedetta Leuner
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Psychology, The Ohio State University, 051 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Chen YM, Huang J, Fan H, Li WY, Shi TS, Zhao J, Wang CN, Chen WJ, Zhu BL, Qian JJ, Guan W, Jiang B. QRFP and GPR103 in the paraventricular nucleus play a role in chronic stress-induced depressive-like symptomatology by enhancing the hypothalamic-pituitary-adrenal axis. Neuropharmacology 2025; 262:110198. [PMID: 39442911 DOI: 10.1016/j.neuropharm.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for depression neurobiology. As the latest member of the RFamide peptide family in mammals, pyroglutamylated RFamide peptide (QRFP) is closely implicated in neuroendocrine maintenance by activating G-protein-coupled receptor 103 (GPR103). We hypothesized that QRFP and GPR103 might contribute to chronic stress-induced depression by promoting corticotropin-releasing hormone (CRH) release from neurons in the paraventricular nucleus (PVN), and various methods were employed in this study, with male C57BL/6J mice adopted as the experimental subjects. Chronic stress induced not only depression-like behaviors but also significant enhancement in QRFP and GPR103 in the PVN. Genetic overexpression of QRFP/GPR103 and stereotactic infusion of QRFP-26/QRFP-43 peptide in the PVN all mimicked chronic stress that induced various depression-like phenotypes in naïve mice, and this was mediated by promoting CRH biosynthesis and HPA activity. In contrast, genetic knockdown of QRFP/GPR103 in the PVN produced notable antidepressant-like effects in mice exposed to chronic stress. Furthermore, genetic knockout of QRFP also protected against chronic stress in mice. In addition, both the C-terminal biological region of QRFP and the downstream PKA/PKC-CREB signaling coupled to GPR103 stimulation underlie the role of QRFP and GPR103 in depression. Collectively, QRFP and GPR103 in PVN neurons could be viable targets for novel antidepressants.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, Henan, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People's Hospital of Nantong, Nantong, 226011 Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Jie Qian
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
6
|
Shin D, Kang Y, Kim A, Tae WS, Han MR, Han KM, Ham BJ. The Effect of Forkhead Box O1 Single Nucleotide Polymorphisms on Cortical Thickness and White Matter Integrity in High Suicide Risk Patients. Psychiatry Investig 2024; 21:1238-1250. [PMID: 39610235 DOI: 10.30773/pi.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/01/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE Neuroinflammation's role is increasingly emphasized in the pathology of major depressive disorder (MDD), and its close association with the risk of suicide is being reported. The Forkhead Box O1 (FoxO1) gene is known to play a role in regulating mood and emotion and is associated with susceptibility to suicidality in relation to environmental stress. This research aims to explore the relationship between FoxO1 and the risk of suicide in individuals with MDD. METHODS We enrolled 127 healthy controls (HC) and 231 patients diagnosed with MDD, including 119 individuals with high suicide risk (HSR). All participants underwent the Hamilton Rating Scale for Depression Assessment and magnetic resonance imaging. Cortical thickness and white matter integrity were evaluated. RESULTS In the HSR group, cortical thinning was observed in the left triangular part of the inferior frontal gyrus and right transverse frontopolar gyrus compared to HC. Additionally, fractional anisotropy (FA) values were decreased in the left posterior thalamic radiation, sagittal stratum, and uncinate fasciculus. Although no differences were observed based on allele variations for the two FoxO1 single nucleotide polymorphisms (SNPs), those with the minor allele of FoxO1 rs34733279, especially in the HSR group, displayed increased cortical thinning and reduced FA values in the left cingulum. CONCLUSION Our study reveals close association between the minor allele of the FoxO1 gene rs34733279 and suicide risk in the left cingulum highlights the potential key role of the FoxO1 gene rs34733279 in the context of suicidal vulnerability. Further investigations are warranted to elucidate the underlying biological mechanisms.
Collapse
Affiliation(s)
- Daun Shin
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Woo Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Rayan NA, Aow J, Lim MGL, Arcego DM, Ryan R, Nourbakhsh N, de Lima RMS, Craig K, Zhang TY, Goh YT, Sun AX, Tompkins T, Bronner S, Binda S, Diorio J, Parent C, Meaney MJ, Prabhakar S. Shared and unique transcriptomic signatures of antidepressant and probiotics action in the mammalian brain. Mol Psychiatry 2024; 29:3653-3668. [PMID: 38844534 DOI: 10.1038/s41380-024-02619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 11/08/2024]
Abstract
Understanding the shared and divergent mechanisms across antidepressant (AD) classes and probiotics is critical for improving treatment for mood disorders. Here we examine the transcriptomic effects of bupropion (NDRI), desipramine (SNRI), fluoxetine (SSRI) and a probiotic formulation (Lacidofil®) on 10 regions across the mammalian brain. These treatments massively alter gene expression (on average, 2211 differentially expressed genes (DEGs) per region-treatment combination), highlighting the biological complexity of AD and probiotic action. Intersection of DEG sets against neuropsychiatric GWAS loci, sex-specific transcriptomic portraits of major depressive disorder (MDD), and mouse models of stress and depression reveals significant similarities and differences across treatments. Interestingly, molecular responses in the infralimbic cortex, basolateral amygdala and locus coeruleus are region-specific and highly similar across treatments, whilst responses in the Raphe, medial preoptic area, cingulate cortex, prelimbic cortex and ventral dentate gyrus are predominantly treatment-specific. Mechanistically, ADs concordantly downregulate immune pathways in the amygdala and ventral dentate gyrus. In contrast, protein synthesis, metabolism and synaptic signaling pathways are axes of variability among treatments. We use spatial transcriptomics to further delineate layer-specific molecular pathways and DEGs within the prefrontal cortex. Our study reveals complex AD and probiotics action on the mammalian brain and identifies treatment-specific cellular processes and gene targets associated with mood disorders.
Collapse
Affiliation(s)
- Nirmala Arul Rayan
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Jonathan Aow
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Gek Liang Lim
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Danusa Mar Arcego
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Richard Ryan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Nooshin Nourbakhsh
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | | | - Kelly Craig
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Tie Yuan Zhang
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Yeek Teck Goh
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Alfred Xuyang Sun
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857, Singapore
| | - Thomas Tompkins
- Lallemand Bio-Ingredients, 1620 Rue Prefontaine, Montréal, QC, H1W 2N8, Canada
| | - Stéphane Bronner
- Lallemand Health Solutions, Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Sylvie Binda
- Lallemand Health Solutions, Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Josie Diorio
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Carine Parent
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Michael J Meaney
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada.
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, 117609, Singapore.
- Brain-Body Initiative, Institute for Cell & Molecular Biology, A*STAR, Singapore, Singapore.
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
8
|
Wang Y, Liu L, Gu JH, Wang CN, Guan W, Liu Y, Tang WQ, Ji CH, Chen YM, Huang J, Li WY, Shi TS, Chen WJ, Zhu BL, Jiang B. Salt-inducible kinase 1-CREB-regulated transcription coactivator 1 signalling in the paraventricular nucleus of the hypothalamus plays a role in depression by regulating the hypothalamic-pituitary-adrenal axis. Mol Psychiatry 2024; 29:1660-1670. [PMID: 36434056 DOI: 10.1038/s41380-022-01881-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Elucidating the molecular mechanism underlying the hyperactivity of the hypothalamic-pituitary-adrenal axis during chronic stress is critical for understanding depression and treating depression. The secretion of corticotropin-releasing hormone (CRH) from neurons in the paraventricular nucleus (PVN) of the hypothalamus is controlled by salt-inducible kinases (SIKs) and CREB-regulated transcription co-activators (CRTCs). We hypothesised that the SIK-CRTC system in the PVN might contribute to the pathogenesis of depression. Thus, the present study employed chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression, various behavioural tests, virus-mediated gene transfer, enzyme-linked immunosorbent assay, western blotting, co-immunoprecipitation, quantitative real-time reverse transcription polymerase chain reaction, and immunofluorescence to investigate this connection. Our results revealed that both CSDS and CUMS induced significant changes in SIK1-CRTC1 signalling in PVN neurons. Both genetic knockdown of SIK1 and genetic overexpression of CRTC1 in the PVN simulated chronic stress, producing a depression-like phenotype in naive mice, and the CRTC1-CREB-CRH pathway mediates the pro-depressant actions induced by SIK1 knockdown in the PVN. In contrast, both genetic overexpression of SIK1 and genetic knockdown of CRTC1 in the PVN protected against CSDS and CUMS, leading to antidepressant-like effects in mice. Moreover, stereotactic infusion of TAT-SIK1 into the PVN also produced beneficial effects against chronic stress. Furthermore, the SIK1-CRTC1 system in the PVN played a role in the antidepressant actions of fluoxetine, paroxetine, venlafaxine, and duloxetine. Collectively, SIK1 and CRTC1 in PVN neurons are closely involved in depression neurobiology, and they could be viable targets for novel antidepressants.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Ling Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Jiang-Hong Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wen-Qian Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
- Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China.
| |
Collapse
|
9
|
Tao Y, Shen W, Zhou H, Li Z, Pi T, Wu H, Shi H, Huang F, Wu X. Sex differences in a corticosterone-induced depression model in mice: Behavioral, neurochemical, and molecular insights. Brain Res 2024; 1823:148678. [PMID: 37979605 DOI: 10.1016/j.brainres.2023.148678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Depression is characterized by a significant sex disparity, with higher rates observed in women compared to men. This study aimed to investigate the impact of sex on depressive behaviors and explore the underlying mechanisms using a corticosterone (CORT)-induced depression model in mice. Behavioral tests, Nissl staining, UPLC-MS/MS, and Western blot analysis were performed to assess behavioral changes, as well as neuronal alterations, neurotransmitter levels, and protein expressions in the hippocampus. The mice in the model group exhibited sex-specific anxiety- and depression-like behaviors. Nissl staining revealed structural abnormalities in the CA3 region of the hippocampus in females. Neurotransmitter analysis indicated decreased serotonin and norepinephrine levels in both sexes, while glutamate levels were elevated in females. Furthermore, female mice demonstrated elevated serum CORT levels. Western blot analysis revealed sex-specific alterations in specific protein expression. Female mice exhibited downregulated glucocorticoid receptor and brain-derived neurotrophic factor expression, whereas male mice showed minimal changes. Additionally, female mice displayed reduced phosphorylated AKT, phosphorylated PI3K, and phosphorylated mTOR levels. These findings enhance our understanding of sex-specific differences in the CORT-induced depression model and provide insights into the underlying mechanisms of depression. This research emphasizes sex in depression studies and supports tailored interventions.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Ting Pi
- Kunming Yan'an Hospital Chenggong Hospital, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
10
|
Schalla MA, Stengel A. The role of stress in perinatal depression and anxiety - A systematic review. Front Neuroendocrinol 2024; 72:101117. [PMID: 38176543 DOI: 10.1016/j.yfrne.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/29/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Perinatal depression (PND) and anxiety affect around 20% of women, but available pharmacotherapy is not sufficiently effective in 20-60% of them, indicating a need for better understanding of these diseases. Since stress is a significant risk factor for PND, the aim was to examine the role of biological, environmental and psychological stress in PND and anxiety through a systematic literature search. Overall 210 studies were included, among which numerous rodent studies showed that perinatal stress induced depressive-like and anxious behavior, which was associated with HPA-axis alterations and morphological brain changes. Human studies indicated that the relationship between cortisol and perinatal depression/anxiety was not as clear and with many contradictions, although social and psychological stress were clearly positively associated with PND. Finally, oxytocin, synthetic neuroactive steroid and n-3 PUFA diet have been identified as potentially beneficial in the therapy of PND and anxiety, worth to be investigated in the future.
Collapse
Affiliation(s)
- M A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; Department of Gynecology and Obstetrics, Helios Clinic, Rottweil, Germany
| | - A Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; German Center für Mental Health (DZPG), Site Tübingen, Germany.
| |
Collapse
|
11
|
Liu J, Meng F, Wang W, Wu M, Zhang Y, Cui M, Qiu C, Hu F, Zhao D, Wang D, Liu C, Liu D, Xu Z, Wang Y, Li W, Li C. Medial prefrontal cortical PPM1F alters depression-related behaviors by modifying p300 activity via the AMPK signaling pathway. CNS Neurosci Ther 2023; 29:3624-3643. [PMID: 37309288 PMCID: PMC10580341 DOI: 10.1111/cns.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) is a serine/threonine phosphatase, and its dysfunction in depression in the hippocampal dentate gyrus has been previously identified. Nevertheless, its role in depression of another critical emotion-controlling brain region, the medial prefrontal cortex (mPFC), remains unclear. We explored the functional relevance of PPM1F in the pathogenesis of depression. METHODS The gene expression levels and colocalization of PPM1F in the mPFC of depressed mice were measured by real-time PCR, western blot and immunohistochemistry. An adeno-associated virus strategy was applied to determine the impact of knockdown or overexpression of PPM1F in the excitatory neurons on depression-related behaviors under basal and stress conditions in both male and female mice. The neuronal excitability, expression of p300 and AMPK phosphorylation levels in the mPFC after knockdown of PPM1F were measured by electrophysiological recordings, real-time PCR and western blot. The depression-related behavior induced by PPM1F knockdown after AMPKα2 knockout or the antidepressant activity of PPM1F overexpression after inhibiting acetylation activity of p300 was evaluated. RESULTS Our results indicate that the expression levels of PPM1F were largely decreased in the mPFC of mice exposed to chronic unpredictable stress (CUS). Behavioral alterations relevant to depression emerged with short hairpin RNA (shRNA)-mediated genetic knockdown of PPM1F in the mPFC, while overexpression of PPM1F produced antidepressant activity and ameliorated behavioral responses to stress in CUS-exposed mice. Molecularly, PPM1F knockdown decreased the excitability of pyramidal neurons in the mPFC, and restoring this low excitability decreased the depression-related behaviors induced by PPM1F knockdown. PPM1F knockdown reduced the expression of CREB-binding protein (CBP)/E1A-associated protein (p300), a histone acetyltransferase (HAT), and induced hyperphosphorylation of AMPK, resulting in microglial activation and upregulation of proinflammatory cytokines. Conditional knockout of AMPK revealed an antidepressant phenotype, which can also block depression-related behaviors induced by PPM1F knockdown. Furthermore, inhibiting the acetylase activity of p300 abolished the beneficial effects of PPM1F elevation on CUS-induced depressive behaviors. CONCLUSION Our findings demonstrate that PPM1F in the mPFC modulates depression-related behavioral responses by regulating the function of p300 via the AMPK signaling pathway.
Collapse
|
12
|
Ma X, Li Q, Chen G, Xie J, Wu M, Meng F, Liu J, Liu Y, Zhao D, Wang W, Wang D, Liu C, Dai J, Li C, Cui M. Role of Hippocampal miR-132-3p in Modifying the Function of Protein Phosphatase Mg2+/Mn2+-dependent 1 F in Depression. Neurochem Res 2023:10.1007/s11064-023-03926-8. [PMID: 37036545 DOI: 10.1007/s11064-023-03926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Depression is a common, severe, and debilitating psychiatric disorder of unclear etiology. Our previous study has shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) in the hippocampal dentate gyrus (DG) displays significant regulatory effects in depression-related behaviors. miR-132-3p plays a potential role in the etiology of depression. This study explored the effect of miR-132-3p on the onset of depression and the possible underlying mechanism for modulating PPM1F expression during the pathology of depression. We found that miR-132-3p levels in the hippocampus of depressed mice subjected to chronic unpredictable stress (CUS) were dramatically reduced, which were correlated with depression-related behaviors. Knockdown of miR-132-3p in hippocampal DG resulted in depression-related phenotypes and increased susceptibility to stress. miR-132-3p overexpression in hippocampal DG alleviated CUS-induced depression-related performance. We then screened out the potential target genes of miR-132-3p, and we found that the expression profiles of sterol regulatory element-binding transcription factor 1 (Srebf1) and forkhead box protein O3a (FOXO3a) were positively correlated with PPM1F under the condition of miR-132-3p knockdown. Finally, as anticipated, we revealed that the activities of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were reduced, which underlies the target signaling pathway of PPM1F. In conclusion, our study suggests that miR-132-3p was designed to regulate depression-related behaviors by indirectly regulating PPM1F and targeting Srebf1 and FOXO3a, which have been linked to the pathogenesis and treatment of depression.
Collapse
Affiliation(s)
- Xiangxian Ma
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guanhong Chen
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Junjie Xie
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yong Liu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Physiology, Binzhou Medical University, Shandong, China
| | - Di Zhao
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
13
|
Comparison of the chronic unpredictable mild stress and the maternal separation in mice postpartum depression modeling. Biochem Biophys Res Commun 2022; 632:24-31. [DOI: 10.1016/j.bbrc.2022.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
14
|
The altered sensitivity of acute stress induced anxiety-related behaviors by modulating insular cortex-paraventricular thalamus-bed nucleus of the stria terminalis neural circuit. Neurobiol Dis 2022; 174:105890. [DOI: 10.1016/j.nbd.2022.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
|
15
|
Faraji J, Lotfi H, Moharrerie A, Jafari SY, Soltanpour N, Tamannaiee R, Marjani K, Roudaki S, Naseri F, Moeeini R, Metz GAS. Regional Differences in BDNF Expression and Behavior as a Function of Sex and Enrichment Type: Oxytocin Matters. Cereb Cortex 2022; 32:2985-2999. [PMID: 35059698 DOI: 10.1093/cercor/bhab395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2025] Open
Abstract
The early environment is critical to brain development, but the relative contribution of physical versus social stimulation is unclear. Here, we investigated in male and female rats the response to early physical and social environmental enrichment in relation to oxytocin (OT) and brain-derived neurotrophic factor (BDNF) expression. The findings show that males and females respond differently to prolonged sensorimotor stimulation from postnatal days 21-110 in terms of functional, structural, and molecular changes in the hippocampus versus medial prefrontal cortex (mPFC). Physical enrichment promoted motor and cognitive functions and hippocampal BDNF mRNA and protein expression in both sexes. Combined physical and social enrichment, however, promoted functional and structural gain in females. These changes were accompanied by elevated plasma oxytocin (OT) levels and BDNF mRNA expression in the mPFC, while the hippocampus was not affected. Administration of an OT antagonist in females blocked the beneficial effects of enrichment and led to reduced cortical BDNF signaling. These findings suggest that an OT-based mechanism selectively stimulates a region-specific BDNF response which is dependent on the type of experience.
Collapse
Affiliation(s)
- Jamshid Faraji
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
- Faculty of Nursing and Midwifery, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Hamid Lotfi
- Department of Psychology, Islamic Azad University, Tonekabon 4684161167, Iran
| | - Alireza Moharrerie
- Department of Anatomy, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - S Yaghoob Jafari
- Faculty of Nursing and Midwifery, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Nasrin Soltanpour
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
| | - Rosa Tamannaiee
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Kameran Marjani
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Shabnam Roudaki
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | | | - Reza Moeeini
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge T1K3M4, Canada
| |
Collapse
|
16
|
Identification of potential therapeutic and diagnostic characteristics of Alzheimer disease by targeting the miR-132-3p/FOXO3a-PPM1F axis in APP/PS1 mice. Brain Res 2022; 1790:147983. [PMID: 35709892 DOI: 10.1016/j.brainres.2022.147983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder, which is characterized by progressive impairment of memory and cognition. Early diagnosis and treatment of AD has become a leading topic of research. In this study, we explored the effects of the miR-132-3p/FOXO3a-PPM1F axis on the onset of AD for possible early diagnosis and therapy. We found that miR-132-3p levels in the hippocampus and blood were drastically decreased in APP/PS1 mice from 9 months of age, and bi-directional manipulation of miR-132-3p levels induced magnified effects on learning memory behaviors, and manifestation of AD-related pathological characteristics and inflammatory cytokines in APP/PS1 mice of relevant ages. The hippocampal PPM1F expression levels were significantly elevated in APP/PS1 mice from 3 months of age, which was correlated with miR-132-3p levels at different ages. Overexpression of PPM1F remarkably accelerated the progression of learning memory deficits and associated pathological factors in APP/PS1 mice. Further, we showed that miR-132-3p modulated the expression of PPM1F via FOXO3a in HT22 cells. Finally, using peripheral blood samples of human study participants, we found that the miR-132-3p and PPM1F expression levels in patients with AD were also altered with prominent correlations. In conclusion, miR-132-3p indirectly regulates PPM1F expression by targeting FOXO3a, which could play an extensive role in contributing to the establishment of early diagnosis, treatment, and pathogenesis of AD.
Collapse
|
17
|
Yu H, Shao S, Xu J, Guo H, Zhong Z, Xu J. Persimmon leaf extract alleviates chronic social defeat stress-induced depressive-like behaviors by preventing dendritic spine loss via inhibition of serotonin reuptake in mice. Chin Med 2022; 17:65. [PMID: 35668445 PMCID: PMC9172164 DOI: 10.1186/s13020-022-00609-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Fresh or dried Persimmon leaves (Diospyros kaki Thunb.) exhibit preventive effects on cardiovascular and cerebrovascular diseases. However, their antidepressant effects and underlying mechanisms are unclear. Thus, we investigated mechanisms responsible for Persimmon leaf extract (PLE) activity on chronic social defeat stress (CSDS)-induced depressive-like behaviors in mice. Methods CSDS was used as a mouse model of depression. We performed the sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) to identify depressive-like behavior. Spine density and dendritic morphology were assessed using Golgi staining. Neurochemicals were quantified by microdialysis, doublecortin by immunofluorescence, and cAMP using an ELISA kit. Finally, the levels of cortical proteins of phosphorylated cAMP-response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), postsynaptic density synapsin-1 and protein 95 (PSD95) were quantified by western blot. 16S rRNA gene sequencing was used to detect fecal microbiota. Results Treatment of CSDS-subjected mice with PLE (30.0–60.0 mg/kg, i.g.) enhanced sucrose preference, decreased immobility times in the TST and FST but did not affect locomotor activity. Furthermore, persistent social defeat stress decreased dendritic spine density and dendritic length in the brain, as well as decreased PSD95 and synapsin-1 expression. PLE, interestingly, inhibited dendritic spine loss and increased synaptic protein levels. PLE also increased brain levels of 5-HT, cAMP, phosphorylated (p)-CREB, BDNF, PSD95, and synapsin-1 in mice subjected to CSDS. Furthermore, PLE increased their doublecortin-positive cell count in the hippocampal dentate gyrus. CSDS mice represented a distinct fecal microbiota cluster which differed compared with normal C57BL/6J mice, and the phenotype was rescued by PLE. Conclusions PLE alleviated CSDS-induced depressive behaviors and spinal damage by suppressing serotonin reuptake and activating the cAMP/CREB/BDNF signaling pathway. Simultaneously, PLE influenced the composition of the fecal microbiota in CSDS-subjected mice. Supplementary information The online version contains supplementary material available at 10.1186/s13020-022-00609-4.
Collapse
Affiliation(s)
- Hui Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shumin Shao
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China
| | - Junnan Xu
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haibiao Guo
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, 510515, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China.
| | - Jiangping Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Shen Y, Zhang C, Xiao K, Liu D, Xie G. CELF4 regulates spine formation and depression-like behaviors of mice. Biochem Biophys Res Commun 2022; 605:39-44. [DOI: 10.1016/j.bbrc.2022.03.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 01/12/2023]
|
19
|
Imani MH, Hassanpour S, Asghari A, Khaksar E. Parental exposure of Tadalafil has beneficial effect on Reflexive Motor Behaviors in Mice Offspring. Int J Dev Neurosci 2022; 82:397-406. [DOI: 10.1002/jdn.10187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mohammad Hassan Imani
- Graduate student, Faculty of Veterinary Medicine, Science and Research Branch Islamic Azad University Tehran Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch Islamic Azad University Tehran Iran
| | - Ahmad Asghari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch Islamic Azad University Tehran Iran
| | - Ehssan Khaksar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
20
|
Antidepressant effects of Enterococcus faecalis 2001 through the regulation of prefrontal cortical myelination via the enhancement of CREB/BDNF and NF-κB p65/LIF/STAT3 pathways in olfactory bulbectomized mice. J Psychiatr Res 2022; 148:137-148. [PMID: 35123326 DOI: 10.1016/j.jpsychires.2022.01.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
A therapeutic strategy through the gut-brain axis has been proven to be effective in treatment for depression. In our previous study, we demonstrated that Enterococcus faecalis 2001 (EF-2001) prevents colitis-induced depressive-like behavior through the gut-brain axis in mice. More recently, we found that demyelination in the prefrontal cortex (PFC) was associated with depressive-like behavior in an animal model of major depressive disorder, olfactory bulbectomized (OBX) mice. The present study investigated the effects of EF-2001 on depressive-like behaviors in OBX mice and the underlying molecular mechanisms from the perspective of myelination in the PFC. OBX mice exhibited depressive-like behaviors in the tail-suspension, splash, and sucrose preference tests, and decreased myelin and paranodal proteins along with mature oligodendrocytes in the PFC. These behavioral and biochemical changes were all prevented by treatment with EF-2001. Further, EF-2001 treatment increased brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) in the PFC. Interestingly, an immunohistochemical analysis revealed enhanced phospho (p) -cAMP-responsive element binding protein (CREB) expression in neurons, p-nuclear factor-kappa B (NFκB) p65 (Ser536) expression in astrocytes, and p-signal transducer and activator of transcription 3 (STAT3) (Ty705) expression in mature oligodendrocytes in the PFC of OBX mice. From these results, we suggest that EF-2001 administration prevents depressive-like behaviors by regulating prefrontal cortical myelination via the enhancement of CREB/BDNF and NFκB p65/LIF/STAT3 pathways. Our findings strongly support the idea that a therapeutic strategy involving the gut microbiota may be a promising alternative treatment for alleviating symptoms of depression.
Collapse
|
21
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
22
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
23
|
Liu Y, Wu M, Sun Z, Li Q, Jiang R, Meng F, Liu J, Wang W, Dai J, Li C, Jiang S. Effect of PPM1F in dorsal raphe 5-HT neurons in regulating methamphetamine-induced conditioned place preference performance in mice. Brain Res Bull 2021; 179:36-48. [PMID: 34871711 DOI: 10.1016/j.brainresbull.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Methamphetamine (METH), a synthetically produced central nervous system stimulant, is one of the most illicit and addictive drugs worldwide. Protein phosphatase Mg2 + /Mn2 + -dependent 1F F (PPM1F) has been reported to exert multiple biological and cellular functions. Nevertheless, the effects of PPM1F and its neuronal substrates on METH addiction remain unclear. Herein, we first established a METH-induced conditioned place preference (CPP) mouse model. We showed that PPM1F is widely distributed in 5-HT neurons of the dorsal raphe nucleus (DRN), and METH treatment decreased the expression of PPM1F in DRN, which was negatively correlated with METH-induced CPP behaviors. Knockout of PPM1F mediated by adeno-associated virus (AAV) in DRN produced enhanced susceptibility to METH-induced CPP, whereas the overexpression of PPM1F in DRN attenuated METH-induced CPP phenotypes. The expression levels of Tryptophan hydroxylase2 (TPH2) and serotonin transporter (SERT) were down-regulated with a concurrent reduction in 5-hydroxytryptamine (5-HT), tryptophan hydroxylase2 (TPH2)-immunoreactivity neurons and 5-HT levels in DRN of PPM1F knockout mice. In the end, decreased expression levels of PPM1F were found in the blood of METH abusers and METH-taking mice. These results suggest that PPM1F in DRN 5-HT neurons regulates METH-induced CPP behaviors by modulating the key components of the 5-HT neurotransmitter system, which might be an important pathological gene and diagnostic marker for METH-induced addiction.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Binzhou Medical University, Shandong, China; Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Zongyue Sun
- Department of Physiology, Binzhou Medical University, Shandong, China.
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China.
| | - Fantao Meng
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Jing Liu
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Wentao Wang
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Juanjuan Dai
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China.
| |
Collapse
|
24
|
MicroRNA Let-7e in the Mouse Prefrontal Cortex Differentiates Restraint-Stress-Resilient Genotypes from Susceptible Genotype. Int J Mol Sci 2021; 22:ijms22179439. [PMID: 34502349 PMCID: PMC8430919 DOI: 10.3390/ijms22179439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022] Open
Abstract
Three strains of mice with various susceptibilities to restraint stress (RS), i.e., mice with a knocked out norepinephrine transporter gene (NET-KO), SWR/J and C57BL/6J (WT) mice were shown to serve as a good model to study the molecular mechanisms underlying different stress-coping strategies. We identified 14 miRNAs that were altered by RS in the PFC of these mice in a genotype-dependent manner, where the most interesting was let-7e. Further in silico analysis of its potential targets allowed us to identify five mRNAs (Bcl2l11, Foxo1, Pik3r1, Gab1 and Map2k4), and their level alterations were experimentally confirmed. A next-generation sequencing (NGS) approach, which was employed to find transcripts differentially expressed in the PFC of NET-KO and WT mice, showed that, among others, two additional mRNAs were regulated by mmu-let-7e, i.e., mRNAs that encode Kmt2d and Inf2. Since an increase in Bcl2l11 and Pik3r1 mRNAs upon RS in the PFC of WT mice resulted from the decrease in mmu-let-7e and mmu-miR-484 regulations, we postulated that MAPK, FoxO and PI3K-Akt signaling pathways were associated with stress resilience, although via different, genotype-dependent regulation of various mRNAs by let-7e and miR-484. However, a higher level of Kmt2d mRNA (regulated by let-7e) that was found with NGS analysis in the PFC of NET-KO mice indicated that histone methylation was also important for stress resilience.
Collapse
|
25
|
Yuan C, Yao Y, Liu T, Jin Y, Yang C, Loh XJ, Li Z. Research Progress on Natural Compounds Exerting an Antidepressant Effect through Anti-inflammatory. Curr Med Chem 2021; 29:934-956. [PMID: 34420503 DOI: 10.2174/0929867328666210820115259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Depression is a common mental illness that belongs to the category of emotional disorders that causes serious damage to the health and life of patients, while inflammation is considered to be one of the important factors that causes depression. In this case, it might be important to explore the possible therapeutic approach by using natural compounds exerting an anti-inflammatory and antidepressant effect, which it filed has not been systematically reviewed recently. Hence, this review aims to systematically sort the literature related to the mechanism of exerting an antidepressant effect through anti-inflammatory actions, and to summarize the related natural products in the past 20 years, in terms of a number of inflammatory related pathways (i.e., the protein kinase B (Akt) pathway, monoamine neurotransmitters (5-hydroxytryptamine and norepinephrine) (5-HT and NE), the nod-like receptor protein-3 (NLRP3) inflammasome, proinflammatory cytokines, neurotrophins, or cytokine-signaling pathways), which might provide a useful reference for the potential treatment of depression.
Collapse
Affiliation(s)
- Caixia Yuan
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102. China
| | - Yucen Yao
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang, 154007. China
| | - Tao Liu
- College Pharmacy, Harbin University of commerce, 1Xuehai Street, Harbin, Heilongjiang, 150028. China
| | - Ying Jin
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003. China
| | - Chunrong Yang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang, 154007, China. China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634. Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634. Singapore
| |
Collapse
|
26
|
Sánchez N, Juárez-Balarezo J, Olhaberry M, González-Oneto H, Muzard A, Mardonez MJ, Franco P, Barrera F, Gaete M. Depression and Antidepressants During Pregnancy: Craniofacial Defects Due to Stem/Progenitor Cell Deregulation Mediated by Serotonin. Front Cell Dev Biol 2021; 9:632766. [PMID: 34476233 PMCID: PMC8406697 DOI: 10.3389/fcell.2021.632766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is a common and debilitating mood disorder that increases in prevalence during pregnancy. Worldwide, 7 to 12% of pregnant women experience depression, in which the associated risk factors include socio-demographic, psychological, and socioeconomic variables. Maternal depression could have psychological, anatomical, and physiological consequences in the newborn. Depression has been related to a downregulation in serotonin levels in the brain. Accordingly, the most commonly prescribed pharmacotherapy is based on selective serotonin reuptake inhibitors (SSRIs), which increase local serotonin concentration. Even though the use of SSRIs has few adverse effects compared with other antidepressants, altering serotonin levels has been associated with the advent of anatomical and physiological changes in utero, leading to defects in craniofacial development, including craniosynostosis, cleft palate, and dental defects. Migration and proliferation of neural crest cells, which contribute to the formation of bone, cartilage, palate, teeth, and salivary glands in the craniofacial region, are regulated by serotonin. Specifically, craniofacial progenitor cells are affected by serotonin levels, producing a misbalance between their proliferation and differentiation. Thus, it is possible to hypothesize that craniofacial development will be affected by the changes in serotonin levels, happening during maternal depression or after the use of SSRIs, which cross the placental barrier, increasing the risk of craniofacial defects. In this review, we provide a synthesis of the current research on depression and the use of SSRI during pregnancy, and how this could be related to craniofacial defects using an interdisciplinary perspective integrating psychological, clinical, and developmental biology perspectives. We discuss the mechanisms by which serotonin could influence craniofacial development and stem/progenitor cells, proposing some transcription factors as mediators of serotonin signaling, and craniofacial stem/progenitor cell biology. We finally highlight the importance of non-pharmacological therapies for depression on fertile and pregnant women, and provide an individual analysis of the risk-benefit balance for the use of antidepressants during pregnancy.
Collapse
Affiliation(s)
- Natalia Sánchez
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jesús Juárez-Balarezo
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Olhaberry
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Humberto González-Oneto
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Muzard
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - María Jesús Mardonez
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Pamela Franco
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Felipe Barrera
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Gaete
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Meng F, Liu J, Dai J, Lian H, Jiang S, Li Q, Wu M, Wang W, Wang D, Zhao D, Liu C, Qiu C, Li C. PPM1F in Dentate Gyrus Modulates Anxiety-Related Behaviors by Regulating BDNF Expression via AKT/JNK/p-H3S10 Pathway. Mol Neurobiol 2021; 58:3529-3544. [PMID: 33745117 DOI: 10.1007/s12035-021-02340-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Anxiety is a serious psychiatric disorder, with a higher incidence rate in women than in men. Protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F), a serine/threonine phosphatase, has been shown to have multiple biological and cellular functions. However, the effects of PPM1F and its neuronal substrates on anxiety remain largely unclear. In this study, we showed that chronic restraint stress (CRS) induced anxiety-related behaviors only in female mice, while acute restraint stress (ARS) produced anxiety-related behaviors in both male and female mice in light-dark and elevated plus maze tests and induced upregulation of PPM1F and downregulation of brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Adeno-associated virus-mediated overexpression of PPM1F or conditional knockout of BDNF in dentate gyrus (DG) led to a more pronounced anxiety-related behavior in female than in male mice as indicated by the behavioral evaluations. Meanwhile, overexpression of PPM1F in the DG decreased total Bdnf exon-specific messenger RNA expression in the hippocampus with the decreased binding activity of phosphorylated H3S10 to its individual promoters in female mice. Furthermore, we identified that overexpression of PPM1F decreased the phosphorylation levels of AKT and JNK in the hippocampus of female mice. These results may suggest that PPM1F regulates anxiety-related behaviors by modulating BDNF expression and H3S10 phosphorylation-mediated epigenetic modification, which may be served as potentially pathological genes associated with anxiety or other mental diseases.
Collapse
Affiliation(s)
- Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Juanjuan Dai
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Qiongyu Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Min Wu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Di Zhao
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Changyun Qiu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China.
| |
Collapse
|
28
|
Zhao D, Liu C, Cui M, Liu J, Meng F, Lian H, Wang D, Hu F, Liu D, Li C. The paraventricular thalamus input to central amygdala controls depression-related behaviors. Exp Neurol 2021; 342:113744. [PMID: 33965409 DOI: 10.1016/j.expneurol.2021.113744] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
The dysregulation of neuronal networks may contribute to the etiology of major depressive disorder (MDD). However, the neural connections underlying the symptoms of MDD have yet to be elucidated. Here, we observed that glutamatergic neurons in the paraventricular thalamus (PVT) were activated by chronic unpredictable stress (CUS) with higher expression numbers of ΔFosB-labeled neurons and protein expression levels, activation of PVT neurons caused depressive-like phenotypes, whereas suppression of PVT neuronal activity induced an antidepressant effect in male, but not female mice, which were achieved by using a chemogenetic approach. Moreover, we found that PVT glutamatergic neurons showed strong neuronal projections to the central amygdala (CeA), activation of the CeA-projecting neurons in PVT or the neuronal terminals of PVT-CeA projection neurons induced depression-related behaviors or showed enhanced stress-induced susceptibility. These results suggest that PVT is a key depression-controlling nucleus, and PVT-CeA projection regulates depression-related behaviors in a sex-dependent manner, which could be served as an essential pathway for morbidity and treatment of depression.
Collapse
Affiliation(s)
- Di Zhao
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fengai Hu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
29
|
Wang D, Wang W, Jiang S, Ma H, Lian H, Meng F, Liu J, Cui M, You J, Liu C, Zhao D, Hu F, Liu D, Li C. Regulation of depression-related behaviors by GABAergic neurons in the lateral septum through periaqueductal gray neuronal projections. J Psychiatr Res 2021; 137:202-214. [PMID: 33691232 DOI: 10.1016/j.jpsychires.2021.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Major depressive disorder (MDD) is a serious and widespread mental illness worldwide. The abnormality of neuronal networks may contribute to the etiology of MDD. However, the neural connections underlying the main symptoms of MDD need further elucidation. Here, we found that GABAergic neurons in the lateral septum (LS) were activated by chronic unpredictable stress (CUS), with increased numbers of ΔFosB-labeled neurons. LS neuronal activity was modulated using a chemogenetic approach. Activation of LS neurons caused a depressive phenotype, as shown by increased immobility in the forced swim test, and induced increased susceptibility to subthreshold chronic stress, as indicated by decreased female urine sniffing time and preference for sucrose in depression-related behavior detection, whereas suppression of LS neuronal activity induced an antidepressant effect under basal and stressed conditions. Moreover, we found that the LS showed strong neuronal projections to the dorsal periaqueductal gray (dPAG); activation of dPAG-projecting GABAergic neurons in the LS produced the same depressive behaviors and stress susceptibility as induced by the activation of the majority of LS GABAergic neurons. Finally, we found that activation of neuronal fibers in the dPAG derived from the LS showed depression-related behaviors, as suggested by the decreased female urine sniffing time and sucrose preference in female urine sniffing and sucrose preference tests respectively. Our findings indicate that LS is a key depression-controlling nucleus, and that the LS-PAG projection is an essential effector circuit for morbidity and treatment in depression.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - He Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jingjing You
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fengai Hu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
30
|
PPM1F in hippocampal dentate gyrus regulates the depression-related behaviors by modulating neuronal excitability. Exp Neurol 2021; 340:113657. [PMID: 33639208 DOI: 10.1016/j.expneurol.2021.113657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/28/2020] [Accepted: 02/21/2021] [Indexed: 01/21/2023]
Abstract
Major depressive disorder (MDD) is a common, serious, debilitating mental illness. Protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F), a serine/threonine phosphatase, has been reported to have multiple biological and cellular functions. However, the effects of PPM1F and its neuronal substrates on depressive behaviors remain largely unknown. Here, we showed that PPM1F is widely distributed in the hippocampus, and chronic unpredictable stress (CUS) can induce increased expression of PPM1F in the hippocampus, which was correlated with depression-associated behaviors. Overexpression of PPM1F mediated by adeno-associated virus (AAV) in the dentate gyrus (DG) produced depression-related behaviors and enhanced susceptibility to subthreshold CUS (SCUS) in both male and female mice, while, knockout of PPM1F in DG produced antidepressant phonotypes under stress conditions. Whole-cell patch-clamp recordings demonstrated that overexpression of PPM1F increased the neuronal excitability of the granule cells in the DG. Consistent with neuronal hyperexcitability, overexpression of PPM1F regulated the expression of certain ion channel genes and induced decreased phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in hippocampus. These results suggest that PPM1F in the DG regulates depression-related behaviors by modulating neuronal excitability, which might be an important pathological gene for depression or other mental diseases.
Collapse
|
31
|
Li M, Geng R, Li C, Meng F, Zhao H, Liu J, Dai J, Wang X. Dysregulated gene-associated biomarkers for Alzheimer's disease and aging. Transl Neurosci 2021; 12:83-95. [PMID: 33623715 PMCID: PMC7885957 DOI: 10.1515/tnsci-2021-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD), the most common type of dementia, is a neurodegenerative disorder with a hidden onset, including difficult early detection and diagnosis. Nevertheless, the new crucial biomarkers for the diagnosis and pathogenesis of AD need to be explored further. Here, the common differentially expressed genes (DEGs) were identified through a comprehensive analysis of gene expression profiles from the Gene Expression Omnibus (GEO) database. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these DEGs were mainly associated with biological processes, cellular components, and molecular functions, which are involved in multiple cellular functions. Next, we found that 9 of the 24 genes showed the same regulatory changes in the blood of patients with AD compared to those in the GEO database, and 2 of the 24 genes showed a significant correlation with Montreal Cognitive Assessment scores. Finally, we determined that mice with AD and elderly mice had the same regulatory changes in the identified DEGs in both the blood and hippocampus. Our study identified several potential core biomarkers of AD and aging, which could contribute to the early detection, differential diagnosis, treatment, and pathological analysis of AD.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Hongwei Zhao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Juanjuan Dai
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xuezhen Wang
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| |
Collapse
|
32
|
Wang K, Zhai Q, Wang S, Li Q, Liu J, Meng F, Wang W, Zhang J, Wang D, Zhao D, Liu C, Dai J, Li C, Cui M, Chen J. Cryptotanshinone ameliorates CUS-induced depressive-like behaviors in mice. Transl Neurosci 2021; 12:469-481. [PMID: 34900345 PMCID: PMC8633587 DOI: 10.1515/tnsci-2020-0198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Objectives Cryptotanshinone (CPT), a natural quinoid diterpene, isolated from Salvia miltiorrhiza, has shown various pharmacological properties. However, its effect on chronic unpredictable stress (CUS)-induced depression phenotypes and the underlying mechanism remain unclear. Therefore, the aim of this study was to investigate whether CPT could exert an antidepressant effect. Methods We investigated the effects of CPT in a CUS-induced depression model and explored whether these effects were related to the anti-inflammatory and neurogenesis promoting properties by investigating the expression levels of various signaling molecules at the mRNA and protein levels. Results Administration of CPT improved depression-like behaviors in CUS-induced mice. CPT administration increased the levels of doublecortin-positive cells and reversed the decrease in the expression levels of brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling transduction, as well as the downstream functional proteins, phosphorylated extracellular regulated protein kinases (p-ERK), and cyclic adenosine monophosphate (cAMP)-response element-binding protein levels (p-CREB) in hippocampus. CPT treatment also inhibited the activation of microglia and suppressed M1 microglial polarization, while promoting M2 microglial polarization by monitoring the expression levels of arginase 1 (Arg-1) and inducible nitric oxide synthase (iNOS), and further inhibited the expression of proinflammatory cytokines, including interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), and increased the expression of the anti-inflammatory cytokine IL-10 by regulating nuclear factor-κB (NF-κB) activation. Conclusions CPT relieves the depressive-like state in CUS-induced mice by enhancing neurogenesis and inhibiting inflammation through the BDNF/TrkB and NF-κB pathways and could therefore serve as a promising candidate for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.,Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Department of Internal Medicine, Jinan Hospital, Jinan, Shandong, China
| | - Qingling Zhai
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.,Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Sanwang Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| | - Qiongyu Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jinjie Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| |
Collapse
|