1
|
Zhang H, Gao H, Gao P, Liu H, Chen J. Molecular mechanisms and therapeutic strategies for small‑cell lung cancer transformation after TKI therapy in EGFR‑mutated lung adenocarcinoma (Review). Mol Clin Oncol 2025; 23:62. [PMID: 40384936 PMCID: PMC12082387 DOI: 10.3892/mco.2025.2857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/27/2025] [Indexed: 05/20/2025] Open
Abstract
Lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutations is a common subtype of non-small cell lung cancer (NSCLC). Although it responds well to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), acquired resistance to EGFR-TKIs inevitably occurs, which limits the use of the EGFR-TKIs. One resistance mechanism is small-cell transformation, which refers to the histological switch of EGFR-mutant lung adenocarcinoma to a small-cell lung cancer phenotype following TKI exposure. Small cell transformation is associated with a poor prognosis and requires different treatment modalities compared with NSCLC. The molecular mechanisms underlying small cell transformation are not fully elucidated, but may involve the loss of tumor suppressor genes, such as RB1 and TP53, and the activation of neuroendocrine pathways. In the present review, the current advances in the molecular characteristics and therapeutic regimens for small-cell transformation in patients with EGFR-mutated lung adenocarcinoma who are resistant to EGFR-TKIs, are summarized.
Collapse
Affiliation(s)
- Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hongye Gao
- Molecular Diagnostic Laboratory of Tumor, Inner Mongolia Hospital of Peking University Cancer Hospital, Affiliated People's Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China
| | - Penghu Gao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
2
|
Xu H, Yang Y, Wang P, Lin S, Zhang X, Ni H, Xu Z. Unraveling the immune mechanisms and therapeutic targets in lung adenosquamous transformation. Front Immunol 2025; 16:1542526. [PMID: 40568576 PMCID: PMC12188374 DOI: 10.3389/fimmu.2025.1542526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 05/14/2025] [Indexed: 06/28/2025] Open
Abstract
Adenocarcinoma-to-squamous cell carcinoma transformation (AST) induces drug resistance in patients with lung adenocarcinoma (LUAD), often resulting in unfavorable clinical outcomes. In recent years, it has been found that alterations in the tumor immune microenvironment (TIME) during adenosquamous carcinoma trans-differentiation also influence the efficacy of immunotherapy. Moreover, the aberrant expression and activation of several driver genes for AST lead to abnormal infiltration and function of immune cell by remodeling the cellular inflammatory phenotype. In this review, we will systematically present the changes in the TIME and molecular regulatory mechanisms during adenosquamous carcinoma differentiation, aiming to gain a better understand of the function of immune cells during this process and the potential value of combining immunotherapy to enhance the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Haiyan Xu
- Department of Biobank, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - PingLi Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Lin
- Department of Biobank, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochun Zhang
- Department of Biobank, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huiwen Ni
- Department of Biobank, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
3
|
Cao M, Zhang N, Chen T, Jiang H. Assessment of MXD3 Expression as a Predictor of Survival in Lung Squamous Cell Carcinoma. Int J Genomics 2025; 2025:7355595. [PMID: 40406509 PMCID: PMC12097849 DOI: 10.1155/ijog/7355595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/21/2025] [Indexed: 05/26/2025] Open
Abstract
Backgrounds and Aims: Lung squamous cell carcinoma (LUSC) represents a significant challenge in oncology, necessitating the identification of novel prognostic markers and therapeutic targets. This study is aimed at investigating the oncogenic role of MXD3 (MAX Dimerization Protein 3) in LUSC and its implications for patient prognosis. Methods: A retrospective cohort of 199 LUSC patients from the 905th Hospital of People's Liberation Army Navy was analyzed to evaluate MXD3 expression levels and their association with clinicopathological characteristics and survival outcomes. Immunohistochemistry (IHC) staining was performed to assess MXD3 expression in LUSC tissue samples. Survival analyses, including the Kaplan-Meier curves and multivariate Cox regression, were conducted to determine the prognostic significance of MXD3 expression and other clinicopathological factors. Additionally, the methylation status of MXD3 was examined using data from the TCGA database to assess its role in regulating MXD3 expression and survival outcomes. Results: MXD3 expression exhibited significant heterogeneity among LUSC patients, with high MXD3 expression correlating with advanced tumor differentiation grade, larger tumor size, and advanced T and N stages. The Kaplan-Meier survival analyses revealed that high MXD3 expression was associated with shorter cancer-specific survival. Multivariate Cox regression identified MXD3 expression level and lymph node involvement (N stage) as independent prognostic factors for cancer-specific survival in LUSC patients. Additionally, analysis of MXD3 methylation revealed significantly lower methylation levels in LUSC tissues, and reduced methylation correlated with poorer survival outcomes. Conclusions: Our findings highlight MXD3 as a promising prognostic biomarker for LUSC, with high MXD3 expression predicting poorer survival outcomes. MXD3 expression level, along with lymph node involvement and methylation status, could serve as independent prognostic indicators for risk stratification and treatment decision-making in LUSC patients. Further research is warranted to elucidate the underlying mechanisms of MXD3-mediated tumorigenesis and its potential as a therapeutic target in LUSC management.
Collapse
Affiliation(s)
- Mingzhi Cao
- Department of Thoracic Surgery, 905th Hospital of People's Liberation Army Navy, Naval Medical University, Shanghai, China
| | - Ning Zhang
- Department of Thoracic Surgery, 905th Hospital of People's Liberation Army Navy, Naval Medical University, Shanghai, China
| | - Tangbing Chen
- Department of Thoracic Surgery, 905th Hospital of People's Liberation Army Navy, Naval Medical University, Shanghai, China
| | - Hong Jiang
- Department of Thoracic Surgery, 905th Hospital of People's Liberation Army Navy, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Garcia NMG, Becerra JN, Srinivasan S, McKinney BJ, DiMarco AV, Wu F, Fitzgibbon M, Alvarez JV. APOBEC3 Activity Promotes the Survival and Evolution of Drug-Tolerant Persister Cells during EGFR Inhibitor Resistance in Lung Cancer. CANCER RESEARCH COMMUNICATIONS 2025; 5:825-840. [PMID: 40323013 DOI: 10.1158/2767-9764.crc-24-0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/11/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer. We find that inhibition of EGFR in lung cancer cells leads to a rapid and pronounced induction of APOBEC3 expression and activity. Functionally, APOBEC expression promotes the survival of drug-tolerant persister cells (DTP) following EGFR inhibition. Constitutive expression of APOBEC3B alters the evolutionary trajectory of acquired resistance to the EGFR inhibitor gefitinib, making it more likely that resistance arises through de novo acquisition of the T790M gatekeeper mutation and squamous transdifferentiation during the DTP state. APOBEC3B expression is associated with increased expression of the squamous cell transcription factor ΔNp63 and squamous cell transdifferentiation in gefitinib-resistant cells. Knockout of p63 in gefitinib-resistant cells reduces the expression of the ΔNp63 target genes IL-1α/β and sensitizes these cells to the third-generation EGFR inhibitor osimertinib. These results suggest that APOBEC activity promotes acquired resistance by facilitating evolution and transdifferentiation in DTPs and that approaches to target ΔNp63 in gefitinib-resistant lung cancers may have therapeutic benefit. SIGNIFICANCE APOBEC mutagenesis is a common source of genetic heterogeneity in cancer, and APOBEC mutational signatures are enriched in metastatic and drug-resistant tumors. However, the mechanisms through which APOBEC3 enzymes promote tumor evolution remain unknown. In this study, we show that APOBEC3 activity contributes to the development of therapy-resistant cancer cells by promoting evolution of DTP cells. These findings offer insights into the role of APOBEC mutagenesis in cancer progression.
Collapse
Affiliation(s)
- Nina Marie G Garcia
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Jessica N Becerra
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sharan Srinivasan
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Brock J McKinney
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ashley V DiMarco
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Feinan Wu
- Genomics and Bioinformatics, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Matthew Fitzgibbon
- Genomics and Bioinformatics, Fred Hutchinson Cancer Center, Seattle, Washington
| | - James V Alvarez
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
5
|
Jin Z, Zhou X, Fang Z. DelaySSA: stochastic simulation of biochemical systems and gene regulatory networks with or without time delays. PLoS Comput Biol 2025; 21:e1012919. [PMID: 40198732 PMCID: PMC11977973 DOI: 10.1371/journal.pcbi.1012919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
Stochastic Simulation Algorithm (SSA) is crucial for modeling biochemical reactions and gene regulatory networks. Traditional SSA is characterized by Markovian property and cannot naturally model systems with time delays. Several algorithms have already been designed to handle delayed reactions, yet few easy-to-use implementations exist. To address these challenges, we have developed DelaySSA, an R package that implements currently available algorithms for SSA with or without delays. Meanwhile, we also provided Matlab and Python versions to support wider applications. We demonstrated its accuracy and validity by simulating two classical models: the Bursty model and Refractory model. We then tested its capability to simulate the RNA Velocity model, where it successfully reproduced both the up- and down-regulation stages in the phase portrait. Finally, we extended its application to simulate a gene regulatory network of lung cancer adeno-to-squamous transition (AST) and qualitatively analyzed its bistability behavior by approximating the Waddington's landscape. Modeling the therapeutic intervention of a SOX2 degrader as a delayed degradation reaction, AST is effectively blocked and reprogrammed back to the adenocarcinoma state, providing a useful clue for targeting drug-resistant AST in the future. Taken together, DelaySSA is a powerful and easy-to-use software suite, facilitating accurate modeling of various kinds of biological systems and broadening the scope of stochastic simulations in systems biology.
Collapse
Affiliation(s)
- Ziyan Jin
- Department of Colorectal Surgery and Oncology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyuan Fang
- Department of Colorectal Surgery and Oncology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
- Biomedical and Health Translational Research Center of Zhejiang Province, Haining, China
| |
Collapse
|
6
|
Yao X, Gao C, Sun C, Chen ZS, Zhuang J. Epigenetic code underlying EGFR-TKI resistance in non-small cell lung cancer: Elucidation of mechanisms and perspectives on therapeutic strategies. Drug Discov Today 2025; 30:104321. [PMID: 40032137 DOI: 10.1016/j.drudis.2025.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype, and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the core drugs used for its treatment. However, the emergence of drug resistance poses a significant challenge to their clinical efficacy. As a significant role-player in cancer development and maintenance, histone modifications, DNA methylation and noncoding RNA (ncRNA) changes have been proven to play a crucial part in driving EGFR-TKI resistance, which provides promising potential therapeutic targets and biomarkers for overcoming drug resistance. This review delves into the complex epigenetic mechanisms that cause EGFR-TKI resistance and emphasizes the potential of combined epigenetic therapies, aiming to provide better-targeted treatment options for NSCLC patients with NSCLC and drive innovative strategies to overcome the challenges of drug resistance.
Collapse
Affiliation(s)
- XiaoYu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, NY, USA.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| |
Collapse
|
7
|
Tanaka N, Ebi H. Mechanisms of Resistance to KRAS Inhibitors: Cancer Cells' Strategic Use of Normal Cellular Mechanisms to Adapt. Cancer Sci 2025; 116:600-612. [PMID: 39726416 PMCID: PMC11875783 DOI: 10.1111/cas.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
KRAS was long deemed undruggable until the discovery of the switch-II pocket facilitated the development of specific KRAS inhibitors. Despite their introduction into clinical practice, resistance mechanisms can limit their effectiveness. Initially, tumors rely on mutant KRAS, but as they progress, they may shift to alternative pathways, resulting in intrinsic resistance. This resistance can stem from mechanisms like epithelial-to-mesenchymal transition (EMT), YAP activation, or KEAP1 mutations. KRAS inhibition often triggers cellular rewiring to counteract therapeutic pressure. For instance, feedback reactivation of signaling pathways such as MAPK, mediated by receptor tyrosine kinases, supports tumor cell survival. Inhibiting KRAS disrupts protein homeostasis, but reactivation of MAPK or AKT can restore it, aiding tumor cell survival. KRAS inhibition also causes metabolic reprogramming and protein re-localization. The re-localization of E-cadherin and Scribble from the membrane to the cytosol causes YAP to translocate to the nucleus, where it drives MRAS transcription, leading to MAPK reactivation. Emerging evidence indicates that changes in cell identity, such as mucinous differentiation, shifts from alveolar type 2 to type 1 cells, or lineage switching from adenocarcinoma to squamous cell carcinoma, also contribute to resistance. In addition to these nongenetic mechanisms, secondary mutations in KRAS or alterations in upstream/downstream signaling proteins can cause acquired resistance. Secondary mutations in the switch-II pocket disrupt drug binding, and known oncogenic mutations affect drug efficacy. Overcoming these resistance mechanisms involves enhancing the efficacy of drugs targeting mutant KRAS, developing broad-spectrum inhibitors, combining therapies targeting multiple pathways, and integrating immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Noritaka Tanaka
- Division of Molecular TherapeuticsAichi Cancer Center Research InstituteNagoyaJapan
| | - Hiromichi Ebi
- Division of Molecular TherapeuticsAichi Cancer Center Research InstituteNagoyaJapan
- Division of Advanced Cancer TherapeuticsNagoya University Graduate School of MedicineNagoyaAichiJapan
| |
Collapse
|
8
|
Carrillo-Perez F, Pizurica M, Zheng Y, Nandi TN, Madduri R, Shen J, Gevaert O. Generation of synthetic whole-slide image tiles of tumours from RNA-sequencing data via cascaded diffusion models. Nat Biomed Eng 2025; 9:320-332. [PMID: 38514775 DOI: 10.1038/s41551-024-01193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Training machine-learning models with synthetically generated data can alleviate the problem of data scarcity when acquiring diverse and sufficiently large datasets is costly and challenging. Here we show that cascaded diffusion models can be used to synthesize realistic whole-slide image tiles from latent representations of RNA-sequencing data from human tumours. Alterations in gene expression affected the composition of cell types in the generated synthetic image tiles, which accurately preserved the distribution of cell types and maintained the cell fraction observed in bulk RNA-sequencing data, as we show for lung adenocarcinoma, kidney renal papillary cell carcinoma, cervical squamous cell carcinoma, colon adenocarcinoma and glioblastoma. Machine-learning models pretrained with the generated synthetic data performed better than models trained from scratch. Synthetic data may accelerate the development of machine-learning models in scarce-data settings and allow for the imputation of missing data modalities.
Collapse
Affiliation(s)
- Francisco Carrillo-Perez
- Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, School of Medicine, Stanford, CA, USA
| | - Marija Pizurica
- Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, School of Medicine, Stanford, CA, USA
- Internet technology and Data science Lab (IDLab), Ghent University, Ghent, Belgium
| | - Yuanning Zheng
- Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, School of Medicine, Stanford, CA, USA
| | - Tarak Nath Nandi
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA
| | - Ravi Madduri
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jeanne Shen
- Department of Pathology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Nicholas B, Bailey A, McCann KJ, Johnson P, Elliott T, Ottensmeier C, Skipp P. Comparative Analysis of Transcriptomic and Proteomic Expression between Two Non-Small Cell Lung Cancer Subtypes. J Proteome Res 2025; 24:729-741. [PMID: 39772544 PMCID: PMC11811994 DOI: 10.1021/acs.jproteome.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Non-small cell lung cancer (NSCLC) is frequently diagnosed late and has poor survival. The two predominant subtypes of NSCLC, adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), are currently differentially diagnosed using immunohistochemical markers; however, they are increasingly recognized as very different cancer types suggestive of potential for new, more targeted therapies. There are extensive efforts to find more precise and noninvasive differential diagnostic tools. Here, we examined these two NSCLC subtypes for differences that may inform treatment and identify potential novel therapeutic pathways. We presented a comparative analysis of transcriptomic and proteomic expression in tumors from a cohort of 22 NSCLC patients: 8 LUSC and 14 LUAD. Comparing NSCLC subtypes, we found differential gene expression related to cell differentiation for LUSC and cellular structure and immune response regulation for LUAD. Differential protein expression between NSCLC subtypes was related to extracellular structure for LUSC and metabolic processes, including glucose metabolism for LUAD. This direct comparison was more informative about subtype-specific pathways than between each subtype and control (nontumor) tissues. Many of our observations between NSCLC subtypes support and inform existing observations and reveal differences that may aid research seeking to identify and validate novel subtype biomarkers or druggable targets.
Collapse
Affiliation(s)
- Ben Nicholas
- Centre
for Proteomic Research, School of Biological Sciences and Institute
for Life Sciences, University of Southampton, Building 85, Southampton SO17 1BJ ,U.K.
- Centre
for Cancer Immunology and Institute for Life Sciences, Faculty of
Medicine, University of Southampton, Southampton SO16 6YD ,U.K.
| | - Alistair Bailey
- Centre
for Proteomic Research, School of Biological Sciences and Institute
for Life Sciences, University of Southampton, Building 85, Southampton SO17 1BJ ,U.K.
- Centre
for Cancer Immunology and Institute for Life Sciences, Faculty of
Medicine, University of Southampton, Southampton SO16 6YD ,U.K.
| | - Katy J. McCann
- School
of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD ,U.K.
| | - Peter Johnson
- Cancer
Research UK Clinical Centre, University
of Southampton, Southampton SO16 6YD ,U.K.
| | - Tim Elliott
- Centre
for Cancer Immunology and Institute for Life Sciences, Faculty of
Medicine, University of Southampton, Southampton SO16 6YD ,U.K.
- Oxford
Cancer Centre for Immuno-Oncology and CAMS-Oxford Institute, Nuffield
Department of Medicine, University of Oxford, Oxford OX3 7LE ,U.K.
| | - Christian Ottensmeier
- School
of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD ,U.K.
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, U.K.
| | - Paul Skipp
- Centre
for Proteomic Research, School of Biological Sciences and Institute
for Life Sciences, University of Southampton, Building 85, Southampton SO17 1BJ ,U.K.
| |
Collapse
|
10
|
Gu A, Li J, Li M, Liu Y. Patient-derived xenograft model in cancer: establishment and applications. MedComm (Beijing) 2025; 6:e70059. [PMID: 39830019 PMCID: PMC11742426 DOI: 10.1002/mco2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
The patient-derived xenograft (PDX) model is a crucial in vivo model extensively employed in cancer research that has been shown to maintain the genomic characteristics and pathological structure of patients across various subtypes, metastatic, and diverse treatment histories. Various treatment strategies utilized in PDX models can offer valuable insights into the mechanisms of tumor progression, drug resistance, and the development of novel therapies. This review provides a comprehensive overview of the establishment and applications of PDX models. We present an overview of the history and current status of PDX models, elucidate the diverse construction methodologies employed for different tumors, and conduct a comparative analysis to highlight the distinct advantages and limitations of this model in relation to other in vivo models. The applications are elucidated in the domain of comprehending the mechanisms underlying tumor development and cancer therapy, which highlights broad applications in the fields of chemotherapy, targeted therapy, delivery systems, combination therapy, antibody-drug conjugates and radiotherapy. Furthermore, the combination of the PDX model with multiomics and single-cell analyses for cancer research has also been emphasized. The application of the PDX model in clinical treatment and personalized medicine is additionally emphasized.
Collapse
Affiliation(s)
- Ao Gu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiatong Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meng‐Yao Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingbin Liu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Liao YY, Tsai CL, Huang HP. Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics. Cancers (Basel) 2025; 17:459. [PMID: 39941826 PMCID: PMC11815769 DOI: 10.3390/cancers17030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with epidermal growth factor receptor (EGFR) mutations present in a substantial proportion of patients. Third-generation EGFR tyrosine kinase inhibitors (EGFR TKI), exemplified by osimertinib, have dramatically improved outcomes by effectively targeting the T790M mutation-a primary driver of acquired resistance to earlier-generation EGFR TKI. Despite these successes, resistance to third-generation EGFR TKIs inevitably emerges. Mechanisms include on-target mutations such as C797S, activation of alternative pathways like MET amplification, histologic transformations, and intricate tumor microenvironment (TME) alterations. These resistance pathways are compounded by challenges in tolerability, adverse events, and tumor heterogeneity. In light of these hurdles, this review examines the evolving landscape of combination therapies designed to enhance or prolong the effectiveness of third-generation EGFR TKIs. We explore key strategies that pair osimertinib with radiotherapy, anti-angiogenic agents, immune checkpoint inhibitors, and other molecularly targeted drugs, and we discuss the biological rationale, preclinical evidence, and clinical trial data supporting these approaches. Emphasis is placed on how these combinations may circumvent diverse resistance mechanisms, improve survival, and maintain a favorable safety profile. By integrating the latest findings, this review aims to guide clinicians and researchers toward more individualized and durable treatment options, ultimately enhancing both survival and quality of life for patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Yan-You Liao
- Department of Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Chia-Luen Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| |
Collapse
|
12
|
Sementino E, Hassan D, Bellacosa A, Testa JR. AKT and the Hallmarks of Cancer. Cancer Res 2024; 84:4126-4139. [PMID: 39437156 DOI: 10.1158/0008-5472.can-24-1846] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Nearly a quarter century ago, Hanahan and Weinberg conceived six unifying principles explaining how normal cells transform into malignant tumors. Their provisional set of biological capabilities acquired during tumor development-cancer hallmarks-would evolve to 14 tenets as knowledge of cancer genomes, molecular mechanisms, and the tumor microenvironment expanded, most recently adding four emerging enabling characteristics: phenotypic plasticity, epigenetic reprogramming, polymorphic microbiomes, and senescent cells. AKT kinases are critical signaling molecules that regulate cellular physiology upon receptor tyrosine kinases and PI3K activation. The complex branching of the AKT signaling network involves several critical downstream nodes that significantly magnify its functional impact, such that nearly every organ system and cell in the body may be affected by AKT activity. Conversely, tumor-intrinsic dysregulation of AKT can have numerous adverse cellular and pathologic ramifications, particularly in oncogenesis, as multiple tumor suppressors and oncogenic proteins regulate AKT signaling. Herein, we review the mounting evidence implicating the AKT pathway in the aggregate of currently recognized hallmarks of cancer underlying the complexities of human malignant diseases. The challenges, recent successes, and likely areas for exciting future advances in targeting this complex pathway are also discussed.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Wang H, Tang S, Wu Q, He Y, Zhu W, Xie X, Qin Z, Wang X, Zhou S, Yao S, Xu X, Guo C, Tong X, Han S, Chou YH, Wang Y, Wong KK, Yang CG, Chen L, Hu L, Ji H. Integrative study of lung cancer adeno-to-squamous transition in EGFR TKI resistance identifies RAPGEF3 as a therapeutic target. Natl Sci Rev 2024; 11:nwae392. [PMID: 39687207 PMCID: PMC11647589 DOI: 10.1093/nsr/nwae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 12/18/2024] Open
Abstract
Although adeno-to-squamous transition (AST) has been observed in association with resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in clinic, its causality, molecular mechanism and overcoming strategies remain largely unclear. We here demonstrate that squamous transition occurs concomitantly with TKI resistance in PC9-derived xenograft tumors. Perturbation of squamous transition via DNp63 overexpression or knockdown leads to significant changes in TKI responses, indicative of a direct causal link between squamous transition and TKI resistance. Integrative RNA-seq, ATAC-seq analyses and functional studies reveal that FOXA1 plays an important role in maintaining adenomatous lineage and contributes to TKI sensitivity. FOXM1 overexpression together with FOXA1 knockout fully recapitulates squamous transition and TKI resistance in both PC9 xenografts and patient-derived xenograft (PDX) models. Importantly, pharmacological inhibition of RAPGEF3 combined with EGFR TKI efficiently overcomes TKI resistance, especially in RAPGEF3high PDXs. Our findings provide novel mechanistic insights into squamous transition and therapeutic strategy to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Tang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qibiao Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200092, China
| | - Weikang Zhu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyun Xie
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhen Qin
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiyu Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shun Yao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chenchen Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Han
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yueh-Hung Chou
- Department of Anatomical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, NY 10016, USA
| | - Cai-Guang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liang Hu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
14
|
Ireland AS, Hawgood SB, Xie DA, Barbier MW, Lucas-Randolph S, Tyson DR, Zuo LY, Witt BL, Govindan R, Dowlati A, Moser JC, Puri S, Rudin CM, Chan JM, Elliott A, Oliver TG. Basal cell of origin resolves neuroendocrine-tuft lineage plasticity in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623500. [PMID: 39605338 PMCID: PMC11601426 DOI: 10.1101/2024.11.13.623500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuroendocrine and tuft cells are rare, chemosensory epithelial lineages defined by expression of ASCL1 and POU2F3 transcription factors, respectively1,2. Neuroendocrine cancers, including small cell lung cancer (SCLC), frequently display tuft-like subsets, a feature linked to poor patient outcomes3-13. The mechanisms driving neuroendocrine-tuft tumour heterogeneity, and the origins of tuft-like cancers are unknown. Using multiple genetically-engineered animal models of SCLC, we demonstrate that a basal cell of origin (but not the accepted neuroendocrine origin) generates neuroendocrine-tuft-like tumours that highly recapitulate human SCLC. Single-cell clonal analyses of basal-derived SCLC further uncovers unexpected transcriptional states and lineage trajectories underlying neuroendocrine-tuft plasticity. Uniquely in basal cells, introduction of genetic alterations enriched in human tuft-like SCLC, including high MYC, PTEN loss, and ASCL1 suppression, cooperate to promote tuft-like tumours. Transcriptomics of 944 human SCLCs reveal a basal-like subset and a tuft-ionocyte-like state that altogether demonstrate remarkable conservation between cancer states and normal basal cell injury response mechanisms14-18. Together, these data suggest that the basal cell is a plausible origin for SCLC and other neuroendocrine-tuft cancers that can explain neuroendocrine-tuft heterogeneity-offering new insights for targeting lineage plasticity.
Collapse
Affiliation(s)
- Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Daniel A. Xie
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Margaret W. Barbier
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | | | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Lisa Y. Zuo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Sonam Puri
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
15
|
Tan N, Li Y, Ying J, Chen W. Histological transformation in lung adenocarcinoma: Insights of mechanisms and therapeutic windows. J Transl Int Med 2024; 12:452-465. [PMID: 39513032 PMCID: PMC11538883 DOI: 10.1515/jtim-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Histological transformation from lung adenocarcinoma (ADC) to small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC), squamous cell carcinoma (SCC), and sarcomatoid carcinoma (PSC) after targeted therapies is recognized as a mechanism of resistance in ADC treatments. Patients with transformed lung cancer typically experience a poor prognosis and short survival time. However, effective treatment options for these patients are currently lacking. Therefore, understanding the mechanisms underlying histological transformation is crucial for the development of effective therapies. Hypotheses including intratumoral heterogeneity, cancer stem cells, and alteration of suppressor genes have been proposed to explain the mechanism of histological transformation. In this review, we provide a comprehensive overview of the known molecular features and signaling pathways of transformed tumors, and summarized potential therapies based on previous findings.
Collapse
Affiliation(s)
- Nuopei Tan
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Dai Z, Wang W, Guan H, Wang X, Ren Y, Qiu Y, Liu J. Case report: Two cases of prostate adenocarcinoma progressing to rare sarcomatoid carcinoma with normal PSA levels following endocrine therapy. Front Oncol 2024; 14:1456390. [PMID: 39301540 PMCID: PMC11410569 DOI: 10.3389/fonc.2024.1456390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Background Patients with prostate adenocarcinoma undergoing regular endocrine therapy may maintain normal PSA levels during follow-up, yet still progress to the highly malignant and rare prostatic sarcomatoid carcinoma, which is seldom reported. This article presents two case studies of prostatic sarcomatoid carcinoma. To date, only a few publications have described prostatic sarcomatoid carcinoma, and the clinical, morphological, and molecular dimensions of prostate adenocarcinoma warrant further investigation. Case description Patient A was admitted two years ago due to difficulty urinating, with a PSA level of 6.35 ng/ml. A prostate needle biopsy was performed, and the postoperative pathology diagnosed prostate adenocarcinoma with a Gleason score of 9 (5 + 4, grade group 5). Citing personal reasons, the patient declined a radical prostatectomy and instead received ongoing androgen deprivation therapy (ADT), comprising goserelin, abiraterone, and prednisone. During follow-up, regular PSA tests showed no abnormalities. One year ago, the patient was admitted again due to difficulty urinating and hematuria, choosing to address only the urethral obstruction. Transurethral resection of the prostate was performed, and the postoperative pathology diagnosed sarcomatoid carcinoma of the prostate. Patient B was admitted three years ago due to difficulty urinating accompanied by hematuria. A prostate MRI and a whole-body radionuclide bone scan suggested prostate cancer with bone metastasis. Prostate needle biopsy confirmed the diagnosis. The patient was then regularly treated with androgen deprivation therapy, using goserelin. Throughout the follow-up period, the PSA levels consistently remained within normal limits. One year ago, the patient was admitted due to rectal bleeding. It was speculated that the symptoms of rectal bleeding might have been caused by the prostate cancer invading the rectal wall. A prostate needle biopsy was performed, and the pathology diagnosed sarcomatoid carcinoma of the prostate. Conclusions This case underscores the inadequacy of relying solely on PSA levels to monitor high-grade prostate adenocarcinoma during endocrine therapy, as patients may progress to highly malignant atypical variants despite normal PSA levels. We propose that for high-grade prostate cancer patients who are unable to undergo radical prostatectomy, regular and frequent MRI screenings or repeat biopsies should be integral during endocrine therapy and follow-up. Furthermore, a detailed review of the patient's treatment history and clinical data, including immunohistochemical findings, might offer deeper clinical insights into prostatic sarcomatoid carcinoma.
Collapse
Affiliation(s)
- Zhicheng Dai
- Department of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Weikang Wang
- Department of Surgical Teaching and Research, Shandong Medical College, Linyi, China
| | - Haifang Guan
- Department of Surgical Teaching and Research, Shandong Medical College, Linyi, China
| | - Xiaohui Wang
- Department of Nursing, Shandong Second Medical University, Weifang, China
| | - Yongheng Ren
- Department of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ying Qiu
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Jie Liu
- Department of Urology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
17
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
18
|
Jimbo N, Ohbayashi C, Fujii T, Takeda M, Mitsui S, Tanaka Y, Itoh T, Maniwa Y. The expression of YAP1 and other transcription factors contributes to lineage plasticity in combined small cell lung carcinoma. J Pathol Clin Res 2024; 10:e70001. [PMID: 39283755 PMCID: PMC11404481 DOI: 10.1002/2056-4538.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Lineage plasticity in small cell lung carcinoma (SCLC) causes therapeutic difficulties. This study aimed to investigate the pathological findings of plasticity in SCLC, focusing on combined SCLC, and elucidate the involvement of YAP1 and other transcription factors. We analysed 100 surgically resected SCLCs through detailed morphological observations and immunohistochemistry for YAP1 and other transcription factors. Component-by-component next-generation sequencing (n = 15 pairs) and immunohistochemistry (n = 35 pairs) were performed on the combined SCLCs. Compared with pure SCLCs (n = 65), combined SCLCs (n = 35) showed a significantly larger size, higher expression of NEUROD1, and higher frequency of double-positive transcription factors (p = 0.0009, 0.04, and 0.019, respectively). Notably, 34% of the combined SCLCs showed morphological mosaic patterns with unclear boundaries between the SCLC and its partner. Combined SCLCs not only had unique histotypes as partners but also represented different lineage plasticity within the partner. NEUROD1-dominant combined SCLCs had a significantly higher proportion of adenocarcinomas as partners, whereas POU2F3-dominant combined SCLCs had a significantly higher proportion of squamous cell carcinomas as partners (p = 0.006 and p = 0.0006, respectively). YAP1 expression in SCLC components was found in 80% of combined SCLCs and 62% of pure SCLCs, often showing mosaic-like expression. Among the combined SCLCs with component-specific analysis, the identical TP53 mutation was found in 10 pairs, and the identical Rb1 abnormality was found in 2 pairs. On immunohistochemistry, the same abnormal p53 pattern was found in 34 pairs, and Rb1 loss was found in 24 pairs. In conclusion, combined SCLC shows a variety of pathological plasticity. Although combined SCLC is more plastic than pure SCLC, pure SCLC is also a phenotypically plastic tumour. The morphological mosaic pattern and YAP1 mosaic-like expression may represent ongoing lineage plasticity. This study also identified the relationship between transcription factors and partners in combined SCLC. Transcription factors may be involved in differentiating specific cell lineages beyond just 'neuroendocrine'.
Collapse
Affiliation(s)
- Naoe Jimbo
- Department of Diagnostic PathologyKobe University Graduate School of MedicineKobeJapan
| | - Chiho Ohbayashi
- Department of Diagnostic PathologyShinko HospitalKobeJapan
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Tomomi Fujii
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Maiko Takeda
- Department of Diagnostic PathologyNara Medical UniversityKashiharaJapan
| | - Suguru Mitsui
- Division of Thoracic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yugo Tanaka
- Division of Thoracic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Tomoo Itoh
- Department of Diagnostic PathologyKobe University Graduate School of MedicineKobeJapan
| | - Yoshimasa Maniwa
- Division of Thoracic SurgeryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
19
|
Tong X, Zhang N, Xue Y, Ji H. Comments on 'Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer'. J Mol Cell Biol 2024; 16:mjae013. [PMID: 38553961 PMCID: PMC11347649 DOI: 10.1093/jmcb/mjae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 08/28/2024] Open
Affiliation(s)
- Xinyuan Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ningxia Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yun Xue
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hongbin Ji
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200120, China
| |
Collapse
|
20
|
Quintanal-Villalonga Á. An identity crisis for lung cancer cells. Sci Transl Med 2024; 16:eadp9616. [PMID: 39141702 DOI: 10.1126/scitranslmed.adp9616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
Omic analysis of clinical specimens undergoing histological transformation defines targetable drivers to prevent plasticity and treatment resistance.
Collapse
Affiliation(s)
- Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
21
|
Quintanal-Villalonga A, Kawasaki K, Redin E, Uddin F, Rakhade S, Durani V, Sabet A, Shafer M, Karthaus WR, Zaidi S, Zhan YA, Manoj P, Sridhar H, Kinyua D, Zhong H, Mello BP, Ciampricotti M, Bhanot UK, Linkov I, Qiu J, Patel RA, Morrissey C, Mehta S, Barnes J, Haffner MC, Socci ND, Koche RP, de Stanchina E, Molina-Pinelo S, Salehi S, Yu HA, Chan JM, Rudin CM. CDC7 inhibition impairs neuroendocrine transformation in lung and prostate tumors through MYC degradation. Signal Transduct Target Ther 2024; 9:189. [PMID: 39054323 PMCID: PMC11272780 DOI: 10.1038/s41392-024-01908-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
Abstract
Neuroendocrine (NE) transformation is a mechanism of resistance to targeted therapy in lung and prostate adenocarcinomas leading to poor prognosis. Up to date, even if patients at high risk of transformation can be identified by the occurrence of Tumor Protein P53 (TP53) and Retinoblastoma Transcriptional Corepressor 1 (RB1) mutations in their tumors, no therapeutic strategies are available to prevent or delay histological transformation. Upregulation of the cell cycle kinase Cell Division Cycle 7 (CDC7) occurred in tumors during the initial steps of NE transformation, already after TP53/RB1 co-inactivation, leading to induced sensitivity to the CDC7 inhibitor simurosertib. CDC7 inhibition suppressed NE transdifferentiation and extended response to targeted therapy in in vivo models of NE transformation by inducing the proteasome-mediated degradation of the MYC Proto-Oncogen (MYC), implicated in stemness and histological transformation. Ectopic overexpression of a degradation-resistant MYC isoform reestablished the NE transformation phenotype observed on targeted therapy, even in the presence of simurosertib. CDC7 inhibition also markedly extended response to standard cytotoxics (cisplatin, irinotecan) in lung and prostate small cell carcinoma models. These results nominate CDC7 inhibition as a therapeutic strategy to constrain lineage plasticity, as well as to effectively treat NE tumors de novo or after transformation. As simurosertib clinical efficacy trials are ongoing, this concept could be readily translated for patients at risk of transformation.
Collapse
Affiliation(s)
- Alvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Kenta Kawasaki
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Swanand Rakhade
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vidushi Durani
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Amin Sabet
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Moniquetta Shafer
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harsha Sridhar
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dennis Kinyua
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhong
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barbara P Mello
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Metamia Ciampricotti
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umesh K Bhanot
- Pathology Core Facility, Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, USA
| | - Irina Linkov
- Pathology Core Facility, Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, USA
| | - Juan Qiu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Radhika A Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Sanjoy Mehta
- Gene Editing & Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesse Barnes
- Gene Editing & Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Nicholas D Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, Seville, Spain
| | - Sohrab Salehi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helena A Yu
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Joseph M Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
22
|
Xue Y, Chen Y, Sun S, Tong X, Chen Y, Tang S, Wang X, Bi S, Qiu Y, Zhao Q, Qin Z, Xu Q, Ai Y, Chen L, Zhang B, Liu Z, Ji M, Lang M, Chen L, Xu G, Hu L, Ye D, Ji H. TET2-STAT3-CXCL5 nexus promotes neutrophil lipid transfer to fuel lung adeno-to-squamous transition. J Exp Med 2024; 221:e20240111. [PMID: 38805014 PMCID: PMC11129275 DOI: 10.1084/jem.20240111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024] Open
Abstract
Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.
Collapse
Affiliation(s)
- Yun Xue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Sijia Sun
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xinyuan Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yujia Chen
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shijie Tang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xue Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Simin Bi
- Department of Physics, State Key Laboratory of Surface Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai, China
| | - Yuqin Qiu
- Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiqi Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Zhen Qin
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Qin Xu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingjie Ai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Chen
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Beizhen Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijie Liu
- Department of Physics, State Key Laboratory of Surface Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai, China
| | - Minbiao Ji
- Department of Physics, State Key Laboratory of Surface Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai, China
| | - Meidong Lang
- Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai, China
| | - Liang Hu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Dan Ye
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hongbin Ji
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
23
|
Liu M, Yang M, Zhang B, Xia S, Zhao J, Yan L, Ren Y, Guo H, Zhao J. PCDH11X mutation as a potential biomarker for immune checkpoint therapies in lung adenocarcinoma. J Mol Med (Berl) 2024; 102:899-912. [PMID: 38739269 DOI: 10.1007/s00109-024-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have achieved impressive success in lung adenocarcinoma (LUAD). However, the response to ICIs varies among patients, and predictive biomarkers are urgently needed. PCDH11X is frequently mutated in LUAD, while its role in ICI treatment is unclear. In this study, we curated genomic and clinical data of 151 LUAD patients receiving ICIs from three independent cohorts. Relations between PCDH11X and treatment outcomes of ICIs were examined. A melanoma cohort collected from five published studies, a pan-cancer cohort, and non-ICI-treated TCGA-LUAD cohort were also examined to investigate whether PCDH11X mutation is a specific predictive biomarker for LUAD ICI treatment. Among the three ICI-treated LUAD cohorts, PCDH11X mutation (PCDH11X-MUT) was associated with better clinical response compared to wild-type PCDH11X (PCDH11X-WT). While in ICI-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and the non-ICI-treated TCGA-LUAD cohort, no significant differences in overall survival (OS) were observed between the PCDH11X-MUT and PCDH11X-WT groups. PCDH11X mutation was associated with increased PD-L1 expression, tumor mutation burden (TMB), neoantigen load, DNA damage repair (DDR) mutations, and hot tumor microenvironment in TCGA-LUAD cohort. Our findings suggested that the PCDH11X mutation might serve as a specific biomarker to predict the efficacy of ICIs for LUAD patients. Considering the relatively small sample size of ICI-treated cohorts, future research with larger cohorts and prospective clinical trials will be essential for validating and further exploring the role of PCDH11X mutation in the context of immunotherapy outcomes in LUAD. KEY MESSAGES: PCDH11X mutation is associated with better clinical response compared to wild type PCDH11X in three ICIs-treated LUAD cohorts. In ICIs-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and non-ICIs-treated TCGA-LUAD cohorts PCDH11X mutation is not associated with better clinical response, suggesting PCDH11X mutation might be a specific biomarker to predict the efficacy of ICIs treatment for LUAD patients. PCDH11X mutation is associated with increased PD-L1 expression, tumor mutation burden, and neoantigen load in TCGA-LUAD cohort. PCDH11X mutation is associated with hot tumor microenvironment in TCGA-LUAD cohort.
Collapse
Affiliation(s)
- Manjiao Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Meijia Yang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Bei Zhang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Sijian Xia
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Jie Zhao
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Linlin Yan
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China.
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China.
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
24
|
Shiba-Ishii A, Takemura N, Kawai H, Matsubara D. Histologic transformation of non-small-cell lung cancer in response to tyrosine kinase inhibitors: Current knowledge of genetic changes and molecular mechanisms. Cancer Sci 2024; 115:2138-2146. [PMID: 38801833 PMCID: PMC11247606 DOI: 10.1111/cas.16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Lung cancer is the leading cause of cancer death and includes two major types: non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC), accounting for 85% and 15% of cases, respectively. Non-small-cell lung cancer harboring actionable driver mutations is generally treated with tyrosine kinase inhibitors (TKIs) molecularly targeting individual oncogenes. Although TKIs have greatly contributed to better clinical outcomes, acquired resistance to them inevitably occurs. Histologic or lineage transformation is a rare but well-documented off-target mechanism associated with acquired resistance, and has been identified in settings following treatment with multiple different TKIs and other drugs. It includes neuroendocrine transformation, squamous cell transformation, and epithelial-to-mesenchymal transition. Here, we review the clinicopathologic features of transformed tumors and current understanding of the key genetic alterations and biologic mechanism of lineage transformation in NSCLC, particularly TKI-triggered transformation.
Collapse
Affiliation(s)
- Aya Shiba-Ishii
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Japan
| | - Noriko Takemura
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Japan
| | - Hitomi Kawai
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Japan
| |
Collapse
|
25
|
Patel AS, Yanai I. A developmental constraint model of cancer cell states and tumor heterogeneity. Cell 2024; 187:2907-2918. [PMID: 38848676 PMCID: PMC11256907 DOI: 10.1016/j.cell.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/29/2023] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations. Here, we note that across diverse cancer types, the observed cell states are proximate within the developmental hierarchy of the cell of origin. We thus posit a model by which cancer cell states are directly constrained by the organism's "developmental map." According to this model, a population of cancer cells traverses the developmental map, thereby generating a heterogeneous set of states whose interactions underpin emergent tumor behavior.
Collapse
Affiliation(s)
- Ayushi S Patel
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA; Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Itai Yanai
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA; Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
26
|
Tong X, Patel AS, Kim E, Li H, Chen Y, Li S, Liu S, Dilly J, Kapner KS, Zhang N, Xue Y, Hover L, Mukhopadhyay S, Sherman F, Myndzar K, Sahu P, Gao Y, Li F, Li F, Fang Z, Jin Y, Gao J, Shi M, Sinha S, Chen L, Chen Y, Kheoh T, Yang W, Yanai I, Moreira AL, Velcheti V, Neel BG, Hu L, Christensen JG, Olson P, Gao D, Zhang MQ, Aguirre AJ, Wong KK, Ji H. Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer. Cancer Cell 2024; 42:413-428.e7. [PMID: 38402609 DOI: 10.1016/j.ccell.2024.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.
Collapse
Affiliation(s)
- Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ayushi S Patel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eejung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongjun Li
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yueqing Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and biomedical sciences program, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin S Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ningxia Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Laura Hover
- Monoceros Biosystems, LLC, San Diego, CA 92129, USA
| | - Suman Mukhopadhyay
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Fiona Sherman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Khrystyna Myndzar
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fuming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juntao Gao
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing 100084, China
| | - Minglei Shi
- Institute of Medical Innovation, Peking University Third Hospital, Beijing 100191, China
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Thian Kheoh
- Mirati Therapeutics, San Diego, CA 92121, USA
| | | | - Itai Yanai
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Institute of Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Andre L Moreira
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Peter Olson
- Mirati Therapeutics, San Diego, CA 92121, USA
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080, USA.
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China.
| |
Collapse
|
27
|
Qin Z, Yue M, Tang S, Wu F, Sun H, Li Y, Zhang Y, Izumi H, Huang H, Wang W, Xue Y, Tong X, Mori S, Taki T, Goto K, Jin Y, Li F, Li FM, Gao Y, Fang Z, Fang Y, Hu L, Yan X, Xu G, Chen H, Kobayashi SS, Ventura A, Wong KK, Zhu X, Chen L, Ren S, Chen LN, Ji H. EML4-ALK fusions drive lung adeno-to-squamous transition through JAK-STAT activation. J Exp Med 2024; 221:e20232028. [PMID: 38284990 PMCID: PMC10824105 DOI: 10.1084/jem.20232028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
Human lung adenosquamous cell carcinoma (LUAS), containing both adenomatous and squamous pathologies, exhibits strong cancer plasticity. We find that ALK rearrangement is detectable in 5.1-7.5% of human LUAS, and transgenic expression of EML4-ALK drives lung adenocarcinoma (LUAD) formation initially and squamous transition at late stage. We identify club cells as the main cell-of-origin for squamous transition. Through recapitulating lineage transition in organoid system, we identify JAK-STAT signaling, activated by EML4-ALK phase separation, significantly promotes squamous transition. Integrative study with scRNA-seq and immunostaining identify a plastic cell subpopulation in ALK-rearranged human LUAD showing squamous biomarker expression. Moreover, those relapsed ALK-rearranged LUAD show notable upregulation of squamous biomarkers. Consistently, mouse squamous tumors or LUAD with squamous signature display certain resistance to ALK inhibitor, which can be overcome by combined JAK1/2 inhibitor treatment. This study uncovers strong plasticity of ALK-rearranged tumors in orchestrating phenotypic transition and drug resistance and proposes a potentially effective therapeutic strategy.
Collapse
Affiliation(s)
- Zhen Qin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongchang Zhang
- Department of Medical Oncology, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hsinyi Huang
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shunta Mori
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Taki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fei Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fu-Ming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhaoyuan Fang
- University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Susumu S. Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Liang Chen
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luo-Nan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
28
|
Singh D, Siddique HR. Epithelial-to-mesenchymal transition in cancer progression: unraveling the immunosuppressive module driving therapy resistance. Cancer Metastasis Rev 2024; 43:155-173. [PMID: 37775641 DOI: 10.1007/s10555-023-10141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Cancer cells undergo phenotypic switching (cancer cell plasticity) in response to microenvironmental cues, including exposure to therapy/treatment. Phenotypic plasticity enables the cancer cells to acquire more mesenchymal traits promoting cancer cells' growth, survival, therapy resistance, and disease recurrence. A significant program in cancer cell plasticity is epithelial-to-mesenchymal transition (EMT), wherein a comprehensive reprogramming of gene expression occurs to facilitate the translational shift from epithelial-to-mesenchymal phenotypes resulting in increased invasiveness and metastasis. In addition, EMT plays a pivotal role in facilitating cancer cells' escape from the body's immune system using several mechanisms, such as the downregulation of major histocompatibility complex-mediated antigen presentation, upregulation of immune checkpoint molecules, and recruitment of immune-suppressive cells. Cancer cells' ability to undergo phenotypic switching and EMT-driven immune escape presents a formidable obstacle in cancer management, highlighting the need to unravel the intricate mechanisms underlying these processes and develop novel therapeutic strategies. This article discusses the role of EMT in promoting immune evasion and therapy resistance. We also discuss the ongoing research on developing therapeutic approaches targeting intrinsic and induced cell plasticity within the immune suppressive microenvironment. We believe this review article will update the current research status and equip researchers, clinicians, and other healthcare professionals with valuable insights enhancing their existing knowledge and shedding light on promising directions for future cancer research. This will facilitate the development of innovative strategies for managing therapy-resistant cancers and improving patient outcomes.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
29
|
Chen L, Yang D, Huang F, Xu W, Luo X, Mei L, He Y. NPM3 as an Unfavorable Prognostic Biomarker Involved in Oncogenic Pathways of Lung Adenocarcinoma via MYC Translational Activation. Comb Chem High Throughput Screen 2024; 27:203-213. [PMID: 37114782 DOI: 10.2174/1386207326666230419080531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND The nucleoplasmin/nucleophosmin (NPM) family was previously regarded as a critical regulator during disease development, and its mediation in carcinogenesis has achieved intensive attention recently. However, the clinical importance and functional mechanism of NPM3 in lung adenocarcinoma (LUAD) have not been reported yet. OBJECTIVE This study aimed to investigate the role and clinical significance of NPM3 in the development and progression of LUAD, including the underlying mechanisms. METHODS The expression of NPM3 in pan-cancer was analyzed via GEPIA. The effect of NPM3 on prognosis was analyzed by the Kaplan-Meier plotter and the PrognoScan database. In vitro, cell transfection, RT-qPCR, CCK-8 assay, and wound healing assay were employed to examine the role of NPM3 in A549 and H1299 cells. Gene set enrichment analysis (GSEA) was performed using the R software package to analyze the tumor hallmark pathway and KEGG pathway of NPM3. The transcription factors of NPM3 were predicted based on the ChIP-Atlas database. Dual-luciferase reporter assay was applied to verify the transcriptional regulatory factor of the NPM3 promoter region. RESULTS The NPM3 expression was found to be markedly higher in the LUAD tumor group than the normal group and to be positively correlated with poor prognosis, tumor stages, and radiation therapy. In vitro, the knockdown of NPM3 greatly inhibited the proliferation and migration of A549 and H1299 cells. Mechanistically, GSEA predicted that NPM3 activated the oncogenic pathways. Further, the NPM3 expression was found to be positively correlated with cell cycle, DNA replication, G2M checkpoint, HYPOXIA, MTORC1 signaling, glycolysis, and MYC targets. Besides, MYC targeted the promoter region of NPM3 and contributed to the enhanced expression of NPM3 in LUAD. CONCLUSION The overexpression of NPM3 is an unfavorable prognostic biomarker participating in oncogenic pathways of LUAD via MYC translational activation and it contributes to tumor progression. Thus, NPM3 could be a novel target for LUAD therapy.
Collapse
Affiliation(s)
- Long Chen
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Demeng Yang
- Faculty of College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fen Huang
- Department of Operating Room, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Weicai Xu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xiaopan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Lili Mei
- Medical School, Kunming University of Science and Technology, Kunming, 6505041, China
| | - Ying He
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
30
|
Kwon J, Zhang J, Mok B, Allsup S, Kim C, Toretsky J, Han C. USP13 drives lung squamous cell carcinoma by switching lung club cell lineage plasticity. Mol Cancer 2023; 22:204. [PMID: 38093367 PMCID: PMC10717271 DOI: 10.1186/s12943-023-01892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is associated with high mortality and limited targeted therapies. USP13 is one of the most amplified genes in LUSC, yet its role in lung cancer is largely unknown. Here, we established a novel mouse model of LUSC by overexpressing USP13 on KrasG12D/+; Trp53flox/flox background (KPU). KPU-driven lung squamous tumors faithfully recapitulate key pathohistological, molecular features, and cellular pathways of human LUSC. We found that USP13 altered lineage-determining factors such as NKX2-1 and SOX2 in club cells of the airway and reinforced the fate of club cells to squamous carcinoma development. We showed a strong molecular association between USP13 and c-MYC, leading to the upregulation of squamous programs in murine and human lung cancer cells. Collectively, our data demonstrate that USP13 is a molecular driver of lineage plasticity in club cells and provide mechanistic insight that may have potential implications for the treatment of LUSC.
Collapse
Affiliation(s)
- Juntae Kwon
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Jinmin Zhang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Boram Mok
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Samuel Allsup
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Chul Kim
- Division of Hematology and Oncology, Georgetown University School of Medicine, Washington D.C, USA
- MedStar Georgetown University Hospital, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
| | - Jeffrey Toretsky
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
- Departments of Pediatrics, Washington D.C, USA
| | - Cecil Han
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA.
- Lombardi Comprehensive Cancer Center, Washington D.C, USA.
| |
Collapse
|
31
|
Blaquier JB, Ortiz-Cuaran S, Ricciuti B, Mezquita L, Cardona AF, Recondo G. Tackling Osimertinib Resistance in EGFR-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:3579-3591. [PMID: 37093192 DOI: 10.1158/1078-0432.ccr-22-1912] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The current landscape of targeted therapies directed against oncogenic driver alterations in non-small cell lung cancer (NSCLC) is expanding. Patients with EGFR-mutant NSCLC can derive significant benefit from EGFR tyrosine kinase inhibitor (TKI) therapy, including the third-generation EGFR TKI osimertinib. However, invariably, all patients will experience disease progression with this therapy mainly due to the adaptation of cancer cells through primary or secondary molecular mechanisms of resistance. The comprehension and access to tissue and cell-free DNA next-generation sequencing have fueled the development of innovative therapeutic strategies to prevent and overcome resistance to osimertinib in the clinical setting. Herein, we review the biological and clinical implications of molecular mechanisms of osimertinib resistance and the ongoing development of therapeutic strategies to overcome or prevent resistance.
Collapse
Affiliation(s)
- Juan Bautista Blaquier
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Laura Mezquita
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Andrés Felipe Cardona
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
- Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Cancer-CTIC, Bogotá, Colombia
| | - Gonzalo Recondo
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
- Medical Oncology Department, Bradford Hill Clinical Research Center, Santiago, Chile
| |
Collapse
|
32
|
Davies A, Zoubeidi A, Beltran H, Selth LA. The Transcriptional and Epigenetic Landscape of Cancer Cell Lineage Plasticity. Cancer Discov 2023; 13:1771-1788. [PMID: 37470668 PMCID: PMC10527883 DOI: 10.1158/2159-8290.cd-23-0225] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.
Collapse
Affiliation(s)
- Alastair Davies
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Luke A. Selth
- Flinders Health and Medical Research Institute and Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, South Australia, 5042 Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005 Australia
| |
Collapse
|
33
|
Quintanal-Villalonga A, Durani V, Sabet A, Redin E, Kawasaki K, Shafer M, Karthaus WR, Zaidi S, Zhan YA, Manoj P, Sridhar H, Shah NS, Chow A, Bhanot UK, Linkov I, Asher M, Yu HA, Qiu J, de Stanchina E, Patel RA, Morrissey C, Haffner MC, Koche RP, Sawyers CL, Rudin CM. Exportin 1 inhibition prevents neuroendocrine transformation through SOX2 down-regulation in lung and prostate cancers. Sci Transl Med 2023; 15:eadf7006. [PMID: 37531417 PMCID: PMC10777207 DOI: 10.1126/scitranslmed.adf7006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.
Collapse
Affiliation(s)
- Alvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidushi Durani
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amin Sabet
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenta Kawasaki
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moniquetta Shafer
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yingqian A. Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harsha Sridhar
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nisargbhai S. Shah
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Umesh K. Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Linkov
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Asher
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Helena A. Yu
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Juan Qiu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Radhika A. Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 19024, USA
| | - Colm Morrissey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 19024, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
34
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
35
|
Jin X, Liu D, Kong D, Zhou X, Zheng L, Xu C. Dissecting the alternation landscape of mitochondrial metabolism-related genes in lung adenocarcinoma and their latent mechanisms. Aging (Albany NY) 2023; 15:5482-5496. [PMID: 37335087 PMCID: PMC10333067 DOI: 10.18632/aging.204803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer with high incidence and unsatisfactory prognosis. The majority of LUAD patients eventually succumb to local and/or distinct metastatic recurrence. Genomic research of LUAD has broadened our understanding of this disease's biology and improved target therapies. However, the alternation landscape and characteristics of mitochondrial metabolism-related genes (MMRGs) in LUAD progression remain poorly understood. We performed a comprehensive analysis to identify the function and mechanism of MMRGs in LUAD based on the TCGA and GEO databases, which might offer therapeutic values for clinical researchers. Then, we figured out three hub prognosis-associated MMRGs (also termed as PMMRGs: ACOT11, ALDH2, and TXNRD1) that were engaged in the evolution of LUAD. To investigate the correlation between clinicopathological characteristics and MMRGs, we divided LUAD samples into two clusters (C1 and C2) based on key MMRGs. In addition, important pathways and the immune infiltration landscape affected by LUAD clusters were also delineated. Further, we nominated potential regulatory mechanisms underlying the MMRGs in LUAD development and progression. In conclusion, our integrative analysis enables a more comprehensive understanding of the mutation landscape of MMRGs in LUAD and provides an opportunity for more precise treatment.
Collapse
Affiliation(s)
- Xing Jin
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Di Liu
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaojiang Zhou
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Liken Zheng
- Genecast Biotechnology, Wuxi, Jiangsu Province, China
| | - Chuan Xu
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
36
|
Giaccone G, He Y. Current Knowledge of Small Cell Lung Cancer Transformation from Non-Small Cell Lung Cancer. Semin Cancer Biol 2023:S1044-579X(23)00078-0. [PMID: 37244438 DOI: 10.1016/j.semcancer.2023.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Lung cancer is the leading cause of cancer related death, and is divided into two major histological subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Histological transformation from NSCLC to SCLC has been reported as a mechanism of treatment resistance in patients who received tyrosine kinase inhibitors (TKIs) targeting EGFR, ALK and ROS1 or immunotherapies. The transformed histology could be due to therapy-induced lineage plasticity or clonal selection of pre-existing SCLC cells. Evidence supporting either mechanism exist in the literature. Here, we discuss potential mechanisms of transformation and review the current knowledge about cell of origin of NSCLC and SCLC. In addition, we summarize genomic alterations that are frequently observed in both "De novo" and transformed SCLC, such as TP53, RB1 and PIK3CA. We also discuss treatment options for transformed SCLC, including chemotherapy, radiotherapy, TKIs, immunotherapy and anti-angiogenic agents.
Collapse
Affiliation(s)
- Giuseppe Giaccone
- Sandra and Edward Meyer Cancer Center, Weill-Cornell Medicine, New York, NY
| | - Yongfeng He
- Sandra and Edward Meyer Cancer Center, Weill-Cornell Medicine, New York, NY.
| |
Collapse
|
37
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
38
|
Oxidative stress-triggered Wnt signaling perturbation characterizes the tipping point of lung adeno-to-squamous transdifferentiation. Signal Transduct Target Ther 2023; 8:16. [PMID: 36627278 PMCID: PMC9832009 DOI: 10.1038/s41392-022-01227-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023] Open
Abstract
Lkb1 deficiency confers the Kras-mutant lung cancer with strong plasticity and the potential for adeno-to-squamous transdifferentiation (AST). However, it remains largely unknown how Lkb1 deficiency dynamically regulates AST. Using the classical AST mouse model (Kras LSL-G12D/+;Lkb1flox/flox, KL), we here comprehensively analyze the temporal transcriptomic dynamics of lung tumors at different stages by dynamic network biomarker (DNB) and identify the tipping point at which the Wnt signaling is abruptly suppressed by the excessive accumulation of reactive oxygen species (ROS) through its downstream effector FOXO3A. Bidirectional genetic perturbation of the Wnt pathway using two different Ctnnb1 conditional knockout mouse strains confirms its essential role in the negative regulation of AST. Importantly, pharmacological activation of the Wnt pathway before but not after the tipping point inhibits squamous transdifferentiation, highlighting the irreversibility of AST after crossing the tipping point. Through comparative transcriptomic analyses of mouse and human tumors, we find that the lineage-specific transcription factors (TFs) of adenocarcinoma and squamous cell carcinoma form a "Yin-Yang" counteracting network. Interestingly, inactivation of the Wnt pathway preferentially suppresses the adenomatous lineage TF network and thus disrupts the "Yin-Yang" homeostasis to lean towards the squamous lineage, whereas ectopic expression of NKX2-1, an adenomatous lineage TF, significantly dampens such phenotypic transition accelerated by the Wnt pathway inactivation. The negative correlation between the Wnt pathway and AST is further observed in a large cohort of human lung adenosquamous carcinoma. Collectively, our study identifies the tipping point of AST and highlights an essential role of the ROS-Wnt axis in dynamically orchestrating the homeostasis between adeno- and squamous-specific TF networks at the AST tipping point.
Collapse
|
39
|
Song Y, Wang Y, Guan A, Xue J, Li B, Huang Z, Zheng Z, Liang N, Yang Y, Li S. Footprints: Stamping hallmarks of lung cancer with patient-derived models, from molecular mechanisms to clinical translation. Front Bioeng Biotechnol 2023; 11:1132940. [PMID: 36911198 PMCID: PMC9993089 DOI: 10.3389/fbioe.2023.1132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
The conventional two-dimensional (2D) tumor cell lines in Petri dishes have played an important role in revealing the molecular biological mechanism of lung cancer. However, they cannot adequately recapitulate the complex biological systems and clinical outcomes of lung cancer. The three-dimensional (3D) cell culture enables the possible 3D cell interactions and the complex 3D systems with co-culture of different cells mimicking the tumor microenvironments (TME). In this regard, patient-derived models, mainly patient-derived tumor xenograft (PDX) and patient-derived organoids discussed hereby, are with higher biological fidelity of lung cancer, and regarded as more faithful preclinical models. The significant Hallmarks of Cancer is believed to be the most comprehensive coverage of current research on tumor biological characteristics. Therefore, this review aims to present and discuss the application of different patient-derived lung cancer models from molecular mechanisms to clinical translation with regards to the dimensions of different hallmarks, and to look to the prospects of these patient-derived lung cancer models.
Collapse
Affiliation(s)
- Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ai Guan
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat Rev Clin Oncol 2023; 20:16-32. [PMID: 36307533 DOI: 10.1038/s41571-022-00696-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine neoplasms (NENs) can develop in almost any organ and span a spectrum from well-differentiated and indolent neuroendocrine tumours (NETs) to poorly differentiated and highly aggressive neuroendocrine carcinomas (NECs), including small-cell lung cancer (SCLC). These neoplasms are thought to primarily derive from neuroendocrine precursor cells located throughout the body and can also arise through neuroendocrine transdifferentiation of organ-specific epithelial cell types. Hence, NENs constitute a group of tumour types that share key genomic and phenotypic characteristics irrespective of their site of origin, albeit with some organ-specific differences. The establishment of representative preclinical models for several of these disease entities together with analyses of human tumour specimens has provided important insights into crucial aspects of their biology with therapeutic implications. In this Review, we provide a comprehensive overview of the current understanding of NENs of the gastrointestinal system and lung from clinical and biological perspectives. Research on NENs has typically been siloed by the tumour site of origin, and a cross-cutting view might enable advances in one area to accelerate research in others. Therefore, we aim to emphasize that a better understanding of the commonalities and differences of NENs arising in different organs might more effectively inform clinical research to define therapeutic targets and ultimately optimize patient care.
Collapse
|
41
|
Savari O, Aldana CF, Chang JC, Fanaroff RE, Ventura K, Bodd F, Paik P, Vundavalli M, Saqi A, Askin FB, Travis WD, Rekhtman N. Non-small cell lung carcinomas with diffuse coexpression of TTF1 and p40: clinicopathological and genomic features of 14 rare biphenotypic tumours. Histopathology 2023; 82:242-253. [PMID: 36130728 PMCID: PMC10501689 DOI: 10.1111/his.14801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
Thyroid transcription factor 1 (TTF1) and p40 are widely-utilized diagnostic markers of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), respectively. Diffuse coexpression of TTF1 and p40 has been described in only rare case reports. In a multi-institutional study, we collected the largest cohort of these unusual tumours to-date (n = 14), with the goal of elucidating their clinicopathological and genomic characteristics. Lung tumours with diffuse coexpression (labelling 50-100% tumour cells) of TTF1 clone 8G7G3/1 and p40 clone BC28 were identified. Detailed clinicopathological and immunohistochemical parameters were analyzed. Eight tumours were analyzed by next-generation sequencing (NGS) and the results were compared to those in > 9 K LUAD and > 1 K LUSC. All tumours with diffuse TTF1/p40 coexpression were poorly differentiated non-small cell lung carcinomas (NSCLC), 42% of which had basaloid features. Some tumours exhibited focal keratinization (14%), napsin A and/or mucicarmine labelling (46%) or both squamous and glandular features (7%). NGS revealed a uniquely high rate of FGFR1 amplifications (70%) compared to either LUAD (0.7%, P < 0.0001) or LUSC (11%, P = 0.001). LUAD-type targetable driver alterations were identified in 38% of cases (one EGFR, two KRAS G12C). The tumours were clinically aggressive, exhibiting metastatic disease in most patients. Lung carcinomas with diffuse TTF1/p40 coexpression represent poorly differentiated NSCLCs with frequent basaloid features, but some show evidence of focal squamous, glandular or dual differentiation with a distinctly high rate of FGFR1 amplifications. The presence of targetable LUAD-type alterations (EGFR, KRAS G12C) emphasizes the importance of molecular testing in these tumours.
Collapse
Affiliation(s)
- Omid Savari
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christopher Febres Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jason C. Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rachel E. Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katia Ventura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Francis Bodd
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul Paik
- Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Murty Vundavalli
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Anjali Saqi
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Frederic B. Askin
- Department of Pathology and Laboratory medicine, University of North Carolina, Chapel Hill, NC
| | - William D. Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
42
|
The prospect of combination therapies with the third-generation EGFR-TKIs to overcome the resistance in NSCLC. Biomed Pharmacother 2022; 156:113959. [DOI: 10.1016/j.biopha.2022.113959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
43
|
Lau SCM, Pan Y, Velcheti V, Wong KK. Squamous cell lung cancer: Current landscape and future therapeutic options. Cancer Cell 2022; 40:1279-1293. [PMID: 36270277 DOI: 10.1016/j.ccell.2022.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 01/09/2023]
Abstract
Squamous cell lung cancers (lung squamous cell carcinomas [LUSCs]) are associated with high mortality and a lack of therapies specific to this disease. Although recurrent molecular aberrations are present in LUSCs, efforts to develop targeted therapies against receptor tyrosine kinases, signaling transduction, and cell cycle checkpoints in LUSCs were met with significant challenges. The present therapeutic landscape focuses on epigenetic therapies to modulate the expression of lineage-dependent survival pathways and undruggable oncogenes. Another important therapeutic approach is to exploit metabolic vulnerabilities unique to LUSCs. These novel therapies may synergize with immune checkpoint inhibitors in the right therapeutic context. For example, the recognition that alterations in KEAP1-NFE2L2 in LUSCs affected antitumor immune responses created unique opportunities for targeted, metabolic, and immune combinations. This article provides a perspective on how lessons learned from the past influence the current therapeutic landscape and opportunities for future drug development for LUSCs.
Collapse
Affiliation(s)
- Sally C M Lau
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Yuanwang Pan
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Kwok Kin Wong
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA.
| |
Collapse
|
44
|
Torborg SR, Li Z, Chan JE, Tammela T. Cellular and molecular mechanisms of plasticity in cancer. Trends Cancer 2022; 8:735-746. [PMID: 35618573 PMCID: PMC9388572 DOI: 10.1016/j.trecan.2022.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022]
Abstract
Cancer cells are plastic - they can assume a wide range of distinct phenotypes. Plasticity is integral to cancer initiation and progression, as well as to the emergence and maintenance of intratumoral heterogeneity. Furthermore, plastic cells can rapidly adapt to and evade therapy, which poses a challenge for effective cancer treatment. As such, targeting plasticity in cancer holds tremendous promise. Yet, the principles governing plasticity in cancer cells remain poorly understood. Here, we provide an overview of the fundamental molecular and cellular mechanisms that underlie plasticity in cancer and in other biological contexts, including development and regeneration. We propose a key role for high-plasticity cell states (HPCSs) as crucial nodes for cell state transitions and enablers of intra-tumoral heterogeneity.
Collapse
Affiliation(s)
- Stefan R Torborg
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
| | - Zhuxuan Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
| | - Jason E Chan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
45
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
46
|
Sheng D, Zhao B, Zhu W, Wang T, Peng Y. Scutellaria barbata D.Don (SBD) extracts suppressed tumor growth, metastasis and angiogenesis in Prostate cancer via PI3K/Akt pathway. BMC Complement Med Ther 2022; 22:120. [PMID: 35505400 PMCID: PMC9066752 DOI: 10.1186/s12906-022-03587-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background Scutellaria barbata D.Don (SBD) is derived from the dried whole plant of Labiate which has been widely used to treat patients with multiple cancer. It was previously reported that the ethanol extract of SBD is able to promote apoptosis, and inhibit cell proliferation and angiogenesis in cancer. Materials and methods CCK8, Edu assays and colony formation assay were performed to assess the effect of SBD on PCa cell growth. Effect of SBD on apoptosis and cell cycle was detected by flow cytometry. Transwell and wounding healing assay were conducted to detect the invasion and migration activities of PCa cells. Western blot was employed to detect the protein expression. 2RRV1 mouse xenograft model was established to detect the effect of SBD on prostate cancer. Angiogenesis was analysed by coculturing PCa cell lines and HUVECs. Results The results showed that SBD induced a significant decrease in cell viability and clonogenic growth in a dose-dependent manner. SBD induced cell apoptosis and cell cycle G2/M phase arrest by inactivating PI3K/AKT signalling pathway. Treatment with SBD also significantly decreased the cell migration and invasion via phenotypic inversion of EMT that was characterized by the increased expression of E-cadherin and Vimentin, and decreased expression of N-cadherin, which could be partially attributed to inhibiting PI3K/AKT signalling pathway. Subsequently, using AKT inhibitor MK2206, we concluded that PI3K/AKT are also involved in cell apoptosis and metastasis of PCa cells stimulated by SBD. Apart from its direct effects on PCa cells, SBD also exhibited anti-angiogenic properties. SBD alone or conditioned media from SBD-treated PCa cells reduced HUVEC tube formation on Matrigel without affecting HUVEC viability. Furthermore, 22RV1 xenograft C57BL/6 mice treated with SBD in vivo showed a significant inhibitory in tumour size and tumour weight without toxicity. In addition, administration with medium- or high-dose of SBD significantly inhibited the cell proliferation and enhanced the damage to tumour tissues. Conclusions Collectively, our in vitro and in vivo findings suggest that SBD has the potential to develop into a safe and potent alternative therapy for PCa patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03587-0.
Collapse
Affiliation(s)
- Dongya Sheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjing Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiantian Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Peng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|