1
|
Zu X, Chen S, Li Z, Hao L, Fu W, Zhang H, Yin Z, Wang Y, Wang J. SPI1 activates mitochondrial unfolded response signaling to inhibit chondrocyte senescence and relieves osteoarthritis. Bone Res 2025; 13:47. [PMID: 40229258 PMCID: PMC11997156 DOI: 10.1038/s41413-025-00421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Chondrocyte senescence is a critical pathological hallmark of osteoarthritis (OA). Aberrant mechanical stress is considered a pivotal determinant in chondrocyte aging; however, the precise underlying mechanism remains elusive. Our findings demonstrate that SPI1 plays a significant role in counteracting chondrocyte senescence and inhibiting OA progression. SPI1 binds to the PERK promoter, thereby promoting its transcriptional activity. Importantly, PERK, rather than GCN2, facilitates eIF2α phosphorylation, activating the mitochondrial unfolded protein response (UPRmt) and impeding chondrocyte senescence. Deficiency of SPI1 in mechanical overload-induced mice leads to diminished UPRmt activation and accelerated OA progression. Intra-articular injection of adenovirus vectors overexpressing SPI1 and PERK effectively mitigates cartilage degeneration. In summary, our study elucidates the crucial regulatory role of SPI1 in the pathogenesis of chondrocyte senescence by activating UPRmt signaling through PERK, which may present a novel therapeutic target for treating OA. SPI1 alleviates the progression of OA by inhibiting mechanical stress-induced chondrocyte senescence through mitochondrial UPR signaling.
Collapse
Affiliation(s)
- Xiangyu Zu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Shenghong Chen
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China
| | - Zhengyuan Li
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China
| | - Lin Hao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China
| | - Wenhan Fu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
| | - Yin Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, the First Affiliated Hospital of Anhui Medical University, Anhui, China.
- Anhui Public Health Clinical Center, Anhui, China.
| | - Jun Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Komemi O, Orbuch E, Jarchowsky-Dolberg O, Brin YS, Tartakover-Matalon S, Pasmanik-Chor M, Lishner M, Drucker L. Myeloma mesenchymal stem cells' bioenergetics afford a novel selective therapeutic target. Oncogenesis 2025; 14:9. [PMID: 40216736 PMCID: PMC11992228 DOI: 10.1038/s41389-025-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Bone-marrow mesenchymal stem cells (BM-MSCs) rely on glycolysis, yet their trafficked mitochondria benefit recipient cells' bioenergetics in regenerative and cancerous settings, most relevant to BM-resident multiple myeloma (MM) cells. Fission/fusion dynamics regulate mitochondria function. Proteomics demonstrates excessive mitochondrial processes in BM-MSCs from MM patients compared to normal donors (ND). Thus, we aimed to characterize BM-MSCs (ND, MM) mitochondrial fitness, bioenergetics and dynamics with a focus on therapeutics. MM-MSCs displayed compromised mitochondria evidenced by decreased mitochondrial membrane potential (ΔΨm) and elevated proton leak. This was accompanied by stimulation of stress-coping mechanisms: spare respiratory capacity (SRC), mitochondrial fusion and UPRmt. Interfering with BM-MSCs mitochondrial dynamics equilibrium demonstrated their significance to bioenergetics and fitness according to the source. While ND-MSCs depended on fission, reducing MM-MSCs fusion attenuated glycolysis, OXPHOS and mtROS. Interestingly, optimization of mtROS levels is central to ΔΨm preservation in MM-MSCs only. MM-MSCs also demonstrated STAT3 activation, which regulates their OXPHOS and SRC. Targeting MM-MSC' SRC with Venetoclax diminished their pro-MM support and sensitized co-cultured MM cells to Bortezomib. Overall, MM-MSCs distinct mitochondrial bioenergetics are integral to their robustness. Repurposing Venetoclax as anti-SRC treatment in combination with conventional anti-MM drugs presents a potential selective way to target MM-MSCs conferred drug resistance.
Collapse
Affiliation(s)
- Oded Komemi
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elina Orbuch
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Jarchowsky-Dolberg
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Internal Medicine A, Meir Medical Center, Kfar Saba, Israel
- Hematology Unit, Meir Medical Center, Kfar Saba, Israel
| | | | - Shelly Tartakover-Matalon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Autoimmunity Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S.W., Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Hematology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Zhou M, Tian M, Li Z, Wang C, Guo Z. Overview of splicing variation in ovarian cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189288. [PMID: 39993511 DOI: 10.1016/j.bbcan.2025.189288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Ovarian cancer remains one of the deadliest gynecological malignancies, with a persistently high mortality rate despite promising advancements in immunotherapy. Aberrant splicing events play a crucial role in cancer heterogeneity and treatment resistance. Many splicing variants, especially those involving key molecular markers such as BRCA1/2, are closely linked to disease progression and treatment outcomes. These variants and related splicing factors hold significant clinical value as diagnostic and prognostic biomarkers and therapeutic targets. This review provides a comprehensive overview of splicing variants in ovarian cancer, emphasizing their role in metastasis and resistance, and offers insights to advance biomarker development and treatment strategies.
Collapse
Affiliation(s)
- Min Zhou
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengdie Tian
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuoer Li
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunli Wang
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiqiang Guo
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Li W, Li Y, Xiao L, Xie Z, Peng J, Huang W, Li X, Meng Y. Micheliolide attenuates sepsis-induced acute lung injury by suppressing mitochondrial oxidative stress and PFKFB3-driven glycolysis. J Transl Med 2025; 23:181. [PMID: 39953547 PMCID: PMC11829335 DOI: 10.1186/s12967-024-05906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/19/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Sepsis is a potentially fatal condition with a significant risk of death. Acute lung injury (ALI) is a life-threatening complication of sepsis, and the inflammatory response plays a critical role in sepsis-induced ALI. The protective effects of micheliolide (MCL) against renal fibrosis and leukemia have been demonstrated, but the precise underlying mechanisms remain unclear. METHODS In vitro, lipopolysaccharides (LPS) and interferon-gamma (IFN-γ) were used to stimulate RAW264.7 cells and bone marrow-derived macrophages (BMDMs) to investigate the protective effect of MCL on sepsis-induced ALI. Cecal ligation and puncture (CLP) models were constructed in mice to induce ALI in vivo. The expression of inflammatory factors, macrophage polarization markers, and the glycolysis-related enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) were measured in vivo. Mitochondrial function, oxidative stress, and mitochondrial-related proteins were evaluated in vitro. RESULTS MCL inhibited CLP-induced ALI, as evidenced by improvements in proinflammatory factor levels, lung wet/dry ratios, and histopathological findings. In vitro, MCL treatment significantly suppressed LPS + IFN-γ-induced M1-type polarization of RAW264.7 cells and BMDMs, as well as the production of inflammatory factors and oxidative stress. Mechanistic experiments revealed that MCL suppresses PFKFB3-driven glycolysis to reduce inflammation and activates the mitochondrial unfolded protein response (UPRmt) to alleviate mitochondrial stress. However, the therapeutic effect of MCL was diminished when PFKFB3 was overexpressed in cells. CONCLUSION This study is the first to demonstrate that MCL attenuates sepsis-induced ALI by reducing M1-type macrophage polarization. Its therapeutic effect is closely related to the suppression of oxidative stress and PFKFB3-driven glycolysis.
Collapse
Affiliation(s)
- Wenhan Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yuhan Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Linjie Xiao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Zhanzhan Xie
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Jun Peng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Wenhui Huang
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Ying Meng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Shen Y, Gao X, Xiang Y, Zhou H, Zhu H, Wu Q, Liu J. Exploiting Mitochondria by Triggering a Faulty Unfolded Protein Response Leads to Effective Cardioprotection. Int J Med Sci 2025; 22:188-196. [PMID: 39744160 PMCID: PMC11659839 DOI: 10.7150/ijms.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025] Open
Abstract
This study investigates the role of Fundc1 in cardiac protection under high-altitude hypoxic conditions and elucidates its underlying molecular mechanisms. Using cardiomyocyte-specific Fundc1 knockout (Fundc1CKO ) mice, we demonstrated that Fundc1 deficiency exacerbates cardiac dysfunction under simulated high-altitude hypoxia, manifesting as impaired systolic and diastolic function. Mechanistically, we identified that Fundc1 regulates cardiac function through the mitochondrial unfolded protein response (mito-UPR) pathway. Fundc1 deficiency led to significant downregulation of multiple mito-UPR-related factors, including ATF5, Chop, and PITRM1. Further investigation revealed that Fundc1 deficiency results in increased cardiomyocyte apoptosis, calcium dysregulation, reduced cell viability, and impaired mitochondrial function, characterized by decreased ATP production, reduced membrane potential, and increased ROS production. Notably, activation of mito-UPR with oligomycin significantly ameliorated these cardiac abnormalities in Fundc1-deficient mice. We identified ATF5 as a key downstream effector of Fundc1, as ATF5 overexpression effectively reversed cardiac dysfunction and restored mito-UPR-related gene expression in Fundc1-deficient hearts. Additionally, we discovered that Fundc1-mediated cardioprotection involves regulation of mitophagy, where its activation improved cardiac function and mitochondrial homeostasis in Fundc1-deficient mice. Our findings reveal a novel Fundc1-ATF5-mito-UPR axis in cardioprotection against high-altitude hypoxia and highlight the crucial role of mitophagy in this protective mechanism, providing new insights into potential therapeutic strategies for high-altitude heart disease.
Collapse
Affiliation(s)
- Yang Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Department of Cardiology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Xin Gao
- Outpatient Department of the Sixth Medical Center of the General Hospital of the People's Liberation Army, China
| | - Ying Xiang
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, China
| | - Hao Zhou
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Hang Zhu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
6
|
Lee J, Woo H, Kang H, Park YK, Lee JY. Nicotinamide riboside targets mitochondrial unfolded protein response to reduce alcohol-induced damage in Kupffer cells. J Pathol 2025; 265:110-122. [PMID: 39624887 DOI: 10.1002/path.6372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/15/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
The pathogenesis of alcohol-related liver disease (ALD) is closely linked to mitochondrial dysfunction and impaired cellular energy metabolism. In this study, we explored how ethanol triggers inflammation, oxidative stress, and mitochondrial dysfunction in Kupffer cells, i.e.hepatic resident macrophages, primarily focusing on the mitochondrial unfolded protein response (UPRmt) using immortalized mouse Kupffer cells (ImKCs) and mouse primary KCs. The UPRmt is a cellular defense mechanism activated in response to the perturbation of mitochondrial proteostasis to maintain mitochondrial integrity and function by upregulating the expression of mitochondrial chaperones and proteases. We also determined whether nicotinamide riboside (NR), a NAD+ precursor, could mitigate ethanol-triggered cellular damage. When ImKCs were exposed to 80 mm ethanol for 72 h, they displayed inflammation, oxidative stress, and impaired mitochondrial function with decreased mitochondrial content and deformed mitochondrial crista structure. NR, however, counteracted the effects of ethanol. Furthermore, ethanol increased mRNA and protein levels of UPRmt genes, such as mitochondrial chaperones and proteases, which were attenuated by NR. Notably, the ethanol-induced shift in the entry of activating transcription factor 5 (ATF5), a putative transcriptional regulator of UPRmt, to the nucleus from the mitochondria was abolished by NR. The induction of UPRmt genes by ethanol was significantly repressed when Atf5 was knocked down, indicating the role of ATF5 in the induction of UPRmt genes in ImKCs exposed to ethanol. We also confirmed the induction of UPRmt gene expression in mouse and human livers exposed to alcohol. Our findings demonstrate the ability of NR to alleviate ethanol-induced oxidative stress, inflammation, and mitochondrial dysfunction, partly by modulating the ATF5-dependent UPRmt pathway in ImKCs, suggesting its potential for ALD therapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hayoung Woo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
7
|
Muthu S, Tran Z, Thilagavathi J, Bolarum T, Azzam EI, Suzuki CK, Sundararajan V. Aging triggers mitochondrial, endoplasmic reticulum, and metabolic stress responses in the heart. THE JOURNAL OF CARDIOVASCULAR AGING 2025; 5:4. [PMID: 40124955 PMCID: PMC11928159 DOI: 10.20517/jca.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Introduction Aging is a multifaceted biological process characterized by a progressive decline in cellular and tissue function. It significantly impacts the cardiovascular system and contributes to the onset of cardiovascular diseases. The mitochondria (mt) and the endoplasmic reticulum (ER) play synergistic roles in maintaining cellular homeostasis and energy production in the heart. Nevertheless, their response to cardiac aging is not well known. Aim This study explores mt and ER stress responses and their associated factors, such as metabolic, cellular, and autophagic stress, in cardiac aging. Methods and Results We utilized 10- and 25-month-old CBA/CaJ mice to evaluate mt, ER, and their associated factors, such as metabolic, cellular, and autophagic stress responses. We studied the gene expression for mitochondrial biogenesis, mt and ER stress response, autophagy and metabolic markers, and activating transcription factors that mediate cellular stress responses. We found no significant difference in mtDNA content and the mRNA expression of the mt transcription factor, Tfam; however, selective mtDNA genes, such as mt-Cytb and mt-Co2, showed significant induction in 25-month-aged compared to 10-month-young hearts. Interestingly, genes of several mitochondrial stress response proteases and their components, including Lonp1, Yme1l1, Afg3l2, and Spg7, were significantly induced, with a substantial induction of Clpp and Clpx. However, age-associated differences were not observed in the induction of mt chaperones (Hspa9 and Hspd1), but significant induction of Dnaja2, a mitochondrial co-chaperone, was observed. The ER stress transcription factors Xbp1 and Atf6 were markedly induced in aged hearts, accompanied by decreased expression of ER stress chaperone Hsp90b with no change in Hspa5 and Dnajb9 chaperones. However, induction of Dnm1l was significant, whereas Mfn1 and Fis1 were downregulated in contrast to Mfn2, suggesting dysregulated mitochondrial dynamics in the aged heart with no change in autophagy and metabolic stress regulators observed. Furthermore, aged hearts showed significantly increased oxidative damage as evidenced by elevated lipid peroxidation (4-HNE) levels. Conclusion These findings demonstrate that aging triggers mt, ER, and oxidative stress in the heart, which over time leads to the accumulation of oxidative damage, causing cellular impairment, highlighting these pathways as potential therapeutic targets for mitigating age-related cardiac dysfunction.
Collapse
Affiliation(s)
- Sakthijothi Muthu
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Zinnia Tran
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Jayapalraja Thilagavathi
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Tanvi Bolarum
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Edouard I. Azzam
- Department of Radiology, Rutgers New Jersey Medical School, Cancer Center, Newark, NJ 07101, USA
| | - Carolyn K. Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Venkatesh Sundararajan
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
8
|
Giarrizzo M, LaComb JF, Patel HR, Reddy RG, Haley JD, Graves LM, Iwanowicz EJ, Bialkowska AB. TR-107, an Agonist of Caseinolytic Peptidase Proteolytic Subunit, Disrupts Mitochondrial Metabolism and Inhibits the Growth of Human Colorectal Cancer Cells. Mol Cancer Ther 2024; 23:1761-1778. [PMID: 39233476 PMCID: PMC11614700 DOI: 10.1158/1535-7163.mct-24-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Oxidative phosphorylation is an essential metabolic process for cancer proliferation and therapy resistance. The ClpXP complex maintains mitochondrial proteostasis by degrading misfolded proteins. Madera Therapeutics has developed a class of highly potent and selective small-molecule activators (TR compounds) of the ClpXP component caseinolytic peptidase proteolytic subunit (ClpP). This approach to cancer therapy eliminates substrate recognition and activates nonspecific protease function within mitochondria, which has shown encouraging preclinical efficacy in multiple malignancies. The class-leading compound TR-107 has demonstrated significantly improved potency in ClpP affinity and activation and enhanced pharmacokinetic properties over the multitargeting clinical agent ONC201. In this study, we investigate the in vitro efficacy of TR-107 against human colorectal cancer cells. TR-107 inhibited colorectal cancer cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest at low nanomolar concentrations. Mechanistically, TR-107 downregulated the expression of proteins involved in the mitochondrial unfolded protein response and mitochondrial DNA transcription and translation. TR-107 attenuated oxygen consumption rate and glycolytic compensation, confirming inactivation of oxidative phosphorylation and a reduction in total cellular respiration. Multiomics analysis of treated cells indicated a downregulation of respiratory chain complex subunits and an upregulation of mitophagy and ferroptosis pathways. Further evaluation of ferroptosis revealed a depletion of antioxidant and iron toxicity defenses that could potentiate sensitivity to combinatory chemotherapeutics. Together, this study provides evidence and insight into the subcellular mechanisms employed by colorectal cancer cells in response to potent ClpP agonism. Our findings demonstrate a productive approach to disrupting mitochondrial metabolism, supporting the translational potential of TR-107.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Hetvi R Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Rohan G Reddy
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, New York
- Developmental Therapeutics at SBU Cancer Center, Stony Brook University, Stony Brook, New York
- SBU Proteomics Center, Stony Brook University, Stony Brook, New York
| | - Lee M Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
9
|
Kenny TC, Birsoy K. Mitochondria and Cancer. Cold Spring Harb Perspect Med 2024; 14:a041534. [PMID: 38692736 PMCID: PMC11610758 DOI: 10.1101/cshperspect.a041534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mitochondria are semiautonomous organelles with diverse metabolic and cellular functions including anabolism and energy production through oxidative phosphorylation. Following the pioneering observations of Otto Warburg nearly a century ago, an immense body of work has examined the role of mitochondria in cancer pathogenesis and progression. Here, we summarize the current state of the field, which has coalesced around the position that functional mitochondria are required for cancer cell proliferation. In this review, we discuss how mitochondria influence tumorigenesis by impacting anabolism, intracellular signaling, and the tumor microenvironment. Consistent with their critical functions in tumor formation, mitochondria have become an attractive target for cancer therapy. We provide a comprehensive update on the numerous therapeutic modalities targeting the mitochondria of cancer cells making their way through clinical trials.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
10
|
Chang LC, Chiang SK, Chen SE, Hung MC. Exploring paraptosis as a therapeutic approach in cancer treatment. J Biomed Sci 2024; 31:101. [PMID: 39497143 PMCID: PMC11533606 DOI: 10.1186/s12929-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
11
|
Bai Y, Niu Z, Yang Z, Sun Y, Yan W, Wu A, Wei C. Integrated bioinformatics and machine learning algorithms reveal the unfolded protein response pathways and immune infiltration in acute myocardial infarction. J Thorac Dis 2024; 16:6496-6515. [PMID: 39552895 PMCID: PMC11565340 DOI: 10.21037/jtd-24-622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 11/19/2024]
Abstract
Background The unfolded protein response (UPR) is a critical biological process related to a variety of physiological functions and cardiac disease. However, the role of UPR-related genes in acute myocardial infarction (AMI) has not been well characterized. Therefore, this study aims to elucidate the mechanism and role of the UPR in the context of AMI. Methods Gene expression profiles related to AMI and UPR pathway were downloaded from the Gene Expression Omnibus database and PathCards database, respectively. Differentially expressed genes (DEGs) were identified and then functionally annotated. The random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify potential diagnostic UPR-AMI biomarkers. Furthermore, the results were validated by using external data sets, and discriminability was measured by the area under the curve (AUC). A nomogram based on the feature genes was developed to predict the AMI-risk rate. Then we utilized two algorithms, CIBERSORT and MCPcounter, to investigate the relationship between the key genes and immune microenvironment. Additionally, we performed uniform clustering of AMI samples based on the expression of UPR pathway-related genes. The weighted gene co-expression network analysis was conducted to identify the key modules in various clusters, enrichment analysis was performed for the genes existing in different modules. Results A total of 14 DEGs related to the UPR pathway were identified. Among the 14 DEGs, CEBPB, ATF3, EIF2S3, and TSPYL2 were subsequently identified as biomarkers by the LASSO and RF algorithms. A diagnostic model was constructed with these four genes, and the AUC was 0.939. The calibration curves, receiver operating characteristic (ROC) curves, and the decision curve analysis of the nomogram exhibited good performance. Furthermore, immune cell infiltration analysis revealed that four feature genes were linked with the infiltration of immune cells such as neutrophils. The cluster analysis of the AMI samples identified two distinct clusters, each with differential expression of genes related to the UPR pathway, immune cell infiltration, and inflammatory cytokine secretion. Weighted gene coexpression network analysis and enrichment analysis showed that both clusters were associated with the UPR. Conclusions Our study highlights the importance of the UPR pathway in the pathogenesis of myocardial infarction, and identifies four genes CEBPB, ATF3, EIF2S3, and TSPYL2 as diagnostic biomarkers for AMI, providing new ideas for the clinical diagnosis and treatment of AMI.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zequn Niu
- Computer Science and Technology, The Open University of China, Beijing, China
| | - Zhenyu Yang
- Department of Endocrinology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weidong Yan
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Zheng C, Hu W, Wu D, Chen R, Xu C, Huang R. Foxd3/SLC5A6 axis regulates apoptosis in LUAD cells by controlling mitochondrial biotin uptake. Cell Signal 2024; 125:111473. [PMID: 39426496 DOI: 10.1016/j.cellsig.2024.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) accounting for over 85 % of cases. Lung adenocarcinoma (LUAD) is the most common subtype of NSCLC, and while targeted therapies and immune checkpoint inhibitors have improved outcomes, many patients exhibit resistance, necessitating the development of novel treatments. This study explores the role of the SLC5A6 gene, which encodes a sodium-dependent multivitamin transporter critical for mitochondrial function, in LUAD progression. We found that SLC5A6 is significantly upregulated in LUAD tissues and is associated with poor prognosis. Overexpression of SLC5A6 enhanced cell proliferation and migration, while knockout of SLC5A6 impaired these processes and induced apoptosis by disrupting mitochondrial function. Additionally, we identified Foxd3 as a key transcription factor regulating SLC5A6 expression. In vivo experiments demonstrated that SLC5A6 knockout effectively inhibited tumor growth. These findings suggest that SLC5A6 is a potential therapeutic target for LUAD, offering a new avenue for treatment strategies.
Collapse
Affiliation(s)
- Chong Zheng
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University,Wenzhou Central Hospital, Wenzhou, China
| | - Wenxuan Hu
- Institute of Thoracic Surgery,The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Danni Wu
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University,Wenzhou Central Hospital, Wenzhou, China
| | - Ruiheng Chen
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University,Wenzhou Central Hospital, Wenzhou, China
| | - Chun Xu
- Institute of Thoracic Surgery,The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Risheng Huang
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University,Wenzhou Central Hospital, Wenzhou, China.
| |
Collapse
|
13
|
Cömert C, Kjær-Sørensen K, Hansen J, Carlsen J, Just J, Meaney BF, Østergaard E, Luo Y, Oxvig C, Schmidt-Laursen L, Palmfeldt J, Fernandez-Guerra P, Bross P. HSP60 chaperone deficiency disrupts the mitochondrial matrix proteome and dysregulates cholesterol synthesis. Mol Metab 2024; 88:102009. [PMID: 39147275 PMCID: PMC11388177 DOI: 10.1016/j.molmet.2024.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVE Mitochondrial proteostasis is critical for cellular function. The molecular chaperone HSP60 is essential for cell function and dysregulation of HSP60 expression has been implicated in cancer and diabetes. The few reported patients carrying HSP60 gene variants show neurodevelopmental delay and brain hypomyelination. Hsp60 interacts with more than 260 mitochondrial proteins but the mitochondrial proteins and functions affected by HSP60 deficiency are poorly characterized. METHODS We studied two model systems for HSP60 deficiency: (1) engineered HEK cells carrying an inducible dominant negative HSP60 mutant protein, (2) zebrafish HSP60 knockout larvae. Both systems were analyzed by RNASeq, proteomics, and targeted metabolomics, and several functional assays relevant for the respective model. In addition, skin fibroblasts from patients with disease-associated HSP60 variants were analyzed by proteomics. RESULTS We show that HSP60 deficiency leads to a differentially downregulated mitochondrial matrix proteome, transcriptional activation of stress responses, and dysregulated cholesterol biosynthesis. This leads to lipid accumulation in zebrafish knockout larvae. CONCLUSIONS Our data provide a compendium of the effects of HSP60 deficiency on the mitochondrial matrix proteome. We show that HSP60 is a master regulator and modulator of mitochondrial functions and metabolic pathways. HSP60 dysfunction also affects cellular metabolism and disrupts the integrated stress response. The effect on cholesterol synthesis explains the effect of HSP60 dysfunction on myelination observed in patients carrying genetic variants of HSP60.
Collapse
Affiliation(s)
- Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | - Kasper Kjær-Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Brandon F Meaney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Odense, Denmark.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
14
|
Chen R, Zheng A, Wang Y, Guo L, Dou H, Lu L, Rafiq M, Li P, Chen X, Xiao Q. Salvianolic acid B improves mitochondrial dysfunction of septic cardiomyopathy via enhancing ATF5-mediated mitochondrial unfolded protein response. Toxicol Appl Pharmacol 2024; 491:117072. [PMID: 39153513 DOI: 10.1016/j.taap.2024.117072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
AIMS Septic cardiomyopathy is characterized by impaired contractile function and mitochondrial activity dysregulation. Salvianolic acid B (Sal B) is a potent therapeutic compound derived from the traditional Chinese medicine Salvia miltiorrhiza. This study explored the protective effects of Sal B on septic heart injury, emphasizing the mitochondrial unfolded protein response (UPRmt). MATERIALS AND METHODS An in vivo mouse model of lipopolysaccharide (LPS)-induced heart injury was utilized to assess Sal B's protective role in septic cardiomyopathy. Additionally, cell models stimulated by LPS were developed to investigate the mechanisms of Sal B on UPRmt. Quantitative polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence were employed for molecular analysis. RESULTS Sal B, administered at doses of 10, 30, and 60 mg/kg, demonstrated protective effects on cardiac contractile function, reduced heart inflammation, and mitigated cardiac injury in LPS-exposed mice. In cardiomyocytes, LPS induced apoptosis, elevated mitochondrial ROS levels, promoted mitochondrial fission, and decreased mitochondrial membrane potential, all of which were alleviated by Sal B. Mechanistically, Sal B was found to induce UPRmt both in vivo and in vitro. ATF5, identified as a UPRmt activator, was modulated by LPS and Sal B, resulting in increased ATF5 expression and its translocation from the cytosol to the nucleus. ATF5-siRNA delivery reversed UPRmt upregulation, exacerbating mitochondrial dysfunction in LPS-stimulated cardiomyocytes and counteracting the mitochondrial function enhancement in Sal B-treated cardiomyocytes. CONCLUSIONS This study provides evidence that Sal B confers cardiac protection by enhancing UPRmt, highlighting its potential as a therapeutic approach for mitigating mitochondrial dysfunction in septic cardiomyopathy.
Collapse
Affiliation(s)
- Renshan Chen
- Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Avenue, Guangzhou 510800, PR China
| | - Anran Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Yunjing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Liyou Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Huaqian Dou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Liangyan Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Muhammad Rafiq
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Peihua Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China
| | - Xiuhui Chen
- Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Department of Pharmacy & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, 68 South Xihu Third Road, Shilong Town, Dongguan 523000, China.
| | - Qing Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
15
|
Zhang X, Fan Y, Tan K. A bird's eye view of mitochondrial unfolded protein response in cancer: mechanisms, progression and further applications. Cell Death Dis 2024; 15:667. [PMID: 39261452 PMCID: PMC11390889 DOI: 10.1038/s41419-024-07049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Mitochondria are essential organelles that play critical roles in energy metabolism, apoptosis and various cellular processes. Accumulating evidence suggests that mitochondria are also involved in cancer development and progression. The mitochondrial unfolded protein response (UPRmt) is a complex cellular process that is activated when the protein-folding capacity of the mitochondria is overwhelmed. The core machinery of UPRmt includes upstream regulatory factors, mitochondrial chaperones and proteases. These components work together to eliminate misfolded proteins, increase protein-folding capacity, and restore mitochondrial function. Recent studies have shown that UPRmt is dysregulated in various cancers and contributes to tumor initiation, growth, metastasis, and therapeutic resistance. Considering the pivotal role of the UPRmt in oncogenesis, numerous compounds and synthetic drugs targeting UPRmt-related components induce cancer cell death and suppress tumor growth. In this review, we comprehensively summarize recent studies on the molecular mechanisms of UPRmt activation in C. elegans and mammals and elucidate the conceptual framework, functional aspects, and implications of the UPRmt for cancer therapy. In summary, we paint a developmental landscape of the UPRmt in different types of cancer and offer valuable insights for the development of novel cancer treatment strategies by targeting the UPRmt.
Collapse
Affiliation(s)
- Xinyu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
16
|
Balkrishna A, Gohel V, Pathak N, Joshi M, Singh R, Kumari A, Dev R, Varshney A. Renogrit selectively protects against cisplatin-induced injury in human renal tubular cells and in Caenorhabditis elegans by harmonizing apoptosis and mitophagy. Sci Rep 2024; 14:19443. [PMID: 39169052 PMCID: PMC11339073 DOI: 10.1038/s41598-024-69797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Cisplatin-induced nephrotoxicity restricts its clinical use against solid tumors. The present study elucidated the pharmacological effects of Renogrit, a plant-derived prescription medicine, using cisplatin-induced human renal proximal tubular (HK-2) cells and Caenorhabditis elegans. Quantification of phytochemicals in Renogrit was performed on HPTLC and UHPLC platforms. Renogrit was assessed in vitro in HK-2 cells post-exposure to clinically relevant concentration of cisplatin. It was observed that renoprotective properties of Renogrit against cisplatin-induced injury stem from its ability to regulate renal injury markers (KIM-1, NAG levels; NGAL mRNA expression), redox imbalance (ROS generation; GST levels), and mitochondrial dysfunction (mitochondrial membrane potential; SKN-1, HSP-60 expression). Renogrit was also found to modulate apoptosis (EGL-1 mRNA expression; protein levels of p-ERK, p-JNK, p-p38, c-PARP1), necroptosis (intracellular calcium accumulation; RIPK1, RIPK3, MLKL mRNA expression), mitophagy (lysosome population; mRNA expression of PINK1, PDR1; protein levels of p-PINK1, LC3B), and inflammation (IL-1β activity; protein levels of LXR-α). More importantly, Renogrit treatment did not hamper normal anti-proliferative effects of cisplatin as observed from cytotoxicity analysis on MCF-7, A549, SiHa, and T24 human cancer cells. Taken together, Renogrit could be a potential clinical candidate to mitigate cisplatin-induced nephrotoxicity without compromising the anti-neoplastic properties of cisplatin.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249405, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow, G411AU, UK
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Nishit Pathak
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Monali Joshi
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Ankita Kumari
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India.
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249405, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
17
|
Hong WL, Huang H, Zeng X, Duan CY. Targeting mitochondrial quality control: new therapeutic strategies for major diseases. Mil Med Res 2024; 11:59. [PMID: 39164792 PMCID: PMC11337860 DOI: 10.1186/s40779-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the normal physiological state of cells. Hence, ensuring mitochondrial quality control is imperative for the prevention and treatment of numerous diseases. Previous reviews on this topic have however been inconsistencies and lack of systematic organization. Therefore, this review aims to provide a comprehensive and systematic overview of mitochondrial quality control and explore the possibility of targeting the same for the treatment of major diseases. This review systematically summarizes three fundamental characteristics of mitochondrial quality control, including mitochondrial morphology and dynamics, function and metabolism, and protein expression and regulation. It also extensively examines how imbalances in mitochondrial quality are linked to major diseases, such as ischemia-hypoxia, inflammatory disorders, viral infections, metabolic dysregulations, degenerative conditions, and tumors. Additionally, the review explores innovative approaches to target mitochondrial quality control, including using small molecule drugs that regulate critical steps in maintaining mitochondrial quality, nanomolecular materials designed for precise targeting of mitochondria, and novel cellular therapies, such as vesicle therapy and mitochondrial transplantation. This review offers a novel perspective on comprehending the shared mechanisms underlying the occurrence and progression of major diseases and provides theoretical support and practical guidance for the clinical implementation of innovative therapeutic strategies that target mitochondrial quality control for treating major diseases.
Collapse
Affiliation(s)
- Wei-Long Hong
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
18
|
Yang T, Liu Z, Zhang T, Liu Y. Hybrid nano-stimulator for specific amplification of oxidative stress and precise tumour treatment. J Drug Target 2024; 32:756-769. [PMID: 38832845 DOI: 10.1080/1061186x.2024.2349112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The use of reactive oxygen species (ROS) to target cancer cells has become a hot topic in tumor therapy. PURPOSE Although ROS has strong cytotoxicity against tumor cells, the key issue currently is how to generate a large amount of ROS within tumor cells. METHODS Organic/inorganic hybrid nanoreactor materials combine the advantages of organic and inorganic components and can amplify cancer treatment by increasing targeting and material self-action. The multifunctional organic / inorganic hybrid nanoreactor is helpful to overcome the shortcomings of current reactive oxygen species in cancer treatment. It can realize the combination of in situ dynamic therapy and immunotherapy strategies, and has a synergistic anti-tumor effect. RESULTS This paper reviews the research progress of organic/inorganic hybrid nanoreactor materials using tumor components to amplify reactive oxygen species for cancer treatment. The article reviews the tumor treatment strategies of nanohybrids from the perspectives of cancer cells, immune cells, tumor microenvironment, as well as 3D printing and electrospinning techniques, which are different from traditional nanomaterial technologies, and will arouse interest among scientists in tumor therapy and nanomedicine.
Collapse
Affiliation(s)
- Ting Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zihan Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tong Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan, China
| |
Collapse
|
19
|
Wang C, Gu L, Zhang Y, Gao Y, Jian Z, Xiong X. Bibliometric insights into the inflammation and mitochondrial stress in ischemic stroke. Exp Neurol 2024; 378:114845. [PMID: 38838802 DOI: 10.1016/j.expneurol.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking. OBJECTIVE To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke. METHODS We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved. CONCLUSION Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Liu Y, Cai L, Wang H, Yao L, Zhang K, Chen G, Zhou Y. Novel mitochondrial-related gene signature predicts prognosis and immunological status in glioma. Transl Cancer Res 2024; 13:3338-3353. [PMID: 39145059 PMCID: PMC11319993 DOI: 10.21037/tcr-23-2072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Background Mitochondria are the center of cellular metabolism. The relationship between mitochondria and diseases has also been studied for a long time. However, the prognostic role of mitochondrial-related genes (MRGs) in patients with glioma and their biological effects are still unclear. The aim of the study was to construct a mitochondria-related model to assess prognosis and potential biological effects like immune infiltration, gene pathway and mutation, and give some predictive chemotherapeutic agents. Methods The data of 675 patients from The Cancer Genome Atlas (TCGA) database were used to identify MRG signature and construct a prognostic model. After validating its robustness in Chinese Glioma Genome Atlas (CGGA), two risk groups derived from the prognostic model were then conducted with Gene Set Enrichment Analysis (GSEA), immune status, mutation status and chemotherapeutic agents prediction. Results The prognostic model built from six gene signatures can successfully predict the prognosis and reflect clinicopathological characteristics. Patients in high-risk group displayed significantly worse overall survival (OS), immunosuppression effects, and mutation markers with worse prognosis. Twelve chemotherapeutic agents with strongly correlated sensitivity and risk scores were selected as potential agents. Conclusions The novel MRG signatures (TYMP, TSFM, MGME1, BOLA3, TRMT5, NDUFA9) can predict prognosis and immunological status in glioma.
Collapse
Affiliation(s)
- Yongsheng Liu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lize Cai
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Wang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lin Yao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Zhang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangliang Chen
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Ma J, Yang P, Zhou Z, Song T, Jia L, Ye X, Yan W, Sun J, Ye T, Zhu L. GYY4137-induced p65 sulfhydration protects synovial macrophages against pyroptosis by improving mitochondrial function in osteoarthritis development. J Adv Res 2024:S2090-1232(24)00223-6. [PMID: 38844123 DOI: 10.1016/j.jare.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is the most common arthritis that is characterized by the progressive synovial inflammation and loss of articular cartilage. Although GYY4137 is a novel and slow-releasing hydrogen sulfide (H2S) donor with potent anti-inflammatory properties that may modulate the progression of OA, its underlying mechanism remains unclear. OBJECTIVES In this study, we validated the protective role of GYY4137 against OA pathological courses and elucidated its underlying regulatory mechanisms. METHODS Cell transfection, immunofluorescence staining, EdU assay, transmission electron microscopy, mitochondrial membrane potential measurement, electrophoretic mobility shift assay, sulfhydration assay, qPCR and western blot assays were performed in the primary mouse chondrocytes or the mouse macrophage cell line raw 264.7 for in vitro study. DMM-induced OA mice model and Macrophage-specific p65 knockout (p65f/f LysM-CreERT2) mice on the C57BL/6 background were used for in vivo study. RESULTS We found that GYY4137 can alleviate OA progress by suppressing synovium pyroptosis in vivo. Moreover, our in vitro data revealed that GYY4137 attenuates inflammation-induced NLRP3 and caspase-1 activation and results in a decrease of IL-1β production in macrophages. Mechanistically, GYY4137 increased persulfidation of NF-kB p65 in response to inflammatory stimuli that results in a decrease of cellular reactive oxygen species (ROS) accumulation and ameliorates mitochondrial dysfunctions. Using site-directed mutagenesis, we showed that H2S persulfidates cysteine38 in p65 protein and hampers p65 transcriptional activity, and p65 mutant impaired macrophage responses to GYY4137. CONCLUSION These findings suggest a mechanism by which GYY4137 through redox modification of p65 participates in inhibiting NLRP3 activation by OA to regulate inflammatory responses. Thus, we propose that GYY4137 represents a promising novel therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Health Statistics, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Yang
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China; Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Tengfei Song
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Jia
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Naval Medical University, Shanghai, China
| | - Wei Yan
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Jiuyi Sun
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China.
| | - Tianwen Ye
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Lei Zhu
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
22
|
Zhang S, Guo H, Wang H, Liu X, Wang M, Liu X, Fan Y, Tan K. A novel mitochondrial unfolded protein response-related risk signature to predict prognosis, immunotherapy and sorafenib sensitivity in hepatocellular carcinoma. Apoptosis 2024; 29:768-784. [PMID: 38493408 DOI: 10.1007/s10495-024-01945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-associated death worldwide. The mitochondrial unfolded protein response (UPRmt) not only maintains mitochondrial integrity but also regulates cancer progression and drug resistance. However, no study has used the UPRmt to construct a prognostic signature for HCC. This work aimed to establish a novel signature for predicting patient prognosis, immune cell infiltration, immunotherapy, and chemotherapy response based on UPRmt-related genes (MRGs). Transcriptional profiles and clinical information were obtained from the TCGA and ICGC databases. Cox regression and LASSO regression analyses were applied to select prognostic genes and develop a risk model. The TIMER algorithm was used to investigate immunocytic infiltration in the high- and low-risk subgroups. Here, two distinct clusters were identified with different prognoses, immune cell infiltration statuses, drug sensitivities, and response to immunotherapy. A risk score consisting of seven MRGs (HSPD1, LONP1, SSBP1, MRPS5, YME1L1, HDAC1 and HDAC2) was developed to accurately and independently predict the prognosis of HCC patients. Additionally, the expression of core MRGs was confirmed by immunohistochemistry (IHC) staining, single-cell RNA sequencing, and spatial transcriptome analyses. Notably, the expression of prognostic MRGs was significantly correlated with sorafenib sensitivity in HCC and markedly downregulated in sorafenib-treated HepG2 and Huh7 cells. Furthermore, the knockdown of LONP1 decreased the proliferation, invasion, and migration of HepG2 cells, suggesting that upregulated LONP1 expression contributed to the malignant behaviors of HCC cells. To our knowledge, this is the first study to investigate the consensus clustering algorithm, prognostic potential, immune microenvironment infiltration and drug sensitivity based on the expression of MRGs in HCC. In summary, the UPRmt-related classification and prognostic signature could assist in determining the prognosis and personalized therapy of HCC patients from the perspectives of predictive, preventative and personalized medicine.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/diagnosis
- Unfolded Protein Response/drug effects
- Prognosis
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Immunotherapy
- Mitochondria/metabolism
- Mitochondria/drug effects
- Mitochondria/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Drug Resistance, Neoplasm/genetics
- Male
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Female
- Cell Line, Tumor
Collapse
Affiliation(s)
- Sidi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Hanyao Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Hongyu Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaopeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meixia Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaoyu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
23
|
Torres AK, Fleischhart V, Inestrosa NC. Mitochondrial unfolded protein response (UPR mt): what we know thus far. Front Cell Dev Biol 2024; 12:1405393. [PMID: 38882057 PMCID: PMC11176431 DOI: 10.3389/fcell.2024.1405393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Mitochondria are key organelles for the optimal function of the cell. Among their many functions, they maintain protein homeostasis through their own proteostatic machinery, which involves proteases and chaperones that regulate protein import and folding inside mitochondria. In the early 2000s, the mitochondrial unfolded protein response (UPRmt) was first described in mammalian cells. This stress response is activated by the accumulation of unfolded/misfolded proteins within the mitochondrial matrix, which results in the transmission of a signal to the nucleus to increase the expression of proteases and chaperones to address the abnormal mitochondrial protein load. After its discovery, this retrograde signaling pathway has also been described in other organisms of different complexities, suggesting that it is a conserved stress response. Although there are some specific differences among organisms, the mechanism of this stress response is mostly similar and involves the transmission of a signal from mitochondria to the nucleus that induces chromatin remodeling to allow the binding of specific transcription factors to the promoters of chaperones and proteases. In the last decade, proteins and signaling pathways that could be involved in the regulation of the UPRmt, including the Wnt signaling pathway, have been described. This minireview aims to summarize what is known about the mechanism of the UPRmt and its regulation, specifically in mammals and C. elegans.
Collapse
Affiliation(s)
- Angie K Torres
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Veronika Fleischhart
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
24
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
25
|
Wang B, Chen W, Huang Q, Chen Y, Wang Y. Targeting Cancer Mitochondria by Inducing an Abnormal Mitochondrial Unfolded Protein Response Leads to Tumor Suppression. Int J Med Sci 2024; 21:1204-1212. [PMID: 38818479 PMCID: PMC11134587 DOI: 10.7150/ijms.95624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a pivotal cellular mechanism that ensures mitochondrial homeostasis and cellular survival under stress conditions. This study investigates the role of UPRmt in modulating the response of nasopharyngeal carcinoma cells to cisplatin-induced stress. We report that the inhibition of UPRmt via AEB5F exacerbates cisplatin cytotoxicity, as evidenced by increased lactate dehydrogenase (LDH) release and apoptosis, characterized by a surge in TUNEL-positive cells. Conversely, the activation of UPRmt with oligomycin attenuates these effects, preserving cell viability and reducing apoptotic markers. Immunofluorescence assays reveal that UPRmt activation maintains mitochondrial membrane potential and ATP production in the presence of cisplatin, countering the rise in reactive oxygen species (ROS) and inhibiting caspase-9 activation. These findings suggest that UPRmt serves as a cytoprotective mechanism in cancer cells, mitigating cisplatin-induced mitochondrial dysfunction and apoptosis. The data underscore the therapeutic potential of modulating UPRmt to improve the efficacy and reduce the side effects of cisplatin chemotherapy. This study provides a foundation for future research on the exploitation of UPRmt in cancer treatment, with the aim of enhancing patient outcomes by leveraging the cellular stress response pathways.
Collapse
Affiliation(s)
- Baoxiao Wang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Chen
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiqi Huang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yajing Wang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Li XY, Zhou GF, Xie XY, Pu YL, -Chen X, Li CL, Yang J, Wang L, Chen GJ. Short-term regulation of TSFM level does not alter amyloidogenesis and mitochondrial function in type-specific cells. Mol Biol Rep 2024; 51:484. [PMID: 38578353 DOI: 10.1007/s11033-024-09426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Mitochondrial Ts translation elongation factor (TSFM) is an enzyme that catalyzes exchange of guanine nucleotides. By forming a complex with mitochondrial Tu translation elongation factor (TUFM), TSFM participates in mitochondrial protein translation. We have previously reported that TUFM regulates translation of beta-site APP cleaving enzyme 1 (BACE1) via ROS (reactive oxygen species)-dependent mechanism, suggesting a potential role in amyloid precursor protein (APP) processing associated with Alzheimer's disease (AD), which led to the speculation that TSFM may regulate APP processing in a similar way to TUFM. METHODS AND RESULTS Here, we report that in cultured cells, knockdown or overexpression TSFM did not change protein levels in BACE1 and APP. Besides, the levels of cytoplasmic ROS and mitochondrial superoxide, in addition to ATP level, cell viability and mitochondrial membrane potential were not significantly altered by TSFM knockdown in the short term. Further transcriptome analysis revealed that expression of majority of mitochondrial genes were not remarkably changed by TSFM silencing. The possibility of TSFM involved in cardiomyopathy and cancer development was uncovered using bioinformatics analysis. CONCLUSIONS Collectively, short-term regulation of TSFM level in cultured cells does not cause a significant change in proteins involved in APP processing, levels in ROS and ATP associated with mitochondrial function. Whereas our study could contribute to comprehend certain clinical features of TSFM mutations, the roles of TSFM in cardiomyopathy and cancer development might deserve further investigation.
Collapse
Affiliation(s)
- Xiao-Yun Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xiong-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Ya-Lan Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xue -Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Chen-Lu Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
27
|
Li C, Hao B, Yang H, Wang K, Fan L, Xiao W. Protein aggregation and biomolecular condensation in hypoxic environments (Review). Int J Mol Med 2024; 53:33. [PMID: 38362920 PMCID: PMC10903932 DOI: 10.3892/ijmm.2024.5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Due to molecular forces, biomacromolecules assemble into liquid condensates or solid aggregates, and their corresponding formation and dissolution processes are controlled. Protein homeostasis is disrupted by increasing age or environmental stress, leading to irreversible protein aggregation. Hypoxic pressure is an important factor in this process, and uncontrolled protein aggregation has been widely observed in hypoxia‑related conditions such as neurodegenerative disease, cardiovascular disease, hypoxic brain injury and cancer. Biomolecular condensates are also high‑order complexes assembled from macromolecules. Although they exist in different phase from protein aggregates, they are in dynamic balance under certain conditions, and their activation or assembly are considered as important regulatory processes in cell survival with hypoxic pressure. Therefore, a better understanding of the relationship between hypoxic stress, protein aggregation and biomolecular condensation will bring marked benefits in the clinical treatment of various diseases. The aim of the present review was to summarize the underlying mechanisms of aggregate assembly and dissolution induced by hypoxic conditions, and address recent breakthroughs in understanding the role of aggregates in hypoxic‑related diseases, given the hypotheses that hypoxia induces macromolecular assemblage changes from a liquid to a solid phase, and that adenosine triphosphate depletion and ATP‑driven inactivation of multiple protein chaperones play important roles among the process. Moreover, it is anticipated that an improved understanding of the adaptation in hypoxic environments could extend the overall survival of patients and provide new strategies for hypoxic‑related diseases.
Collapse
Affiliation(s)
- Chaoqun Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bingjie Hao
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Haiguang Yang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kai Wang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lihong Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Weihua Xiao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
28
|
Thirumaran P, Cornell R, Pocock R. Endogenous fluorescent reporters for heat shock proteins are not detectable after stress induction. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001049. [PMID: 38585202 PMCID: PMC10998075 DOI: 10.17912/micropub.biology.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) utilise unique unfolded protein response (UPR) mechanisms to maintain cellular proteostasis. Heat shock proteins (HSPs) are UPR chaperones induced by specific stressors to promote protein folding. Previous research has successfully employed transgenic reporters in Caenorhabditis elegans to report HSP induction. However, transgenic reporters are overexpressed and only show promoter regulation and not post-transcriptional regulation. To examine endogenous HSP regulation, we attempted to generate and validate endogenous reporters for mitochondrial ( HSP-60 ) and ER ( HSP-4 ) chaperones. Using CRISPR/Cas9 technology, F2A-GFP-H2B coding DNA was inserted downstream of each HSP gene and stress induction assays conducted to validate these tools. Endogenous reporters were successfully generated for hsp-4 and hsp-60 . However, GFP induction could not be detected with these endogenous reporters upon stress induction, likely due to low level expression.
Collapse
Affiliation(s)
- Priya Thirumaran
- Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Cornell
- Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Roger Pocock
- Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Chi H, Su L, Yan Y, Gu X, Su K, Li H, Yu L, Liu J, Wang J, Wu Q, Yang G. Illuminating the immunological landscape: mitochondrial gene defects in pancreatic cancer through a multiomics lens. Front Immunol 2024; 15:1375143. [PMID: 38510247 PMCID: PMC10953916 DOI: 10.3389/fimmu.2024.1375143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024] Open
Abstract
This comprehensive review delves into the complex interplay between mitochondrial gene defects and pancreatic cancer pathogenesis through a multiomics approach. By amalgamating data from genomic, transcriptomic, proteomic, and metabolomic studies, we dissected the mechanisms by which mitochondrial genetic variations dictate cancer progression. Emphasis has been placed on the roles of these genes in altering cellular metabolic processes, signal transduction pathways, and immune system interactions. We further explored how these findings could refine therapeutic interventions, with a particular focus on precision medicine applications. This analysis not only fills pivotal knowledge gaps about mitochondrial anomalies in pancreatic cancer but also paves the way for future investigations into personalized therapy options. This finding underscores the crucial nexus between mitochondrial genetics and oncological immunology, opening new avenues for targeted cancer treatment strategies.
Collapse
Affiliation(s)
- Hao Chi
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xiang Gu
- Biology Department, Southern Methodist University, Dallas, TX, United States
| | - Ke Su
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Li
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lili Yu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jue Wang
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Guanhu Yang
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
30
|
Saaoud F, Lu Y, Xu K, Shao Y, Praticò D, Vazquez-Padron RI, Wang H, Yang X. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers - Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer. Pharmacol Ther 2024; 255:108604. [PMID: 38360205 PMCID: PMC10917129 DOI: 10.1016/j.pharmthera.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Gao L, Peng L, Wang J, Zhang JH, Xia Y. Mitochondrial stress: a key role of neuroinflammation in stroke. J Neuroinflammation 2024; 21:44. [PMID: 38321473 PMCID: PMC10845693 DOI: 10.1186/s12974-024-03033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
Stroke is a clinical syndrome characterized by an acute, focal neurological deficit, primarily caused by the occlusion or rupture of cerebral blood vessels. In stroke, neuroinflammation emerges as a pivotal event contributing to neuronal cell death. The occurrence and progression of neuroinflammation entail intricate processes, prominently featuring mitochondrial dysfunction and adaptive responses. Mitochondria, a double membrane-bound organelle are recognized as the "energy workshop" of the body. Brain is particularly vulnerable to mitochondrial disturbances due to its high energy demands from mitochondria-related energy production. The interplay between mitochondria and neuroinflammation plays a significant role in the pathogenesis of stroke. The biological and pathological consequences resulting from mitochondrial stress have substantial implications for cerebral function. Mitochondrial stress serves as an adaptive mechanism aimed at mitigating the stress induced by the import of misfolded proteins, which occurs in response to stroke. This adaptive response involves a reduction in misfolded protein accumulation and overall protein synthesis. The influence of mitochondrial stress on the pathological state of stroke is underscored by its capacity to interact with neuroinflammation. The impact of mitochondrial stress on neuroinflammation varies according to its severity. Moderate mitochondrial stress can bolster cellular adaptive defenses, enabling cells to better withstand detrimental stressors. In contrast, sustained and excessive mitochondrial stress detrimentally affects cellular and tissue integrity. The relationship between neuroinflammation and mitochondrial stress depends on the degree of mitochondrial stress present. Understanding its role in stroke pathogenesis is instrumental in excavating the novel treatment of stroke. This review aims to provide the evaluation of the cross-talk between mitochondrial stress and neuroinflammation within the context of stroke. We aim to reveal how mitochondrial stress affects neuroinflammation environment in stroke.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Li Peng
- Department of Ophthalmology, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China
| | - Jian Wang
- Department of Neurosurgery, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.
| | - Ying Xia
- Department of Neurosurgery, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China.
| |
Collapse
|
32
|
Tian S, Chen X, Wu W, Lin H, Qing X, Liu S, Wang B, Xiao Y, Shao Z, Peng Y. Nucleus pulposus cells regulate macrophages in degenerated intervertebral discs via the integrated stress response-mediated CCL2/7-CCR2 signaling pathway. Exp Mol Med 2024; 56:408-421. [PMID: 38316963 PMCID: PMC10907345 DOI: 10.1038/s12276-024-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 02/07/2024] Open
Abstract
Lower back pain (LBP), which is a primary cause of disability, is largely attributed to intervertebral disc degeneration (IDD). Macrophages (MΦs) in degenerated intervertebral discs (IVDs) form a chronic inflammatory microenvironment, but how MΦs are recruited to degenerative segments and transform into a proinflammatory phenotype remains unclear. We evaluated chemokine expression in degenerated nucleus pulposus cells (NPCs) to clarify the role of NPCs in the establishment of an inflammatory microenvironment in IDD and explored the mechanisms. We found that the production of C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 7 (CCL7) was significantly increased in NPCs under inflammatory conditions, and blocking CCL2/7 and their receptor, C-C chemokine receptor type 2(CCR2), inhibited the inductive effects of NPCs on MΦ infiltration and proinflammatory polarization. Moreover, activation of the integrated stress response (ISR) was obvious in IDD, and ISR inhibition reduced the production of CCL2/7 in NPCs. Further investigation revealed that activating Transcription Factor 3 (ATF3) responded to ISR activation, and ChIP-qPCR verified the DNA-binding activity of ATF3 on CCL2/7 promoters. In addition, we found that Toll-like receptor 4 (TLR4) inhibition modulated ISR activation, and TLR4 regulated the accumulation of mitochondrial reactive oxygen species (mtROS) and double-stranded RNA (dsRNA). Downregulating the level of mtROS reduced the amount of dsRNA and ISR activation. Deactivating the ISR or blocking CCL2/7 release alleviated inflammation and the progression of IDD in vivo. Moreover, MΦ infiltration and IDD were inhibited in CCR2-knockout mice. In conclusion, this study highlights the critical role of TLR4/mtROS/dsRNA axis-mediated ISR activation in the production of CCL2/7 and the progression of IDD, which provides promising therapeutic strategies for discogenic LBP.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xuanzuo Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - BaiChuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
33
|
Huang D, Chen L, Ji Q, Xiang Y, Zhou Q, Chen K, Zhang X, Zou F, Zhang X, Zhao Z, Wang T, Zheng G, Meng X. Lead aggravates Alzheimer's disease pathology via mitochondrial copper accumulation regulated by COX17. Redox Biol 2024; 69:102990. [PMID: 38091880 PMCID: PMC10716782 DOI: 10.1016/j.redox.2023.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that is associated with multiple environmental risk factors, including heavy metals. Lead (Pb) is a heavy metal contaminant, which is closely related to the incidence of AD. However, the research on the role of microglia in Pb-induced AD-like pathology is limited. To determine the mechanism by which Pb exposure aggravates AD progression and the role of microglial activation, we exposed APP/PS1 mice and Aβ1-42-treated BV-2 cells to Pb. Our results suggested that chronic Pb exposure exacerbated learning and memory impairments in APP/PS1 mice. Pb exposure increased the activation of microglia in the hippocampus of APP/PS1 mice, which was associated with increased deposition of Aβ1-42, and induced hippocampal neuron damage. Pb exposure upregulated copper transporter 1 (CTR1) and downregulated copper P-type ATPase transporter (ATP7A) in the hippocampus of APP/PS1 mice and Aβ1-42-treated BV-2 cells. Moreover, Pb enhanced mitochondrial translocation of the mitochondrial copper transporter COX17, leading to an increase in mitochondrial copper concentration and mitochondrial damage. This could be reversed by copper-chelating agents or by inhibiting the mitochondrial translocation of COX17. The increased mitochondrial copper concentration caused by increased mitochondrial translocation of COX17 after Pb exposure may be related to the enhanced mitochondrial import pathway of AIF/CHCHD4. These results indicate that Pb induces the activation of microglia by increasing the concentration of copper in the mitochondria of microglia, and microglia release inflammatory factors to promote neuroinflammation, thus aggravating the pathology of AD. The present study provides new ideas for the prevention of Pb-induced AD.
Collapse
Affiliation(s)
- Dingbang Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyi Ji
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yang Xiang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Kaiju Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoshun Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xingmei Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Wang
- Department of Occupational and Environmental Health and the Ministry of Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Zheng
- Department of Occupational and Environmental Health and the Ministry of Education's Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
34
|
Longhitano L, Distefano A, Musso N, Bonacci P, Orlando L, Giallongo S, Tibullo D, Denaro S, Lazzarino G, Ferrigno J, Nicolosi A, Alanazi AM, Salomone F, Tropea E, Barbagallo IA, Bramanti V, Li Volti G, Lazzarino G, Torella D, Amorini AM. (+)-Lipoic acid reduces mitochondrial unfolded protein response and attenuates oxidative stress and aging in an in vitro model of non-alcoholic fatty liver disease. J Transl Med 2024; 22:82. [PMID: 38245790 PMCID: PMC10799515 DOI: 10.1186/s12967-024-04880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 μM and 5 μM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers β-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Laura Orlando
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jessica Ferrigno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Anna Nicolosi
- Hospital Pharmacy Unit, Ospedale Cannizzaro, 95125, Catania, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Federico Salomone
- Division of Gastroenterology, Ospedale Di Acireale, Azienda Sanitaria Provinciale Di Catania, Catania, Italy
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | | | - Vincenzo Bramanti
- U.O.S. Laboratory Analysis, Maggiore "Nino Baglieri" Hospital - ASP Ragusa, 97015, Modica (RG), Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, Via Di Sant'Alessandro 8, 00131, Rome, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
35
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Zhang B, Chang JY, Lee MH, Ju SH, Yi HS, Shong M. Mitochondrial Stress and Mitokines: Therapeutic Perspectives for the Treatment of Metabolic Diseases. Diabetes Metab J 2024; 48:1-18. [PMID: 38173375 PMCID: PMC10850273 DOI: 10.4093/dmj.2023.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/28/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondrial stress and the dysregulated mitochondrial unfolded protein response (UPRmt) are linked to various diseases, including metabolic disorders, neurodegenerative diseases, and cancer. Mitokines, signaling molecules released by mitochondrial stress response and UPRmt, are crucial mediators of inter-organ communication and influence systemic metabolic and physiological processes. In this review, we provide a comprehensive overview of mitokines, including their regulation by exercise and lifestyle interventions and their implications for various diseases. The endocrine actions of mitokines related to mitochondrial stress and adaptations are highlighted, specifically the broad functions of fibroblast growth factor 21 and growth differentiation factor 15, as well as their specific actions in regulating inter-tissue communication and metabolic homeostasis. Finally, we discuss the potential of physiological and genetic interventions to reduce the hazards associated with dysregulated mitokine signaling and preserve an equilibrium in mitochondrial stress-induced responses. This review provides valuable insights into the mechanisms underlying mitochondrial regulation of health and disease by exploring mitokine interactions and their regulation, which will facilitate the development of targeted therapies and personalized interventions to improve health outcomes and quality of life.
Collapse
Affiliation(s)
- Benyuan Zhang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Min Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
37
|
Li Z, Zhang W, Guo S, Qi G, Huang J, Gao J, Zhao J, Kang L, Li Q. A Review of Advances in Mitochondrial Research in Cancer. Cancer Control 2024; 31:10732748241299072. [PMID: 39487853 PMCID: PMC11531673 DOI: 10.1177/10732748241299072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Abnormalities in mitochondrial structure or function are closely related to the development of malignant tumors. Mitochondrial metabolic reprogramming provides precursor substances and energy for the vital activities of tumor cells, so that cancer cells can rapidly adapt to the unfavorable environment of hypoxia and nutrient deficiency. Mitochondria can enable tumor cells to gain the ability to proliferate, escape immune responses, and develop drug resistance by altering constitutive junctions, oxidative phosphorylation, oxidative stress, and mitochondrial subcellular relocalization. This greatly reduces the rate of effective clinical control of tumors. PURPOSE Explore the major role of mitochondria in cancer, as well as targeted mitochondrial therapies and mitochondria-associated markers. CONCLUSIONS This review provides a comprehensive analysis of the various aspects of mitochondrial aberrations and addresses drugs that target mitochondrial therapy, providing a basis for clinical mitochondria-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Zhiru Li
- Graduate School, North China University of Science and Technology, Tangshan, China
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Wu Zhang
- Center of Treatment of Myasthenia Gravis, People’s Hospital of Shijiazhuang Affiliated to Hebei Medical, Shijiazhuang, China
| | - Shaowei Guo
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Guoyan Qi
- Center of Treatment of Myasthenia Gravis, People’s Hospital of Shijiazhuang Affiliated to Hebei Medical, Shijiazhuang, China
| | - Jiandi Huang
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Jin Gao
- Department of Thyroid & Breast Surgery Ward, Hebei General Hospital, Shijiazhuang, China
| | - Jing Zhao
- The Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Lin Kang
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China
| | - Qingxia Li
- The Fourth Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
38
|
Svagusa T, Sikiric S, Milavic M, Sepac A, Seiwerth S, Milicic D, Gasparovic H, Biocina B, Rudez I, Sutlic Z, Manola S, Varvodic J, Udovicic M, Urlic M, Ivankovic S, Plestina S, Paic F, Kulic A, Bakovic P, Sedlic F. Heart failure in patients is associated with downregulation of mitochondrial quality control genes. Eur J Clin Invest 2023; 53:e14054. [PMID: 37403271 DOI: 10.1111/eci.14054] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Mitochondrial dysfunction is one of key factors causing heart failure. We performed a comprehensive analysis of expression of mitochondrial quality control (MQC) genes in heart failure. METHODS Myocardial samples were obtained from patients with ischemic and dilated cardiomyopathy in a terminal stage of heart failure and donors without heart disease. Using quantitative real-time PCR, we analysed a total of 45 MQC genes belonging to mitochondrial biogenesis, fusion-fission balance, mitochondrial unfolded protein response (UPRmt), translocase of the inner membrane (TIM) and mitophagy. Protein expression was analysed by ELISA and immunohistochemistry. RESULTS The following genes were downregulated in ischemic and dilated cardiomyopathy: COX1, NRF1, TFAM, SIRT1, MTOR, MFF, DNM1L, DDIT3, UBL5, HSPA9, HSPE1, YME1L, LONP1, SPG7, HTRA2, OMA1, TIMM23, TIMM17A, TIMM17B, TIMM44, PAM16, TIMM22, TIMM9, TIMM10, PINK1, PARK2, ROTH1, PARL, FUNDC1, BNIP3, BNIP3L, TPCN2, LAMP2, MAP1LC3A and BECN1. Moreover, MT-ATP8, MFN2, EIF2AK4 and ULK1 were downregulated in heart failure from dilated, but not ischemic cardiomyopathy. VDAC1 and JUN were only genes that exhibited significantly different expression between ischemic and dilated cardiomyopathy. Expression of PPARGC1, OPA1, JUN, CEBPB, EIF2A, HSPD1, TIMM50 and TPCN1 was not significantly different between control and any form of heart failure. TOMM20 and COX proteins were downregulated in ICM and DCM. CONCLUSIONS Heart failure in patients with ischemic and dilated cardiomyopathy is associated with downregulation of large number of UPRmt, mitophagy, TIM and fusion-fission balance genes. This indicates multiple defects in MQC and represents one of potential mechanisms underlying mitochondrial dysfunction in patients with heart failure.
Collapse
Affiliation(s)
- T Svagusa
- Department of Cardiovascular Diseases, Dubrava Clinical Hospital, Zagreb, Croatia
| | - S Sikiric
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - M Milavic
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - A Sepac
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia
| | - S Seiwerth
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia
| | - D Milicic
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiovascular Diseases, University Hospital Center Zagreb, Zagreb, Croatia
| | - H Gasparovic
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - B Biocina
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - I Rudez
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac and Transplant Surgery, Dubrava Clinical Hospital, Zagreb, Croatia
| | - Z Sutlic
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac and Transplant Surgery, Dubrava Clinical Hospital, Zagreb, Croatia
| | - S Manola
- Department of Cardiovascular Diseases, Dubrava Clinical Hospital, Zagreb, Croatia
| | - J Varvodic
- Department of Cardiac and Transplant Surgery, Dubrava Clinical Hospital, Zagreb, Croatia
| | - M Udovicic
- Department of Cardiovascular Diseases, Dubrava Clinical Hospital, Zagreb, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - M Urlic
- Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - S Ivankovic
- Department of Cardiac Surgery, University Hospital Center Split, Split, Croatia
| | - S Plestina
- Department of Pathophysiology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - F Paic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - A Kulic
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - P Bakovic
- Department of Pathophysiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - F Sedlic
- Department of Pathophysiology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
39
|
Li H, Chen D, Zhang X, Chen M, Zhi Y, Cui W, Li S, Xu F, Tan Y, Zhou H, Chang X, Chen H. Screening of an FDA-approved compound library identifies apigenin for the treatment of myocardial injury. Int J Biol Sci 2023; 19:5233-5244. [PMID: 37928261 PMCID: PMC10620826 DOI: 10.7150/ijbs.85204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Apigenin is the active ingredient in Ludangshen. Although previous studies reported the cardioprotective actions of apigenin against doxorubicin (Dox)-induced cardiomyopathy, the underlying mechanisms remain incompletely understood. Since apigenin beneficially regulates various aspects of mitochondrial function and dynamics, we asked whether apigenin improves heart function in mice with Dox-induced cardiomyopathy by regulating the mitochondrial unfolded protein response (UPRmt). Co-administration of apigenin significantly restored heart function, reduced myocardial swelling, inhibited cardiac inflammation, increased cardiac transcription of UPRmt-related genes, and promoted cardiomyocyte survival in Dox-treated mice. In turn, blockade of UPRmt abolished the mito- and cytoprotective effects of apigenin, evidenced by decreased ATP production, suppressed mitochondrial antioxidant capacity, and increased apoptosis, in Dox-treated, cultured HL-1 cardiomyocytes. Furthermore, apigenin treatment prevented Dox-induced downregulation of Sirt1 and Atf5 expression, and the beneficial effects of apigenin were completely nullified in Sirt1 knockout (KO) mice or after siRNA-mediated Sirt1 knockdown in vitro. We thus provide novel evidence for a promotive effect of apigenin on UPRmt via regulation of the Sirt1/Atf5 pathway. Our findings uncover that apigenin seems to be an effective therapeutic agent to alleviate Dox-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Haixia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dong Chen
- Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, 100000, China
| | - Xiaoqin Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | | | - Yinghao Zhi
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, China
| | - Weilu Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shanshan Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Fan Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Tan
- School of Medicine, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Hao Zhou
- School of Medicine, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
40
|
Prabhu SS, Nair AS, Nirmala SV. Multifaceted roles of mitochondrial dysfunction in diseases: from powerhouses to saboteurs. Arch Pharm Res 2023; 46:723-743. [PMID: 37751031 DOI: 10.1007/s12272-023-01465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The fact that mitochondria play a crucial part in energy generation has led to the nickname "powerhouses" of the cell being applied to them. They also play a significant role in many other cellular functions, including calcium signalling, apoptosis, and the creation of vital biomolecules. As a result, cellular function and health as a whole can be significantly impacted by mitochondrial malfunction. Indeed, malignancies frequently have increased levels of mitochondrial biogenesis and quality control. Adverse selection exists for harmful mitochondrial genome mutations, even though certain malignancies include modifications in the nuclear-encoded tricarboxylic acid cycle enzymes that generate carcinogenic metabolites. Since rare human cancers with mutated mitochondrial genomes are often benign, removing mitochondrial DNA reduces carcinogenesis. Therefore, targeting mitochondria offers therapeutic options since they serve several functions and are crucial to developing malignant tumors. Here, we discuss the various steps involved in the mechanism of cancer for which mitochondria plays a significant role, as well as the role of mitochondria in diseases other than cancer. It is crucial to understand mitochondrial malfunction to target these organelles for therapeutic reasons. This highlights the significance of investigating mitochondrial dysfunction in cancer and other disease research.
Collapse
Affiliation(s)
- Surapriya Surendranath Prabhu
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Saiprabha Vijayakumar Nirmala
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
41
|
Cheng Y, Qu Z, Jiang Q, Xu T, Zheng H, Ye P, He M, Tong Y, Ma Y, Bao A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305095. [PMID: 37665594 DOI: 10.1002/adma.202305095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Neoadjuvant and adjuvant therapies have made significant progress in cancer treatment. However, tumor adjuvant therapy still faces challenges due to the intrinsic heterogeneity of cancer, genomic instability, and the formation of an immunosuppressive tumor microenvironment. Functional materials possess unique biological properties such as long circulation times, tumor-specific targeting, and immunomodulation. The combination of functional materials with natural substances and nanotechnology has led to the development of smart biomaterials with multiple functions, high biocompatibilities, and negligible immunogenicities, which can be used for precise cancer treatment. Recently, subcellular structure-targeting functional materials have received particular attention in various biomedical applications including the diagnosis, sensing, and imaging of tumors and drug delivery. Subcellular organelle-targeting materials can precisely accumulate therapeutic agents in organelles, considerably reduce the threshold dosages of therapeutic agents, and minimize drug-related side effects. This review provides a systematic and comprehensive overview of the research progress in subcellular organelle-targeted cancer therapy based on functional nanomaterials. Moreover, it explains the challenges and prospects of subcellular organelle-targeting functional materials in precision oncology. The review will serve as an excellent cutting-edge guide for researchers in the field of subcellular organelle-targeted cancer therapy.
Collapse
Affiliation(s)
- Yanxiang Cheng
- Department of Gynecology, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Zhen Qu
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Qian Jiang
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Tingting Xu
- Department of Clinical Laboratory, Wuhan Blood Center (WHBC), No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Mingdi He
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Yan Ma
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| |
Collapse
|
42
|
Zhou Y, Tang Y, Luo J, Yang Y, Zang H, Ma J, Fan S, Wen Q. High expression of HSP60 and survivin predicts poor prognosis for oral squamous cell carcinoma patients. BMC Oral Health 2023; 23:629. [PMID: 37661276 PMCID: PMC10476324 DOI: 10.1186/s12903-023-03311-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND HSP60 is a heat shock proteins (HSPs) family member and help mitochondrial protein to fold correctly. Survivin is one of the inhibitors of apoptosis protein family member, which plays a significant part in cancer progression. They were capable of forming HSP60-survivin complexes and involved in the development of various tumors. METHODS The Cancer Genome Atlas (TCGA) database demonstrated that HSP60 and survivin and their correlation on mRNA expression level with OSCC patients. Besides, expression of HSP60 and survivin proteins was studied utilizing immunohistochemistry in tissue microarrays (TMA) in OSCC and in adjacent non-cancerous squamous epithelium (Non-CCSE) tissues. RESULTS Significantly increased levels of HSP60 and survivin in most cancers compared to normal tissue by pan-cancer analysis. HSP60 and survivin proved a significantly increased expression in OSCC samples compared to Non-CCSE both on mRNA and protein (both P < 0.05). Additionally, elevated HSP60 displayed a positive correlation with survivin in terms of mRNA and protein expression levels (all P < 0.001). Patients with OSCC who had advanced clinical stage or lymph node metastasis (LNM) showed higher HSP60 expression (P = 0.004, P = 0.006, respectively). Higher levels of the proteins HSP60 and survivin were significantly inversely correlated relationship with OSCC patients' overall survival rates in multivariate survival analysis (P = 0.018, P = 0.040). From the above results, overexpression of HSP60 and survivin protein may serve as independent biomarkers predicting poor prognosis in OSCC. CONCLUSIONS Elevated HSP60 and survivin might be served as novel poor prognosis biomarkers for surgically resected OSCC patients.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute of Central South University, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
43
|
Xiaowei X, Qian X, Dingzhou Z. Sirtuin-3 activates the mitochondrial unfolded protein response and reduces cerebral ischemia/reperfusion injury. Int J Biol Sci 2023; 19:4327-4339. [PMID: 37705748 PMCID: PMC10496505 DOI: 10.7150/ijbs.86614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/06/2023] [Indexed: 09/15/2023] Open
Abstract
Sirtuin-3 (Sirt3) deacetylates several mitochondrial proteins implicated into cerebral ischemia/reperfusion (I/R) injury. The mitochondrial unfolded protein response (UPRmt) favors mitochondrial proteostasis during various stressors. Here, we used Sirt3 transgenic mice and a transient middle cerebral artery occlusion model to evaluate the molecular basis of Sirt3 on the UPRmt during brain post-ischemic dysfunction. The present study illustrated that Sirt3 abundance was suppressed in the brain after brain ischemic abnormalities. Overexpression of Sirt3 in vivo suppressed the infarction size and attenuated neuroinflammation after brain I/R injury. Sirt3 overexpression restored neural viability by reducing mitochondrial ROS synthesis, maintaining the mitochondrial potential and improving mitochondrial adenosine triphosphate synthesis. Sirt3 overexpression protected neuronal mitochondria against brain post-ischemic malfunction via eliciting the UPRmt by the forkhead box O3 (Foxo3)/sphingosine kinase 1 (Sphk1) pathway. Inhibiting either the UPRmt or the Foxo3/Sphk1 pathway relieved the favorable influence of Sirt3 on neural function and mitochondrial behavior. In contrast, Sphk1 overexpression was sufficient to reduce the infarction size, attenuate neuroinflammation, sustain neuronal viability and prevent mitochondrial abnormalities during brain post-ischemia dysfunction. Thus, the UPRmt protects neural viability and mitochondrial homeostasis, and the Sirt3/Foxo3/Sphk1 pathway is a promosing therapeutic candidate for ischemic stroke.
Collapse
Affiliation(s)
- Xie Xiaowei
- Department of Neurosurgery, Hunan Provincial People' s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, People's Republic of China
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People's Republic of China
| | - Xu Qian
- Department of Neurology, Haikou City People' s Hospital, Xiangya School of Medicine, Central South University, Haikou 570100, Hainan Province, People's Republic of China
| | - Zhou Dingzhou
- Department of Neurosurgery, Hunan Provincial People' s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, People's Republic of China
| |
Collapse
|
44
|
Hsieh MT, Lee PC, Chiang YT, Lin HY, Lee DY. The Effects of a Curcumin Derivative and Osimertinib on Fatty Acyl Metabolism and Mitochondrial Functions in HCC827 Cells and Tumors. Int J Mol Sci 2023; 24:12190. [PMID: 37569564 PMCID: PMC10418893 DOI: 10.3390/ijms241512190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Drug combination therapy is a key approach in cancer treatments, aiming to improve therapeutic efficacy and overcome drug resistance. Evaluation of intracellular response in cancer cells to drug treatment may disclose the underlying mechanism of drug resistance. In this study, we aimed to investigate the effect of osimertinib, a tyrosine kinase inhibitor (TKI), and a curcumin derivative, 35d, on HCC827 cells and tumors by analyzing alterations in metabolome and related regulations. HCC827 tumor-bearing SCID mice and cultured HCC827 cells were separately examined. The treatment comprised four conditions: vehicle-only, 35d-only, osimertinib-only, and a combination of 35d and osimertinib. The treated tumors/cells were subsequently subjected to metabolomics profiling, fatty acyl analysis, mitochondrial potential measurement, and cell viability assay. Osimertinib induced changes in the ratio of short-chain (SC) to long-chain (LC) fatty acyls, particularly acylcarnitines (ACs), in both tumors and cells. Furthermore, 35d enhanced this effect by further lowering the SC/LC ratio of most ACs. Osimertinib and 35d also exerted detrimental effects on mitochondria through distinct mechanisms. Osimertinib upregulated the expression of carnitine palmitoyltransferase I (CPTI), while 35d induced the expression of heat shock protein 60 (HSP60). The alterations in ACs and CPTI were correlated with mitochondrial dysfunction and inhibited cell growth. Our results suggest that osimertinib and 35d disrupted the fatty acyl metabolism and induced mitochondrial stress in cancer cells. This study provides insights into the potential application of fatty acyl metabolism inhibitors, such as osimertinib or other TKIs, and mitochondrial stress inducers, such as curcumin derivatives, as combination therapy for cancer.
Collapse
Affiliation(s)
- Min-Tsang Hsieh
- Drug Development Center, China Medical University, Taichung 406040, Taiwan; (M.-T.H.); (Y.-T.C.); (H.-Y.L.)
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Pei-Chih Lee
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan;
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 406040, Taiwan
| | - Yi-Ting Chiang
- Drug Development Center, China Medical University, Taichung 406040, Taiwan; (M.-T.H.); (Y.-T.C.); (H.-Y.L.)
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Pharmacy Department, China Medical University Hsinchu Hospital, Hsinchu Country 302, Taiwan
| | - Hui-Yi Lin
- Drug Development Center, China Medical University, Taichung 406040, Taiwan; (M.-T.H.); (Y.-T.C.); (H.-Y.L.)
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
45
|
Kolac UK, Donmez Yalcin G, Karayel R, Yalcin A. The role of protein kinase R in placental inflammation, mtUPR and apoptosis. Placenta 2023; 139:200-211. [PMID: 37463546 DOI: 10.1016/j.placenta.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Placental inflammation is implicated in the pathophysiology of many pregnancy complications, including fetal growth restriction, preeclampsia, gestational diabetes, and choriocarcinoma. Mitochondrial dysfunction, one of the outcomes of placental inflammation, is characterized by loss of membrane potential, accumulation of oxygen radicals, mitochondrial protein folding defects, and disturbances in mitochondrial dynamics. Protein kinase R (PKR) is stimulated by double-stranded RNA and bacterial endotoxins in the presence of pathogens and is a critical immune response enzyme. PKR is also correlated with the cell death response during endoplasmic reticulum stress. In this study, we aim to investigate the effects of PKR activity stimulated by lipopolysaccharide (LPS), and double-stranded RNA analog (Poly I:C) on mitochondrial unfolded protein response (mtUPR), mitochondrial membrane potential, apoptosis, and oxidative stress in placental trophoblasts. METHODS We applied LPS and Poly I:C to BeWo cells to induce PKR activation. In addition, cells were treated with 2-aminopurine (2-AP) to inhibit the kinase activity of PKR. Protein levels of ATP-dependent Clp protease proteolytic subunit (CLPP) and heat shock protein 60 (HSP60) were determined after treatments. Apoptotic markers were detected by real-time PCR and flow cytometry. PKR-induced reactive oxygen radicals (ROS) accumulation and mitochondrial membrane potential change were assessed by flow cytometry. RESULTS It was determined that PKR activation-induced apoptosis in BeWo cells by reducing the levels of mtUPR proteins (CLPP and HSP60) and caused a decrease in mitochondrial membrane potential. PKR inhibition was sufficient for decreases in apoptotic markers and caused a reduction in the ratio of depolarized and ROS (+) cells. DISCUSSION Our results showed that LPS and Poly I:C administration stimulated PKR in BeWo cells in vitro. Furthermore, PKR activation is correlated with the levels of proteins involved in mitochondrial homeostasis and apoptosis. Our findings will contribute to understanding the role of PKR activation in placental inflammation and related diseases.
Collapse
Affiliation(s)
- Umut Kerem Kolac
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Gizem Donmez Yalcin
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Ramazan Karayel
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Abdullah Yalcin
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
| |
Collapse
|
46
|
Li J, Xu Y, Liu T, Xu Y, Zhao X, Wei J. The Role of Exercise in Maintaining Mitochondrial Proteostasis in Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24097994. [PMID: 37175699 PMCID: PMC10179072 DOI: 10.3390/ijms24097994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Parkinson's disease (PD) is the second most common rapidly progressive neurodegenerative disease and has serious health and socio-economic consequences. Mitochondrial dysfunction is closely related to the onset and progression of PD, and the use of mitochondria as a target for PD therapy has been gaining traction in terms of both recognition and application. The disruption of mitochondrial proteostasis in the brain tissue of PD patients leads to mitochondrial dysfunction, which manifests as mitochondrial unfolded protein response, mitophagy, and mitochondrial oxidative phosphorylation. Physical exercise is important for the maintenance of human health, and has the great advantage of being a non-pharmacological therapy that is non-toxic, low-cost, and universally applicable. In this review, we investigate the relationships between exercise, mitochondrial proteostasis, and PD and explore the role and mechanisms of mitochondrial proteostasis in delaying PD through exercise.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng 475000, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yanli Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiantao Zhao
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng 475000, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng 475000, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
47
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
48
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Johns A, Higuchi-Sanabria R, Thorwald MA, Vilchez D. A tale of two pathways: Regulation of proteostasis by UPR mt and MDPs. Curr Opin Neurobiol 2023; 78:102673. [PMID: 36621224 PMCID: PMC9845188 DOI: 10.1016/j.conb.2022.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Mitochondrial fitness is critical to organismal health and its impairment is associated with aging and age-related diseases. As such, numerous quality control mechanisms exist to preserve mitochondrial stability, including the unfolded protein response of the mitochondria (UPRmt). The UPRmt is a conserved mechanism that drives the transcriptional activation of mitochondrial chaperones, proteases, autophagy (mitophagy), and metabolism to promote restoration of mitochondrial function under stress conditions. UPRmt has direct ramifications in aging, and its activation is often ascribed to improve health whereas its dysfunction tends to correlate with disease. This review pairs a description of the most recent findings within the field of UPRmt with a more poorly understood field: mitochondria-derived peptides (MDPs). Similar to UPRmt, MDPs are microproteins derived from the mitochondria that can impact organismal health and longevity. We then highlight a tantalizing interconnection between UPRmt and MDPs wherein both mechanisms may be efficiently coordinated to maintain organismal health.
Collapse
Affiliation(s)
- Angela Johns
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. https://twitter.com/AngyJohns
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089, USA.
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089, USA.
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Genetics, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
50
|
The Journey of Mitochondrial Protein Import and the Roadmap to Follow. Int J Mol Sci 2023; 24:ijms24032479. [PMID: 36768800 PMCID: PMC9916854 DOI: 10.3390/ijms24032479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are double membrane-bound organelles that play critical functions in cells including metabolism, energy production, regulation of intrinsic apoptosis, and maintenance of calcium homeostasis. Mitochondria are fascinatingly equipped with their own genome and machinery for transcribing and translating 13 essential proteins of the oxidative phosphorylation system (OXPHOS). The rest of the proteins (99%) that function in mitochondria in the various pathways described above are nuclear-transcribed and synthesized as precursors in the cytosol. These proteins are imported into the mitochondria by the unique mitochondrial protein import system that consists of seven machineries. Proper functioning of the mitochondrial protein import system is crucial for optimal mitochondrial deliverables, as well as mitochondrial and cellular homeostasis. Impaired mitochondrial protein import leads to proteotoxic stress in both mitochondria and cytosol, inducing mitochondrial unfolded protein response (UPRmt). Altered UPRmt is associated with the development of various disease conditions including neurodegenerative and cardiovascular diseases, as well as cancer. This review sheds light on the molecular mechanisms underlying the import of nuclear-encoded mitochondrial proteins, the consequences of defective mitochondrial protein import, and the pathological conditions that arise due to altered UPRmt.
Collapse
|