1
|
Ling X, Dong Z, He J, Chen D, He D, Guo R, He Q, Li M. Advances in Polymer-Based Self-Adjuvanted Nanovaccines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409021. [PMID: 40079071 DOI: 10.1002/smll.202409021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Nanovaccines, as a new generation of vaccines, have garnered significant interest due to their exceptional potential in enhancing disease prevention and treatment. Their unique features, such as high stability, antigens protection, prolonged retention, and targeted delivery to lymph nodes, immune cells, and tumors, set them apart as promising candidates in the field of immunotherapy. Polymers, with their superior degradability, capacity to mimic pathogen characteristics, and surface functionality that facilitates modifications, serve as ideal carriers for vaccine components. Polymer-based self-adjuvanted nanovaccines have the remarkable ability to augment immune responses. The inherent adjuvant-like properties of polymers themselves offer a pathway toward more efficient exploitation of nanomaterials and the optimization of nanovaccines. This review article aims to summarize the categorization of polymers and elucidate their mechanisms of action as adjuvants. Additionally, it delves into the advantages and limitations of polymer-based self-adjuvanted nanovaccines in disease management and prevention, providing valuable insights for their design and application. This comprehensive analysis could contribute to the development of more effective and tailored nanovaccines for a wide range of diseases.
Collapse
Affiliation(s)
- Xiaoli Ling
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ziyan Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Dan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Rong Guo
- West China College of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, 610041, P. R. China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
2
|
Santerre JP, Yang Y, Du Z, Wang W, Zhang X. Biomaterials' enhancement of immunotherapy for breast cancer by targeting functional cells in the tumor micro-environment. Front Immunol 2024; 15:1492323. [PMID: 39600709 PMCID: PMC11588700 DOI: 10.3389/fimmu.2024.1492323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Immunotherapy for breast cancer is now being considered clinically, and more recently, the number of investigations aimed specifically at nano-biomaterials-assisted immunotherapy for breast cancer treatment is growing. Alterations of the breast cancer micro-environment can play a critical role in anti-tumor immunity and cancer development, progression and metastasis. The improvement and rearrangement of tumor micro-environment (TME) may enhance the permeability of anti-tumor drugs. Therefore, targeting the TME is also an ideal and promising option during the selection of effective nano-biomaterial-based immuno-therapeutic strategies excepted for targeting intrinsic resistant mechanisms of the breast tumor. Although nano-biomaterials designed to specifically release loaded anti-tumor drugs in response to tumor hypoxia and low pH conditions have shown promises and the diversity of the TME components also supports a broad targeting potential for anti-tumor drug designs, yet the applications of nano-biomaterials for targeting immunosuppressive cells/immune cells in the TME for improving the breast cancer treating outcomes, have scarcely been addressed in a scientific review. This review provides a thorough discussion for the application of the different forms of nano-biomaterials, as carrier vehicles for breast cancer immunotherapy, targeting specific types of immune cells in the breast tumor microenvironment. In parallel, the paper provides a critical analysis of current advances/challenges with leading nano-biomaterial-mediated breast cancer immunotherapeutic strategies. The current review is timely and important to the cancer research field and will provide a critical tool for nano-biomaterial design and research groups pushing the clinical translation of new nano-biomaterial-based immuno-strategies targeting breast cancer TME, to further open new avenues for the understanding, prevention, diagnosis and treatment of breast cancer, as well as other cancer types.
Collapse
Affiliation(s)
- J. Paul Santerre
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yangyang Yang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Ziwei Du
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenshuang Wang
- Department of Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoqing Zhang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
3
|
Gonzalez-Melero L, Santos-Vizcaino E, Varela-Calvino R, Gomez-Tourino I, Asumendi A, Boyano MD, Igartua M, Hernandez RM. PLGA-PEI nanoparticle covered with poly(I:C) for personalised cancer immunotherapy. Drug Deliv Transl Res 2024; 14:2788-2803. [PMID: 38427275 PMCID: PMC11525302 DOI: 10.1007/s13346-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Melanoma is the main cause of death among skin cancers and its incidence worldwide has been experiencing an appalling increase. However, traditional treatments lack effectiveness in advanced or metastatic patients. Immunotherapy, meanwhile, has been shown to be an effective treatment option, but the rate of cancers responding remains far from ideal. Here we have developed a personalized neoantigen peptide-based cancer vaccine by encapsulating patient derived melanoma neoantigens in polyethylenimine (PEI)-functionalised poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and coating them with polyinosinic:polycytidylic acid (poly(I:C)). We found that PLGA NPs can be effectively modified to be coated with the immunoadjuvant poly(I:C), as well as to encapsulate neoantigens. In addition, we found that both dendritic cells (DCs) and lymphocytes were effectively stimulated. Moreover, the developed NP was found to have a better immune activation profile than NP without poly(I:C) or without antigen. Our results demonstrate that the developed vaccine has a high capacity to activate the immune system, efficiently maturing DCs to present the antigen of choice and promoting the activity of lymphocytes to exert their cytotoxic function. Therefore, the immune response generated is optimal and specific for the elimination of melanoma tumour cells.
Collapse
Affiliation(s)
- Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Ruben Varela-Calvino
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Iria Gomez-Tourino
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Maria Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Chen J, Duan Y, Che J, Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun (Lond) 2024; 44:1047-1070. [PMID: 39051512 PMCID: PMC11492303 DOI: 10.1002/cac2.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Dendritic cells (DCs) comprise diverse cell populations that play critical roles in antigen presentation and triggering immune responses in the body. However, several factors impair the immune function of DCs and may promote immune evasion in cancer. Understanding the mechanism of DC dysfunction and the diverse functions of heterogeneous DCs in the tumor microenvironment (TME) is critical for designing effective strategies for cancer immunotherapy. Clinical applications targeting DCs summarized in this report aim to improve immune infiltration and enhance the biological function of DCs to modulate the TME to prevent cancer cells from evading the immune system. Herein, factors in the TME that induce DC dysfunction, such as cytokines, hypoxic environment, tumor exosomes and metabolites, and co-inhibitory molecules, have been described. Furthermore, several key signaling pathways involved in DC dysfunction and signal-relevant drugs evaluated in clinical trials were identified. Finally, this review provides an overview of current clinical immunotherapies targeting DCs, especially therapies with proven clinical outcomes, and explores future developments in DC immunotherapies.
Collapse
Affiliation(s)
- Jie Chen
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Yuhang Duan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| | - Junye Che
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Jianwei Zhu
- Jecho Institute Co., LtdShanghaiP. R. China
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| |
Collapse
|
5
|
Mozafari N, Mozafari N, Dehshahri A, Azadi A. Knowledge Gaps in Generating Cell-Based Drug Delivery Systems and a Possible Meeting with Artificial Intelligence. Mol Pharm 2023; 20:3757-3778. [PMID: 37428824 DOI: 10.1021/acs.molpharmaceut.3c00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cell-based drug delivery systems are new strategies in targeted delivery in which cells or cell-membrane-derived systems are used as carriers and release their cargo in a controlled manner. Recently, great attention has been directed to cells as carrier systems for treating several diseases. There are various challenges in the development of cell-based drug delivery systems. The prediction of the properties of these platforms is a prerequisite step in their development to reduce undesirable effects. Integrating nanotechnology and artificial intelligence leads to more innovative technologies. Artificial intelligence quickly mines data and makes decisions more quickly and accurately. Machine learning as a subset of the broader artificial intelligence has been used in nanomedicine to design safer nanomaterials. Here, how challenges of developing cell-based drug delivery systems can be solved with potential predictive models of artificial intelligence and machine learning is portrayed. The most famous cell-based drug delivery systems and their challenges are described. Last but not least, artificial intelligence and most of its types used in nanomedicine are highlighted. The present Review has shown the challenges of developing cells or their derivatives as carriers and how they can be used with potential predictive models of artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Niloofar Mozafari
- Design and System Operations Department, Regional Information Center for Science and Technology, 71946 94171 Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| |
Collapse
|
6
|
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 2023; 22:94. [PMID: 37312116 PMCID: PMC10262535 DOI: 10.1186/s12943-023-01797-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
7
|
Malaina I, Gonzalez-Melero L, Martínez L, Salvador A, Sanchez-Diez A, Asumendi A, Margareto J, Carrasco-Pujante J, Legarreta L, García MA, Pérez-Pinilla MB, Izu R, Martínez de la Fuente I, Igartua M, Alonso S, Hernandez RM, Boyano MD. Computational and Experimental Evaluation of the Immune Response of Neoantigens for Personalized Vaccine Design. Int J Mol Sci 2023; 24:9024. [PMID: 37240369 PMCID: PMC10219310 DOI: 10.3390/ijms24109024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
In the last few years, the importance of neoantigens in the development of personalized antitumor vaccines has increased remarkably. In order to study whether bioinformatic tools are effective in detecting neoantigens that generate an immune response, DNA samples from patients with cutaneous melanoma in different stages were obtained, resulting in a total of 6048 potential neoantigens gathered. Thereafter, the immunological responses generated by some of those neoantigens ex vivo were tested, using a vaccine designed by a new optimization approach and encapsulated in nanoparticles. Our bioinformatic analysis indicated that no differences were found between the number of neoantigens and that of non-mutated sequences detected as potential binders by IEDB tools. However, those tools were able to highlight neoantigens over non-mutated peptides in HLA-II recognition (p-value 0.03). However, neither HLA-I binding affinity (p-value 0.08) nor Class I immunogenicity values (p-value 0.96) indicated significant differences for the latter parameters. Subsequently, the new vaccine, using aggregative functions and combinatorial optimization, was designed. The six best neoantigens were selected and formulated into two nanoparticles, with which the immune response ex vivo was evaluated, demonstrating a specific activation of the immune response. This study reinforces the use of bioinformatic tools in vaccine development, as their usefulness is proven both in silico and ex vivo.
Collapse
Affiliation(s)
- Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Aiala Salvador
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ana Sanchez-Diez
- Department of Dermatology, Basurto University Hospital, 48013 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier Margareto
- Technological Services Division, Health and Quality of Life, TECNALIA, 01510 Miñano, Spain
| | - Jose Carrasco-Pujante
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Leire Legarreta
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - María Asunción García
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Martín Blas Pérez-Pinilla
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Rosa Izu
- Department of Dermatology, Basurto University Hospital, 48013 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
| | - Ildefonso Martínez de la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
- CEBAS-CSIC Institute, Department of Nutrition, 30100 Murcia, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - María Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
8
|
Meng L, Teng Z, Yang S, Wang N, Guan Y, Chen X, Liu Y. Biomimetic nanoparticles for DC vaccination: a versatile approach to boost cancer immunotherapy. NANOSCALE 2023; 15:6432-6455. [PMID: 36916703 DOI: 10.1039/d2nr07071e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer immunotherapy, which harnesses the immune system to fight cancer, has begun to make a breakthrough in clinical applications. Dendritic cells (DCs) are the bridge linking innate and adaptive immunity and the trigger of tumor immune response. Considering the cumbersome process and poor efficacy of classic DC vaccines, there has been interest in transferring the field of in vitro-generated DC vaccines to nanovaccines. Conventional nanoparticles have insufficient targeting ability and are easily cleared by the reticuloendothelial system. Biological components have evolved very specific functions, which are difficult to fully reproduce with synthetic materials, making people interested in using the further understanding of biological systems to prepare nanoparticles with new and enhanced functions. Biomimetic nanoparticles are semi-biological or nature-derived delivery systems comprising one or more natural materials, which have a long circulation time in vivo and excellent performance of targeting DCs, and can mimic the antigen-presenting behavior of DCs. In this review, we introduce the classification, design, preparation, and challenges of different biomimetic nanoparticles, and discuss their application in activating DCs in vivo and stimulating T cell antitumor immunity. Incorporating biomimetic nanoparticles into cancer immunotherapy has shown outstanding advantages in precisely coaxing the immune system against cancer.
Collapse
Affiliation(s)
- Lingyang Meng
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Shuang Yang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - YingHua Guan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
9
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
10
|
Nanomaterials: Breaking through the bottleneck of tumor immunotherapy. Int J Biol Macromol 2023; 230:123159. [PMID: 36610572 DOI: 10.1016/j.ijbiomac.2023.123159] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Immunotherapy exerts its excellent anti-tumor effects by stimulating and enhancing the immune response of the body, and has become another important class of anti-tumor therapy besides chemotherapy, targeted therapy and radiotherapy. Various types of immunotherapeutic drugs have gained their clinical values, but the in vivo delivery of drugs still faces many challenges, such as poor tumor permeability and low tumor cell uptake rate. In recent years, owing to highly targeting properties, better biocompatibility, and easy functionalization, nanomaterials have been widely applicated in tumor treatment, especially in tumor immunotherapy. Furthermore, nanomaterials have large drug loading capacity, strong tumor targeting and easy modification, which can effectively overcome the drawbacks of traditional immunotherapy. This paper reviews the progress of nanomaterial-based tumor immunotherapy in recent years and provides a theoretical basis for exploring new nanomaterial-based tumor immunotherapy strategies.
Collapse
|
11
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Shimizu T, Kawaguchi Y, Ando H, Ishima Y, Ishida T. Development of an Antigen Delivery System for a B Cell-Targeted Vaccine as an Alternative to Dendritic Cell-Targeted Vaccines. Chem Pharm Bull (Tokyo) 2022; 70:341-350. [DOI: 10.1248/cpb.c22-00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yoshino Kawaguchi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
14
|
He X, Chen S, Mao X. Utilization of metal or non-metal-based functional materials as efficient composites in cancer therapies. RSC Adv 2022; 12:6540-6551. [PMID: 35424648 PMCID: PMC8982229 DOI: 10.1039/d1ra08335j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
There has been great progress in cancer treatment through traditional approaches, even though some of them are still trapped in relative complications such as certain side effects and prospective chances of full recovery. As a conventional method, the immunotherapy approach is regarded as an effective approach to cure cancer. It is mainly promoted by immune checkpoint blocking and adoptive cell therapy, which can utilize the human immune system to attack tumor cells and make them necrose completely or stop proliferating cancer cells. Currently however, immunotherapy shows limited success due to the limitation of real applicable cases of targeted tumor environments and immune systems. Considering the urgent need to construct suitable strategies towards cancer therapy, metallic materials can be used as delivery systems for immunotherapeutic agents in the human body. Metallic materials exhibit a high degree of specificity, effectiveness, diagnostic ability, imaging ability and therapeutic effects with different biomolecules or polymers, which is an effective option for cancer treatment. In addition, these modified metallic materials contain immune-modulators, which can activate immune cells to regulate tumor microenvironments and enhance anti-cancer immunity. Additionally, they can be used as adjuvants with immunomodulatory activities, or as carriers for molecular transport to specific targets, which results in the loading of specific ligands to facilitate specific uptake. Here, we provide an overview of the different types of metallic materials used as efficient composites in cancer immunotherapy. We elaborate on the advancements using metallic materials with functional agents as effective composites in synergistic cancer treatment. Some nonmetallic functional composites also appear as a common phenomenon. Ascribed to the design of the composites themselves, the materials' surface structural characteristics are introduced as the drug-loading substrate. The physical and chemical properties of the functional materials emphasize that further research is required to fully characterize their mechanism, showing appropriate relevance for material toxicology and biomedical applications.
Collapse
Affiliation(s)
- Xiaoxiao He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Shiyue Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| |
Collapse
|
15
|
Wang H, Yang X, hu C, Huang C, Wang H, Zhu D, Zhang L. Programmed polymersomes with spatio-temporal delivery of antigen and dual-adjuvants for efficient dendritic cells-based cancer immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Viswanath DI, Liu HC, Huston DP, Chua CYX, Grattoni A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials 2022; 280:121297. [PMID: 34902729 PMCID: PMC8725170 DOI: 10.1016/j.biomaterials.2021.121297] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023]
Abstract
Landmark successes in oncoimmunology have led to development of therapeutics boosting the host immune system to eradicate local and distant tumors with impactful tumor reduction in a subset of patients. However, current immunotherapy modalities often demonstrate limited success when involving immunologically cold tumors and solid tumors. Here, we describe the role of various biomaterials to formulate cancer vaccines as a form of cancer immunotherapy, seeking to utilize the host immune system to activate and expand tumor-specific T cells. Biomaterial-based cancer vaccines enhance the cancer-immunity cycle by harnessing cellular recruitment and activation against tumor-specific antigens. In this review, we discuss biomaterial-based vaccine strategies to induce lymphocytic responses necessary to mediate anti-tumor immunity. We focus on strategies that selectively attract dendritic cells via immunostimulatory gradients, activate them against presented tumor-specific antigens, and induce effective cross-presentation to T cells in secondary lymphoid organs, thereby generating immunity. We posit that personalized cancer vaccines are promising targets to generate long-term systemic immunity against patient- and tumor-specific antigens to ensure long-term cancer remission.
Collapse
Affiliation(s)
- Dixita Ishani Viswanath
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - David P Huston
- Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
17
|
Berti C, Boarino A, Graciotti M, Bader LPE, Kandalaft LE, Klok HA. Reduction-Sensitive Protein Nanogels Enhance Uptake of Model and Tumor Lysate Antigens In Vitro by Mouse- and Human-Derived Dendritic Cells. ACS APPLIED BIO MATERIALS 2021; 4:8291-8300. [PMID: 35005925 DOI: 10.1021/acsabm.1c00828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides and proteins represent an emerging class of powerful therapeutics. Peptide and protein nanogels are attractive carriers for the transport and delivery of biologically active peptides and proteins because they allow essentially quantitative encapsulation of these biologics. One interesting field of use of peptide and protein nanogels is the transport of antigens and adjuvants in cancer immunotherapy. This study demonstrates the use of reduction-sensitive protein nanogels for the delivery of ovalbumin and oxidized tumor lysate-based antigens to mouse and human-donor-derived dendritic cells. Challenging mouse-derived and human dendritic cells with reduction-sensitive ovalbumin nanogels was found to significantly enhance antigen uptake as compared to the use of the corresponding free protein antigen. The experiments with mouse-derived dendritic cells further showed that the administration of ovalbumin in the form of reduction-sensitive nanogels enhanced dendritic cell maturation as well as the presentation of the SIINFEKL epitope as compared to experiments that use free ovalbumin. In addition to ovalbumin as a model antigen, the feasibility of reduction-sensitive nanogels was also demonstrated for the delivery of oxidized, whole tumor lysate-based cancer antigens. In experiments with dendritic cells harvested from human donors, dendritic cell uptake of the oxidized tumor lysate antigen was significantly enhanced in experiments that used oxidized tumor lysate nanogels as compared to the free antigen.
Collapse
Affiliation(s)
- Cristiana Berti
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Alice Boarino
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Michele Graciotti
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lisa P E Bader
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Harm-Anton Klok
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Berti C, Graciotti M, Boarino A, Yakkala C, Kandalaft LE, Klok HA. Polymer Nanoparticle-Mediated Delivery of Oxidized Tumor Lysate-Based Cancer Vaccines. Macromol Biosci 2021; 22:e2100356. [PMID: 34822219 DOI: 10.1002/mabi.202100356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Cancer vaccination is a powerful strategy to combat cancer. A very attractive approach to prime the immune system against cancer cells involves the use of tumor lysate as antigen source. The immunogenicity of tumor lysate can be further enhanced by treatment with hypochlorous acid. This study explores poly(lactic-co-glycolic acid) (PLGA) nanoparticles to enhance the delivery of oxidized tumor lysate to dendritic cells. Using human donor-derived dendritic cells, it is found that the use of PLGA nanoparticles enhances antigen uptake and dendritic cell maturation, as compared to the use of the free tumor lysate. The ability of the activated dendritic cells to stimulate autologous peripheral blood mononuclear cells (PBMCs) is assessed in vitro by coculturing PBMCs with A375 melanoma cells. Live cell imaging analysis of this experiment highlights the potential of nanoparticle-mediated dendritic-cell-based vaccination approaches. Finally, the efficacy of the PLGA nanoparticle formulation is evaluated in vivo in a therapeutic vaccination study using B16F10 tumor-bearing C57BL/6J mice. Animals that are challenged with the polymer nanoparticle-based oxidized tumor lysate formulation survive for up to 50 days, in contrast to a maximum of 41 days for the group that receives the corresponding free oxidized tumor lysate-based vaccine.
Collapse
Affiliation(s)
- Cristiana Berti
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Michele Graciotti
- Ludwig Cancer Research Center - Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Alice Boarino
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Chakradhar Yakkala
- Ludwig Cancer Research Center - Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Lana E Kandalaft
- Ludwig Cancer Research Center - Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
19
|
Mannosylated polylactic-co-glycolic acid (MN-PLGA) nanoparticles induce potent anti-tumor immunity in murine model of breast cancer. Biomed Pharmacother 2021; 142:111962. [PMID: 34358752 DOI: 10.1016/j.biopha.2021.111962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Nanoparticle-based cancer immunotherapy is considered a novel and promising therapeutic strategy aimed at stimulating host immune responses against tumors. To this end, in the present study, mannan-decorated polylactic-co-glycolic acid (PLGA) nanoparticles containing tumor cell lysate (TCL) and poly riboinosinic polycytidylic acid (poly I:C) were used as antigen delivery systems to immunize breast tumor-bearing Balb/c mice. PLGA nanoparticles were fabricated employing a double emulsion solvent evaporation method. The formation of spherical and uniform nanoparticles (NPs) ranging 150-250 nm was detected by field emission scanning electron microscopy (FESEM) and dynamic light scattering (DLS). Four nanoformulation were used to treat mice and vaccination-induced immunological responses. Tumor regression and overall survival rate were evaluated in four experimental groups. Tumor cell lysate and poly I:C loaded mannan-decorated nanoparticles (TCL-Poly I:C) NP-MN caused a significant decrease in tumor growth and 2- to 3-fold improvement in survival times of the treated mice. The NPs with or without mannan decoration elicited stronger responses in terms of lymphocyte proliferation, delayed-type hypersensitivity and CD107a expression. Moreover, our data indicated that the production of IFN-γ and IL-2 increased while the production of IL-4 and IL-10 decreased in splenocytes culture supernatants. In the pathological evaluations, we found that necrosis and immune cells infiltration rate in the tumor tissue of the treated mice was elevated, while tumor cellularity and lung metastases significantly decreased in particular in the group that received (TCL-Poly I:C) NP-MN. Altogether, our findings suggested that the mannan-decorated PLGA NPs antigen delivery system had significant anti-tumor effects against the murine model of breast cancer and it could be considered as a step forward to human breast cancer immunotherapy.
Collapse
|
20
|
Heydari P, Kharaziha M, Varshosaz J, Javanmard SH. Current knowledge of immunomodulation strategies for chronic skin wound repair. J Biomed Mater Res B Appl Biomater 2021; 110:265-288. [PMID: 34318595 DOI: 10.1002/jbm.b.34921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In orchestrating the wound healing process, the immune system plays a critical role. Hence, controlling the immune system to repair skin defects is an attractive approach. The highly complex immune system includes the coordinated actions of several immune cells, which can produce various inflammatory and antiinflammatory cytokines and affect the healing of skin wounds. This process can be optimized using biomaterials, bioactive molecules, and cell delivery. The present review discusses various immunomodulation strategies for supporting the healing of chronic wounds. In this regard, following the evolution of the immune system and its role in the wound healing mechanism, the interaction between the extracellular mechanism and immune cells for acceleration wound healing will be firstly investigated. Consequently, the immune-based chronic wounds will be briefly examined and the mechanism of progression, and conventional methods of their treatment are evaluated. In the following, various biomaterials-based immunomodulation strategies are introduced to stimulate and control the immune system to treat and regenerate skin defects. Other effective methods of controlling the immune system in wound healing which is the release of bioactive agents (such as antiinflammatory, antigens, and immunomodulators) and stem cell therapy at the site of injury are reviewed.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002499. [PMID: 33898169 PMCID: PMC8061401 DOI: 10.1002/advs.202002499] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Indexed: 05/16/2023]
Abstract
Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Present address:
Helmholtz Institute for Pharmaceutical Research SaarlandHelmholtz Centre for Infection ResearchBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
| | - Mohammad‐Ali Shahbazi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShiraz71468‐64685Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
22
|
Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. NANO TODAY 2021; 36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Shi GN, Hu M, Chen C, Fu J, Shao S, Zhou Y, Wu L, Zhang T. Methotrexate enhances antigen presentation and maturation of tumour antigen-loaded dendritic cells through NLRP3 inflammasome activation: a strategy for dendritic cell-based cancer vaccine. Ther Adv Med Oncol 2021; 13:1758835920987056. [PMID: 33613696 PMCID: PMC7841859 DOI: 10.1177/1758835920987056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Dendritic cells (DCs) are antigen-presenting cells that play a pivotal role in adaptive cell-mediated immunity by priming and activating T cells against specific tumour and pathogenic antigens. Methotrexate (MTX), a folate derivative, functions as an immunoregulatory agent. However, the possible effect of MTX on tumour antigen-loaded DCs has not yet been investigated. Methods: We analysed the effect of MTX on the maturation and function of DCs along with tumour cell lysates (TCLs). Using bone marrow-derived DCs, we investigated the effect of MTX combined TCL-loaded DCs on T cells priming and proliferation. We also tested the anti-tumour immune effect on DCs when treated with MTX and/or TCL in vivo. Results: MTX combined with TCL not only enhanced DC maturation and stimulated cytokine release but also promoted CD8+ T cell activation and proliferation. The latter was associated with increased tumour antigen uptake and cross-presentation to T cells. Mechanistically, DC maturation and antigen presentation were partly modulated by NLRP3 inflammasome activation. Furthermore, immunisation of mice with MTX and TCL-pulsed DCs before a tumour challenge significantly delayed tumour onset and retarded its growth. This protective effect was due to priming of IFN-γ releasing CD8+ T cells and enhanced killing of tumour cells by cytotoxic T lymphocytes isolated from these immunised mice. Conclusion: MTX can function as a potent adjuvant in DC vaccines by increasing antigen presentation and T cell priming. Our findings provide a new strategy for the application of DC-based anti-tumour immunotherapy.
Collapse
Affiliation(s)
- Gao-Na Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junmin Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Room 216, Beijing, 100050, China
| |
Collapse
|
24
|
Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 2021; 168:79-98. [PMID: 32712197 DOI: 10.1016/j.addr.2020.07.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Deoxyribonucleic acid (DNA) is a promising synthesizer for precisely constructing almost arbitrary geometry in two and three dimensions. Among various DNA-based soft materials, DNA hydrogels are comprised of hydrophilic polymeric networks of crosslinked DNA chains. For their properties of biocompatibility, porosity, sequence programmability and tunable multifunctionality, DNA hydrogels have been widely studied in bioanalysis and biomedicine. In this review, recent developments in DNA hydrogels and their applications in drug delivery systems are highlighted. First, physical and chemical crosslinking methods for constructing DNA hydrogels are introduced. Subsequently, responses of DNA hydrogels to nonbiological and biological stimuli are described. Finally, DNA hydrogel-based delivery platforms for different types of drugs are detailed. With the emergence of gene therapy, this review also gives future prospects for combining DNA hydrogels with the gene editing toolbox.
Collapse
|
25
|
Gener P, Gonzalez Callejo P, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Schwartz S. The potential of nanomedicine to alter cancer stem cell dynamics: the impact of extracellular vesicles. Nanomedicine (Lond) 2020; 15:2785-2800. [PMID: 33191837 DOI: 10.2217/nnm-2020-0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The presence of highly resistant cancer stem cells (CSCs) within tumors as drivers of metastatic spread has been commonly accepted. Nonetheless, the likelihood of its dynamic phenotype has been strongly discussed. Importantly, intratumoral cell-to-cell communication seems to act as the main regulatory mechanism of CSC reversion. Today, new strategies for cancer treatment focusing into modulating tumor cell intercommunication and the possibility to modulate the composition of the tumor microenvironment are being explored. In this review, we summarize the literature describing the phenomenon of CSC reversion and the factors known to influence this phenotypic switch. Furthermore, we will discuss the possible role of nanomedicine toward altering this reversion, and to influence the tumor microenvironment composition and the metastatic spread of the disease.
Collapse
Affiliation(s)
- Petra Gener
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Patricia Gonzalez Callejo
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Networking Research Centre for Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joaquín Seras-Franzoso
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Fernanda Andrade
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Diana Rafael
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Networking Research Centre for Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Networking Research Centre for Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Simo Schwartz
- Drug Delivery & Targeting Group, Molecular Biology & Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Networking Research Centre for Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
26
|
Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-Wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Rev Vaccines 2020; 19:1053-1071. [PMID: 33315512 DOI: 10.1080/14760584.2020.1858058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022]
Abstract
Introduction: Cancer immunotherapy is a fast-growing field that has achieved tremendous progress in recent years. It is one of the most potent tools that can activate the immune system against cancer. Nevertheless, the development of safe and effective vaccines to overcome emerging new disease remains challenging since several emerging antigens are poorly immunogenic. Nanotechnology has provided a realistic resolution for the drawback of traditional cancer immunotherapy. Area covered: This review discusses different cancer immunotherapy approaches focusing on recent advancements in nanomedicine-based cancer immunotherapy. The literature review method includes inclusion and exclusion criteria to categorize important articles. The literature survey was carried out using PubMed, Google Scholar, Scopus, and the Saudi digital library. Expert opinion: In the last two decades, the development and application of nanoparticles incorporating antigen/adjuvant in cancer immunotherapy have experienced rapid growth. Soon, progressively multifaceted nanovaccines presenting different antigens and co-delivered with antigens will be clinically translated. Better understanding and improved knowledge of nanomedicines-based delivery approaches and immunostimulatory action, and in-vivo biodistribution would inevitably facilitate the altruistic design of cancer nanovaccine for humankind.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University , Najran, Kingdom of Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University , Najran, Kingdom of Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, Prince Sattam Bin Abdulaziz University College of Pharmacy , Alkharj Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Department of Internal Medicine, College of Medicine, Najran University Hospital , Najran, Kingdom of Saudi Arabia
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University , Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine Assiut University , Assiut, Egypt
| | - Sohail Akhter
- Center for Molecular Biophysics (CBM), CNRS UPR4301; LE STUDIUM Loire Valley Institute for Advanced Studies , Orleans, France
| |
Collapse
|
27
|
Chen Z, Zhang Q, Zeng L, Zhang J, Liu Z, Zhang M, Zhang X, Xu H, Song H, Tao C. Light-triggered OVA release based on CuS@poly(lactide-co-glycolide acid) nanoparticles for synergistic photothermal-immunotherapy of tumor. Pharmacol Res 2020; 158:104902. [DOI: 10.1016/j.phrs.2020.104902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
|
28
|
Wang J, Yu XF, OUYang N, Luo Q, Tong J, Chen T, Li J. Role of DNA methylation regulation of miR-130b expression in human lung cancer using bioinformatics analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:935-943. [PMID: 31524549 DOI: 10.1080/15287394.2019.1667634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are involved in various crucial biological processes including regulation of cell differentiation, proliferation, and migration, and are closely associated with tumor development. This study aimed to investigate miR-130b expression levels in lung cancer patient tissues. Two Gene Expression Omnibus (GEO) databases, including GSE48414 and GSE74190, and two The Cancer Genome Atlas (TCGA) databases including TCGA LUAD and TCGA LUSC, were accessed to obtain information for differential expression analysis and clinical-pathological correlation analysis. The results showed that miR-130b expression levels were significantly increased in lung cancer compared to normal tissues. Data also demonstrated that confounding factors such as tumor clinical stages and tumor invasion depth markedly affected miR-130b expression levels in cancer patients. A total of 169 target genes modified by miR-130b expression were identified by using 4 online websites for target gene prediction. Further enrichment analysis indicated that these 169 target genes were significantly enriched in several cancer-related biological processes and signaling pathways, including wound healing, cell proliferation, Wnt signaling, Ras signaling, and mTOR signaling. It was also of interest to examine the seven sites on the promoter region of miR-130b encoding gene in lung cancer patients and then compare methylation at these loci with miR-130b expression. The correlation analysis between encoding gene methylation and miR-130b expression in TCGA datasets revealed that decreased methylation in the promoter region was significantly associated with elevated miR-130b expression. This phenomenon was markedly dependent upon smoking history and clinical-pathological features. In conclusion, data indicated alterations in the methylation of DNA promoter region of miR-130b encoding gene were associated with disturbances in miR-130b expression in lung cancer patients suggesting that the DNA methylation process and miR-130b expression may serve as biomarkers for detection of lung cancer.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Xiao-Fan Yu
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Nan OUYang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Qiulin Luo
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| |
Collapse
|
29
|
Kohnepoushi C, Nejati V, Delirezh N, Biparva P. Poly Lactic-co-Glycolic Acid Nanoparticles Containing Human Gastric Tumor Lysates as Antigen Delivery Vehicles for Dendritic Cell-Based Antitumor Immunotherapy. Immunol Invest 2019; 48:794-808. [DOI: 10.1080/08820139.2019.1610889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chia Kohnepoushi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Vahid Nejati
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Nowruz Delirezh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Pouria Biparva
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
30
|
Lusche DF, Klemme MR, Soll BA, Reis RJ, Forrest CC, Nop TS, Wessels DJ, Berger B, Glover R, Soll DR. Integrin α-3 ß-1's central role in breast cancer, melanoma and glioblastoma cell aggregation revealed by antibodies with blocking activity. MAbs 2019; 11:691-708. [PMID: 30810437 DOI: 10.1080/19420862.2019.1583987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Breast cancer, melanoma and glioblastoma cells undergo cell-mediated aggregation and aggregate coalescence in a transparent 3D Matrigel environment. Cells from normal tissue and non-tumorigenic cell lines do not exhibit these behaviors. Here, 266 monoclonal antibodies (mAbs) demonstrated to interact with a wide variety of membrane, secreted and matrix proteins, have been screened for their capacity to block these tumorigenic cell-specific behaviors in a 3D environment. Remarkably, only six of the 266 tested mAbs exhibited blocking activity, four targeting integrin ß-1, one targeting integrin α-3 and one targeting CD44. Colocalization of integrins ß-1 and α-3 in fixed cells and in live aggregates suggests that the integrin α-3 ß-1 dimer plays a central role in cancer cell aggregation in the 3D environment provided by Matrigel. Our results suggest that blocking by anti-integrin and anti-CD44 mAbs involves interference in cell-cell interactions.
Collapse
Affiliation(s)
- Daniel F Lusche
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Michael R Klemme
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Benjamin A Soll
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Ryan J Reis
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Cristopher C Forrest
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Tiffany S Nop
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Deborah J Wessels
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Brian Berger
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Rebecca Glover
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| | - David R Soll
- a The Developmental Studies Hybridoma Bank, Department of Biology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
31
|
Sahin I, Eturi A, De Souza A, Pamarthy S, Tavora F, Giles FJ, Carneiro BA. Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses. Cancer Biol Ther 2019; 20:1047-1056. [PMID: 30975030 DOI: 10.1080/15384047.2019.1595283] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As a kinase at the crossroads of numerous metabolic and cell growth signaling pathways, glycogen synthase kinase-3 beta (GSK-3β) is a highly desirable therapeutic target in cancer. Despite its involvement in pathways associated with the pathogenesis of several malignancies, no selective GSK-3β inhibitor has been approved for the treatment of cancer. The regulatory role of GSK-3β in apoptosis, cell cycle, DNA repair, tumor growth, invasion, and metastasis reflects the therapeutic relevance of this target and provides the rationale for drug combinations. Emerging data on GSK-3β as a mediator of anticancer immune response also highlight the potential clinical applications of novel selective GSK-3β inhibitors that are entering clinical studies. This manuscript reviews the preclinical and early clinical results with GSK-3β inhibitors and delineates the developmental therapeutics landscape for this potentially important target in cancer therapy.
Collapse
Affiliation(s)
- Ilyas Sahin
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Aditya Eturi
- b Department of Medicine , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Andre De Souza
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Sahithi Pamarthy
- c Atrin Pharmaceuticals , Pennsylvania Biotechnology Center , Doylestown , PA , USA
| | - Fabio Tavora
- d Argos Laboratory/Messejana Heart and Lung Hospital , Fortaleza , Brazil
| | - Francis J Giles
- e Developmental Therapeutics Consortium , Chicago , IL , USA
| | - Benedito A Carneiro
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
32
|
Truffi M, Mazzucchelli S, Bonizzi A, Sorrentino L, Allevi R, Vanna R, Morasso C, Corsi F. Nano-Strategies to Target Breast Cancer-Associated Fibroblasts: Rearranging the Tumor Microenvironment to Achieve Antitumor Efficacy. Int J Mol Sci 2019; 20:1263. [PMID: 30871158 PMCID: PMC6471729 DOI: 10.3390/ijms20061263] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAF) are the most abundant cells of the tumor stroma and they critically influence cancer growth through control of the surrounding tumor microenvironment (TME). CAF-orchestrated reactive stroma, composed of pro-tumorigenic cytokines and growth factors, matrix components, neovessels, and deregulated immune cells, is associated with poor prognosis in multiple carcinomas, including breast cancer. Therefore, beyond cancer cells killing, researchers are currently focusing on TME as strategy to fight breast cancer. In recent years, nanomedicine has provided a number of smart delivery systems based on active targeting of breast CAF and immune-mediated overcome of chemoresistance. Many efforts have been made both to eradicate breast CAF and to reshape their identity and function. Nano-strategies for CAF targeting profoundly contribute to enhance chemosensitivity of breast tumors, enabling access of cytotoxic T-cells and reducing immunosuppressive signals. TME rearrangement also includes reorganization of the extracellular matrix to enhance permeability to chemotherapeutics, and nano-systems for smart coupling of chemo- and immune-therapy, by increasing immunogenicity and stimulating antitumor immunity. The present paper reviews the current state-of-the-art on nano-strategies to target breast CAF and TME. Finally, we consider and discuss future translational perspectives of proposed nano-strategies for clinical application in breast cancer.
Collapse
Affiliation(s)
- Marta Truffi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Arianna Bonizzi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Luca Sorrentino
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Raffaele Allevi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Renzo Vanna
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| | - Carlo Morasso
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
- Breast Unit, Surgery Department, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| |
Collapse
|
33
|
Chablani L, Tawde SA, Akalkotkar A, D'Souza MJ. Evaluation of a Particulate Breast Cancer Vaccine Delivered via Skin. AAPS JOURNAL 2019; 21:12. [PMID: 30604321 DOI: 10.1208/s12248-018-0285-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Breast cancer impacts female population globally and is the second most common cancer for females. With various limitations and adverse effects of current therapies, several immunotherapies are being explored. Development of an effective breast cancer vaccine can be a groundbreaking immunotherapeutic approach. Such approaches are being evaluated by several clinical trials currently. On similar lines, our research study aims to evaluate a particulate breast cancer vaccine delivered via skin. This particulate breast cancer vaccine was prepared by spray drying technique and utilized murine breast cancer whole cell lysate as a source of tumor-associated antigens. The average size of the particulate vaccine was 1.5 μm, which resembled the pathogenic species, thereby assisting in phagocytosis and antigen presentation leading to further activation of the immune response. The particulate vaccine was delivered via skin using commercially available metal microneedles. Methylene blue staining and confocal microscopy were used to visualize the microchannels. The results showed that microneedles created aqueous conduits of 50 ± 10 μm to deliver the microparticulate vaccine to the skin layers. Further, an in vivo comparison of immune response depicted significantly higher concentration of serum IgG, IgG2a, and B and T cell (CD4+ and CD8+) populations in the vaccinated animals than the control animals (p < 0.001). Upon challenge with live murine breast cancer cells, the vaccinated animals showed five times more tumor suppression than the control animals confirming the immune response activation and protection (p < 0.001). This research paves a way for individualized immunotherapy following surgical tumor removal to prolong relapse episodes.
Collapse
Affiliation(s)
- Lipika Chablani
- Department of Pharmaceutical Science, Wegmans School of Pharmacy, St. John Fisher College, 3690 East Ave., Rochester, New York, 14618, USA.
| | - Suprita A Tawde
- Research and Development, Nexus Pharmaceuticals, Vernon Hills, Illinois, 60061, USA
| | | | - Martin J D'Souza
- Vaccine Nanotechnology Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, Georgia, 30341, USA
| |
Collapse
|
34
|
Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy. J Control Release 2018; 292:256-276. [PMID: 30312721 PMCID: PMC6355332 DOI: 10.1016/j.jconrel.2018.10.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
The development of therapeutic cancer vaccines as a means to generate immune reactivity against tumors has been explored since the early discovery of tumor-specific antigens by Georg Klein in the 1960s. However, challenges including weak immunogenicity, systemic toxicity, and off-target effects of cancer vaccines remain as barriers to their broad clinical translation. Advances in the design and implementation of biomaterials are now enabling enhanced efficacy and reduced toxicity of cancer vaccines by controlling the presentation and release of vaccine components to immune cells and their microenvironment. Here, we discuss the rational design and clinical status of several classes of cancer vaccines (including DNA, mRNA, peptide/protein, and cell-based vaccines) along with novel biomaterial-based delivery technologies that improve their safety and efficacy. Further, strategies for designing new platforms for personalized cancer vaccines are also considered.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
35
|
McNair K, Forrest CM, Vincenten MCJ, Darlington LG, Stone TW. Serine protease modulation of Dependence Receptors and EMT protein expression. Cancer Biol Ther 2018; 20:349-367. [PMID: 30403907 PMCID: PMC6370372 DOI: 10.1080/15384047.2018.1529109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022] Open
Abstract
Expression of the tumour suppressor Deleted in Colorectal Cancer (DCC) and the related protein neogenin is reduced by the mammalian serine protease chymotrypsin or the bacterial serine protease subtilisin, with increased cell migration. The present work examines whether these actions are associated with changes in the expression of cadherins, β-catenin and vimentin, established markers of the Epithelial-Mesenchymal Transition (EMT) which has been linked with cell migration and tumour metastasis. The results confirm the depletion of DCC and neogenin and show that chymotrypsin and subtilisin also reduce expression of β-catenin in acutely prepared tissue sections but not in human mammary adenocarcinoma MCF-7 or MDA-MB-231 cells cultured in normal media, or primary normal human breast cells. A loss of β-catenin was also seen in low serum media but transfecting cells with a dcc-containing plasmid induced resistance. E-cadherin was not consistently affected but vimentin was induced by low serum-containing media and was increased by serine proteases in MCF-7 and MDA-MB-231 cells in parallel with increased wound closure. Vimentin might contribute to the promotion of cell migration. The results suggest that changes in EMT proteins depend on the cells or tissues concerned and do not parallel the expression of DCC and neogenin. The increased cell migration induced by serine proteases is not consistently associated with the expression of the EMT proteins implying either that the increased migration may be independent of EMT or supporting the view that EMT is not itself consistently related to migration. (241).
Collapse
Affiliation(s)
- Kara McNair
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Caroline M. Forrest
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria C. J. Vincenten
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Trevor W. Stone
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- The Kennedy Institute, University of Oxford, Oxford UK
| |
Collapse
|
36
|
Wang H, Chen W, Yang P, Zhou J, Wang K, Tao Q. Knockdown of linc00152 inhibits the progression of gastric cancer by regulating microRNA-193b-3p/ETS1 axis. Cancer Biol Ther 2018; 20:461-473. [PMID: 30404587 PMCID: PMC6422511 DOI: 10.1080/15384047.2018.1529124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a serious threat for public health worldwide. Long non-coding RNA (lncRNA) linc00152 has been well reported to be an oncogene and a potential biomarker in multiple cancers including GC. However, the molecular mechanisms of linc00152 in GC development need to be further investigated. METHODS RT-qPCR assay was employed to detect the levels of linc00152, microRNA-193b-3p (miR-193b-3p) and ETS1 mRNA. ETS1 protein level was measured by western blot assay. Cell proliferative, migratory and invasive capacities were assessed by colony formation together with CCK-8 assays, transwell migration and invasion assays, respectively. Bioinformatics analyses and luciferase reporter assay were used to explore whether miR-193b-3p could interact with linc00152 or ETS1 3'UTR. The roles and molecular basis of linc00152 silence on the growth of GC xenograft tumors were tested in vivo. RESULTS Linc00152 expression was notably upregulated in GC tissues and cells. The proliferative, migratory and invasive abilities of GC cells were weakened by linc00152 depletion, miR-193b-3p overexpression or ETS1 knockdown. Linc00152 upregulation inhibited miR-193b-3p expression by direct interaction and abolished miR-193b-3p-mediated anti-proliferation, anti-migration and anti-invasion effects in GC cells. ETS1 was a target of miR-193b-3p and linc00152 could promote ETS1 expression by downregulating miR-193b-3p. In vivo experiments further validated that linc00152 knockdown inhibited the growth of GC xenograft tumors by upregulating miR-193b-3p and downregulating ETS1. CONCLUSION Knockdown of linc00152 inhibited GC progression by sequestering miR-193b-3p from ETS1 in vitro and in vivo, elucidating a novel molecular mechanism of linc00152 in promoting GC carcinogenesis.
Collapse
Affiliation(s)
- Haifang Wang
- Department of Chinese and Western Integrative Medicine and Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Wenxiang Chen
- Department of Spine Orthopaedics, Liaocheng Traditional Chinese Medicine hospital, Liaocheng, China
| | - Peng Yang
- Department of Chinese and Western Integrative Medicine and Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jun Zhou
- Department of Chinese and Western Integrative Medicine and Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Kaiyuan Wang
- Chinese Medical Department of Internal respiration, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingchun Tao
- Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
37
|
Li S, Feng X, Wang J, He L, Wang C, Ding J, Chen X. Polymer nanoparticles as adjuvants in cancer immunotherapy. NANO RESEARCH 2018; 11:5769-5786. [DOI: 10.1007/s12274-018-2124-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2024]
|
38
|
Allahverdiyev A, Tari G, Bagirova M, Abamor ES. Current Approaches in Development of Immunotherapeutic Vaccines for Breast Cancer. J Breast Cancer 2018; 21:343-353. [PMID: 30607155 PMCID: PMC6310717 DOI: 10.4048/jbc.2018.21.e47] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023] Open
Abstract
Cancer is the leading cause of death worldwide. In developed as well as developing countries, breast cancer is the most common cancer found among women. Currently, treatment of breast cancer consists mainly of surgery, chemotherapy, hormone therapy, and radiotherapy. In recent years, because of increased understanding of the therapeutic potential of immunotherapy in cancer prevention, cancer vaccines have gained importance. Here, we review various immunotherapeutic breast cancer vaccines including peptide-based vaccines, whole tumor cell vaccines, gene-based vaccines, and dendritic cell vaccines. We also discuss novel nanotechnology-based approaches to improving breast cancer vaccine efficiency.
Collapse
Affiliation(s)
- Adil Allahverdiyev
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gamze Tari
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Melahat Bagirova
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
39
|
Abdellateif MS, Shaarawy SM, Kandeel EZ, El-Habashy AH, Salem ML, El-Houseini ME. A novel potential effective strategy for enhancing the antitumor immune response in breast cancer patients using a viable cancer cell-dendritic cell-based vaccine. Oncol Lett 2018; 16:529-535. [PMID: 29928442 PMCID: PMC6006460 DOI: 10.3892/ol.2018.8631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) have been used in a number of clinical trials for cancer immunotherapy; however, they have achieved limited success in solid tumors. Consequently the aim of the present study was to identify a novel potential immunotherapeutic target for breast cancer patients through in vitro optimization of a viable DC-based vaccine. Immature DCs were primed by viable MCF-7 breast cancer cells and the activity and maturation of DCs were assessed through measuring CD83, CD86 and major histocompatibility complex (MHC)-II expression, in addition to different T cell subpopulations, namely CD4+ T cells, CD8+ T cells, and CD4+CD25+ forkhead box protein 3 (Foxp3)+ regulatory T cells (Tregs), by flow cytometric analysis. Foxp3 level was also measured by enzyme-linked immunosorbent assay (ELISA) in addition to reverse-transcription quantitative polymerase chain reaction. The levels of interleukin-12 (IL-12) and interferon-γ (IFN-γ) were determined by ELISA. Finally, the cytotoxicity of cytotoxic T lymphocytes (CTLs) was evaluated through measuring lactate dehydrogenase (LDH) release by ELISA. The results demonstrated that CD83+, CD86+ and MHC-II+ DCs were significantly elevated (P<0.001) following priming with breast cancer cells. In addition, there was increased activation of CD4+ and CD8+ T-cells, with a significant decrease of CD4+CD25+Foxp3+ Tregs (P<0.001). Furthermore, a significant downregulation of FOXP3 gene expression (P<0.001) was identified, and a significant decrease in the level of its protein following activation (P<0.001) was demonstrated by ELISA. Additionally, significant increases in the secretion of IL-12 and IFN-γ (P=0.001) were observed. LDH release was significantly increased (P<0.001), indicating a marked cytotoxicity of CTLs against cancer cells. Therefore viable breast cancer cell-DC-based vaccines could expose an innovative avenue for a novel breast cancer immunotherapy.
Collapse
Affiliation(s)
- Mona S. Abdellateif
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Sabry M. Shaarawy
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Eman Z. Kandeel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Ahmed H. El-Habashy
- Department of Pathology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mohamed L. Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Gharbia 31511, Egypt
| | - Motawa E. El-Houseini
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| |
Collapse
|
40
|
Abstract
Background Immunotherapy consists of activating the patient’s immune system to fight cancer and has the great potential of preventing future relapses thanks to immunological memory. A great variety of strategies have emerged to harness the immune system against tumors, from the administration of immunomodulatory agents that activate immune cells, to therapeutic vaccines or infusion of previously activated cancer-specific T cells. However, despite great recent progress many difficulties still remain, which prevent the widespread use of immunotherapy. Some of these limitations include: systemic toxicity, weak immune cellular responses or persistence over time and most ultimately costly and time-consuming procedures. Main body Synthetic and natural biomaterials hold great potential to address these hurdles providing biocompatible systems capable of targeted local delivery, co-delivery, and controlled and/or sustained release. In this review we discuss some of the bioengineered solutions and approaches developed so far and how biomaterials can be further implemented to help and shape the future of cancer immunotherapy. Conclusion The bioengineering strategies here presented constitute a powerful toolkit to develop safe and successful novel cancer immunotherapies.
Collapse
|
41
|
Athanasiou E, Agallou M, Tastsoglou S, Kammona O, Hatzigeorgiou A, Kiparissides C, Karagouni E. A Poly(Lactic- co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8 + T Cells Essential for the Protection against Experimental Visceral Leishmaniasis. Front Immunol 2017; 8:684. [PMID: 28659922 PMCID: PMC5468442 DOI: 10.3389/fimmu.2017.00684] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Visceral leishmaniasis, caused by Leishmania (L.) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4+ TH1 and CD8+ T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic-co-glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4+ and CD8+ T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8+ T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that encapsulation of more than one chimeric multi-epitope peptides from different immunogenic L. infantum proteins in a proper biocompatible delivery system with the right adjuvant is considered as an improved promising approach for the development of a vaccine against VL.
Collapse
Affiliation(s)
- Evita Athanasiou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Agallou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Olga Kammona
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece
| | | | - Costas Kiparissides
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece.,Laboratory of Chemical Engineering B, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Karagouni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
42
|
Nagakura Y. The need for fundamental reforms in the pain research field to develop innovative drugs. Expert Opin Drug Discov 2016; 12:39-46. [PMID: 27838932 DOI: 10.1080/17460441.2017.1261108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Chronic pain is a major healthcare issue owing to its high prevalence, significant physical and emotional burden on the patients, and huge financial burden on the society. The efficacy of currently available medications is unsatisfactory owing to their limited effect size and the low responder rate (less than 50%). Thus, there is a large unmet need for innovative therapies for chronic pain. Areas covered: In this review, the author points out the need for fundamental reforms in pain research. For the last several decades, drug discovery research has extensively focused on designing new therapies using animal models of chronic pain. It has, however, made insufficient progress with respect to the launch of innovative analgesic drugs, because the translation from preclinical to clinical stages has not been satisfactory. Thus, the strategies for developing innovative analgesic drugs are discussed. Expert opinion: Points to be considered in the discovery of drugs for pain relief include: (1) the exclusion of bias incorporation and the alignment of clinical and preclinical endpoints in the assessment of analgesic efficacy; (2) the understanding of primary unmet needs; (3) the assessment of new therapies by biomarker-prioritized frameworks, and (4) the stratification of chronic pain sufferers.
Collapse
Affiliation(s)
- Yukinori Nagakura
- a Faculty of Pharmaceutical Sciences , Aomori University , Aomori-shi , Aomori , Japan
| |
Collapse
|