1
|
Diskul-Na-Ayudthaya P, Bae SJ, Bae YU, Van NT, Kim W, Ryu S. ANKRD1 Promotes Breast Cancer Metastasis by Activating NF- κB-MAGE-A6 Pathway. Cancers (Basel) 2024; 16:3306. [PMID: 39409926 PMCID: PMC11476229 DOI: 10.3390/cancers16193306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Early detection and surgical excision of tumors have helped improve the survival rate of patients with breast cancer. However, patients with metastatic cancer typically have a poor prognosis. In this study, we propose that ANKRD1 promotes metastasis of breast cancer. ANKRD1 was found to be highly expressed in the MDA-MB-231 and MDA-LM-2 highly metastatic breast cancer cell lines compared to the non-metastatic breast cancer cell lines (MCF-7, ZR-75-30, T47D) and normal breast cancer cells (MCF-10A). Furthermore, high-grade tumors showed increased levels of ANKRD1 compared to low-grade tumors. Both in vitro and in vivo functional studies demonstrated the essential role of ANKRD1 in cancer cell migration and invasion. The previous studies have suggested a significant role of NF-κB and MAGE-A6 in breast cancer metastasis, but the upstream regulators of this axis are not well characterized. Our study suggests that ANKRD1 promotes metastasis of breast cancer by activating NF-κB as well as MAGE-A6 signaling. Our findings show that ANKRD1 is a potential therapeutic target and a diagnostic marker for breast cancer metastasis.
Collapse
Affiliation(s)
- Penchatr Diskul-Na-Ayudthaya
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Seon Joo Bae
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Yun-Ui Bae
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Konkuk University, Seoul 05030, Republic of Korea;
| | - Ngu Trinh Van
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Wootae Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Department of Pathology, College of Medicine, Soonchunhyang University, Asan-si 311151, Republic of Korea
| |
Collapse
|
2
|
Yang X, Liu Z, Wang X, Tian W, Zhao T, Yang Q, Li W, Yang L, Yang H, Jia Y. Anti-cancer effects of nitazoxanide in epithelial ovarian cancer in-vitro and in-vivo. Chem Biol Interact 2024; 400:111176. [PMID: 39084502 DOI: 10.1016/j.cbi.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Epithelial ovarian cancer is one of the most lethal gynecologic malignancies and poses a considerable threat to women's health. Although the progression-free survival of patients has been prolonged with the application of anti-angiogenesis drugs and Poly (ADP-ribose) polymerases (PARP) inhibitors, overall survival has not substantially improved. Thus, new therapeutic strategies are essential for the treatment of ovarian cancer. Nitazoxanide (NTZ), an FDA-approved anti-parasitic drug, has garnered attention for its potential anti-cancer activity. However, the anti-tumor effects and possible underlying mechanisms of NTZ on ovarian cancer remain unclear. In this study, we investigated the anti-tumor effects and the mechanism of NTZ on ovarian cancer in vitro and in vivo. We found that NTZ inhibited the proliferation of A2780 and SKOV3 epithelial ovarian cancer cells in a time- and concentration-dependent manner; Furthermore, NTZ suppressed the metastasis and invasion of A2780 and SKOV3 cells in vitro, correlating with the inhibition of epithelial-mesenchymal transition; Additionally, NTZ suppressed the Hippo/YAP/TAZ signaling pathway both in vitro and in vivo and demonstrated a good binding activity with core genes of Hippo pathway, including Hippo, YAP, TAZ, LATS1, and LATS2. Oral administration of NTZ inhibited tumor growth in xenograft ovarian cancer mice models without causing considerable damage to major organs. Overall, these data suggest that NTZ has therapeutic potential for treating epithelial ovarian cancer.
Collapse
Affiliation(s)
- Xiangqun Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Zhenyan Liu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Xin Wang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenda Tian
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Taoyu Zhao
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Yunnan, 678400, PR China
| | - Qiaoling Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenliang Li
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Linlin Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Hongying Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Yue Jia
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| |
Collapse
|
3
|
Li S, Hao L, Li N, Hu X, Yan H, Dai E, Shi X. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review). Int J Oncol 2024; 65:88. [PMID: 39092548 DOI: 10.3892/ijo.2024.5676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes‑associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1‑targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.
Collapse
Affiliation(s)
- Shenghao Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Liyuan Hao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Na Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Erhei Dai
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
4
|
Ohara Y, Craig AJ, Liu H, Yang S, Moreno P, Dorsey TH, Cawley H, Azizian A, Gaedcke J, Ghadimi M, Hanna N, Ambs S, Hussain SP. LMO3 is a suppressor of the basal-like/squamous subtype and reduces disease aggressiveness of pancreatic cancer through glycerol 3-phosphate metabolism. Carcinogenesis 2024; 45:475-486. [PMID: 38366633 PMCID: PMC11229528 DOI: 10.1093/carcin/bgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) encompasses diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, each exhibiting distinct characteristics, with the latter known for its aggressiveness. We employed an integrative approach combining transcriptome and metabolome analyses to pinpoint potential genes contributing to the basal-like/squamous subtype differentiation. Applying this approach to our NCI-UMD-German and a validation cohort, we identified LIM Domain Only 3 (LMO3), a transcription co-factor, as a candidate suppressor of the basal-like/squamous subtype. Reduced LMO3 expression was significantly associated with higher pathological grade, advanced disease stage, induction of the basal-like/squamous subtype and decreased survival among PDAC patients. In vitro experiments demonstrated that LMO3 transgene expression inhibited PDAC cell proliferation and migration/invasion, concurrently downregulating the basal-like/squamous gene signature. Metabolome analysis of patient tumors and PDAC cells revealed a metabolic program linked to elevated LMO3 and the classical/progenitor subtype, characterized by enhanced lipogenesis and suppressed amino acid metabolism. Notably, glycerol 3-phosphate (G3P) levels positively correlated with LMO3 expression and associated with improved patient survival. Furthermore, glycerol-3-phosphate dehydrogenase 1 (GPD1), a crucial enzyme in G3P synthesis, showed upregulation in LMO3-high and classical/progenitor PDAC, suggesting its potential role in mitigating disease aggressiveness. Collectively, our findings suggest that heightened LMO3 expression reduces transcriptome and metabolome characteristics indicative of basal-like/squamous tumors with decreased disease aggressiveness in PDAC patients. The observations describe LMO3 as a candidate for diagnostic and therapeutic targeting in PDAC.
Collapse
Affiliation(s)
- Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paloma Moreno
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Azadeh Azizian
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
| | - Jochen Gaedcke
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Nader Hanna
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Surgical Oncology, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Wang Y, Shang P, Xu C, Dong W, Zhang X, Xia Y, Sui C, Yang C. Novel genetic alterations in liver cancer distinguish distinct clinical outcomes and combination immunotherapy responses. Front Pharmacol 2024; 15:1416295. [PMID: 38948469 PMCID: PMC11211383 DOI: 10.3389/fphar.2024.1416295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: Genomic profiling has revolutionized therapeutic interventions and the clinical management of liver cancer. However, pathogenetic mechanisms, molecular determinants of recurrence, and predictive biomarkers for first-line treatment (anti-PD-(L)1 plus bevacizumab) in liver cancer remain incompletely understood. Materials and methods: Targeted next-generation sequencing (tNGS) (a 603-cancer-gene panel) was applied for the genomic profiling of 232 hepatocellular carcinoma (HCC) and 22 intrahepatic cholangiocarcinoma (ICC) patients, among which 47 unresectable/metastatic HCC patients underwent anti-PD-1 plus bevacizumab therapy. Genomic alterations were estimated for their association with vascular invasion (VI), location of onset, recurrence, overall survival (OS), recurrence-free survival (RFS), and anti-PD-1 plus bevacizumab therapy response. Results: The genomic landscape exhibited that the most commonly altered genes in HCC were TP53, FAT3, PDE4DIP, KMT2C, FAT1, and MYO18A, while TP53, FAT1, FAT3, PDE4DIP, ROS1, and GALNT11 were frequently altered in ICC; notably, KRAS (18.18% vs. 1.29%) and BAP1 (13.64% vs. 1.29%) alterations were significantly more prevalent in ICC. Comparison analysis demonstrated the distinct clinicopathological/genomic characterizations between Chinese and Western HCC cohorts. Genomic profiling of HCC underlying VI showed that LDLR, MSH2, KDM5D, PDE3A, and FOXO1 were frequently altered in the VI group compared to patients without VIs. Compared to the right hepatic lobes of HCC patients, the left hepatic lobe of HCC patients had superior OS (median OS: 36.77 months vs. unreached, p < 0.05). By further comparison, Notch signaling pathway-related alterations were significantly prevalent among the right hepatic lobes of HCC patients. Of note, multivariate Cox regression analysis showed that altered RB1, NOTCH3, MGA, SYNE1, and ZFHX3, as independent prognostic factors, were significantly correlated with the OS of HCC patients. Furthermore, altered LATS1 was abundantly enriched in the HCC-recurrent group, and impressively, it was independent of clinicopathological features in predicting RFS (median RFS of altered type vs. wild-type: 5.57 months vs. 22.47 months, p < 0.01). Regarding those treated HCC patients, TMB value, altered PTPRZ1, and cell cycle-related alterations were identified to be positively associated with the objective response rate (ORR), but KMT2D alterations were negatively correlated with ORR. In addition, altered KMT2D and cell cycle signaling were significantly associated with reduced and increased time to progression-free survival (PFS), respectively. Conclusion: Comprehensive genomic profiling deciphered distinct molecular characterizations underlying VI, location of onset, recurrence, and survival time in liver cancer. The identification of novel genetic predictors of response to anti-PD-1 plus bevacizumab in HCC facilitated the development of an evidence-based approach to therapy.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Peipei Shang
- Department of Medical Oncology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chang Xu
- Department of General Surgery, Biliary Tract Disease Institute, Biliary Tract Disease Center, and Cancer Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaofeng Zhang
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chengjun Sui
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Yang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Fattahi M, Shahrabi S, Saadatpour F, Rezaee D, Beyglu Z, Delavari S, Amrolahi A, Ahmadi S, Bagheri-Mohammadi S, Noori E, Majidpoor J, Nouri S, Aghaei-Zarch SM, Falahi S, Najafi S, Le BN. microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int J Biol Macromol 2023; 250:125863. [PMID: 37467828 DOI: 10.1016/j.ijbiomac.2023.125863] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs belonging to a class of non-coding RNAs with an average length of 18-22 nucleotides. Although not able to encode any protein, miRNAs are vastly studied and found to play role in various human physiologic as well as pathological conditions. A huge number of miRNAs have been identified in human cells whose expression is straightly regulated with crucial biological functions, while this number is constantly increasing. miRNAs are particularly studied in cancers, where they either can act with oncogenic function (oncomiRs) or tumor-suppressors role (referred as tumor-suppressor/oncorepressor miRNAs). miR-382 is a well-studied miRNA, which is revealed to play regulatory roles in physiological processes like osteogenic differentiation, hematopoietic stem cell differentiation and normal hematopoiesis, and liver progenitor cell differentiation. Notably, miR-382 deregulation is reported in pathologic conditions, such as renal fibrosis, muscular dystrophies, Rett syndrome, epidural fibrosis, atrial fibrillation, amelogenesis imperfecta, oxidative stress, human immunodeficiency virus (HIV) replication, and various types of cancers. The majority of oncogenesis studies have claimed miR-382 downregulation in cancers and suppressor impact on malignant phenotype of cancer cells in vitro and in vivo, while a few studies suggest opposite findings. Given the putative role of this miRNA in regulation of oncogenesis, assessment of miR-382 expression is suggested in a several clinical investigations as a prognostic/diagnostic biomarker for cancer patients. In this review, we have an overview to recent studies evaluated the role of miR-382 in oncogenesis as well as its clinical potential.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Beyglu
- Department of Genetics, Qom Branch, Islamic Azad University, Qom, Iran
| | - Sana Delavari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anita Amrolahi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shadi Nouri
- Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
7
|
Khan K, Irfan M, Sattar AA, Faiz MB, Rahman AU, Athar H, Calina D, Sharifi-Rad J, Cho WC. LncRNA SNHG6 role in clinicopathological parameters in cancers. Eur J Med Res 2023; 28:363. [PMID: 37735423 PMCID: PMC10515066 DOI: 10.1186/s40001-023-01358-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
RNA sequencing has revealed that a substantial portion of the human genome undergoes transcription, yet a minimal fraction of these transcripts translates into proteins. LncRNAs, RNA molecules less than 200 nt in length, once deemed as transcriptional noise, have now emerged as crucial regulators of numerous cellular processes. This review focuses on the lncRNA SNHG6, aiming to elucidate its biogenesis, the pivotal roles it plays, and its mechanisms in facilitating the hallmarks of cancer. A comprehensive literature review and analysis were undertaken to delve into the biogenesis of SNHG6, its roles in cellular processes, and the mechanisms through which it contributes to the hallmarks of cancer. SNHG6 is a notable lncRNA, observed to be overexpressed in various cancer types; its perturbation has been linked to tumor progression, emphasizing its significance in oncogenesis. This lncRNA contributes to a range of cellular aberrations, influencing transcriptional, post-transcriptional, and epigenetic processes of mRNA, ultimately driving cancerous transformations. LncRNA SNHG6 serves as a potential biomarker and therapeutic target due to its association with tumorigenesis. Understanding its mechanism and role in cancer can pave the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Areej Abdul Sattar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Anees ur Rahman
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Hafsa Athar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
8
|
Xu T, Wei D, Yang Z, Xie S, Yan Z, Chen C, Hu W, Shi Z, Zhao Y, Cui M, Xu Z, Wang J. ApoM suppresses kidney renal clear cell carcinoma growth and metastasis via the Hippo-YAP signaling pathway. Arch Biochem Biophys 2023; 743:109642. [PMID: 37211224 DOI: 10.1016/j.abb.2023.109642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Renal cell carcinoma is one of the most common malignancies worldwide, and kidney renal clear cell carcinoma (KIRC) is the most common histopathological type of renal cell carcinoma. However, the mechanism of KIRC progression remains poorly understood. Apolipoprotein M (ApoM) is a plasma apolipoprotein and a member of the lipid transport protein superfamily. Lipid metabolism is essential for tumor progression, and its related proteins can be used as therapeutic targets for tumors. ApoM influences the development of several cancers, but its relationship with KIRC remains unclear. In this study, we aimed to investigate the biological function of ApoM in KIRC and to reveal its potential molecular mechanisms. We found that ApoM expression was significantly reduced in KIRC and was strongly correlated with patient prognosis. ApoM overexpression significantly inhibited KIRC cell proliferation in vitro, suppressed the epithelial mesenchymal transition (EMT) of KIRC cells, and decreased their metastatic capacity. Additionally, the growth of KIRC cells was inhibited by ApoM overexpression in vivo. In addition, we found that overexpression of ApoM in KIRC attenuated Hippo-YAP protein expression and YAP stability and thus inhibited KIRC growth and progression. Therefore, ApoM may be a potential target for the treatment of KIRC.
Collapse
Affiliation(s)
- Ting Xu
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, 261053, PR China; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Dan Wei
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Shanghuan Xie
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China; Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhangbin Yan
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, 261053, PR China; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Cong Chen
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Wenxin Hu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Zhida Shi
- Reproductive Center, Maternal and Child Health Hospital of Shandong Province, Jinan, Shandong, 250014, PR China
| | - Yihan Zhao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Minghu Cui
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China; Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhipeng Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China.
| | - Jianning Wang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China.
| |
Collapse
|
9
|
Sattari Fard F, Jalilzadeh N, Mehdizadeh A, Sajjadian F, Velaei K. Understanding and targeting anoikis in metastasis for cancer therapies. Cell Biol Int 2023; 47:683-698. [PMID: 36453448 DOI: 10.1002/cbin.11970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022]
Abstract
The development of effective treatments for cancers requires investigations for a more detailed and comprehensive understanding of the basic cellular mechanisms involved in carcinogenesis, cancer progression, and metastasis. One of those driving mechanisms is anoikis, a special type of apoptosis, which is induced by losing anchorage from the extracellular matrix (ECM). In other words, resisting death in detached cells (cells without ECM) forms an anoikis-resistant phenotype. Since the anoikis-resistance state compensates for the initial steps of cancer metastasis, this review aimed to discuss mechanisms of gaining anoikis/anoikis resistance phenotype in tumor cells. Finally, we highlighted the significance of anoikis in malignancies so as to provide clear insight into cancer diagnosis and therapy development.
Collapse
Affiliation(s)
- Farzad Sattari Fard
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fakhrosadat Sajjadian
- Department of Radiology, Faculty of Para-Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
De Vitis C, Battaglia AM, Pallocca M, Santamaria G, Mimmi MC, Sacco A, De Nicola F, Gaspari M, Salvati V, Ascenzi F, Bruschini S, Esposito A, Ricci G, Sperandio E, Massacci A, Prestagiacomo LE, Vecchione A, Ricci A, Sciacchitano S, Salerno G, French D, Aversa I, Cereda C, Fanciulli M, Chiaradonna F, Solito E, Cuda G, Costanzo F, Ciliberto G, Mancini R, Biamonte F. ALDOC- and ENO2- driven glucose metabolism sustains 3D tumor spheroids growth regardless of nutrient environmental conditions: a multi-omics analysis. J Exp Clin Cancer Res 2023; 42:69. [PMID: 36945054 PMCID: PMC10031988 DOI: 10.1186/s13046-023-02641-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Matteo Pallocca
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | | | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesca De Nicola
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania ''Luigi Vanvitelli'', Naples, Italy
| | - Eleonora Sperandio
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Alice Massacci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Licia Elvira Prestagiacomo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Alberto Ricci
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Deborah French
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | | | - Egle Solito
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Magna Graecia University of Catanzaro, Interdepartmental Centre of Services, Catanzaro, Italy
| | - Gennaro Ciliberto
- Scientific Director, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy.
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| |
Collapse
|
11
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
12
|
Xu W, Sun T, Wang J, Li H, Chen B, Zhou Y, Wang T, Wang S, Liu J, Jiang H. LMO3 downregulation in PCa: A prospective biomarker associated with immune infiltration. Front Genet 2022; 13:945151. [PMID: 36199576 PMCID: PMC9527341 DOI: 10.3389/fgene.2022.945151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is the third leading cause of new cancer cases and the second most common tumor type in men globally. LMO3 has been stated to play a vital role in some cancers; however, the prognostic value of LMO3 in PCa remains vague. Here, we utilized various web databases to elucidate in detail the prognostic value and molecular functions of LMO3 in PCa. LMO3 expression was significantly decreased in PCa. Low LMO3 expression was associated with gender, age, and TNM grade and predicted a poor prognosis in PCa patients. Functional enrichment analysis suggested that LMO3 is engaged in the extracellular matrix and immune response. Moreover, LMO3 was positively correlated with immune infiltration levels and numerous immune markers. LMO3 may function as a prospective biomarker of immune infiltration in PCa.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingliang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjian Zhou
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jihong Liu, ; Hongyang Jiang,
| | - Hongyang Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jihong Liu, ; Hongyang Jiang,
| |
Collapse
|
13
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
14
|
He Y, Pan Z, Shi Q, Zhang X, Shen W, Huo L, Guo H, Tang C, Ling Y. Bioinformatics Profiling and Experimental Validation of 4 Differentially-Expressed LIM Genes in the Course of Colorectal-Adenoma-Carcinoma. Med Sci Monit 2022; 28:e937081. [PMID: 35854639 PMCID: PMC9310551 DOI: 10.12659/msm.937081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND LIM domain proteins play crucial roles in tumors by interacting with diverse proteins. However, their roles in the course of colorectal mucosa-adenoma-carcinoma remain unclear. This study aimed to depict their dynamic expression profiles and elucidate their potential functions in this transition course. MATERIAL AND METHODS Differentially-expressed LIM proteins (DELGs) in paired adenomas, carcinomas, and mucosae were identified using the GEO dataset (GSE 117606) and validated by immunohistochemistry using our tissue microarray. Kaplan-Meier survival analysis, WGCNA, module-trait analysis, and KEGG enrichment were conducted. The correlation of DELGs expression levels with immune infiltration was assessed using the ESTIMATE package and TISCH database. The role of DELGs of interest was validated using cell proliferation, migration, and invasion assays. RESULTS Four DELGs were identified - LMO3, FHL1, NEBL, and TGFB1I1 - all of which were of significance in prognosis. Module-trait correlation and KEGG enrichment revealed their involvement in cancer-related signaling. Immunohistochemistry showed gradual downregulation of LMO3 but upregulation of NEBL in the mucosa-adenoma-carcinoma sequence. The opposite expression patterns were observed for FHL1 and TGFB1I1 in tumor epithelium and mesenchyme. High expression levels of the DELGs were correlated with increased infiltration of NK, NKT, and macrophages, except for NEBL. Importantly, LMO3 inhibited proliferation, migration, and invasion of colon epithelial cells. CONCLUSIONS This study identified 4 differentially-expressed LIM genes - LMO3, FHL1, TGFB1I1, and NEBL - and revealed they were involved in the mucosa-adenoma-carcinoma sequence via regulating cancer-related pathways, influencing epigenetic field, or affecting immune infiltration. Our findings provide new insights into the roles of LIM proteins in the course of mucosa-adenoma-carcinoma.
Collapse
Affiliation(s)
- Ying He
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
| | - Zongfu Pan
- Department of Pharmacy, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Qian Shi
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
| | - Xilin Zhang
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
| | - Weiyun Shen
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
| | - Lixia Huo
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
| | - Huihui Guo
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
| | - Chengwu Tang
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
| | - Yuhang Ling
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, PR China
| |
Collapse
|
15
|
Canisius J, Wagner A, Bunk EC, Spille DC, Stögbauer L, Grauer O, Hess K, Thomas C, Paulus W, Stummer W, Senner V, Brokinkel B. Expression of decitabine-targeted oncogenes in meningiomas in vivo. Neurosurg Rev 2022; 45:2767-2775. [PMID: 35445910 PMCID: PMC9349086 DOI: 10.1007/s10143-022-01789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Treatment of meningiomas refractory to surgery and irradiation is challenging and effective chemotherapies are still lacking. Recently, in vitro analyses revealed decitabine (DCT, 5-aza-2’–deoxycytidine) to be effective in high-grade meningiomas and, moreover, to induce hypomethylation of distinct oncogenes only sparsely described in meningiomas in vivo yet. Expression of the corresponding onco- and tumor suppressor genes TRIM58, FAM84B, ELOVL2, MAL2, LMO3, and DIO3 were analyzed and scored by immunohistochemical staining and RT-PCR in samples of 111 meningioma patients. Correlations with clinical and histological variables and prognosis were analyzed in uni- and multivariate analyses. All analyzed oncogenes were highly expressed in meningiomas. Expression scores of TRIM58 tended to be higher in benign than in high-grade tumors 20 vs 16 (p = .002) and all 9 samples lacking TRIM58 expression displayed WHO grade II/III histology. In contrast, median expression scores for both FAM84B (6 vs 4, p ≤ .001) and ELOVL2 (9 vs 6, p < .001) were increased in high-grade as compared to benign meningiomas. DIO3 expression was distinctly higher in all analyzed samples as compared to the reference decitabine-resistant Ben-Men 1 cell line. Increased ELOVL2 expression (score ≥ 8) correlated with tumor relapse in both uni- (HR: 2.42, 95%CI 1.18–4.94; p = .015) and multivariate (HR: 2.09, 95%CI 1.01–4.44; p = .046) analyses. All oncogenes involved in DCT efficacy in vitro are also widely expressed in vivo, and expression is partially associated with histology and prognosis. These results strongly encourage further analyses of DCT efficiency in meningiomas in vitro and in situ.
Collapse
Affiliation(s)
- Julian Canisius
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Andrea Wagner
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Eva Christina Bunk
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Dorothee Cäcilia Spille
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Louise Stögbauer
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Oliver Grauer
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, North Rhine-Westphalia, Münster, Germany
| | - Katharina Hess
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine Westphalia, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, North Rhine Westphalia, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
16
|
Ling Z, Long X, Wu Y, Li J, Feng M. LMO3 promotes proliferation and metastasis of papillary thyroid carcinoma cells by regulating LIMK1-mediated cofilin and the β-catenin pathway. Open Med (Wars) 2022; 17:453-462. [PMID: 35350839 PMCID: PMC8919831 DOI: 10.1515/med-2022-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022] Open
Abstract
Abstract
LIM domain only 3 (LMO3) interacts with transcription factors to regulate target genes involved in embryonic development. The oncogenic role of LMO3 in hepatocellular carcinoma, gastric cancer, and neuroblastoma has been reported recently. However, little is known about the biological function of LMO3 in papillary thyroid carcinoma (PTC). First, expression of LMO3 was dramatically enhanced in the PTC tissues and cell lines. Second, knockdown of LMO3 in PTC cells repressed cell proliferation and promoted cell apoptosis with downregulated Bcl-2 and upregulated cleaved caspase-3/PARP. In vitro cell migration and invasion of PTC were also retarded by siRNA-mediated silence of LMO3. Third, protein expression of LIM kinase (LIMK) 1-mediated phosphorylation of cofilin and nuclear translocation of β-catenin were reduced by the knockdown of LMO3. pcDNA-mediated overexpression of LIMK1 promoted cofilin phosphorylation and attenuated LMO3 silence-induced decrease of cofilin phosphorylation. Last, enhanced LIMK1 expression promoted PTC cell proliferation and metastasis and counteracted the suppressive effects of LMO3 silence on PTC cell proliferation and metastasis. In conclusion, LMO3 promoted PTC cell proliferation and metastasis by regulating LIMK1-mediated cofilin and the β-catenin pathway.
Collapse
Affiliation(s)
- Zeyi Ling
- Department of Otorhinolaryngology Head and Neck Surgery, Yongchuan Hospital of Chongqing Medical University , Chongqing , 402160 , China
| | - Xiaoli Long
- Department of Geriatrics, Yongchuan Hospital of Chongqing Medical University , No. 439, Xuanhua Road, Yongchuan District , Chongqing , 402160 , China
| | - Ying Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Yongchuan Hospital of Chongqing Medical University , Chongqing , 402160 , China
| | - Jie Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yongchuan Hospital of Chongqing Medical University , Chongqing , 402160 , China
| | - Mingliang Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Yongchuan Hospital of Chongqing Medical University , Chongqing , 402160 , China
| |
Collapse
|
17
|
Stögbauer L, Thomas C, Wagner A, Warneke N, Bunk EC, Grauer O, Canisius J, Paulus W, Stummer W, Senner V, Brokinkel B. Efficacy of decitabine in malignant meningioma cells: relation to promoter demethylation of distinct tumor suppressor and oncogenes and independence from TERT. J Neurosurg 2021; 135:845-854. [PMID: 33307532 DOI: 10.3171/2020.7.jns193097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Chemotherapeutic options for meningiomas refractory to surgery or irradiation are largely unknown. Human telomerase reverse transcriptase (hTERT) promoter methylation with subsequent TERT expression and telomerase activity, key features in oncogenesis, are found in most high-grade meningiomas. Therefore, the authors investigated the impact of the demethylating agent decitabine (5-aza-2'-deoxycytidine) on survival and DNA methylation in meningioma cells. METHODS hTERT promoter methylation, telomerase activity, TERT expression, and cell viability and proliferation were investigated prior to and after incubation with decitabine in two benign (HBL-52 and Ben-Men 1) and one malignant (IOMM-Lee) meningioma cell line. The global effects of decitabine on DNA methylation were additionally explored with DNA methylation profiling. RESULTS High levels of TERT expression, telomerase activity, and hTERT promoter methylation were found in IOMM-Lee and Ben-Men 1 but not in HBL-52 cells. Decitabine induced a dose-dependent significant decrease of proliferation and viability after incubation with doses from 1 to 10 μM in IOMM-Lee but not in HBL-52 or Ben-Men 1 cells. However, effects in IOMM-Lee cells were not related to TERT expression, telomerase activity, or hTERT promoter methylation. Genome-wide methylation analyses revealed distinct demethylation of 14 DNA regions after drug administration in the decitabine-sensitive IOMM-Lee but not in the decitabine-resistant HBL-52 cells. Differentially methylated regions covered promoter regions of 11 genes, including several oncogenes and tumor suppressor genes that to the authors' knowledge have not yet been described in meningiomas. CONCLUSIONS Decitabine decreases proliferation and viability in high-grade but not in benign meningioma cell lines. The effects of decitabine are TERT independent but related to DNA methylation changes of promoters of distinct tumor suppressor genes and oncogenes.
Collapse
Affiliation(s)
| | | | | | | | | | - Oliver Grauer
- 3Department of Neurology, University Hospital Münster, North Rhine-Westphalia, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Peng Y, Hu S, Zhang K, Wang Y, Rouzi M, Zhou D, Yang R. Downregulation of MicroRNA-130a Inhibits Oral Squamous Cell Carcinoma Proliferation and Metastasis via the Hippo-YAP Pathway. Cancer Manag Res 2021; 13:4829-4840. [PMID: 34168502 PMCID: PMC8216666 DOI: 10.2147/cmar.s287575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/18/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction Oral squamous cell carcinoma (OSCC) means oral epithelial cell injury caused by multiple genetic mutations of the cells. Dysregulation of microRNAs (miRs) can disrupt the progression of OSCC. This study explored the mechanism of miR-130a in OSCC progression. Methods miR-130a expression in OSCC cell lines was analyzed. Functional assays were utilized to test the alterations of OSCC cell proliferation, apoptosis and epithelial–mesenchymal transition (EMT) with downregulated miR-130a, shRNA-PTEN or/and YAP inhibitor verteporfin. Then, dual-luciferase reporter gene assay was performed to clarify the targeting relation between miR-130a and PTEN. After that, Hippo-YAP pathway-related protein levels were tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results Highly expressed miR-130a was observed in OSCC cell lines. Silenced miR-130a reduced OSCC proliferation, metastasis, invasion and EMT while propelled apoptosis. Furthermore, miR-130a targeted PTEN to promote the OSCC progression. Downregulation of PTEN reversed the inhibition of silencing miR-130a on proliferation and migration of SCC-4 cells. miR-130a targeted PTEN to inactivate the Hippo-YAP axis. OSCC progression was notably promoted by a combination of YAP inhibitor verteporfin and miR-130a inhibitor. Additionally, silenced miR-130a inhibited OSCC progression in vivo. Discussion Silencing miR-130a inhibited OSCC progression by targeting PTEN and activating the Hippo-YAP axis. This investigation may provide novel insight for OSCC treatment.
Collapse
Affiliation(s)
- Yiran Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, 610041, People's Republic of China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shoushan Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kun Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuru Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, 610041, People's Republic of China
| | - Maierdanjiang Rouzi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, 610041, People's Republic of China
| | - Dan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ran Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, 610041, People's Republic of China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
19
|
Comprehensive Comparison of Amnion Stromal Cells and Chorion Stromal Cells by RNA-Seq. Int J Mol Sci 2021; 22:ijms22041901. [PMID: 33672986 PMCID: PMC7918623 DOI: 10.3390/ijms22041901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells derived from the fetal placenta, composed of an amnion membrane, chorion membrane, and umbilical cord, have emerged as promising sources for regenerative medicine. Here, we used next-generation sequencing technology to comprehensively compare amniotic stromal cells (ASCs) with chorionic stromal cells (CSCs) at the molecular and signaling levels. Principal component analysis showed a clear dichotomy of gene expression profiles between ASCs and CSCs. Unsupervised hierarchical clustering confirmed that the biological repeats of ASCs and CSCs were able to respectively group together. Supervised analysis identified differentially expressed genes, such as LMO3, HOXA11, and HOXA13, and differentially expressed isoforms, such as CXCL6 and HGF. Gene Ontology (GO) analysis showed that the GO terms of the extracellular matrix, angiogenesis, and cell adhesion were significantly enriched in CSCs. We further explored the factors associated with inflammation and angiogenesis using a multiplex assay. In comparison with ASCs, CSCs secreted higher levels of angiogenic factors, including angiogenin, VEGFA, HGF, and bFGF. The results of a tube formation assay proved that CSCs exhibited a strong angiogenic function. However, ASCs secreted two-fold more of an anti-inflammatory factor, TSG-6, than CSCs. In conclusion, our study demonstrated the differential gene expression patterns between ASCs and CSCs. CSCs have superior angiogenic potential, whereas ASCs exhibit increased anti-inflammatory properties.
Collapse
|
20
|
Patra T, Bose SK, Kwon YC, Meyer K, Ray R. Inhibition of p70 isoforms of S6K1 induces anoikis to prevent transformed human hepatocyte growth. Life Sci 2021; 265:118764. [PMID: 33189822 DOI: 10.1016/j.lfs.2020.118764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
AIMS The mTOR/S6K1 signaling axis, known for cell growth regulation, is hyper-activated in multiple cancers. In this study, we have examined the mechanisms for ribosomal protein p70-S6 kinase 1 (S6K1) associated transformed human hepatocyte (THH) growth regulation. MAIN METHODS THH were treated with p70-S6K1 inhibitor and analyzed for cell viability, cell cycle distribution, specific marker protein expression by western blot, and tumor inhibition in a xenograft mouse model. We validated our results by knockdown of p70-S6K1 using specific siRNA. KEY FINDINGS p70-S6K1 inhibitor treatment caused impairment of in vitro hepatocyte growth, and arrested cell cycle progression at the G1 phase. Further, p70-S6K1 inhibitor treatment exhibited a decrease in FAK and Erk activation, followed by altered integrin-β1 expression, caspase 8, and PARP cleavage appeared to be anoikis like growth inhibition. p70-S6K1 inhibitor also depolymerized actin microfilaments and diminished active Rac1/Cdc42 complex formation for loss of cellular attachment. Similar results were obtained with other transformed human hepatocyte cell lines. p70-S6K1 inhibition also resulted in a reduced phospho-EGFR, Slug and Twist; implicating an inhibition of epithelial-mesenchymal transition (EMT) state. A xenograft tumor model, generated from implanted THH in nude mice, following intraperitoneal injection of S6K1 inhibitor prevented further tumor growth. SIGNIFICANCE Our results suggested that p70-S6K1 inhibition alters orchestration of cell cycle progression, induces cell detachment, and sensitizes hepatocyte growth impairment. Targeting p70 isoform of S6K1 by inhibitor may prove to be a promising approach together with other therapies for hepatocellular carcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Tapas Patra
- Departments of Internal Medicine, Saint Louis University, MO, USA.
| | - Sandip K Bose
- Departments of Internal Medicine, Saint Louis University, MO, USA; Molecular Microbiology & Immunology, Saint Louis University, MO, USA
| | - Young-Chan Kwon
- Departments of Internal Medicine, Saint Louis University, MO, USA
| | - Keith Meyer
- Departments of Internal Medicine, Saint Louis University, MO, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, MO, USA; Molecular Microbiology & Immunology, Saint Louis University, MO, USA.
| |
Collapse
|
21
|
Yang J, Zhang X, Liu L, Yang X, Qian Q, Du B. c-Src promotes the growth and tumorigenesis of hepatocellular carcinoma via the Hippo signaling pathway. Life Sci 2021; 264:118711. [PMID: 33186566 DOI: 10.1016/j.lfs.2020.118711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
We investigated the association between c-Src and the progression of hepatocellular carcinoma (HCC) and its underlying mechanisms. The relationship between c-Src expression and the occurrence and development of HCC was explored using GEPIA and further confirmed by western blotting analysis and real-time quantitative PCR. CCK-8, flow cytometry, Transwell, and wound-healing assays were conducted to analyze the effects of c-Src on the growth, cell cycle, apoptosis, migration, and infiltration of HCC cells. Mouse models of transplanted xenogeneic human tumors were constructed to explore the effects of c-Src on HCC tumor growth. Compared with that in adjacent normal liver tissues, the expression level of c-Src in HCC tissues was significantly increased and was negatively correlated with patient survival. These findings are consistent with those in the GEPIA database. Downregulation of c-Src expression can inhibit the growth, infiltration, and migration of HCC cells. c-Src impeded the translocation of YAP from the nucleus to the cytoplasm and promoted Yes-associated protein transcriptional activity. In vivo experiments showed that c-Src inhibition suppressed tumor growth in mice. We found that c-Src can promote the growth and tumorigenesis of HCC cells by activating the Hippo signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Hippo Signaling Pathway
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Nude
- Neoplasm Invasiveness
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors
- Proto-Oncogene Proteins pp60(c-src)/genetics
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
- YAP-Signaling Proteins
- Mice
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Xiujuan Zhang
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China.
| | - Leilei Liu
- Department of Ultrasound, The Second People's Hospital of Fujian Province, Fuzhou 350001, Fujian, China
| | - Xin Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Qingfu Qian
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Bin Du
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| |
Collapse
|
22
|
Dong J, Maj C, Tsavachidis S, Ostrom QT, Gharahkhani P, Anderson LA, Wu AH, Ye W, Bernstein L, Borisov O, Schröder J, Chow WH, Gammon MD, Liu G, Caldas C, Pharoah PD, Risch HA, May A, Gerges C, Anders M, Venerito M, Schmidt T, Izbicki JR, Hölscher AH, Schumacher B, Vashist Y, Neuhaus H, Rösch T, Knapp M, Krawitz P, Böhmer A, Iyer PG, Reid BJ, Lagergren J, Shaheen NJ, Corley DA, Gockel I, Fitzgerald RC, Cook MB, Whiteman DC, Vaughan TL, Schumacher J, Thrift AP. Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma. Gastroenterology 2020; 159:2065-2076.e1. [PMID: 32918910 PMCID: PMC9057456 DOI: 10.1053/j.gastro.2020.08.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Esophageal adenocarcinoma (EA) and its premalignant lesion, Barrett's esophagus (BE), are characterized by a strong and yet unexplained male predominance (with a male-to-female ratio in EA incidence of up to 6:1). Genome-wide association studies (GWAS) have identified more than 20 susceptibility loci for these conditions. However, potential sex differences in genetic associations with BE/EA remain largely unexplored. METHODS Given strong genetic overlap, BE and EA cases were combined into a single case group for analysis. These were compared with population-based controls. We performed sex-specific GWAS of BE/EA in 3 separate studies and then used fixed-effects meta-analysis to provide summary estimates for >9 million variants for male and female individuals. A series of downstream analyses were conducted separately in male and female individuals to identify genes associated with BE/EA and the genetic correlations between BE/EA and other traits. RESULTS We included 6758 male BE/EA cases, 7489 male controls, 1670 female BE/EA cases, and 6174 female controls. After Bonferroni correction, our meta-analysis of sex-specific GWAS identified 1 variant at chromosome 6q11.1 (rs112894788, KHDRBS2-MTRNR2L9, PBONF = .039) that was statistically significantly associated with BE/EA risk in male individuals only, and 1 variant at chromosome 8p23.1 (rs13259457, PRSS55-RP1L1, PBONF = 0.057) associated, at borderline significance, with BE/EA risk in female individuals only. We also observed strong genetic correlations of BE/EA with gastroesophageal reflux disease in male individuals and obesity in female individuals. CONCLUSIONS The identified novel sex-specific variants associated with BE/EA could improve the understanding of the genetic architecture of the disease and the reasons for the male predominance.
Collapse
Affiliation(s)
- Jing Dong
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas; Division of Hematology and Oncology, Department of Medicine, Cancer Center, and Genomic Sciences & Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Germany
| | - Spiridon Tsavachidis
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Quinn T Ostrom
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lesley A Anderson
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland & Aberdeen Center for Health Data Science, University of Aberdeen, Scotland
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, California
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Germany
| | - Julia Schröder
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Wong-Ho Chow
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Geoffrey Liu
- Pharmacogenomic Epidemiology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Carlos Caldas
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | - Paul D Pharoah
- Department of Oncology, University of Cambridge, Cambridge, UK; Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Andrea May
- Department of Medicine II, Sana Klinikum, Offenbach, Germany
| | - Christian Gerges
- Department of Internal Medicine II, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Mario Anders
- Department of Gastroenterology and Interdisciplinary Endoscopy, Vivantes Wenckebach-Klinikum, Berlin, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Arnulf H Hölscher
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Brigitte Schumacher
- Department of Internal Medicine and Gastroenterology, Elisabeth Hospital, Essen, Germany
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Horst Neuhaus
- Department of Internal Medicine II, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Thomas Rösch
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Germany
| | - Anne Böhmer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Brian J Reid
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jesper Lagergren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Nicholas J Shaheen
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, California; San Francisco Medical Center, Kaiser Permanente Northern California, San Francisco, California
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - David C Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thomas L Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Aaron P Thrift
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas; Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
23
|
Zhang Y, An J, Pei Y. LncRNA SNHG6 promotes LMO3 expression by sponging miR-543 in glioma. Mol Cell Biochem 2020; 472:9-17. [PMID: 32613482 DOI: 10.1007/s11010-020-03772-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/31/2020] [Indexed: 01/01/2023]
Abstract
Small nucleolar RNA host gene 6 (SNHG6) was a newly discovered long non-coding RNA, which was involved in the occurrence and development of a variety of cancers and was on the rise in human cancers. However, the molecular mechanism of SNHG6 in glioma required further investigation. The levels of SNHG6, microRNA-543 (miR-543) and LIM-only protein 3 (LMO3) were detected in glioma tissues and cells by quantitative real-time polymerase chain reaction. We examined cell proliferation and apoptosis rate by methylthiazolyldiphenyl-tetrazolium bromide and flow cytometry assays, respectively. Transwell assay was used to measure cell migration and invasion. The target relationships were predicted by StarBase v.2.0 and TargetScan and confirmed by dual-luciferase reporter assay. Spearman's test was adopted for expression correlation of SNHG6, miR-543 and LMO3 in tissues. The protein expression level of LMO3 was assessed by western blot. We found that SNHG6 was obviously upregulated in glioma tissues and cells. SNHG6 knockdown significantly repressed glioma cell proliferation, migration and invasion, and induced apoptosis. Additionally, SNHG6 directly targeted miR-543 and their expression was negatively correlated in glioma tissues. And miR-543 targeted LMO3 and their expression was also inversely correlated. We found that silencing LMO3 also inhibited the progression of glioma cells. Importantly, SNHG6 could competitively sponging miR-543 thereby modulating LMO3 in glioma cells. SNHG6 served as an oncogene and played a vital role in glioma development through miR-543/LMO3 axis.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), No. 9 City Garden West Road, Tianxing Bridge, Shapingba District, Chongqing, 400037, China.
| | - Jiayin An
- Department of Neurosurgery, Eastern Theatre Naval Hospital of Chinese People's Liberation Army, Zhoushan, Zhejiang, China
| | - Yuchun Pei
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), No. 9 City Garden West Road, Tianxing Bridge, Shapingba District, Chongqing, 400037, China
| |
Collapse
|
24
|
Zhang B, Huang L, Tu J, Wu T. Hypoxia-Induced Placenta-Specific microRNA (miR-512-3p) Promotes Hepatocellular Carcinoma Progression by Targeting Large Tumor Suppressor Kinase 2. Onco Targets Ther 2020; 13:6073-6083. [PMID: 32612368 PMCID: PMC7323795 DOI: 10.2147/ott.s254612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background Sustained proliferation and active metastasis are hallmarks of cancer, and they pose major challenges to the development of treatments and a cure for hepatocellular carcinoma (HCC). Thus, the mechanisms of proliferation, migration, and invasion of cancer cells need to be investigated. Many studies indicate that dysregulation of microRNA plays important roles in the progression of HCC, but the role of placenta-specific microRNA (miR-512-3p) in HCC has not been systematically investigated. Purpose In the current study, the expression, biological function, and mechanisms of miR-512-3p involvement in HCC were investigated. Methods Real-time quantitative polymerase chain reaction assays were conducted to determine miR-512-3p levels in HCC tissues and cell lines. The StarBase V3.0 online platform was used to compare miR-512-3p levels in HCC tissues with TCGA data and to identify potential miR-512-3p target genes. Associations between miR-512-3p and clinicopathological characteristics were analyzed statistically. MTT, ethynyl deoxyuridine, and transwell assays were performed to assess cell viability, proliferation, migration, and invasion. The luciferase reporter gene assay was used to verify target genes. Recuse assays were performed to confirm whether large tumor suppressor kinase 2 (LATS2) participated in the regulatory effects of miR-512-3p on HCC cell proliferation and motility, and whether miR-512-3p mediated the tumor-promoting effects of hypoxia. Results miR-512-3p was upregulated in HCC and it was associated with worse survival and unfavorable clinicopathological characteristics. Functional assays indicated that miR-512-3p contributed to HCC cell proliferation, migration, and invasion. Mechanistically, LATS2—a downstream target of miR-512-3p—mediated the tumor-promoting effects of miR-512-3p in HCC. Hypoxia could elevate miR-512-3p levels in HCC cells, and miR-512-3p partially mediated the tumor-promoting effects of hypoxia. Conclusion Hypoxia-induced miR-512-3p contributes to HCC cell proliferation, migration, and invasion by targeting LATS2 and inhibiting the Hippo/yes-associated protein 1 pathways.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Clinical Medicine, Queen Mary Institute, Nanchang University, Nanchang, Jiangxi Province 330000, People's Republic of China
| | - Liang Huang
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jiangbo Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Tianming Wu
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| |
Collapse
|
25
|
Li Y, Yang S, Sadaoui NC, Hu W, Dasari SK, Mangala LS, Sun Y, Zhao S, Wang L, Liu Y, Ramondetta LM, Li K, Lu C, Kang Y, Cole SW, Lutgendorf SK, Sood AK. Sustained Adrenergic Activation of YAP1 Induces Anoikis Resistance in Cervical Cancer Cells. iScience 2020; 23:101289. [PMID: 32623336 PMCID: PMC7334594 DOI: 10.1016/j.isci.2020.101289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/19/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Chronic stress-related hormones modulate tumor pathogenesis at multiple levels; however, the molecular pathways involved in stress and cervical cancer progression are not well understood. We established a preclinical orthotopic mouse model of cervical cancer and used the model to show that daily restraint stress increased tumor growth and metastatic tumor burden. Exposure to norepinephrine significantly protected cervical cancer cells from anoikis. We demonstrated that YAP1 was dephosphorylated and translocated from the cytoplasm to the nucleus by norepinephrine, a process initiated by ADRB2/cAMP/protein kinase A activation. Furthermore, anoikis resistance and YAP1 activation induced by norepinephrine could be rescued by a broad β-adrenergic receptor antagonist, propranolol. Collectively, our results provide a pivotal molecular pathway for disrupting pro-tumor neuroendocrine signaling in cervical cancer. Daily restraint stress increases tumor growth and metastatic tumor burden Norepinephrine protects cervical cancer cells from anoikis Norepinephrine induces YAP1 dephosphorylation and nuclear translocation Norepinephrine - induced anoikis resistance can be reversed by propranolol
Collapse
Affiliation(s)
- Yang Li
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shanshan Yang
- Department of Gynecologic Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Nouara C Sadaoui
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunjie Sun
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuangtao Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Liu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lois M Ramondetta
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ke Li
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Chong Lu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Yu Kang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Steve W Cole
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Susan K Lutgendorf
- Department of Psychological & Brain Sciences, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Department of Urology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Up regulation of the Hippo signalling effector YAP1 is linked to early biochemical recurrence in prostate cancers. Sci Rep 2020; 10:8916. [PMID: 32488048 PMCID: PMC7265544 DOI: 10.1038/s41598-020-65772-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The transcriptional coactivator YAP1 controls the balance between cell proliferation and apoptosis. YAP1 overexpression is linked to poor prognosis in many cancer types, yet its role in prostate cancer is unknown. Here, we applied YAP1 immunohistochemistry to a tissue microarray containing 17,747 clinical prostate cancer specimens. Cytoplasmic and nuclear YAP1 staining was seen in 81% and 63% of tumours. For both cytoplasmic and nuclear YAP1 staining, high levels were associated with advanced tumour stage, classical and quantitative Gleason grade, positive nodal stage, positive surgical margin, high KI67 labelling index, and early biochemical recurrence (p < 0.0001 each). The prognostic role of YAP1 staining was independent of established prognostic features in multivariate models (p < 0.001). Comparison with previously studied molecular markers identified associations between high YAP1 staining, TMPRSS2:ERG fusion (p < 0.0001), high androgen receptor (AR) expression (p < 0.0001), high Ki67 labelling index (p < 0.0001), and PTEN and 8p deletions (p < 0.0001 each). In conclusion, high YAP1 protein expression is an independent predictor of unfavourable disease course in prostate cancer. That cytoplasmic and nuclear YAP1 staining is equally linked to phenotype and prognosis fits well to a model where YAP1 activation during tumour progression includes up regulation, cytoplasmic accumulation and subsequent translocation to the nucleus.
Collapse
|
27
|
Mindikoglu AL, Abdulsada MM, Jain A, Choi JM, Jalal PK, Devaraj S, Mezzari MP, Petrosino JF, Opekun AR, Jung SY. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteomics 2020; 217:103645. [PMID: 31927066 PMCID: PMC7429999 DOI: 10.1016/j.jprot.2020.103645] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Murine studies showed that disruption of circadian clock rhythmicity could lead to cancer and metabolic syndrome. Time-restricted feeding can reset the disrupted clock rhythm, protect against cancer and metabolic syndrome. Based on these observations, we hypothesized that intermittent fasting for several consecutive days without calorie restriction in humans would induce an anticarcinogenic proteome and the key regulatory proteins of glucose and lipid metabolism. Fourteen healthy subjects fasted from dawn to sunset for over 14 h daily. Fasting duration was 30 consecutive days. Serum samples were collected before 30-day intermittent fasting, at the end of 4th week during 30-day intermittent fasting, and one week after 30-day intermittent fasting. An untargeted serum proteomic profiling was performed using ultra high-performance liquid chromatography/tandem mass spectrometry. Our results showed that 30-day intermittent fasting was associated with an anticancer serum proteomic signature, upregulated key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system, and cognitive function, and resulted in a serum proteome protective against cancer, metabolic syndrome, inflammation, Alzheimer's disease, and several neuropsychiatric disorders. These findings suggest that fasting from dawn to sunset for 30 consecutive days can be preventive and adjunct therapy in cancer, metabolic syndrome, and several cognitive and neuropsychiatric diseases. SIGNIFICANCE: Our study has important clinical implications. Our results showed that intermittent fasting from dawn to sunset for over 14 h daily for 30 consecutive days was associated with an anticancer serum proteomic signature and upregulated key regulatory proteins of glucose and lipid metabolism, insulin signaling, circadian clock, DNA repair, cytoskeleton remodeling, immune system, and cognitive function, and resulted in a serum proteome protective against cancer, obesity, diabetes, metabolic syndrome, inflammation, Alzheimer's disease, and several neuropsychiatric disorders. Importantly, these findings occurred in the absence of any calorie restriction and significant weight loss. These findings suggest that intermittent fasting from dawn to sunset can be a preventive and adjunct therapy in cancer, metabolic syndrome and Alzheimer's disease and several neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ayse L Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, United States of America.
| | - Mustafa M Abdulsada
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Antrix Jain
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Jong Min Choi
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Prasun K Jalal
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, United States of America
| | - Sridevi Devaraj
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Melissa P Mezzari
- The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Antone R Opekun
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Department of Pediatrics, Division of Gastroenterology, Nutrition and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sung Yun Jung
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
28
|
Liu H, Liu M, You H, Li X, Li X. Oncogenic Network and Hub Genes for Natural Killer/T-Cell Lymphoma Utilizing WGCNA. Front Oncol 2020; 10:223. [PMID: 32195177 PMCID: PMC7066115 DOI: 10.3389/fonc.2020.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK)/T-cell lymphoma (NKTCL) is a subtype of non-Hodgkin lymphoma with aggressive progression and poor prognosis. The molecular mechanisms of NKTCL have not been well-studied. Herein, we revealed the lymphoma-associated dysregulated genes and signaling pathways or biological processes in NKTCL. We characterized that the extracellular matrix (ECM) receptor interaction pathway and T-cell receptor signaling pathway were the main dysregulated pathways in NKTCL by Gene Ontology (GO) analysis and pathway enrichment analysis. By using weighted gene co-expression network analysis (WGCNA), the gene co-expression network of NKTCL (SRP049695) was constructed, and hub genes (LMO3, GRB14) were identified. In addition, another Gene Expression Omnibus (GEO) dataset (GSE69406) was used to validate these hub genes. Furthermore, these hub genes were identified and validated by survival analysis (GSE90597). These results provided novel insights into the pathogenesis of NKTCL. Of particular interest, LMO3 and GRB14 might be potential oncoproteins and biomarkers for the diagnosis and treatment of NKTCL.
Collapse
Affiliation(s)
- Huijiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Mei Liu
- Department of Pathology, General Hospital of PLA, Beijing, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiru Li
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Xiangdong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Hu H, Xu L, Luo SJ, Xiang T, Chen Y, Cao ZR, Zhang YJ, Mo Z, Wang Y, Meng DF, Yu L, Lin LZ, Zhang SJ. Retinal dehydrogenase 5 (RHD5) attenuates metastasis via regulating HIPPO/YAP signaling pathway in Hepatocellular Carcinoma. Int J Med Sci 2020; 17:1897-1908. [PMID: 32788868 PMCID: PMC7415383 DOI: 10.7150/ijms.46091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal dehydrogenase 5 (RDH5) is an important enzyme in the visual cycle. Several studies have reported that the RDH family may play crucial roles in tumor prognosis. However, the role of RDH5 in tumor prognosis is still unclear. We examined the mRNA level of RDH5 by using q-PCR in hepatocellular carcinoma (HCC) and adjacent non-cancerous tissues. The proliferation rate of HCC cells was detected by MTS assay, and the invasive ability was examined by transwell and scratch wound assays. The YAP protein localization and expression were visualized by immunofluorescence in two different cell lines. CpG islands in the promoter region were predicted by using the methprimer database. Clinical characteristics of a patient cohort data came from The Cancer Genome Atlas database. RDH5 was significantly downregulated in hepatocellular carcinoma tissues, and low RDH5 expression was associated with metastasis and poor patient prognosis. Functional assays revealed that the RDH5 promoter is methylated in HCC cell lines. Moreover, overexpressing RDH5 can suppress metastasis by reversing the epithelial-mesenchymal transition (EMT) process, and RDH5 also inhibits cell proliferation in HCC cell lines. Furthermore, suppressing RDH5 can activate the Hippo/YAP signaling pathway and promote the nuclear translocation of YAP. Clinical data demonstrated that RDH5 is an independent prognostic factor in HCC. In our study, we provided the first evidence that RDH5 plays a crucial role in suppressing proliferation and metastasis, and the RDH5 promoter is methylated in hepatocellular carcinoma. And as an important regulator, RDH5 can suppress the Hippo/YAP signaling pathway. Taken together, it revealed that RDH5 might be a potential therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Hao Hu
- Department of Oncology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou (510407), China.,The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Liang Xu
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Shao-Ju Luo
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Ting Xiang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Yan Chen
- Department of Chinese Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Zhi-Rui Cao
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Yu-Jian Zhang
- Department of Oncology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou (510407), China
| | - Zhuomao Mo
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Yongdan Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Dong-Fang Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, P. R. China
| | - Ling Yu
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Li-Zhu Lin
- Department of Oncology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou (510407), China
| | - Shi-Jun Zhang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| |
Collapse
|
30
|
Peng X, Ji C, Tan L, Lin S, Zhu Y, Long M, Luo D, Li H. Long non-coding RNA TNRC6C-AS1 promotes methylation of STK4 to inhibit thyroid carcinoma cell apoptosis and autophagy via Hippo signalling pathway. J Cell Mol Med 2020; 24:304-316. [PMID: 31657132 PMCID: PMC6933333 DOI: 10.1111/jcmm.14728] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/06/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
The role of long non-coding RNAs (lncRNAs) in thyroid carcinoma (TC), the most frequent endocrine malignancy, has been extensively examined. This study investigated effect of interaction among lncRNA TNRC6C-AS1, serine/threonine-protein kinase 4 (STK4) and Hippo signalling pathway on TC. Initially, lncRNA TNRC6C-AS1 expression in TC tissues was detected. To explore roles of lncRNA TNRC6C-AS1, STK4 and Hippo signalling pathway in TC progression, their expressions were altered. Interaction between lncRNA TNRC6C-AS1 and STK4, STK4 promoter methylation, or Hippo signalling pathway was verified. After that, a series of experiments were employed to evaluate in vitro ability of apoptosis, proliferation and autophagy of TC cells and in vivo tumorigenicity, and tumour growth of TC cells. lncRNA TNRC6C-AS1 was highly expressed while STK4 was poorly expressed in TC tissues. LncRNA TNRC6C-AS1 promoted the STK4 methylation and down-regulated STK4 expression, which further activated the Hippo signalling pathway. STK4 silencing was observed to promote the proliferation ability of TC cells, inhibit the apoptosis and autophagy abilities, as well as enhance the tumorigenicity and tumour growth. Moreover, the in vitro proliferation ability as well as the in vivo tumorigenicity and tumour growth of TC cells were inhibited after the blockade of Hippo signalling pathway, while the apoptosis and autophagy abilities were promoted. The results demonstrate that the lncRNA TNRC6C-AS1 increases STK4 promoter methylation to down-regulate STK4 expression, thereby promoting the development of TC through activation of Hippo signalling pathway. It highlights that lncRNA TNRC6C-AS1 may be a novel therapeutic target for the treatment of TC.
Collapse
Affiliation(s)
- Xinzhi Peng
- Department of Thyroid SurgeryThe Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Chengcheng Ji
- Department of CardiologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Langping Tan
- Department of Thyroid SurgeryThe Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Shaojian Lin
- Department of Thyroid SurgeryThe Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yue Zhu
- Department of Thyroid SurgeryThe Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Miaoyun Long
- Department of Thyroid SurgeryThe Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Dingyuan Luo
- Department of Thyroid SurgeryThe Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Honghao Li
- Department of Thyroid SurgeryThe Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|