1
|
Wu X, Shen J, Liu J, Kang N, Zhang M, Cai X, Zhen X, Yan G, Liu Y, Sun H. Increased EHD1 in trophoblasts causes RSM by activating TGFβ signaling†. Biol Reprod 2024; 111:1235-1248. [PMID: 39012723 DOI: 10.1093/biolre/ioae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Recurrent spontaneous miscarriage is one of the complications during pregnancy. However, the pathogenesis of recurrent spontaneous miscarriage is far from fully elucidated. OBJECTIVE Since the endocytic pathway is crucial for cellular homeostasis, our study aimed to explore the roles of endocytic recycling, especially EH domain containing 1, a member of the endocytic recycling compartment, in recurrent spontaneous miscarriage. STUDY DESIGN We first investigated the expression of the endocytic pathway member EH domain containing 1 in villi from the normal and recurrent spontaneous miscarriage groups. Then, we performed ribonucleic acid sequencing and experiments in villi, HTR8 cells and BeWo cells to determine the mechanisms by which EH domain containing 1-induced recurrent spontaneous miscarriage. Finally, placenta-specific EH domain containing 1-overexpressing mice were generated to investigate the recurrent spontaneous miscarriage phenotype in vivo. RESULTS EH domain containing 1 was expressed in extravillous trophoblasts and syncytiotrophoblast in the villi. Compared with the control group, recurrent spontaneous miscarriage patients expressed higher EH domain containing 1. A high level of EH domain containing 1 decreased proliferation, promoted apoptosis, and reduced the migration and invasion of HTR8 cells by activating the TGFβ receptor 1-SMAD2/3 signaling pathway. The TGFβ receptor 1 antagonist LY3200882 partially reversed the EH domain containing 1 overexpression-induced changes in the cell phenotype. Besides, a high level of EH domain containing 1 also induced abnormal syncytialization, which disturbed maternal-fetal material exchanges. In a mouse model, placenta-specific overexpression of EH domain containing 1 led to the failure of spiral artery remodeling, excessive syncytialization, and miscarriage. CONCLUSIONS Increased expression of EH domain containing 1 impaired the invasion of extravillous trophoblasts mediated by the TGFβ receptor 1-SMAD2/3 signaling pathway and induced abnormal syncytialization of syncytiotrophoblast, which is at least partially responsible for recurrent spontaneous miscarriage.
Collapse
Affiliation(s)
- Xing Wu
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Jiayan Shen
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Jinjin Liu
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Nannan Kang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing 211166, People's Republic of China
| | - Xinyu Cai
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Xin Zhen
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Guijun Yan
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Yang Liu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| | - Haixiang Sun
- Reproductive Medicine Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 53 Zhongshan North Road, Nanjing 210008, People's Republic of China
| |
Collapse
|
2
|
Gao X, Li J, Feng X, Xie Y, Zhang J, Liu J, Wang B, Liu P. EHD1 promotes breast cancer metastasis through upregulating HIF2a expression via activating mTOR pathway. FASEB J 2024; 38:e70168. [PMID: 39530565 DOI: 10.1096/fj.202401919r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The multistep dynamic process of metastasis is the primary cause of breast cancer deaths. C-terminal Eps15-homology domain-containing protein 1 (EHD1), a translocator associated with endocytic recycling, has been implicated in various oncogenic processes. However, the precise molecular mechanisms of EHD1-induced breast cancer metastases remain largely unexplored. Here we found that the upregulation of EHD1 in breast cancer was positively associated with distant lymph node metastasis in patients. Meanwhile, EHD1 promoted epithelial-mesenchymal transition (EMT), invasion, and metastasis of breast cancer cells in both two-dimensional (2D) and three-dimensional (3D) culture models in vitro, as well as in vivo. Remarkably, EHD1 can activate the AKT-mTOR pathway to upregulate the protein expression of hypoxia-inducible factor 2α (HIF2α) under normoxic conditions and subsequently enhance the invasive and metastatic breast cancer. Our findings indicated EHD1 as a new regulator of HIF2α and a potential therapeutic target for inhibiting breast cancer metastasis.
Collapse
Affiliation(s)
- Xiaoqian Gao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuefei Feng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuchen Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Zhang
- Phase I Clinical Trial Ward, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
He M, Zhang H, Zhang Y, Ding Y, Zhang F, Kang Y. Systematic Analysis to Identify the MIR99AHG-has-miR-21-5p- EHD1 CeRNA Regulatory Network as Potential Biomarkers in Lung Cancer. J Cancer 2024; 15:2391-2402. [PMID: 38495494 PMCID: PMC10937275 DOI: 10.7150/jca.93343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Lung cancer (LC) remains an extremely lethal disease worldwide, and effective prognostic biomarkers are at top priority. With the rapid development of high-throughput sequencing and bioinformatic analysis methods, the quest to characterize cancer transcriptomes continues to move forward. However, the integrated systematic analysis of lncRNA-miRNA-mRNA regulatory network in LC is lacking. In this study, we collected samples of cancer tissues and adjacent normal tissues from patients with lung cancer and conducted transcriptome and small RNA sequencing to identify differentially expressed genes (DEGs), miRNAs (DEMs), and lncRNAs (DELs). The regulatory roles of miRNAs in LC were explained by functional analysis on DEM-targeted genes. The lncRNA-miRNA pairs, miRNA-mRNA pairs, and lncRNA-mRNA pairs were identified and combined to construct the interplay of lncRNA-miRNA-mRNA. We evaluated the prognostic value of selected lncRNA-miRNA-mRNA by Kaplan-Meier analysis. Finally, we analyzed the expression levels of selected DEM, DELs, and DEGs in lung cancer patients and healthy people to verify our findings. A total of 1492 DEGs, 12 DEMs, and 604 DELs were identified in LC patients. Based on the bioinformatic analysis and the regulatory mechanism of ceRNAs, 3 lncRNAs (GATA2-AS1, LINC00632, MIR99AHG), 1 miRNA (hsa-miR-21-5p) and 5 targeted genes (RECK, TIMP3, EHD1, RASGRP1 and ERG) were figured out first. Through further Kaplan-Meier analysis screening the prognostic value, we finally found the hub subnetwork (MIR99AHG-hsa-miR-21-5p-EHD1) by collating lncRNA-miRNA pairs, miRNA-mRNA pairs and lncRNA-mRNA pairs. As the key of ceRNA regulatory network, the expression of miRNA-21-5p in lung cancer patients was significantly higher than that in healthy people (P < 0.01), and its high expression was significantly associated with poor prognosis (P = 0.0025). Our study successfully constructed a MIR99AHG-hsa-miR-21-5p-EHD1 mutually regulatory network, suggesting the potential efficient biomarkers in LC.
Collapse
Affiliation(s)
- Mengju He
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Zhang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,200030, China
| | - Yanfei Zhang
- Shanghai Starriver Bilingual School, Shanghai, 201108, China
| | - Yicen Ding
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Zhang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Chakraborty S, Bhat AM, Mushtaq I, Luan H, Kalluchi A, Mirza S, Storck MD, Chaturvedi N, Lopez-Guerrero JA, Llombart-Bosch A, Machado I, Scotlandi K, Meza JL, Ghosal G, Coulter DW, Jordan Rowley M, Band V, Mohapatra BC, Band H. EHD1-dependent traffic of IGF-1 receptor to the cell surface is essential for Ewing sarcoma tumorigenesis and metastasis. Commun Biol 2023; 6:758. [PMID: 37474760 PMCID: PMC10359273 DOI: 10.1038/s42003-023-05125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
Overexpression of the EPS15 Homology Domain containing 1 (EHD1) protein has been linked to tumorigenesis but whether its core function as a regulator of intracellular traffic of cell surface receptors plays a role in oncogenesis remains unknown. We establish that EHD1 is overexpressed in Ewing sarcoma (EWS), with high EHD1 mRNA expression specifying shorter patient survival. ShRNA-knockdown and CRISPR-knockout with mouse Ehd1 rescue established a requirement of EHD1 for tumorigenesis and metastasis. RTK antibody arrays identified IGF-1R as a target of EHD1 regulation in EWS. Mechanistically, we demonstrate a requirement of EHD1 for endocytic recycling and Golgi to plasma membrane traffic of IGF-1R to maintain its surface expression and downstream signaling. Conversely, EHD1 overexpression-dependent exaggerated oncogenic traits require IGF-1R expression and kinase activity. Our findings define the RTK traffic regulation as a proximal mechanism of EHD1 overexpression-dependent oncogenesis that impinges on IGF-1R in EWS, supporting the potential of IGF-1R and EHD1 co-targeting.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Incyte Corporation, Wilmington, DE, USA
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sameer Mirza
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagendra Chaturvedi
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Antonio Llombart-Bosch
- Department of Pathology, University of Valencia, Avd. Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Isidro Machado
- Department of Pathology, University of Valencia, Avd. Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhopal C Mohapatra
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
5
|
Chakraborty S, Bhat AM, Mushtaq I, Luan H, Kalluchi A, Mirza S, Storck MD, Chaturvedi N, Lopez-Guerrero JA, Llombart-Bosch A, Machado I, Scotlandi K, Meza JL, Ghosal G, Coulter DW, Rowley JM, Band V, Mohapatra BC, Band H. EHD1-dependent traffic of IGF-1 receptor to the cell surface is essential for Ewing sarcoma tumorigenesis and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524130. [PMID: 36711452 PMCID: PMC9882098 DOI: 10.1101/2023.01.15.524130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Overexpression of EPS15 Homology Domain containing 1 (EHD1) has been linked to tumorigenesis but whether its core function as a regulator of intracellular traffic of cell surface receptors plays a role in oncogenesis remains unknown. We establish that EHD1 is overexpressed in Ewing sarcoma (EWS), with high EHD mRNA expression specifying shorter patient survival. ShRNA and CRISPR-knockout with mouse Ehd1 rescue established a requirement of EHD1 for tumorigenesis and metastasis. RTK antibody arrays identified the IGF-1R as a target of EHD1 regulation in EWS. Mechanistically, we demonstrate a requirement of EHD1 for endocytic recycling and Golgi to plasma membrane traffic of IGF-1R to maintain its surface expression and downstream signaling. Conversely, EHD1 overexpression-dependent exaggerated oncogenic traits require IGF-1R expression and kinase activity. Our findings define the RTK traffic regulation as a proximal mechanism of EHD1 overexpression-dependent oncogenesis that impinges on IGF-1R in EWS, supporting the potential of IGF-1R and EHD1 co-targeting.
Collapse
|
6
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
7
|
Cao L, Liu Q, Ma Y, Shao F, Zhao Z, Deng X, Zhou J, Wang S. Expression of ADRB2 in children with neuroblastoma and its influence on prognosis. Front Surg 2022; 9:1026156. [DOI: 10.3389/fsurg.2022.1026156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
ObjectiveNeuroblastoma (NB), originating from sympathetic spinal tissue, is a serious threat to the life of children. Especially in the high-risk group, an overall five-year survival rate less than 50% indicates an extremely poor clinical outcome. Here, the expression the of β-2 adrenergic (ADRB2) receptor gene in tumor tissues of children with NB was detected and the correlation between its expression and clinical characteristics and prognosis was analyzed.MethodsForty-five tumor tissue samples and forty-eight paraffin sections of NB were obtained from Children’s Hospital of Chongqing Medical University from 2015 to 2021. Real-time fluorescence quantitative polymerase chain reaction (RT–qPCR) was utilized to detect the expression of ADRB2 at the mRNA level and immunohistochemistry (IHC) at the protein level.ResultsFor the RT–qPCR, the analysis showed that the expression of ADRB2 in the high-risk group was significantly lower (P = 0.0003); in addition, there were also statistically significant differences in Shimada classification (P = 0.0025) and N-MYC amplification (P = 0.0011). Survival prognosis analysis showed that the prognosis was better with high ADRB2 expression (P = 0.0125), and the ROC curve showed that ADRB2 has a certain accuracy in predicting prognosis (AUC = 0.707, CI: 0.530–0.884). Moreover, the expression of ADRB2, N-MYC amplification and bone marrow metastasis were the factors that independently affected prognosis, and at the protein level, the results showed that the differential expression of ADRB2 was conspicuous in risk (P = 0.0041), Shimada classification (P = 0.0220) and N-MYC amplification (P = 0.0166). In addition, Kaplan–Meier curves showed that the prognosis in the group with high expression of ADRB2 was better (P = 0.0287), and the ROC curve showed that the score of ADRB2 had poor accuracy in predicting prognosis (AUC = 0.662, CI: 0.505–0.820).ConclusionADRB2 is a protective potential biomarker and is expected to become a new prognostic biomolecular marker of NB.
Collapse
|
8
|
Liu G, Lan Y, Yin X, Wu T. lncRNA EPS15-AS1 affects the biological behavior of liver cancer stem cells by regulating EPS15 expression. Am J Transl Res 2022; 14:7324-7335. [PMID: 36398248 PMCID: PMC9641472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate whether long non-coding RNA (lncRNA) EPS15-antisense RNA (EPS15-AS1) affects the biological behavior of liver cancer stem cells (LCSCs) by targeting EPS15. METHODS The expression of EPS15 in liver cancer was analyzed based on TCGA database. The expression of EPS15-AS1 and EPS15 in LCSCs was detected by real-time quantitative PCR (RT-qPCR). MTT method, flow cytometry, and Transwell assay were used to detect the effects of EPS15-AS1 and EPS15 expression on the biological behavior of LCSCs. RESULTS EPS15 was highly expressed in liver cancer tissues in TCGA, and EPS15 was closely related to the survival and prognosis of liver cancer patients (P<0.05). EPS15 was highly expressed in LCSCs, while lncRNA EPS15-AS1 was lowly expressed in LCSCs (P<0.05). After silencing lncRNA EPS15-AS1, the proliferation, invasion, and EPS15 protein expression of LCSCs were promoted (P<0.05) while apoptosis was suppressed (P<0.05). After overexpression of lncRNA EPS15-AS1, the proliferation, invasion, and EPS15 protein expression of LCSCs were suppressed while the apoptosis ability was promoted. However, simultaneous overexpression of lncRNA EPS15-AS1 and EPS15 attenuated the effect of lncRNA EPS15-AS1 overexpression alone on proliferation and apoptosis of LCSCs. CONCLUSION lncRNA EPS15-AS1 overexpression can inhibit proliferation and invasion but promote apoptosis of LCSCs by down-regulating the expression of EPS15.
Collapse
Affiliation(s)
- Guodong Liu
- Hepatobiliary Pancreatic Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences Hefei 230031, Anhui Province, P. R. China
| | - Yadong Lan
- Hepatobiliary Pancreatic Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences Hefei 230031, Anhui Province, P. R. China
| | - Xiaoqiang Yin
- Hepatobiliary Pancreatic Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences Hefei 230031, Anhui Province, P. R. China
| | - Tongchui Wu
- Hepatobiliary Pancreatic Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences Hefei 230031, Anhui Province, P. R. China
| |
Collapse
|
9
|
Ciereszko A, Dietrich MA, Słowińska M, Nynca J, Ciborowski M, Kaczmarek MM, Myszczyński K, Kiśluk J, Majewska A, Michalska-Falkowska A, Kodzik N, Reszeć J, Sierko E, Nikliński J. Application of two-dimensional difference gel electrophoresis to identify protein changes between center, margin, and adjacent non-tumor tissues obtained from non-small-cell lung cancer with adenocarcinoma or squamous cell carcinoma subtype. PLoS One 2022; 17:e0268073. [PMID: 35512017 PMCID: PMC9071164 DOI: 10.1371/journal.pone.0268073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is responsible for the most cancer-related mortality worldwide and the mechanism of its development is poorly understood. Proteomics has become a powerful tool offering vital knowledge related to cancer development. Using a two-dimensional difference gel electrophoresis (2D-DIGE) approach, we sought to compare tissue samples from non-small-cell lung cancer (NSCLC) patients taken from the tumor center and tumor margin. Two subtypes of NSCLC, adenocarcinoma (ADC) and squamous cell carcinoma (SCC) were compared. Data are available via ProteomeXchange with identifier PXD032736 and PXD032962 for ADC and SCC, respectively. For ADC proteins, 26 significant canonical pathways were identified, including Rho signaling pathways, a semaphorin neuronal repulsive signaling pathway, and epithelial adherens junction signaling. For SCC proteins, nine significant canonical pathways were identified, including hypoxia-inducible factor-1α signaling, thyroid hormone biosynthesis, and phagosome maturation. Proteins differentiating the tumor center and tumor margin were linked to cancer invasion and progression, including cell migration, adhesion and invasion, cytoskeletal structure, protein folding, anaerobic metabolism, tumor angiogenesis, EMC transition, epithelial adherens junctions, and inflammatory responses. In conclusion, we identified several proteins that are important for the better characterization of tumor development and molecular specificity of both lung cancer subtypes. We also identified proteins that may be important as biomarkers and/or targets for anticancer therapy.
Collapse
Affiliation(s)
- Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| | - Mariola A. Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Michał Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Monika M. Kaczmarek
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Kiśluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Majewska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Natalia Kodzik
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Liu Y, Song Y, Cao M, Fan W, Cui Y, Cui Y, Zhan Y, Gu R, Tian F, Zhang S, Cai L, Xing Y. A novel EHD1/CD44/Hippo/SP1 positive feedback loop potentiates stemness and metastasis in lung adenocarcinoma. Clin Transl Med 2022; 12:e836. [PMID: 35485206 PMCID: PMC9786223 DOI: 10.1002/ctm2.836] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is growing evidence that endocytosis plays a pivotal role in cancer metastasis. In this study, we first identified endocytic and metastasis-associated genes (EMGs) and then investigated the biological functions and mechanisms of EMGs. METHODS Cancer stem cells (CSCs)-like characteristics were evaluated by tumour limiting dilution assays, three-dimensional (3D) spheroid cancer models. Microarray analysis was used to identify the pathways significantly regulated by mammalian Eps15 homology domain protein 1 (EHD1) knockdown. Mass spectrometry (MS) was performed to identify EHD1-interacting proteins. The function of EHD1 as a regulator of cluster of differentiation 44 (CD44) endocytic recycling and lysosomal degradation was determined by CD44 biotinylation and recycling assays. RESULTS EHD1 was identified as a significant EMG. Knockdown of EHD1 suppressed CSCs-like characteristics, epithelial-mesenchymal transition (EMT), migration and invasion of lung adenocarcinoma (LUAD) cells by increasing Hippo kinase cascade activation. Conversely, EHD1 overexpression inhibited the Hippo pathway to promote cancer stemness and metastasis. Notably, utilising MS analysis, the CD44 protein was identified as a potential binding partner of EHD1. Furthermore, EHD1 enhanced CD44 recycling and stability. Indeed, silencing of CD44 or disruption of the EHD1/CD44 interaction enhanced Hippo pathway activity and reduced CSCs-like traits, EMT and metastasis. Interestingly, specificity protein 1 (SP1), a known downstream target gene of the Hippo-TEA-domain family members 1 (TEAD1) pathway, was found to directly bind to the EHD1 promoter region and induce its expression. Among clinical specimens, the EHD1 expression level in LUAD tissues of metastatic patients was higher than that of non-metastatic patients. CONCLUSIONS Our findings emphasise that EHD1 might be a potent anti-metastatic target and present a novel regulatory mechanism by which the EHD1/CD44/Hippo/SP1 positive feedback circuit plays pivotal roles in coupling modules of CSCs-like properties and EMT in LUAD. Targeting this loop may serve as a remedy for patients with advanced metastatic LUAD.
Collapse
Affiliation(s)
- Yuechao Liu
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yang Song
- The First Department of Orthopedic SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Mengru Cao
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Weina Fan
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yaowen Cui
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yimeng Cui
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yuning Zhan
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ruixue Gu
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Fanglin Tian
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Shuai Zhang
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Li Cai
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ying Xing
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
11
|
Wang T, Yang C, Li B, Xing Y, Huang J, Zhang Y, Bu S, Ge H. Identification of lncRNA-miRNA-mRNA Networks Linked to Non-small Lung Cancer Resistance to Inhibitors of Epidermal Growth Factor Receptor. Front Genet 2021; 12:758591. [PMID: 34868237 PMCID: PMC8632870 DOI: 10.3389/fgene.2021.758591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Tyrosine kinase inhibitors that act against epidermal growth factor receptor (EGFR) show strong efficacy against non-small cell lung cancer (NSCLC) involving mutated EGFRs. However, most such patients eventually develop resistance to EGFR-TKIs. Numerous researches have reported that messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) may be involved in EGFR-TKI resistance, but the comprehensive expression profile and competitive endogenous RNA (ceRNA) regulatory network between mRNAs and ncRNAs in EGFR-TKI resistance of NSCLC are incompletely known. We aimed to define a ceRNA regulatory network linking mRNAs and non-coding RNAs that may mediate this resistance. Methods: Using datasets GSE83666, GSE75309 and GSE103352 from the Gene Expression Omnibus, we identified long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs differentially expressed between NSCLC cells that were sensitive or resistant to EGFR-TKIs. The potential biological functions of the corresponding differentially expressed genes were analyzed based KEGG pathways. We combined interactions among lncRNAs, miRNAs and mRNAs in the RNAInter database with KEGG pathways to generate transcriptional regulatory ceRNA networks associated with NSCLC resistance to EGFR-TKIs. Kaplan-Meier analysis was used to assess the ability of core ceRNA regulatory sub-networks to predict the progression-free interval and overall survival of NSCLC. The expression of two core ceRNA regulatory sub-networks in NSCLC was validated by quantitative real-time PCR. Results: We identified 8,989 lncRNAs, 1,083 miRNAs and 3,191 mRNAs that were differentially expressed between patients who were sensitive or resistant to the inhibitors. These DEGs were linked to 968 biological processes and 31 KEGG pathways. Pearson analysis of correlations among the DEGs of lncRNAs, miRNAs and mRNAs identified 12 core ceRNA regulatory sub-networks associated with resistance to EGFR-TKIs. The two lncRNAs ABTB1 and NPTN with the hsa-miR-150–5p and mRNA SERPINE1 were significantly associated with resistance to EGFR-TKIs and survival in NSCLC. These lncRNAs and the miRNA were found to be down-regulated, and the mRNA up-regulated, in a resistant NSCLC cell line relative to the corresponding sensitive cells. Conclusion: In this study, we provide new insights into the pathogenesis of NSCLC and the emergence of resistance to EGFR-TKIs, based on a lncRNA-miRNA-mRNA network.
Collapse
Affiliation(s)
- Ting Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengliang Yang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yangping Zhang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Bu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Huang J, Tian F, Song Y, Cao M, Yan S, Lan X, Cui Y, Cui Y, Cui Y, Jia D, Cai L, Xing Y, Wang X. A feedback circuit comprising EHD1 and 14-3-3ζ sustains β-catenin/c-Myc-mediated aerobic glycolysis and proliferation in non-small cell lung cancer. Cancer Lett 2021; 520:12-25. [PMID: 34217785 DOI: 10.1016/j.canlet.2021.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022]
Abstract
Mammalian Eps15 homology domain 1 (EHD1) participates in the development of non-small cell lung cancer (NSCLC). However, its role in mediating aerobic glycolysis remains unclear. Herein, microarray analysis revealed that EHD1 expression was significantly correlated with the glycolysis/gluconeogenesis pathway. Clinically, EHD1 expression was positively correlated with the maximum standard uptake value (SUVmax) in 18F-FDG PET/CT scans. Additionally, EHD1 knockdown inhibited aerobic glycolysis and proliferation in vitro and in vivo. Furthermore, Wnt/β-catenin signaling was identified as a critical EHD1-regulated pathway. Co-IP, native gel electrophoresis, and immunoblotting showed that EHD1 contributed to 14-3-3 dimerization via 14-3-3ζ and subsequent activation of β-catenin/c-Myc signaling. Analysis of the EHD1 regulatory region via ENCODE revealed the potential for c-Myc recruitment, leading to transcriptional activation of EHD1 and formation of an EHD1/14-3-3ζ/β-catenin/c-Myc positive feedback circuit. Notably, blocking this circuit with a Wnt/β-catenin inhibitor dramatically inhibited tumor growth in vivo. The positive correlations among EHD1, 14-3-3ζ, c-Myc, and LDHA were further confirmed in NSCLC tissues. Collectively, our study demonstrated that EHD1 activates a 14-3-3ζ/β-catenin/c-Myc regulatory circuit that synergistically promotes aerobic glycolysis and may constitute a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Ying Song
- Department of Dermatology, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, China
| | - Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Xiuwen Lan
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yimeng Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yaowen Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yue Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Dexin Jia
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| | - Xin Wang
- PET/CT-MRI Centre, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| |
Collapse
|
13
|
Song Y, An W, Wang H, Gao Y, Han J, Hao C, Chen L, Liu S, Xing Y. LRH1 Acts as an Oncogenic Driver in Human Osteosarcoma and Pan-Cancer. Front Cell Dev Biol 2021; 9:643522. [PMID: 33791301 PMCID: PMC8005613 DOI: 10.3389/fcell.2021.643522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
Osteosarcoma (OS) that mainly occurs during childhood and adolescence is a devastating disease with poor prognosis presented by extreme metastases. Recent studies have revealed that liver receptor homolog 1 (LRH-1) plays a vital role in the metastasis of several human cancers, but its role is unknown in the metastasis of OS. In this study, Gene Ontology (GO) enrichment analyses based on high-throughput RNA-seq data revealed that LRH-1 acted a pivotal part in the positive regulation of cell migration, motility, and angiogenesis. Consistently, LRH-1 knockdown inhibited the migration of human OS cells, which was concurrent with the downregulation of mesenchymal markers and the upregulation of epithelial markers. In addition, short hairpin RNAs (shRNAs) targeting LRH-1 inactivated transforming growth factor beta (TGF-β) signaling pathway. LRH-1 knockdown inhibited human umbilical vein endothelial cell (HUVEC) proliferation, migration, and tube formation. Vascular endothelial growth factor A (VEGFA) expression was also downregulated after LRH-1 knockdown. Immunohistochemistry (IHC) revealed that the expression of LRH-1 protein was significantly higher in tumor tissues than in normal bone tissues. We found that high LRH-1 expression was associated with poor differentiation and advanced TNM stage in OS patients using IHC. Based on The Cancer Genome Atlas (TCGA) database, high LRH-1 expression predicts poor survival in lung squamous cell carcinoma (LUSC), kidney renal papillary cell carcinoma (KIRP), and pancreatic adenocarcinoma (PAAD). The downregulation of LRH-1 significantly hindered the migration and motility of LUSC cells. Using multi-omic bioinformatics, the positive correlation between LRH-1- and EMT-related genes was found across these three cancer types. GO analysis indicated that LRH-1 played a vital role in “blood vessel morphogenesis” or “vasculogenesis” in KIRP. Our results indicated that LRH-1 plays a tumor-promoting role in human OS, could predict the early metastatic potential, and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yang Song
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Hongmei Wang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanren Gao
- Department of Intervention, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jihua Han
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chenguang Hao
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Chen
- The First Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shilong Liu
- Department of Thoracic Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
14
|
The role of ADRB2 gene polymorphisms in malignancies. Mol Biol Rep 2021; 48:2741-2749. [PMID: 33675465 DOI: 10.1007/s11033-021-06250-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
Beta-2-adrenergic receptor is a member of the G protein-coupled receptor superfamily, which is highly expressed in most malignancies. There is increasing evidence showing that beta-2-adrenergic receptors are associated with carcinogenesis, proliferation, immune regulation, invasion, angiogenesis, clinical prognosis and treatment resistance in malignancies. Polymorphisms of the ADRB2 gene have been confirmed to be associated with transcriptional activity, mRNA translation, and beta-2-adrenergic receptor expression and sensitivity. This review discusses clinically relevant examples of single nucleotide polymorphisms of ADRB2 in malignancies and the effects of these polymorphisms on cancer susceptibility, prognosis and treatment response of cancer patients.
Collapse
|
15
|
Cui J, Song Y, Han X, Hu J, Chen Y, Chen X, Xu X, Xing Y, Lu H, Cai L. Targeting 14-3-3ζ Overcomes Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Lung Adenocarcinoma via BMP2/Smad/ID1 Signaling. Front Oncol 2020; 10:542007. [PMID: 33123465 PMCID: PMC7571474 DOI: 10.3389/fonc.2020.542007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Background: The 14-3-3ζ protein, which acts as a putative oncoprotein, has been found to promote the proliferation, metastasis, and chemoresistance of cancer cells in several cancers including lung adenocarcinoma (LUAD); however, its significance in epidermal growth factor receptor–tyrosine kinase inhibitor (EGFR-TKI) resistance remains unknown. Methods: The Cancer Genome Atlas (TCGA) database was used to determine 14-3-3ζ expression in pancancer and LUAD. 14-3-3ζ and ID1 expression was then examined in clinical LUAD samples by immunohistochemistry (IHC). Lentiviral transfection with 14-3-3ζ-specific small hairpin RNA (shRNA) was used to establish stable 14-3-3ζ knockdown gefitinib-resistant PC9 (PC9/GR) and H1975 cell lines. The effect of 14-3-3ζ knockdown on reversing EGFR-TKI resistance was determined in vitro by Cell Counting Kit-8 (CCK-8), wound healing, Transwell assays, and flow cytometry. A xenograft tumor model was established to evaluate the role of 14-3-3ζ in EGFR-TKI resistance. Microarray analysis results showed multiple pathways regulated by 14-3-3ζ-shRNA. Results: In the present study, we demonstrated that based on the TCGA, pancancer and LUAD 14-3-3ζ expression was elevated and predicted unfavorable prognosis. In addition, high 14-3-3ζ expression was associated with advanced T stage, TNM stage, presence of lymph node metastasis and, importantly, poor treatment response to EGFR-TKIs in LUAD patients with EGFR-activating mutations. 14-3-3ζ shRNA sensitized EGFR-TKI-resistant human LUAD cells to gefitinib and reversed epithelial-to-mesenchymal transition (EMT). After 14-3-3ζ depletion, bone morphogenetic protein (BMP) signaling activation was decreased in EGFR-TKI-resistant cells in microarray analysis, which was further validated by Western blot analysis. Furthermore, the expression of 14-3-3ζ positively correlates with ID1 expression in human EGFR-mutant LUAD patient samples. In vivo, there was a reduction in the tumor burden in mice treated with 14-3-3ζ shRNA and gefitinib compared to mice treated with gefitinib alone. Conclusion: Our work uncovers a hitherto unappreciated role of 14-3-3ζ in EGFR-TKI resistance. This study might provide a potential therapeutic approach for treating LUAD patients harboring EGFR mutations.
Collapse
Affiliation(s)
- Jinfang Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejiao Han
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Hu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbo Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaomin Xu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hailing Lu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
16
|
Liu Y, Zheng Y, Zhou Y, Liu Y, Xie M, Meng W, An M. The expression and significance of mTORC1 in diabetic retinopathy. BMC Ophthalmol 2020; 20:297. [PMID: 32689970 PMCID: PMC7370483 DOI: 10.1186/s12886-020-01553-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
Background To investigate the expression and significance of mechanistic target of rapamycin complex 1(mTORC1) in diabetic retinopathy (DR), and to find new targets and new methods for the treatment of DR. Methods A DR rat model was prepared by general feeding combined with intraperitoneal injection of 10% streptozotocin (60 mg/kg). The rats were randomly divided into a control group (NDM group) and a diabetes group (DM group). Three months later, the degrees of retinopathy was determined using hematoxylin and eosin staining, and the levels of p-S6, VEGF, and PEDF proteins were detected by immunohistochemistry and western blotting. Human retinal capillary endothelial cells (HRCECs) were cultured in high glucose (HG) conditions, then treated with rapamycin or transfected with siTSC1.The protein levels of p-S6 were assessed by western blotting. The 5-ethynyl-2′-deoxyuridine assay was used to detect cell proliferation, and the Transwell assay was used to detect cell migration. Results A DM rat model was successfully developed. The expressions of p-S6 and VEGF proteins were significantly increased in the DM group (p < 0.05), and the expression of PEDF protein was significantly decreased compared with the NDM group (p < 0.05). In vitro, the p-S6 protein, as well as cell proliferation and migration, in HG induced HRCECs were increased (p < 0.05) compared with the control (normal glucose) group (p < 0.05). After transfection with siTSC1 to activate mTORC1, the expression of p-S6, as well as cell proliferation and migration, were increased. In contrast, rapamycin decreased p-S6 expression, as well as proliferation and migration, in HG induced HRCECs compared to the control group (p < 0.05). Conclusion mTORC1 plays an important role in DR. After activation, mTORC1 induced expression of the p-S6 protein, regulated the expressions of VEGF and PEDF proteins, and changed the proliferation and migration of endothelial cells. The mTORC1 can therefore be used as a new target,as well as in the treatment of DR.
Collapse
Affiliation(s)
- Yanli Liu
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Yarong Zheng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Yekai Zhou
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Yi Liu
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Mengxuan Xie
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Wenjing Meng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China
| | - Meixia An
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diesases, Guangzhou, China.
| |
Collapse
|
17
|
Guo F, Ji G, Li Q, Yang Y, Shui L, Shen Y, Yang H. Bacterial particles retard tumor growth as a novel vascular disrupting agent. Biomed Pharmacother 2020; 122:109757. [DOI: 10.1016/j.biopha.2019.109757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
|
18
|
Chen C, Geng Q, Sun D, Hu W, Zhong C, Fan L, Song X. Low Expression of ASK1-Interacting Protein-1 Is Significantly Correlated with Tumor Angiogenesis and Poor Survival in Patients with Early Stage Non-Small Cell Lung Cancer. Onco Targets Ther 2019; 12:10739-10747. [PMID: 31849482 PMCID: PMC6912016 DOI: 10.2147/ott.s222332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the expression of tumor suppressor protein ASK1-interacting protein-1 (AIP1) in cancer tissues of patients with early-stage non-small cell lung cancer (NSCLC) and its correlation with tumor progression, tumor angiogenesis and prognosis. Methods A total of 136 patients with stage I NSCLC who underwent radical resection of lung cancer in Qianfoshan Hospital of Shandong Province from January 2011 to December 2011 were enrolled. Immunohistochemistry was used to detect AIP1 protein in tumor tissues. Vascular endothelial CD34 immunohistochemical staining was used to count intratumoral microvessel density (MVD). SPSS 19.0 software was used to analyze the relationship between AIP1 protein expression and clinicopathological features, tumor angiogenesis and prognosis. Results Low expression of AIP1 was more common in tumor tissues with high MVD, and patients with low expression of AIP1 were more likely to have tumor recurrence. Multivariate analysis showed that low expression of AIP1 had predictive value for overall survival, disease-free survival, and disease-specific survival. Conclusion Downregulation of AIP1 protein expression is associated with lung cancer progression, tumor angiogenesis and poor prognosis. Consequently, AIP1 may prove to be an important predictor of recovery from lung cancer and could become a new therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Qun Geng
- Department of Ultrasound Diagnosis and Treatment, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Dongfeng Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Wensi Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Chenxi Zhong
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Limin Fan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, People's Republic of China
| | - Xiaoming Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| |
Collapse
|
19
|
Zhou Q, Yan G, Ding L, Liu J, Yu X, Kong S, Zhang M, Wang Z, Liu Y, Jiang Y, Kong N, Sun J, Sun H. EHD1 impairs decidualization by regulating the Wnt4/β-catenin signaling pathway in recurrent implantation failure. EBioMedicine 2019; 50:343-354. [PMID: 31707150 PMCID: PMC6921214 DOI: 10.1016/j.ebiom.2019.10.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Recurrent implantation failure (RIF) remains a critical and challenging problem in assisted reproductive technology mainly due to impaired decidualization. The endocytic and transcytotic activity in the endometrium are crucial for decidualization. The most representative endocytic gene is the C-terminal Eps15 homology domain-containing 1 (EHD1), but whether EHD1-mediated endocytic function is responsible for embryo implantation during decidualization remains unclear. METHODS A transcriptomic analysis was performed to evaluate the differentially expressed genes between the fertile control and RIF group. The expression and location of EHD1 in endometrial tissues were further examined by IHC, qRT-PCR and Western blotting. The transduction of an EHD1 recombinant adenovirus into human endometrial stromal cells was performed to investigate relevant decidualization marker genes. Additionally, a microarray analysis following the adenovirus-mediated overexpression of EHD1 was conducted to identify EHD1-related changes in HESCs, and the potential molecular mechanisms were further confirmed through immunofluorescence and coimmunoprecipitation analyses. FINDINGS An RNA-seq analysis demonstrated that EHD1 expression was significantly higher in the mid-secretory endometrium of the RIF group than in that of the fertile control group. The analysis of the menstrual cycle showed that expression of EHD1 increased in the mid-proliferative phase and showed a gradual decrease in the mid-secretory and decidual phases. Furthermore, EHD1 overexpression impaired decidualization by suppressing the expression of prolactin and insulin-like growth factor binding protein-1 and the formation of the cytoskeleton. The mechanistic analysis revealed the EHD1 regulated LRP5/6 protein function through the endocytic pathway, and subsequently suppressed the Wnt4/β-catenin pathway during decidualization. In addition, a Wnt4 agonist improved an impaired decidualization process. INTERPRETATION Regulation of the EHD1-Wnt4 pathway might serve as a promising therapeutic strategy for improving endometrial receptivity in RIF women.
Collapse
Affiliation(s)
- Quan Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023, People's Republic of China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Xiaoying Yu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Mei Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Zhilong Wang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Yang Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Na Kong
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia 19107, PA, USA.
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023, People's Republic of China.
| |
Collapse
|