1
|
Han G, Ye Y, Kang P. Effects of Multiple Intravenous Doses of Perioperative Vitamin C on Pain Management Following Total Hip Arthroplasty. Drug Des Devel Ther 2025; 19:2667-2675. [PMID: 40231193 PMCID: PMC11995280 DOI: 10.2147/dddt.s506262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/08/2025] [Indexed: 04/16/2025] Open
Abstract
Purpose Although the benefits of numerous intravenous vitamin C doses during the perioperative phase on postoperative pain following total hip arthroplasty for whether patients could have pain relief for a longer period of time have not yet been tested, a single dose of vitamin C can assist control pain after the procedure on the first post-operative day. Methods One hundred patients undergoing total hip arthroplasty (THA) at our institution were enrolled in this prospective, double-blind, placebo-controlled, randomized experiment. These patients were randomized to either the control group or the vitamin C group. While the control group received an equivalent daily dose of a placebo, the vitamin C group received an intravenous injection of 3g of vitamin C every day during the perioperative period. Ten milliliters of morphine were injected subcutaneously as a rescue analgesic for patients who complained of discomfort following surgery. The amount of morphine used for rescue analgesia and the levels of inflammatory markers were the main outcomes that we evaluated. Additionally, we evaluated postoperative pain and hip joint recovery using the Visual Analog Scale (VAS) as secondary outcomes. Results In the vitamin C group, the subcutaneous morphine injection dosage was considerably lower (0-24h 6.1mg ± 2.7mg vs 4.0mg ± 2.9mg, p = 0.000, total use 8.3mg ± 3.1mg vs 6.6mg ± 3.9mg, p = 0.018). During the perioperative term, the vitamin C group experienced better hip motion and lower VAS pain levels at rest and during exercise.
Collapse
Affiliation(s)
- Guangtao Han
- West China hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yuna Ye
- Department of Stomatology, Baiyin People’s Hospital, Baiyin, Gansu Province, People’s Republic of China
| | - Pengde Kang
- West China hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
He X, Wang Q, Cheng X, Wang W, Li Y, Nan Y, Wu J, Xiu B, Jiang T, Bergholz JS, Gu H, Chen F, Fan G, Sun L, Xie S, Zou J, Lin S, Wei Y, Lee J, Asara JM, Zhang K, Cantley LC, Zhao JJ. Lysine vitcylation is a vitamin C-derived protein modification that enhances STAT1-mediated immune response. Cell 2025; 188:1858-1877.e21. [PMID: 40023152 DOI: 10.1016/j.cell.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/04/2025] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Vitamin C (vitC) is essential for health and shows promise in treating diseases like cancer, yet its mechanisms remain elusive. Here, we report that vitC directly modifies lysine residues to form "vitcyl-lysine"-a process termed vitcylation. Vitcylation occurs in a dose-, pH-, and sequence-dependent manner in both cell-free systems and living cells. Mechanistically, vitC vitcylates signal transducer and activator of transcription-1 (STAT1)- lysine-298 (K298), impairing its interaction with T cell protein-tyrosine phosphatase (TCPTP) and preventing STAT1-Y701 dephosphorylation. This leads to enhanced STAT1-mediated interferon (IFN) signaling in tumor cells, increased major histocompatibility complex (MHC)/human leukocyte antigen (HLA) class I expression, and activation of anti-tumor immunity in vitro and in vivo. The discovery of vitcylation as a distinctive post-translational modification provides significant insights into vitC's cellular function and therapeutic potential, opening avenues for understanding its biological effects and applications in disease treatment.
Collapse
Affiliation(s)
- Xiadi He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Lifecycle Health Management Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiwei Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Xin Cheng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Weihua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yutong Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yabing Nan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Wu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingqiu Xiu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tao Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johann S Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hao Gu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fuhui Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lianhui Sun
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junjie Zou
- XtalPi Technology Co., Ltd., Shanghai 200131, China
| | - Sheng Lin
- XtalPi Technology Co., Ltd., Shanghai 200131, China
| | - Yun Wei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - James Lee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lewis C Cantley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025; 25:274-292. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Wang X, He J, Sun M, Wang S, Qu J, Shi H, Rao B. High-dose vitamin C as a metabolic treatment of cancer: a new dimension in the era of adjuvant and intensive therapy. Clin Transl Oncol 2025; 27:1366-1382. [PMID: 39259387 DOI: 10.1007/s12094-024-03553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
The anti-cancer mechanism of High-dose Vitamin C (HDVC) is mainly to participate in the Fenton reaction, hydroxylation reaction, and epigenetic modification, which leads to the energy crisis, metabolic collapse, and severe peroxidation stress that results in the proliferation inhibition or death of cancer cells. However, the mainstream view is that HDVC does not significantly improve cancer treatment outcomes. In clinical work and scientific research, we found that some drugs or therapies can significantly improve the anti-cancer effects of HDVC, such as PD-1 inhibitors that can increase the anti-cancer effects of cancerous HDVC by nearly three times. Here, the adjuvant and intensive therapy and synergistic mechanisms including HDVC combined application of chemoradiotherapies multi-vitamins, targeted drugs, immunotherapies, and oncolytic virus are discussed in detail. Adjuvant and intensive therapy of HDVC can significantly improve the therapeutic effect of HDVC in the metabolic treatment of cancer, but more clinical evidence is needed to support its clinical application.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jia He
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Minmin Sun
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shiwan Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Hanping Shi
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
| |
Collapse
|
5
|
Metri NA, Mandl A, Paller CJ. Harnessing nature's therapeutic potential: A review of natural products in prostate cancer management. Urol Oncol 2025; 43:221-243. [PMID: 39794185 DOI: 10.1016/j.urolonc.2024.12.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death among men in the United States. The global burden of this disease is rising, placing significant strain on healthcare systems worldwide. Although definitive therapies like surgery and radiation are often effective, prostate cancer can recur and progress to castration-resistant prostate cancer in some cases. Conventional treatments for prostate cancer often have substantial side effects that can greatly impact patients' quality of life. Therefore, many patients turn to complementary therapies to improve outcomes, manage side effects, and enhance overall well-being. Natural products show promise as complementary treatments for prostate cancer, offering anticancer properties with a low risk of adverse effects. While preclinical research has produced encouraging results, their role in prostate cancer treatment remains controversial, largely due to inconsistent and limited success in clinical trials. This review explores the mechanisms of action of key natural products in prostate cancer management and summarizes clinical trials evaluating their efficacy and safety. It underscores the need for high-quality, rigorously designed, and adequately powered studies to validate the therapeutic potential and safety of these supplements in cancer care. Additionally, we propose future directions to enhance their role in addressing the complex challenges associated with prostate cancer.
Collapse
Affiliation(s)
- Nicole A Metri
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Adel Mandl
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Channing J Paller
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
6
|
Huang J, Min S, Hong R, Zou M, Zhou D. High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer. Immunobiology 2025; 230:152893. [PMID: 40139125 DOI: 10.1016/j.imbio.2025.152893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Vitamin C (VitC) has elicited considerable interest regarding its potential role in cancer therapy; however, its effects on tumor immunity remain unclear. In colorectal cancer (CRC), although anti-PD-1/PD-L1 therapies demonstrate promise, their efficacy is still constrained. Our prior research demonstrated that VitC can inhibit tumor growth by suppressing the Warburg effect. This study aims to explore the effects of high-dose VitC on PD-L1 expression in CRC, focusing on its underlying mechanisms and potential for enhancing immunotherapy. We found that VitC inhibits aerobic glycolysis in HCT116 cells while also downregulating PD-L1 expression. Further investigations indicated that this process is mediated by VitC's activation of AMPK, which downregulates HK2 and NF-κB, ultimately resulting in reduced PD-L1 expression and increased T cell infiltration. Notably, we observed that VitC and the PD-L1 monoclonal antibody atezolizumab exhibit comparable tumor-inhibiting abilities, and their combined use further enhances this efficacy. In conclusion, our results demonstrate that high-dose VitC activates AMPK, downregulates PD-L1 expression, mitigates immune evasion, and suppresses tumor growth. This provides a promising strategy for optimizing immunotherapy in CRC.
Collapse
Affiliation(s)
- Jia Huang
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Ruiyang Hong
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mou Zou
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongyu Zhou
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Wan Y, Li G, Cui G, Duan S, Chang S. Reprogramming of Thyroid Cancer Metabolism: from Mechanism to Therapeutic Strategy. Mol Cancer 2025; 24:74. [PMID: 40069775 PMCID: PMC11895238 DOI: 10.1186/s12943-025-02263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
Thyroid cancer as one of the most prevalent malignancies of endocrine system, has raised public concern and more research on its mechanism and treatment. And metabolism-based therapies have advanced rapidly, for the exclusive metabolic profiling of thyroid cancer. In thyroid cancer cells, plenty of metabolic pathways are reprogrammed to accommodate tumor microenvironment. In this review, we initiatively summarize recent progress in the full-scale thyroid cancer metabolic rewiring and the interconnection of various metabolites. We also discuss the efficacy and prospect of metabolic targeted detection as well as therapy. Comprehending metabolic mechanism and characteristics of thyroid cancer roundly will be highly beneficial to managing individual patients.
Collapse
Affiliation(s)
- Yuxuan Wan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Guoqing Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Gaoyuan Cui
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Saili Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
9
|
Jiang M, Zhang C. Higher dietary vegetable and fruit intake along with their biomarkers is inversely associated with all-cause mortality among cancer survivors. Nutr Res 2025; 135:141-157. [PMID: 40056790 DOI: 10.1016/j.nutres.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 03/10/2025]
Abstract
The association between dietary vegetable and fruit (VF) intake and survival outcomes among cancer survivors remains unclear, with limited research available on the association between VF-related biomarkers and mortality in this population. We hypothesized that there were inverse relationships between dietary VF intake, serum carotenoids, serum vitamin C, composite biomarker score and both all-cause and cancer-specific mortality among cancer survivors. This study analyzed cancer survivors from the National Health and Nutrition Examination Survey (NHANES) 1999 to 2018 cycles for VF intake (n = 4326), and from NHANES III, 2003 to 2006, and 2017 to 2018 cycles for serum carotenoids (n = 2187), serum vitamin C (n = 2267), and composite biomarker score (n = 2131). Weighted multivariable Cox proportional hazards regression models were used to assess the associations between exposures and mortality, computing hazard ratio (HR) and 95% CI. Dietary VF intake was significantly associated with a lower risk of all-cause mortality (HR = 0.80, 95% CI: 0.67-0.96) over a median follow-up of 6.9 years. For serum biomarkers, higher concentration of total carotenoids (median follow-up: 10.0 years), vitamin C (median follow-up: 9.4 years) and higher composite biomarker score (median follow-up: 10.1 years) were associated with lower risks of all-cause mortality, with HRs (95% CIs) of 0.73 (0.58-0.92), 0.73 (0.56-0.95), and 0.73 (0.57-0.95), respectively. Additionally, only vitamin C was linked to cancer-specific mortality, with HRs (95% CIs) of 0.55 (0.37-0.81). Higher VF intake and their associated biomarkers are associated with a lower risk of all-cause mortality among U.S. cancer survivors.
Collapse
Affiliation(s)
- Mianmian Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Caixia Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
10
|
Sravani A, Thomas J. Targeting epithelial-mesenchymal transition signaling pathways with Dietary Phytocompounds and repurposed drug combinations for overcoming drug resistance in various cancers. Heliyon 2025; 11:e41964. [PMID: 39959483 PMCID: PMC11830326 DOI: 10.1016/j.heliyon.2025.e41964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a crucial step in metastasis formation. It enhances the ability of cancer cells' to self-renew and initiate tumors, while also increasing resistance to apoptosis and chemotherapy. Among the signaling pathways a few signaling pathways such as Notch, TGF-beta, and Wnt-beta catenin are critically involved in the epithelial-to-mesenchymal transition (EMT) acquisition. Therefore, regulating EMT is a key strategy for controlling malignant cell behavior. This is done by interconnecting other signaling pathways in many cancer types. Although there is extensive preclinical evidence regarding EMT's function in the development of cancer, there is still a deficiency in clinical translation at the therapeutic level. Thus, there is a need for medications that are both highly effective and with low cytotoxic for modulating EMT transitions at ground level. Thus, this led to the study of the evaluation and efficiency of phytochemicals found in dietary sources of fruits and vegetables and also the combination of small molecular repurposed drugs that can enhance the effectiveness of traditional cancer treatments. This review summarises major EMT-associated pathways and their cross talks with their mechanistic insights and the role of different dietary phytochemicals (curcumin, ginger, fennel, black pepper, and clove) and their natural analogs and also repurposed drugs (metformin, statin, chloroquine, and vitamin D) which are commonly used in regulating EMT in various preclinical studies. This review also investigates the concept of low-toxicity and broad spectrum ("The Halifax Project") approach which can help for site targeting of several key pathways and their mechanism. We also discuss the mechanisms of action, models for our dietary phytochemicals, and repurposed drugs and their combinations used to identify potential anti-EMT activities. Additionally, we also analyzed existing literature and proposed new directions for accelerating the discovery of novel drug candidates that are safe to administer.
Collapse
Affiliation(s)
- A.N.K.V. Sravani
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - John Thomas
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
11
|
Alberts A, Moldoveanu ET, Niculescu AG, Grumezescu AM. Vitamin C: A Comprehensive Review of Its Role in Health, Disease Prevention, and Therapeutic Potential. Molecules 2025; 30:748. [PMID: 39942850 PMCID: PMC11820684 DOI: 10.3390/molecules30030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Since Albert Szent-Györgyi discovered it and it became used in treating scurvy, vitamin C has attracted interest in many studies due to its unique properties. It is an important cofactor in the synthesis of collagen and hormones, and it is involved in immunity, iron absorption, and processes requiring antioxidants. Thus, this review aims to emphasize the importance and usefulness of vitamin C in improving quality of life and preventing various diseases (e.g., chronic diseases, cardiovascular diseases, cancer) but also for its use in treatments against infections, neurodegenerative diseases, and cancer. Although the studies presented provide essential information about the properties of VIC and its beneficial effect on health, some studies contradict these theories. In this respect, further studies on larger samples and over a longer period are needed to demonstrate the therapeutic potential of this nutrient. However, VIC remains a necessary vitamin that should be consumed daily to maintain optimal health and prevent deficiencies that can lead to scurvy and its associated complications.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena-Theodora Moldoveanu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
12
|
Grădinaru AC, Popa S. Vitamin C: From Self-Sufficiency to Dietary Dependence in the Framework of Its Biological Functions and Medical Implications. Life (Basel) 2025; 15:238. [PMID: 40003647 PMCID: PMC11856994 DOI: 10.3390/life15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Vitamin C is an organic compound biosynthesized in plants and most vertebrates. Since its discovery, the benefits of vitamin C use in the cure and prevention of various pathologies have been frequently reported, including its anti-oxidant, anti-inflammatory, anticoagulant, and immune modulatory properties. Vitamin C plays an important role in collagen synthesis and subsequent scurvy prevention. It is also required in vivo as a cofactor for enzymes involved in carnitine and catecholamine norepinephrine biosynthesis, peptide amidation, and tyrosine catabolism. Moreover, as an enzymatic cofactor, vitamin C is involved in processes of gene transcription and epigenetic regulation. The absence of the synthesis of L-gulono-1,4-lactone oxidase, a key enzyme in the pathway of vitamin C synthesis, is an inborn metabolism error in some fishes and several bird and mammalian species, including humans and non-human primates; it is caused by various changes in the structure of the original GULO gene, making these affected species dependent on external sources of vitamin C. The evolutionary cause of GULO gene pseudogenization remains controversial, as either dietary supplementation or neutral selection is evoked. An evolutionary improvement in the control of redox homeostasis was also considered, as potentially toxic H2O2 is generated as a byproduct in the vitamin C biosynthesis pathway. The inactivation of the GULO gene and the subsequent reliance on dietary vitamin C may have broader implications for aging and age-related diseases, as one of the most important actions of vitamin C is as an anti-oxidant. Therefore, an important aim for medical professionals regarding human and animal health should be establishing vitamin C homeostasis in species that are unable to synthesize it themselves, preventing pathologies such as cardiovascular diseases, cognitive decline, and even cancer.
Collapse
Affiliation(s)
- Andrei Cristian Grădinaru
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania
| | - Setalia Popa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
13
|
Saitoh Y, Takeda K, Okawachi K, Tanimura Y. High dose of ascorbic acid induces selective cell growth inhibition and cell death in human gastric signet-ring cell carcinoma-derived NUGC-4 cells. Biochim Biophys Acta Gen Subj 2025; 1869:130738. [PMID: 39675589 DOI: 10.1016/j.bbagen.2024.130738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Anticancer effects of high-dose vitamin C (VC) have been evaluated on many cancer cell lines, and its efficacy in clinical trials and in combination with anticancer drugs or radiation have been reported; however, its effect on gastric cancer and its mechanisms remain unclear. In the present study, the cell growth inhibitory/lethal effects of high-dose ascorbic acid (AsA), a reduced form of VC was examined on three gastric cancer cell lines. Of these, signet ring cell carcinoma NUGC-4 cells were the most sensitive, but the effects were small and limited in normal cells. Second, high-dose AsA was effective in NUGC-4 cells, whereas dehydroascorbic acid, an oxidized form of VC, was less effective. Third, high-dose AsA showed stronger cell growth inhibitory/lethal effects on floating cells than on adherent cells, and was effective even under hypoxic microenvironment conditions. A single 1-h treatment of high-dose AsA strongly inhibited cell growth, causing apoptosis-like cell death over 72 h after treatment, triggered by hydrogen peroxide generation, actin abnormality, DNA synthesis suppression, DNA damage induction, and ATP level decrease. The effects of high-dose AsA were inhibited either by adding or chelating iron ions, but was not affected via inhibiting AsA transport. Inhibition of glutathione synthesis enhanced the anticancer effects of high-dose AsA. These results indicate that a single high-dose of AsA induces cancer cell-selective, sustained cell growth inhibition and cell death, and these effects may be regulated by iron ion and/or intracellular oxidative stress levels in human gastric signet-ring cell carcinoma-derived NUGC-4 cells.
Collapse
Affiliation(s)
- Yasukazu Saitoh
- Program in Biological System Sciences Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 5562, Nanatsuka, Shobara, Hiroshima 727-0023, Japan; Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562, Nanatsuka, Shobara, Hiroshima 727-0023, Japan.
| | - Kaori Takeda
- Program in Biological System Sciences Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 5562, Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | - Koichi Okawachi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562, Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | - Yusuke Tanimura
- Program in Biological System Sciences Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 5562, Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| |
Collapse
|
14
|
Shen X, Wang J, Kong W, John C, Deng B, Chen S, Zhang H, Haag J, Sinha N, Sun W, Secord AA, Zhou C, Bae-Jump VL. High-dose Ascorbate Exhibits Anti-proliferative and Anti-invasive Effects Dependent on PTEN/AKT/mTOR Pathway in Endometrial Cancer in vitro and in vivo. Int J Biol Sci 2025; 21:1545-1565. [PMID: 39990670 PMCID: PMC11844297 DOI: 10.7150/ijbs.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/10/2025] [Indexed: 02/25/2025] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy, frequently characterized by PTEN deletion, activation of the AKT/mTOR pathway, and limited effective treatment options for recurrent and advanced patients. High-dose ascorbate or combined with other chemotherapeutic agents shows potent antitumor effects in vitro and in vivo. In this study, high-dose ascorbate significantly inhibited cell proliferation and invasion, increased cellular stress and DNA damage, and induced cell cycle arrest and apoptosis in EC cells. Oral or intraperitoneal injections of high-dose ascorbate for 4 weeks effectively inhibited tumor growth in LKB1fl/flp53fl/fl -mouse model of EC, with intraperitoneal injections being more effective than oral administration. N-acetylcysteine partially reversed the antitumor effects of ascorbate in EC cells and tumor growth in LKB1fl/flp53fl/fl -mice. PTEN knockdown by shRNA reduced the antitumor sensitivity of EC cells to ascorbate, while inhibition of the AKT/mTOR pathway by Ipatasertib significantly enhanced the antitumor activity of ascorbate in EC cells. Ascorbate combined with paclitaxel synergistically inhibited tumor growth compared to either agent alone in LKB1fl/flp53fl/fl -mice. Overall, high-dose ascorbate exhibits antitumor activity partially through PTEN/AKT/mTOR and cell stress pathways, and these antitumor effects were heightened when combined with paclitaxel in EC. Clinical trials of ascorbate combined with paclitaxel deserve further investigation in EC patients.
Collapse
Affiliation(s)
- Xiaochang Shen
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
| | - Weimin Kong
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
| | - Catherine John
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Boer Deng
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuning Chen
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haomeng Zhang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer Haag
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikita Sinha
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Kim HS, Kwon SH, Choi OK, Lim T. High-dose ascorbic acid synergizes with anti-PD1 therapy in non-small cell lung cancer in vitro and in vivo models. Front Immunol 2025; 15:1512605. [PMID: 39896806 PMCID: PMC11783322 DOI: 10.3389/fimmu.2024.1512605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction Immune checkpoint inhibitors(ICIs) targeting programmed cell death protein 1 (PD1) confer significant survival benefits to patients with non-small cell lung cancer (NSCLC). However, there remains a substantial unmet need to identify therapeutic approaches to overcome resistance and provide benefits to these patients. High-dose ascorbic acid (AA) acts synergistically with many standard anticancer treatments. However, little is known about the effect of high-dose AA on improving the efficacy of anti-PD1 inhibitors in NSCLC. This study aimed to elucidate the effects of high-dose AA on anti-PD1 immunotherapy in NSCLC. Methods The combined effects of high-dose AA and anti-PD1 were investigated using a coculture model of H460 cells and CD8+ T cells and an LLC1 lung cancer syngeneic mouse model. To investigate the molecular mechanism, tumor tissues from mice were analyzed by comprehensive proteomic profiling using nano-LC-ESI-MS/MS. Results Pretreatment with a high dose of AA led to enhanced the sensitivity to the cytotoxicity of CD8+ T cells derived from healthy donor for H460 cells. Additionally, the combination of anti-PD1 and high-dose AA significantly increased CD8+ T cell cytotoxicity in H460 cells. The combination of anti-PD1 and high-dose AA showed dramatic antitumor effects in a syngeneic mouse model of lung cancer by significantly reducing tumor growth and increasing CD8+ T cell-dependent cytotoxicity and macrophage activity. Comprehensive protein analysis confirmed that high-dose AA in anti-PD1-treated tumor tissues enhanced the antitumor effects by regulating various immune-related mechanisms, including the B cell and T cell receptor signaling pathways, Fc gamma R-mediated phagocytosis, and natural killer (NK) cell-mediated cytotoxicity. Discussion Our results suggest that high-dose AA may be a promising adjuvant to potentiate the efficacy of anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Hak Su Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Seung-hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Ok Kyung Choi
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Taekyu Lim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| |
Collapse
|
16
|
Piotrowsky A, Burkard M, Schmieder H, Venturelli S, Renner O, Marongiu L. The therapeutic potential of vitamins A, C, and D in pancreatic cancer. Heliyon 2025; 11:e41598. [PMID: 39850424 PMCID: PMC11754517 DOI: 10.1016/j.heliyon.2024.e41598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
The pancreatic ductal adenocarcinoma (PDAC) is among the deadliest tumor diseases worldwide. While treatment options have generally become more diverse, little progress has been made in the treatment of PDAC and the median survival time for patients with locally advanced PDAC is between 8.7 and 13.7 months despite treatment. The aim of this review was to explore the therapeutic potential of complementing standard therapy with natural or synthetic forms of vitamins A, C, and D. The therapeutic use of vitamins A, C, and D could be a promising addition to the treatment of PDAC. For all three vitamins and their derivatives, tumor cell-specific cytotoxicity and growth inhibition against PDAC cells has been demonstrated in vitro and in preclinical animal models. While the antitumor effect of vitamin C is probably mainly due to its pro-oxidative effect in supraphysiological concentrations, vitamin A and vitamin D exert their effect by activating nuclear receptors and influencing gene transcription. In addition, there is increasing evidence that vitamin A and vitamin D influence the tumor stroma, making the tumor tissue more accessible to other therapeutic agents. Based on these promising findings, there is a high urgency to investigate vitamins A, C, and D in a clinical context as a supplement to standard therapy in PDAC. Further studies are needed to better understand the exact mechanism of action of the individual compounds and to develop the best possible treatment regimen. This could contribute to the long-awaited progress in the treatment of this highly lethal tumor entity.
Collapse
Affiliation(s)
- Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Hendrik Schmieder
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Olga Renner
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
- Faculty of Food and Nutrition Sciences, University of Applied Sciences, Hochschule Niederrhein, 41065, Moenchengladbach, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
17
|
Aborode AT, Onifade IA, Olorunshola MM, Adenikinju GO, Aruorivwooghene IJ, Femi AC, Osayawe OJK, Osinuga A, Omojowolo EA, Adeoye AF, Olapade S, Adelakun IO, Moyinoluwa OD, Adeyemo OM, Scott GY, Ogbonna RA, Fajemisin EA, Ehtasham O, Toluwalashe S, Bakre AA, Adesola RO, Ogunleye SC, Anyanwu NR, Iorkula TH. Biochemical mechanisms and molecular interactions of vitamins in cancer therapy. CANCER PATHOGENESIS AND THERAPY 2025; 3:3-15. [PMID: 39872372 PMCID: PMC11764782 DOI: 10.1016/j.cpt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 01/30/2025]
Abstract
Recently, the potential role of vitamins in cancer therapy has attracted considerable research attention. However, the reported findings are inconsistent, with limited information on the biochemical and molecular interactions of different vitamins in various cancer cells. Importantly, the presence of vitamin receptors in tumor cells suggests that vitamins play a significant role in the molecular and biochemical interactions in cancers. Additionally, studies on the efficacy of vitamin supplementation and dosage levels on tumor progression and mortality risk have yielded inconsistent results. Notably, molecular and biochemical investigations have reported the function of vitamins in the proliferation, growth, and invasiveness of tumor cells, as well as in cell cycle arrest and inflammatory signaling. Additionally, different vitamins may regulate the cancer microenvironment by activating various molecular pathways. Vitamins significantly affect immunological function, antioxidant defense, inflammation, and epigenetic control, and can improve treatment outcomes by affecting cell behavior and combating stress and DNA damage. However, further research is necessary to confirm the efficacy of vitamins, establish ideal dosages, and develop effective cancer prevention and treatment plans. Individualized supplementation plans guided by medical knowledge are crucial to achieving optimal results in clinical and preclinical settings. In this review, we critically evaluated the effects of different vitamins on the risk and development of cancer. Additionally, we examined the potential of vitamin supplements to enhance the efficacy of drug therapy and counteract resistance mechanisms that often arise during cancer treatment.
Collapse
Affiliation(s)
- Abdullahi T. Aborode
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA
| | | | - Mercy M. Olorunshola
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Gladys O. Adenikinju
- Department of Biological and Environmental Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | - Adeboboye C. Femi
- Department of Microbiology, Federal University of Technology, Akure 340110, Nigeria
| | | | - Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ebenezer A. Omojowolo
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Adekunle F. Adeoye
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30302, USA
| | - Segun Olapade
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Ibrahim O. Adelakun
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | | | - Oluwatosin M. Adeyemo
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi AK385, Ghana
| | - Godfred Y. Scott
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi AK385, Ghana
| | - Ruth A. Ogbonna
- Department of Research and Development, Nasarawa State AIDS and STI Control Program, Nasarawa, Lafia 962101, Nigeria
| | - Emmanuel A. Fajemisin
- Department of Integrative Biomedical Science, University of Cape Town, Cape Town 7701, South Africa
| | - Omama Ehtasham
- Department of Medicine and Surgery, Karachi Medical and Dental College, Karachi 74700, Pakistan
| | - Soyemi Toluwalashe
- Department of Medicine, Lagos State University College of Medicine, Lagos 10010, Nigeria
| | - Adetolase A. Bakre
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Ridwan O. Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Seto C. Ogunleye
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Nnenna R. Anyanwu
- Faculty of Pharmaceutical Sciences, University of Jos, Plateau, Jos 930003, Nigeria
| | - Terungwa H. Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
18
|
Balamurugan BS, Marimuthu MMC, Sundaram VA, Saravanan B, Chandrababu P, Chopra H, Malik T. Micro nutrients as immunomodulators in the ageing population: a focus on inflammation and autoimmunity. Immun Ageing 2024; 21:88. [PMID: 39731136 DOI: 10.1186/s12979-024-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Immunosenescence, the slow degradation of immune function over time that is a hallmark and driver of aging, makes older people much more likely to be killed by common infections (such as flu) than young adults, but it also contributes greatly to rates of chronic inflammation in later life. Such micro nutrients are crucial for modulating effective immune responses and their deficiencies have been associated with dysfunctional immunity in the elderly. In this review, we specifically focused on the contribution of major micro nutrients (Vitamins A, D and E, Vitamin C; Zinc and Selenium) as immunomodulators in ageing population especially related to inflame-ageing process including autoimmunity. This review will cover these hologenomic interactions, including how micro nutrients can modulate immune cell function and/or cytokine production to benefit their hosts with healthy mucous-associated immunity along with a sustainable immunologic homeostasis. For example, it points out the modulatory effects of vitamin D on both innate and adaptive immunity, with a specific focus on its ability to suppress pro-inflammatory cytokines synthesis while enhancing regulatory T-cell function. In the same context, also zinc is described as important nutrient for thymic function and T-cell differentiation but exhibits immunomodulatory functions by decreasing inflammation. In addition, the review will go over how micro nutrient deficiencies increase systemic chronic low-grade inflammation and, inflammaging as well as actually enhance autoimmune pathologies in old age. It assesses the potential role of additional targeted nutritional supplementation with micro nutrients to counteract these effects, promoting wider immune resilience in older adults. This review collates the current evidence and highlights the role of adequate micro nutrient intake on inflammation and autoimmunity during ageing, providing plausible origins for nutritional interventions to promote healthy immune aging.
Collapse
Affiliation(s)
- Bhavani Sowndharya Balamurugan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Vickram Agaram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Bharath Saravanan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prasanth Chandrababu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Oromia, Ethiopia.
- Division of Research & Development, Lovely Professional University, Phagwara, 144411, Punjab, India.
| |
Collapse
|
19
|
Patel S, Porcari P, Coffee E, Kim N, Berishaj M, Peyear T, Zhang G, Keshari KR. Simultaneous noninvasive quantification of redox and downstream glycolytic fluxes reveals compartmentalized brain metabolism. SCIENCE ADVANCES 2024; 10:eadr2058. [PMID: 39705365 PMCID: PMC11661454 DOI: 10.1126/sciadv.adr2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/14/2024] [Indexed: 12/22/2024]
Abstract
Brain metabolism across anatomic regions and cellular compartments plays an integral role in many aspects of neuronal function. Changes in key metabolic pathway fluxes, including oxidative and reductive energy metabolism, have been implicated in a wide range of brain diseases. Given the complex nature of the brain and the need for understanding compartmentalized metabolism noninvasively in vivo, new tools are required. Herein, using hyperpolarized (HP) magnetic resonance imaging coupled with in vivo isotope tracing, we develop a platform to simultaneously probe redox and energy metabolism in the murine brain. By combining HP dehydroascorbate and pyruvate, we are able to visualize increased lactate production in the white matter and increased redox capacity in the deep gray matter. Leveraging positional labeling, we show differences in compartmentalized tricarboxylic acid cycle entry versus downstream flux to glutamate. These findings lay the foundation for clinical translation of the proposed approach to probe brain metabolism.
Collapse
Affiliation(s)
- Saket Patel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paola Porcari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Coffee
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathaniel Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marjan Berishaj
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thasin Peyear
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Guannan Zhang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayvan R. Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
20
|
Ueda S, Ichiseki T, Shimasaki M, Soma D, Sakurai M, Kaneuji A, Kawahara N. Effect of High-Dose Vitamin C on Tendon Cell Degeneration-An In Vitro Study. Int J Mol Sci 2024; 25:13358. [PMID: 39769123 PMCID: PMC11678561 DOI: 10.3390/ijms252413358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Tendinopathy is an aging-related disease, often caused by micro-scarring and degeneration due to overuse or trauma. Ascorbic acid (vitamin C) supplementation is reported to be a useful treatment for tendinopathy recovery. We compared the inhibitory effects of various ascorbic acid doses on tendon cell damage. H2O2 was added to human-derived tendon cells in vitro (Group H2O2, control), followed by incubation with 150 µM or 30 mM of ascorbic acid (Group C, Group HC). The oxidative injury degree was evaluated by determining reactive oxygen species levels. The cytoskeletal structure was examined via fluorescence immunostaining of actin filaments. Quantitative polymerase chain reaction (qPCR) was performed to analyze the expressions of mitochondria transcription factor A, adenosine triphosphate 5A, type I collagen, and p16. Cell death was reduced, and oxidative stress was inhibited in C and HC groups. The cytoskeleton was maintained in the HC group but not in the C group. qPCR analysis revealed that p16 expression was inhibited in both the C and HC groups compared to the H2O2 group; other markers had increased expression. The progression of cell death and cytoskeletal disruption was inhibited by the administration of high-dose vitamin C. Hence, high-dose vitamin C is a potential treatment for tendon cell degeneration.
Collapse
Affiliation(s)
- Shusuke Ueda
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan
| | - Toru Ichiseki
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan
- Division of Translational Research, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan
| | - Miyako Shimasaki
- Department of Pathology 2, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan;
| | - Daisuke Soma
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan
| | - Masaru Sakurai
- Social and Environmental Medicine, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan
| | - Ayumi Kaneuji
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan
| | - Norio Kawahara
- Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan
| |
Collapse
|
21
|
Bhatnagar K, Jha K, Dalal N, Patki N, Gupta G, Kumar A, Kumar A, Chaudhary S. Exploring micronutrients and microbiome synergy: pioneering new paths in cancer therapy. Front Immunol 2024; 15:1442788. [PMID: 39676876 PMCID: PMC11638209 DOI: 10.3389/fimmu.2024.1442788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The human microbiome is the complex ecosystem consisting of trillions of microorganisms that play a key role in developing the immune system and nutrient metabolism. Alterations in the gut microbiome have been linked to cancer initiation, progression, metastasis, and response to treatment. Accumulating evidence suggests that levels of vitamins and minerals influence the gut environment and may have implications for cancer risk and progression. Bifidobacterium has been reported to reduce the colorectal cancer risk by binding to free iron. Additionally, zinc ions have been shown to activate the immune cells and enhance the effectiveness of immunotherapy. Higher selenium levels have been associated with a reduced risk of several cancers, including colorectal cancer. In contrast, enhanced copper uptake has been implicated in promoting cancer progression, including colon cancer. The interaction between cancer and gut bacteria, as well as dysbiosis impact has been studied in animal models. The interplay between prebiotics, probiotics, synbiotics, postbiotics and gut bacteria in cancer offers the diverse physiological benefits. We also explored the particular probiotic formulations like VSL#3, Prohep, Lactobacillus rhamnosus GG (LGG), etc., for their ability to modulate immune responses and reduce tumor burden in preclinical models. Targeting the gut microbiome through antibiotics, bacteriophage, microbiome transplantation-based therapies will offer a new perspective in cancer research. Hence, to understand this interplay, we outline the importance of micronutrients with an emphasis on the immunomodulatory function of the microbiome and highlight the microbiome's potential as a target for precision medicine in cancer treatment.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Garima Gupta
- Biological Engineering and Sciences, Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, Gujarat, India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Han G, Gan Y, Wang Q, Sun S, Kang P. Effect of perioperative single dose intravenous vitamin C on pain after total hip arthroplasty. J Orthop Surg Res 2024; 19:712. [PMID: 39487511 PMCID: PMC11531179 DOI: 10.1186/s13018-024-05193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION Vitamin c can relieve the pain after other diseases, but there are no studies on whether vitamin C can relieve the pain after hip replacement. The purpose of this paper is to study whether vitamin C can relieve the pain after total hip replacement. PURPOSE In this prospective, double-blind, placebo-controlled, randomized trial, 100 patients receiving THA at our hospital were randomly assigned to vitamin c or control groups. During the operation, the vitamin C group will receive intravenous injection of 3 g vitamin C, and the control group will receive 3 g placebo. If the patient has postoperative pain, 10 ml subcutaneous injection of morphine will be required as a rescue analgesic. The primary outcome was the amount of postoperative injection of morphine as a rescue analgesic and expression of inflammatory factors, and the secondary outcome was postoperative pain and hip recovery as assessed by visual analog scale (VAS). RESULTS The dosage of subcutaneous injection of morphine was significantly reduced in vitamin C group. VAS pain scores at rest and exercise were lower in the vitamin C group 24 h after surgery, and hip motion was better 24 h after surgery, but there was no significant difference between the two groups 24 h after surgery.Nonetheless, the overall changes in morphine usage and VAS scores did not surpass the established minimal clinically important differences (10 mg for morphine consumption; 1.5 at rest and 1.8 during movement for VAS scores). CONCLUSION Adding intravenous vitamin c to multimodal analgesia significantly improved morphine consumption, VAS pain score, and functional recovery. However, it is recommended that single intravenous administration of vitamin C during the perioperative period may achieve better pain relief for patients after THA.
Collapse
Affiliation(s)
- Guangtao Han
- West China hospital of sichuan university, Sichuan, Chengdu, China
| | - Yanfeng Gan
- Hospital of Chengdu Office of people's Government of Tibetan Autonomous Region, Chengdu, China
| | - Qin Wang
- West China hospital of sichuan university, Sichuan, Chengdu, China
| | - Shuo Sun
- West China hospital of sichuan university, Sichuan, Chengdu, China
| | - Pengde Kang
- West China hospital of sichuan university, Sichuan, Chengdu, China.
| |
Collapse
|
23
|
Fiorini G, Marshall SA, Figg WD, Myers WK, Brewitz L, Schofield CJ. Human prolyl hydroxylase domain 2 reacts with O 2 and 2-oxoglutarate to enable formation of inactive Fe(III).2OG.hypoxia-inducible-factor α complexes. Sci Rep 2024; 14:26162. [PMID: 39478091 PMCID: PMC11525979 DOI: 10.1038/s41598-024-75761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Hypoxia inducible transcription factors (HIFs) mediate the hypoxic response in metazoans. When sufficient O2 is present, Fe(II)/2-oxoglutarate (2OG)-dependent oxygenases (human PHD1-3) promote HIFα degradation via prolyl-hydroxylation. We report crystallographic, spectroscopic, and biochemical characterization of stable and inactive PHD2.Fe(III).2OG complexes. Aerobic incubation of PHD2 with Fe(II) and 2OG enables formation of PHD2.Fe(III).2OG complexes which bind HIF1-2α to give inactive PHD2.Fe(III).2OG.HIF1-2α complexes. The Fe(III) oxidation state in the inactive complexes was shown by EPR spectroscopy. L-Ascorbate hinders formation of the PHD2.Fe(III).2OG.(+/-HIFα) complexes and slowly regenerates them to give the catalytically active PHD2.Fe(II).2OG complex. Crystallographic comparison of the PHD2.Fe(III).2OG.HIF2α complex with the analogous anaerobic Fe(II) complex reveals near identical structures. Exposure of the anaerobic PHD2.Fe(II).2OG.HIF2α crystals to O2 enables in crystallo hydroxylation. The resulting PHD2.product structure, manifests conformational changes compared to the substrate structures. The results have implications for the role of the PHDs in hypoxia sensing and open new opportunities for inhibition of the PHDs and other 2OG dependent oxygenases by promoting formation of stable Fe(III) complexes.
Collapse
Affiliation(s)
- Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Stephen A Marshall
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - William D Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - William K Myers
- Inorganic Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford, OX1 3QR, UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
24
|
Gorini F, Tonacci A. Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants (Basel) 2024; 13:1242. [PMID: 39456495 PMCID: PMC11505632 DOI: 10.3390/antiox13101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with an increased global incidence in recent decades, despite a substantially unchanged survival. While TC has an excellent overall prognosis, some types of TC are associated with worse patient outcomes, depending on the genetic setting. Furthermore, oxidative stress is related to more aggressive features of TC. Vitamin C, an essential nutrient provided with food or as a dietary supplement, is a well-known antioxidant and a scavenger of reactive oxygen species; however, at high doses, it can induce pro-oxidant effects, acting through multiple biological mechanisms that play a crucial role in killing cancer cells. Although experimental data and, less consistently, clinical studies, suggest the possibility of antineoplastic effects of vitamin C at pharmacological doses, the antitumor efficacy of this nutrient in TC remains at least partly unexplored. Therefore, this review discusses the current state of knowledge on the role of vitamin C, alone or in combination with other conventional therapies, in the management of TC, the mechanisms underlying this association, and the perspectives that may emerge in TC treatment strategies, and, also, in light of the development of novel functional foods useful to this extent, by implementing novel sensory analysis strategies.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
25
|
Kian W, Remilah AA, Shatat C, Spector M, Roisman LC, Ryvo L. Case report: The efficacy of adding high doses of intravenous vitamin C to the combination therapy of atezolizumab and bevacizumab in unresectable HCC. Front Med (Lausanne) 2024; 11:1461127. [PMID: 39421875 PMCID: PMC11483342 DOI: 10.3389/fmed.2024.1461127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Vitamin C (L-ascorbic acid) plays a vital role in human physiology, serving as both an antioxidant and a cofactor in enzymatic reactions. High-dose intravenous Vitamin C can achieve significantly elevated plasma concentrations, potentially enhancing its anticancer effects. This case study explores the synergistic impact of high-dose intravenous vitamin C in combination with bevacizumab and atezolizumab in the treatment of a patient with unresectable hepatocellular carcinoma (HCC). Case presentation A 68-year-old male was diagnosed with unresectable HCC, presenting with elevated liver enzymes and an alpha-fetoprotein (AFP) level of 2018 ng/mL. Initial treatment with atezolizumab and Bevacizumab commenced in February 2022. Although imaging indicated stable disease, AFP levels decreased modestly to 1,526 ng/mL, while liver function tests remained elevated, accompanied by further clinical deterioration and weight loss. Subsequently, intravenous vitamin C (30 grams) was introduced into the treatment regimen. This addition led to a rapid and significant reduction in AFP levels, normalization of liver function tests, and marked improvement in clinical symptoms. The patient continued on this combined regimen of vitamin c, atezolizumab, and bevacizumab. Four months later, CT scans revealed significant tumor shrinkage and necrosis. As of 30 months post-diagnosis, the patient remains on the regimen with normal liver function and an AFP level of 1.8 ng/mL, maintaining normal activities and stable weight. Conclusion To our knowledge, this is the first reported case of combining high-dose intravenous vitamin C with Bevacizumab and atezolizumab, which proved to be safe and resulted in significant clinical and radiological improvements in unresectable hepatocellular carcinoma (HCC). Further studies are recommended to explore the potential of this combination therapy.
Collapse
Affiliation(s)
- Waleed Kian
- Institute of Oncology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Areen A. Remilah
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Celine Shatat
- Institute of Oncology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Maria Spector
- Department of Radiology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Laila C. Roisman
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Larisa Ryvo
- Institute of Oncology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| |
Collapse
|
26
|
Chen Y, Gao Y, Yin J. Ascorbic Acid Enhances the Inhibitory Effect of Theasaponins against Candida albicans. Int J Mol Sci 2024; 25:10661. [PMID: 39408989 PMCID: PMC11476360 DOI: 10.3390/ijms251910661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our previous studies prove that theasaponins display inhibitory activity against C. albicans. Ascorbic acid (VC) is a vitamin found in many plants that shows potential in combination therapy. However, whether VC enhances the activity of theasaponins remains unclear. In this study, the checkerboard micro-dilution method was used to assess the effect of VC (0-80 mmol/L) on the anti-C. albicans effect of theasaponins (0-1000 μg/mL). Then, the effects of theasaponins (31.25 μg/mL), VC (80 mmol/L), and theasaponins (31.25 μg/mL) + VC (80 mmol/L) on C. albicans planktonic cells and different stages of biofilm formation were assessed. Transcriptomic analysis was conducted to investigate the molecular mechanisms. According to the results, VC enhanced the anti-planktonic and anti-biofilm effect of theasaponins against C. albicans. The minimum inhibitory concentration of theasaponins was significantly decreased and the fungicidal efficiency was increased with the addition of VC. VC remarkably aggravated the suppression of theasaponins with regard to various virulence factors of C. albicans, including adhesion, early biofilm formation, mature biofilm, cell surface hydrophobicity, and phospholipase activity. Compared with the theasaponins or VC groups, the level of intracellular reactive oxygen species was higher, while the levels of mitochondrial membrane potential and adenosine triphosphate were lower in the combination group, suggesting more severe oxidative stress, mitochondrial injury, and energy deficiency. Transcriptomic analysis revealed that the combination predominantly suppressed the pathways of glycolysis, glycerophospholipid metabolism, glutathione metabolism, and cysteine and methionine metabolism. This implied that energy deficiency and redox imbalance were associated with the anti-C. albicans activity of the combination. These results prove that VC enhances the inhibitory effect of theasaponins against C. albicans and that the combination has the potential to be used as a topical antifungal therapy or disinfectant.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| |
Collapse
|
27
|
Robert G, Wagner JR. Scavenging of Alkylperoxyl Radicals by Addition to Ascorbate: An Alternative Mechanism to Electron Transfer. Antioxidants (Basel) 2024; 13:1194. [PMID: 39456448 PMCID: PMC11504153 DOI: 10.3390/antiox13101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO•), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally attributed to its ability to undergo single-electron transfers with reactive species. According to this mechanism, the reaction between Asc and ROO• results in the formation of dehydroascorbate (DHA) and the corresponding hydroperoxides (ROOH). When studying the reactivity of DNA 5-(2'-deoxyuridinyl)methylperoxyl radicals, we discovered a novel pathway of ROO• scavenging by Asc. The purpose of this study is to elucidate the underlying mechanism of this reaction with emphasis on the characterization of intermediate and final decomposition products. We show that the trapping of ROO• by Asc leads to the formation of an alcohol (ROH) together with an unstable cyclic oxalyl-l-threonate intermediate (cOxa-Thr), which readily undergoes hydrolysis into a series of open-chain oxalyl-l-threonic acid regioisomers. The structure of products was determined by detailed MS and NMR analyses. The above transformation can be explained by initial peroxyl radical addition (PRA) onto the C2=C3 enediol portion of Asc. Following oxidation of the resulting adduct radical, the product subsequently undergoes Baeyer-Villiger rearrangement, which releases ROH and generates the ring expansion product cOxa-Thr. The present investigation provides robust clarifications of the peroxide-mediated oxidation chemistry of Asc and DHA that has largely been obscured in the past by interference with autooxidation reactions and difficulties in analyzing and characterizing oxidation products. Scavenging of ROO• by PRA onto Asc may have beneficial consequences since it directly converts ROO• into ROH, which prevents the formation of potentially deleterious ROOH, although it induces the breakdown of Asc into fragments of oxalyl-l-threonic acid.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - J. Richard Wagner
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
28
|
Zhou X, Lin L. Mechanisms and therapeutic target of anti-tumour treatment-related Ferroptosis: How to improve cancer therapy? Biomed Pharmacother 2024; 179:117323. [PMID: 39208665 DOI: 10.1016/j.biopha.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, increased attention has been focused on the regulatory mechanism and potential clinical application of ferroptosis in cancer cells, especially therapy-related ferroptosis. However, the mechanism of treatment-related ferroptosis and the application prospects and strategies for future treatment still require further clarification. This review highlights the molecular relationships between different clinical antitumour drugs, including commonly used chemotherapy drugs, radiation therapy and vitamins, and ferroptosis. This review also proposes strategies for future treatments that involve ferroptosis, with an aim to develop a new strategy for the transformative potential of the emerging field of ferroptosis to improve cancer therapy.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Lin
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
29
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
30
|
Piotrowsky A, Burkard M, Hammerschmidt K, Ruple HK, Nonnenmacher P, Schumacher M, Leischner C, Berchtold S, Marongiu L, Kufer TA, Lauer UM, Renner O, Venturelli S. Analysis of High-Dose Ascorbate-Induced Cytotoxicity in Human Glioblastoma Cells and the Role of Dehydroascorbic Acid and Iron. Antioxidants (Basel) 2024; 13:1095. [PMID: 39334754 PMCID: PMC11429401 DOI: 10.3390/antiox13091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Several studies have demonstrated, both in vitro and in animal models, the anti-tumor efficacy of high-dose ascorbate treatment against a variety of tumor entities, including glioblastoma, the most common and aggressive primary malignant brain tumor. The aim of this study was to investigate the effects of high-dose ascorbate as well as dehydroascorbic acid on human glioblastoma cell lines and to evaluate different treatment conditions for the combined administration of ascorbate with magnesium (Mg2+) and iron (Fe3+). Intracellular levels of reactive oxygen species and the induction of cell death following ascorbate treatment were also investigated. We demonstrated high cytotoxicity and antiproliferative efficacy of high-dose ascorbate in human glioblastoma cells, whereas much weaker effects were observed for dehydroascorbic acid. Ascorbate-induced cell death was independent of apoptosis. Both the reduction in cell viability and the ascorbate-induced generation of intracellular reactive oxygen species could be significantly increased by incubating the cells with Fe3+ before ascorbate treatment. This work demonstrates, for the first time, an increase in ascorbate-induced intracellular ROS formation and cytotoxicity in human glioblastoma cells by pre-treatment of the tumor cells with ferric iron, as well as caspase-3 independence of cell death induced by high-dose ascorbate. Instead, the cell death mechanism caused by high-dose ascorbate in glioblastoma cells shows evidence of ferroptosis. The results of the present work provide insights into the efficacy and mode of action of pharmacological ascorbate for the therapy of glioblastoma, as well as indications for possible approaches to increase the effectiveness of ascorbate treatment.
Collapse
Affiliation(s)
- Alban Piotrowsky
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Katharina Hammerschmidt
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Hannah K. Ruple
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Pia Nonnenmacher
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Monika Schumacher
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Susanne Berchtold
- Department of Medical Oncology and Pneumology, Virotherapy Center Tuebingen (VCT), Medical University Hospital, 72076 Tuebingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstrasse 12, 70593 Stuttgart, Germany
| | - Ulrich M. Lauer
- Department of Medical Oncology and Pneumology, Virotherapy Center Tuebingen (VCT), Medical University Hospital, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen, a Partnership between DKFZ and University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Olga Renner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
- Faculty of Food and Nutrition Sciences, Hochschule Niederrhein, University of Applied Sciences, Rheydter Strasse 277, 41065 Moenchengladbach, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstrasse 56, 72074 Tuebingen, Germany
| |
Collapse
|
31
|
Kishimoto S, Crooks DR, Yasunori O, Kota Y, Yamamoto K, Linehan WM, Levine M, Krishna MC, Brender JR. Pharmacologic ascorbate induces transient hypoxia sensitizing pancreatic ductal adenocarcinoma to a hypoxia activated prodrug. Free Radic Biol Med 2024; 222:579-587. [PMID: 38992394 DOI: 10.1016/j.freeradbiomed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Hypoxic tumor microenvironments pose a significant challenge in cancer treatment. Hypoxia-activated prodrugs like evofosfamide aim to specifically target and eliminate these resistant cells. However, their effectiveness is often limited by reoxygenation after cell death. We hypothesized that ascorbate's pro-oxidant properties could be harnessed to induce transient hypoxia, enhancing the efficacy of evofosfamide by overcoming reoxygenation. To test this hypothesis, we investigated the sensitivity of MIA Paca-2 and A549 cancer cells to ascorbate in vitro and in vivo. Ascorbate induced a cytotoxic effect at 5 mM that could be alleviated by endogenous administration of catalase, suggesting a role for hydrogen peroxide in its cytotoxic mechanism. In vitro, Seahorse experiments indicated that the generation of hydrogen peroxide consumes oxygen, which is offset at later time points by a reduction in oxygen consumption due to hydrogen peroxide's cytotoxic effect. In vivo, photoacoustic imaging showed pharmacologic ascorbate treatment at sublethal levels triggered a complex, multi-phasic response in tumor oxygenation across both cell lines. Initially, ascorbate generated transient hypoxia within minutes through hydrogen peroxide production, via reactions that consume oxygen. This initial hypoxic phase peaked at around 150 s and then gradually subsided. However, at longer time scales (approximately 300 s) a vasodilation effect triggered by ascorbate resulted in increased blood flow and subsequent reoxygenation. Combining sublethal levels of i. p. Ascorbate with evofosfamide significantly prolonged tumor doubling time in MIA Paca-2 and A549 xenografts compared to either treatment alone. This improvement, however, was only observed in a subpopulation of tumors, highlighting the complexity of the oxygenation response.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Otowa Yasunori
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yamashita Kota
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Clinical Cancer Metabolism Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jeffrey R Brender
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Hei Z, Yang S, Ouyang G, Hanna J, Lepoivre M, Huynh T, Aguinaga L, Cassinat B, Maslah N, Bourge M, Golinelli-Cohen MP, Guittet O, Vallières C, Vernis L, Fenaux P, Huang ME. Targeting the redox vulnerability of acute myeloid leukaemia cells with a combination of auranofin and vitamin C. Br J Haematol 2024; 205:1017-1030. [PMID: 39087522 DOI: 10.1111/bjh.19680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by complex molecular and cytogenetic abnormalities. Pro-oxidant cellular redox status is a common hallmark of AML cells, providing a rationale for redox-based anticancer strategy. We previously discovered that auranofin (AUF), initially used for the treatment of rheumatoid arthritis and repositioned for its anticancer activity, can synergize with a pharmacological concentration of vitamin C (VC) against breast cancer cell line models. In this study, we observed that this drug combination synergistically and efficiently killed cells of leukaemic cell lines established from different myeloid subtypes. In addition to an induced elevation of reactive oxygen species and ATP depletion, a rapid dephosphorylation of 4E-BP1 and p70S6K, together with a strong inhibition of protein synthesis were early events in response to AUF/VC treatment, suggesting their implication in AUF/VC-induced cytotoxicity. Importantly, a study on 22 primary AML specimens from various AML subtypes showed that AUF/VC combinations at pharmacologically achievable concentrations were effective to eradicate primary leukaemic CD34+ cells from the majority of these samples, while being less toxic to normal cord blood CD34+ cells. Our findings indicate that targeting the redox vulnerability of AML with AUF/VC combinations could present a potential anti-AML therapeutic approach.
Collapse
Affiliation(s)
- Zhiliang Hei
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Shujun Yang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guifang Ouyang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jolimar Hanna
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Tony Huynh
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Lorea Aguinaga
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Bruno Cassinat
- INSERM UMR 1131, Université Paris Cité, Hôpital Saint-Louis, IRSL, Paris, France
| | - Nabih Maslah
- INSERM UMR 1131, Université Paris Cité, Hôpital Saint-Louis, IRSL, Paris, France
| | - Mickaël Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Pierre Fenaux
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| |
Collapse
|
33
|
Yin L, Luo X, Zhang X, Cheng B. The evolving process of ferroptosis in thyroid cancer: Novel mechanisms and opportunities. J Cell Mol Med 2024; 28:e18587. [PMID: 39163517 PMCID: PMC11335058 DOI: 10.1111/jcmm.18587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Thyroid cancer (TC) is a prevalent endocrine malignancy, with a significant increase in incidence worldwide. Ferroptosis is a novel form of programmed cell death, primarily caused by iron overload and reactive oxygen species (ROS)-dependent accumulation of lipid peroxides. The main manifestations of cellular ferroptosis are rupture of the outer membrane, crumpling of the mitochondria and shrinkage or disappearance of the mitochondrial cristae, thus leading to cell death. Ferroptosis is an important phenomenon in tumour progression, with crosstalk with tumour-associated signalling pathways profoundly affecting tumour progression, immune effects and treatment outcomes. The functions and mechanisms of ferroptosis in TC have also attracted increasing attention, mainly in terms of influencing tumour proliferation, invasion, migration, immune response, therapeutic susceptibility and genetic susceptibility. However, at present, the tumour biology of the morphological, biological and mechanism pathways of ferroptosis is much less deep in TC than in other malignancies. Hence, in this review, we highlighted the emerging role of ferroptosis in TC progression, including the novel mechanisms and potential opportunities for diagnosis and treatment, as well as discussed the limitations and prospects. Ferroptosis-based diagnostic and therapeutic strategies can potentially provide complementary management of TCs.
Collapse
Affiliation(s)
- Lin Yin
- Thyroid Gland Breast SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenChina
| | - Xiaodan Luo
- Department of HemodialysisHuangshi Central HospitalHuangshiChina
| | - Xian Zhang
- Department of Neurology, Affiliated Zhongda HospitalResearch Institution of Neuropsychiatry, School of Medicine, Southeast UniversityNanjingJiangsuChina
| | - Bomin Cheng
- Chinese Medicine Health Management CenterShenzhen Traditional Chinese Medicine HospitalShenzhenChina
| |
Collapse
|
34
|
An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis 2024; 15:556. [PMID: 39090114 PMCID: PMC11294602 DOI: 10.1038/s41419-024-06939-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin An
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Yu
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Li Yang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
35
|
Girotto OS, Furlan OO, Moretti Junior RC, Goulart RDA, Baldi Junior E, Barbalho-Lamas C, Fornari Laurindo L, Barbalho SM. Effects of apples ( Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 39049560 DOI: 10.1080/10408398.2024.2372690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apple (Malus domestica) is the third most produced fruit worldwide. It is a well-known source of bioactive compounds mainly represented by hydroxycinnamic acids, flavan-3-ols, dihydrochalcones, dehydroascorbic acid, carotenoids, chlorogenic acid, epicatechin, and phloridzin. Due to the lack of a recent evaluation of the clinical trials associated with apple consumption, this review investigated the effects of this fruit on metabolic conditions related to inflammation and oxidative stress and reviewed the applications of apple waste on food products. Thirty-three studies showed that apples or its derivatives exhibit anti-inflammatory and antioxidant actions, improve blood pressure, body fat, insulin resistance, dyslipidemia, and reduce cardiovascular risks. Apples have a great economic impact due to its several applications in the food industry and as a food supplement since it has impressive nutritional value. Dietary fiber from the fruit pomace can be used as a substitute for fat in food products or as an improver of fiber content in meat products. It can also be used in bakery and confectionary products or be fermented to produce alcohol. Pomace phytocompounds can also be isolated and applied as antioxidants in food products. The potential for the use of apples and by-products in the food industry can reduce environmental damage.
Collapse
Affiliation(s)
- Otávio Simões Girotto
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | - Otávio Oliveira Furlan
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Edgar Baldi Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Caroline Barbalho-Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | - Sandra M Barbalho
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
- School of Food and Technonolgy of Marilia (FATEC), São Paulo, Brazil
| |
Collapse
|
36
|
Dey A, Kumar E. K. P, Kim CH, Li Y, Park JH. Dual Stimuli-Responsive Nanoprecursor of Ascorbic Acid and Quinone Methide Disrupting Redox Homeostasis for Cancer Treatment. ACS OMEGA 2024; 9:32124-32132. [PMID: 39072103 PMCID: PMC11270566 DOI: 10.1021/acsomega.4c04260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Disrupting the redox balance through reactive oxygen species (ROS) generation and intracellular glutathione (GSH) depletion presents a promising strategy for cancer therapy. Megadoses of ascorbic acid (AA) can induce oxidative stress in cancer cells, leading to cell death. However, achieving enhanced oxidative stress using ultrahigh doses of AA is challenging because of the intricate delivery of high-concentration AA to the targeted sites while the cancer cells could also re-establish more robust redox homeostasis by upregulating antioxidants such as GSH. Recently, quinone methide and its analogues (QMs) have been recognized as effective GSH scavengers, offering a new dimension to accelerate oxidative stress. In this study, we formulated a dual stimuli-responsive nanoprecursor of AA and QM using gold nanoparticles. The nanoprecursor can release AA in response to the intracellular acidic pH in tumor cells, elevating the intracellular ROS levels and triggering the production of ample QMs to quench excessive GSH. This positive feedback mechanism significantly amplifies oxidative stress and disrupts redox homeostasis in cancer cells at a relatively low concentration of AA, leading to selective apoptosis without affecting normal cells. These results highlight the potential of the nanoprecursor as an effective anticancer therapeutic.
Collapse
Affiliation(s)
- Anup Dey
- School
of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu ,Suwon 16419, Republic of Korea
| | - Pramod Kumar E. K.
- School
of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu ,Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School
of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu ,Suwon 16419, Republic of Korea
| | - Yuce Li
- School
of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu ,Suwon 16419, Republic of Korea
- College
of Life Sciences and Health, Wuhan University
of Science and Technology (WUST), Wuhan 430065, China
| | - Jae Hyung Park
- School
of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu ,Suwon 16419, Republic of Korea
- Department
of Health Sciences and Technology, Samsung Advanced Institute for
Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic
of Korea
- Biomedical
Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic
of Korea
| |
Collapse
|
37
|
Lan T, Arastu S, Lam J, Kim H, Wang W, Wang S, Bhatt V, Lopes EC, Hu Z, Sun M, Luo X, Ghergurovich JM, Su X, Rabinowitz JD, White E, Guo JY. Glucose-6-phosphate dehydrogenase maintains redox homeostasis and biosynthesis in LKB1-deficient KRAS-driven lung cancer. Nat Commun 2024; 15:5857. [PMID: 38997257 PMCID: PMC11245543 DOI: 10.1038/s41467-024-50157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NADPH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer mouse models, we show that G6PD ablation significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;P53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics reveal that G6PD ablation significantly impairs NADPH generation, redox balance, and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation activates p53, suppressing tumor growth. As tumors progress, G6PD-deficient KL tumors increase an alternative NADPH source from serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.
Collapse
Affiliation(s)
- Taijin Lan
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Sara Arastu
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Jarrick Lam
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Hyungsin Kim
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Wenping Wang
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Samuel Wang
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | | | - Eduardo Cararo Lopes
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Zhixian Hu
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Michael Sun
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Xuefei Luo
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | | | - Xiaoyang Su
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Joshua D Rabinowitz
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Eileen White
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, 08544, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, 08854, USA.
| |
Collapse
|
38
|
Fathi-Karkan S, Sargazi S, Shojaei S, Farasati Far B, Mirinejad S, Cordani M, Khosravi A, Zarrabi A, Ghavami S. Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection. NANOSCALE 2024; 16:12750-12792. [PMID: 38899396 DOI: 10.1039/d4nr00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166 Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shirin Shojaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
39
|
Kabelitz D, Cierna L, Juraske C, Zarobkiewicz M, Schamel WW, Peters C. Empowering γδ T-cell functionality with vitamin C. Eur J Immunol 2024; 54:e2451028. [PMID: 38616772 DOI: 10.1002/eji.202451028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Vitamin C (ascorbic acid) is a potent antioxidant and a cofactor for various enzymes including histone demethylases and methylcytosine dioxygenases. Vitamin C also exerts direct cytotoxicity toward selected tumor cells including colorectal carcinoma. Moreover, vitamin C has been shown to impact immune cell differentiation at various levels including maturation and/or functionality of T cells and their progenitors, dendritic cells, B cells, and NK cells. γδ T cells have recently attracted great interest as effector cells for cell-based cancer immunotherapy, due to their HLA-independent recognition of a large variety of tumor cells. While γδ T cells can thus be also applied as an allogeneic off-the-shelf product, it is obvious that the effector function of γδ T cells needs to be optimized to ensure the best possible clinical efficacy. Here we review the immunomodulatory mechanisms of vitamin C with a special focus on how vitamin C enhances the effector function of γδ T cells. We also discuss future directions of how vitamin C can be used in the clinical setting to boost the efficacy of adoptive cell therapies.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Institute of Immunology, UKSH Campus Kiel, Kiel, Germany
| | - Lea Cierna
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Claudia Juraske
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Michal Zarobkiewicz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
40
|
Pinilla-González V, Rojas-Solé C, Gómez-Hevia F, González-Fernández T, Cereceda-Cornejo A, Chichiarelli S, Saso L, Rodrigo R. Tapping into Nature's Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods 2024; 13:1999. [PMID: 38998505 PMCID: PMC11241326 DOI: 10.3390/foods13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Numerous natural antioxidants commonly found in our daily diet have demonstrated significant benefits for human health and various diseases by counteracting the impact of reactive oxygen and nitrogen species. Their chemical properties enable a range of biological actions, including antihypertensive, antimicrobial, anti-inflammatory, anti-fibrotic, and anticancer effects. Despite promising outcomes from preclinical studies, ongoing debate persists regarding their reproducibility in human clinical models. This controversy largely stems from a lack of understanding of the pharmacokinetic properties of these compounds, coupled with the predominant focus on monotherapies in research, neglecting potential synergistic effects arising from combining different antioxidants. This study aims to provide an updated overview of natural antioxidants, operating under the hypothesis that a multitherapeutic approach surpasses monotherapy in efficacy. Additionally, this study underscores the importance of integrating these antioxidants into the daily diet, as they have the potential to prevent the onset and progression of various diseases. To reinforce this perspective, clinical findings pertaining to the treatment and prevention of non-alcoholic fatty liver disease and conditions associated with ischemia and reperfusion phenomena, including myocardial infarction, postoperative atrial fibrillation, and stroke, are presented as key references.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Francisca Gómez-Hevia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Antonia Cereceda-Cornejo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| |
Collapse
|
41
|
Wang SW, Zhang XW, Qu JX, Rao YZ, Lu S, Wang B, He J, Zhao Y, Rao BQ. Hemolysis attributed to high dose vitamin C: Two case reports. World J Clin Cases 2024; 12:3168-3176. [PMID: 38898838 PMCID: PMC11185385 DOI: 10.12998/wjcc.v12.i17.3168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND High-dose vitamin C treatment (HVCT) can reduce the adverse effect of chemotherapy and enhance the effect of antitumor therapy, which has been considered one of the safest alternative treatments. However, the severity of its adverse effects may have been underestimated. The most serious adverse effect is hemolysis, which may result in acute kidney injury or death. Although glucose-6-phosphate dehydrogenase (G6PD) deficiency is considered to be the main cause, the probability and pathological mechanism are not completely understood, leading to a lack of effective and standardized treatment methods. CASE SUMMARY Two patients with colorectal cancer developed hemolytic anemia after using 1 g/kg HVCT. In contrast to previous cases, the lowest hemoglobin level in the two cases was < 50 g/L, which was lower than previously reported. This may be because Case 1 had chronic hepatitis B for many years, which caused abnormal liver reserve function, and Case 2 had grade II bone marrow suppression. Both patients improved and were discharged after blood replacement therapy. Our cases had the most severe degree of hemolysis but the best prognosis, suggesting that our treatment may be helpful for rescue of drug-induced hemolysis. This is the first review of the literature on hemolysis caused by HVCT, and we found that all patients with G6PD deficiency developed hemolysis after HVCT. CONCLUSION G6PD deficiency should be considered as a contraindication to HVCT, and it is not recommended for patients with bone marrow suppression, moderate-to-severe anemia, hematopoietic abnormalities, or abnormal liver and kidney function. Early blood purification and steroid therapy may avoid acute kidney injury or death caused by HVCT-related hemolytic anemia.
Collapse
Affiliation(s)
- Shi-Wan Wang
- Center for Oncology Nutrition and Metabolism, Beijing Shijitan Hospital, Capital Medical University/Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Xiao-Wei Zhang
- Center for Oncology Nutrition and Metabolism, Beijing Shijitan Hospital, Capital Medical University/Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Jin-Xiu Qu
- Center for Oncology Nutrition and Metabolism, Beijing Shijitan Hospital, Capital Medical University/Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Yi-Zhong Rao
- Center for Oncology Nutrition and Metabolism, Beijing Shijitan Hospital, Capital Medical University/Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Shuai Lu
- Center for Oncology Nutrition and Metabolism, Beijing Shijitan Hospital, Capital Medical University/Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Bing Wang
- Center for Oncology Nutrition and Metabolism, Beijing Shijitan Hospital, Capital Medical University/Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Jia He
- Center for Oncology Nutrition and Metabolism, Beijing Shijitan Hospital, Capital Medical University/Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Yuan Zhao
- Center for Oncology Nutrition and Metabolism, Beijing Shijitan Hospital, Capital Medical University/Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Ben-Qiang Rao
- Center for Oncology Nutrition and Metabolism, Beijing Shijitan Hospital, Capital Medical University/Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| |
Collapse
|
42
|
Shen X, Wang J, Deng B, Zhao Z, Chen S, Kong W, Zhou C, Bae-Jump V. Review of the Potential Role of Ascorbate in the Prevention and Treatment of Gynecological Cancers. Antioxidants (Basel) 2024; 13:617. [PMID: 38790722 PMCID: PMC11118910 DOI: 10.3390/antiox13050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Ascorbate (vitamin C) is an essential vitamin for the human body and participates in various physiological processes as an important coenzyme and antioxidant. Furthermore, the role of ascorbate in the prevention and treatment of cancer including gynecological cancer has gained much more interest recently. The bioavailability and certain biological functions of ascorbate are distinct in males versus females due to differences in lean body mass, sex hormones, and lifestyle factors. Despite epidemiological evidence that ascorbate-rich foods and ascorbate plasma concentrations are inversely related to cancer risk, ascorbate has not demonstrated a significant protective effect in patients with gynecological cancers. Adequate ascorbate intake may have the potential to reduce the risk of human papillomavirus (HPV) infection and high-risk HPV persistence status. High-dose ascorbate exerts antitumor activity and synergizes with chemotherapeutic agents in preclinical cancer models of gynecological cancer. In this review, we provide evidence for the biological activity of ascorbate in females and discuss the potential role of ascorbate in the prevention and treatment of ovarian, endometrial, and cervical cancers.
Collapse
Affiliation(s)
- Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
43
|
Aminu M, Hong L, Vokes N, Schmidt ST, Saad M, Zhu B, Le X, Tina C, Sheshadri A, Wang B, Jaffray D, Futreal A, Lee JJ, Byers LA, Gibbons D, Heymach J, Chen K, Cheng C, Zhang J, Wu J. Joint multi-omics discriminant analysis with consistent representation learning using PANDA. RESEARCH SQUARE 2024:rs.3.rs-4353037. [PMID: 38798352 PMCID: PMC11118856 DOI: 10.21203/rs.3.rs-4353037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Integrative multi-omics analysis provides deeper insight and enables better and more realistic modeling of the underlying biology and causes of diseases than does single omics analysis. Although several integrative multi-omics analysis methods have been proposed and demonstrated promising results in integrating distinct omics datasets, inconsistent distribution of the different omics data, which is caused by technology variations, poses a challenge for paired integrative multi-omics methods. In addition, the existing discriminant analysis-based integrative methods do not effectively exploit correlation and consistent discriminant structures, necessitating a compromise between correlation and discrimination in using these methods. Herein we present PAN-omics Discriminant Analysis (PANDA), a joint discriminant analysis method that seeks omics-specific discriminant common spaces by jointly learning consistent discriminant latent representations for each omics. PANDA jointly maximizes between-class and minimizes within-class omics variations in a common space and simultaneously models the relationships among omics at the consistency representation and cross-omics correlation levels, overcoming the need for compromise between discrimination and correlation as with the existing integrative multi-omics methods. Because of the consistency representation learning incorporated into the objective function of PANDA, this method seeks a common discriminant space to minimize the differences in distributions among omics, can lead to a more robust latent representations than other methods, and is against the inconsistency of the different omics. We compared PANDA to 10 other state-of-the-art multi-omics data integration methods using both simulated and real-world multi-omics datasets and found that PANDA consistently outperformed them while providing meaningful discriminant latent representations. PANDA is implemented using both R and MATLAB, with codes available at https://github.com/WuLabMDA/PANDA.
Collapse
Affiliation(s)
- Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie T. Schmidt
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maliazurina Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Zhu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cascone Tina
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Wang
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - David Jaffray
- Office of the Chief Technology and Digital Officer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Cheng
- Department of Medicine, Institution of Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Qu J, Lu S, Wang B, Wang S, Yang Z, Tang H, He J, Zhao Y, Wang X, Liu X, Rao B. Network pharmacology and molecular docking technology for exploring the effect and mechanism of high-dose vitamin c on ferroptosis of tumor cells: A review. Medicine (Baltimore) 2024; 103:e38189. [PMID: 38758839 PMCID: PMC11098213 DOI: 10.1097/md.0000000000038189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
To investigate the mechanism by which high-dose vitamin C (HVC) promotes ferroptosis in tumor cells via network pharmacology, vitamin C-related and ferroptosis-related targets were obtained from the PharmMapper and GeneCards databases, respectively, and their common targets were compared using the Venn diagram. Common targets were imported into the STRING database for protein-protein interaction analysis, and core targets were defined. Core targets were enriched for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways using the R language packages. A map of the core target-based interaction network and a map of the mechanism by which HVC regulates ferroptosis were constructed. A total of 238 vitamin C-related and 721 ferroptosis-related targets were identified, of which 21 targets were common to both. Furthermore, ALDOA, AHCY, LDHB, HSPA8, LGALS3, and GSTP1 were identified as core targets. GO enrichment analysis suggested that the main biological processes included the extrinsic apoptotic signaling pathway and pyruvate metabolic process. KEGG enrichment analysis suggested that HVC regulates ferroptosis mainly through the amino acid and carbohydrate metabolic pathways. The targets were validated by molecular docking. In conclusion, HVC may promote ferroptosis in tumor cells by regulating metabolic pathways, and there is a synergistic effect between HVC and type I ferroptosis inducers. Glycolysis-dependent tumors may be beneficial for HVC therapy. Our study provides a reference for further clinical studies on HVC antitumor therapy.
Collapse
Affiliation(s)
- Jinxiu Qu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Shiwan Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Huazhen Tang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Jia He
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Yuan Zhao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Xin Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Xiaozhu Liu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Benqiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| |
Collapse
|
45
|
Hao S, Ge P, Su W, Wang Y, Abd El-Aty AM, Tan M. Steady-State Delivery and Chemical Modification of Food Nutrients to Improve Cancer Intervention Ability. Foods 2024; 13:1363. [PMID: 38731734 PMCID: PMC11083276 DOI: 10.3390/foods13091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer is a crucial global health problem, and prevention is an important strategy to reduce the burden of the disease. Daily diet is the key modifiable risk factor for cancer, and an increasing body of evidence suggests that specific nutrients in foods may have a preventive effect against cancer. This review summarizes the current evidence on the role of nutrients from foods in cancer intervention. It discusses the potential mechanisms of action of various dietary components, including phytochemicals, vitamins, minerals, and fiber. The findings of epidemiological and clinical studies on their association with cancer risk are highlighted. The foods are rich in bioactive compounds such as carotenoids, flavonoids, and ω-3 fatty acids, which have been proven to have anticancer properties. The effects of steady-state delivery and chemical modification of these food's bioactive components on anticancer and intervention are summarized. Future research should focus on identifying the specific bioactive compounds in foods responsible for their intervention effects and exploring the potential synergistic effects of combining different nutrients in foods. Dietary interventions that incorporate multiple nutrients and whole foods may hold promise for reducing the risk of cancer and improving overall health.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Peng Ge
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; (S.H.); (P.G.); (W.S.); (Y.W.)
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
46
|
Moreira Milhan NV, da Graça Sampaio A, Koga-Ito CY, Bruzzaniti A. Ascorbic acid as a modulator of inflammatory response against Candida albicans. Future Microbiol 2024; 19:585-594. [PMID: 38629904 PMCID: PMC11229584 DOI: 10.2217/fmb-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/08/2023] [Indexed: 06/07/2024] Open
Abstract
Aim: To evaluate the behavior of oral keratinocytes in the presence of Vitamin C (Vit C) and its anti-inflammatory potential. Materials & methods: Oral keratinocytes were initially exposed to 0.1-2.5 mM of Vit C and the metabolic activity and cell migration were evaluated using MTS assay and Ibidi culture inserts, respectively. After, the cells were challenged with Candida albicans and inflammatory markers were analyzed by qPCR. Results: The treatment was not cytotoxic, and the highest concentrations increased the metabolic activity at 24 h. Vit C delayed the cell migration at 48 and 72 h. Interestingly, it downregulated the genes IL-8 and IL-1β. Conclusion: Vit C could be an interesting adjuvant to anti-fungal treatment due to its anti-inflammatory potential.
Collapse
Affiliation(s)
- Noala Vicensoto Moreira Milhan
- Department of Environmental Engineering & Sciences Applied in Oral Health Graduate Program, São Paulo State University (Unesp), Institute of Science & Technology, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Aline da Graça Sampaio
- Department of Environmental Engineering & Sciences Applied in Oral Health Graduate Program, São Paulo State University (Unesp), Institute of Science & Technology, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Cristiane Yumi Koga-Ito
- Department of Environmental Engineering & Sciences Applied in Oral Health Graduate Program, São Paulo State University (Unesp), Institute of Science & Technology, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Angela Bruzzaniti
- Department of Biomedical & Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| |
Collapse
|
47
|
Shen X, Wang J, Deng B, Chen S, John C, Zhao Z, Sinha N, Haag J, Sun W, Kong W, Spasojevic I, Batinic-Haberle I, Secord AA, Zhou C, Bae-Jump VL. High-dose ascorbate exerts anti-tumor activities and improves inhibitory effect of carboplatin through the pro-oxidant function pathway in uterine serous carcinoma cell lines. Gynecol Oncol 2024; 183:93-102. [PMID: 38555710 PMCID: PMC11152988 DOI: 10.1016/j.ygyno.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Uterine serous carcinoma is a highly aggressive non-endometrioid subtype of endometrial cancer with poor survival rates overall, creating a strong need for new therapeutic strategies to improve outcomes. High-dose ascorbate (vitamin C) has been shown to inhibit cell proliferation and tumor growth in multiple preclinical models and has shown promising anti-tumor activity in combination with chemotherapy, with a favorable safety profile. We aimed to study the anti-tumor effects of ascorbate and its synergistic effect with carboplatin on uterine serous carcinoma cells. METHODS Cell proliferation was evaluated by MTT and colony formation assays in ARK1, ARK2 and SPEC2 cells. Cellular stress, antioxidant ability, cleaved caspase 3 activity and adhesion were measured by ELISA assays. Cell cycle was detected by Cellometer. Invasion was measured using a wound healing assay. Changes in protein expression were determined by Western immunoblotting. RESULTS High-dose ascorbate significantly inhibited cell proliferation, caused cell cycle arrest, induced cellular stress, and apoptosis, increased DNA damage, and suppressed cell invasion in ARK1 and SPEC2 cells. Treatment of both cells with 1 mM N-acetylcysteine reversed ascorbate-induced apoptosis and inhibition of cell proliferation. The combination of ascorbate and carboplatin produced significant synergistic effects in inhibiting cell proliferation and invasion, inducing cellular stress, causing DNA damage, and enhancing cleaved caspase 3 levels compared to each compound alone in both cells. CONCLUSIONS Ascorbate has potent antitumor activity and acts synergistically with carboplatin through its pro-oxidant effects. Clinical trials of ascorbate combined with carboplatin as adjuvant treatment of uterine serous carcinoma are worth exploring.
Collapse
Affiliation(s)
- Xiaochang Shen
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
| | - Boer Deng
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuning Chen
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Catherine John
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziyi Zhao
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikita Sinha
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer Haag
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weimin Kong
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, PR China
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, and PK/PD Core Laboratory, Duke Cancer Institute, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Cao W, Xiong S, Ji W, Wei H, Ma F, Mao L. Neuroprotection Role of Vitamin C by Upregulating Glutamate Transporter-1 in Auditory Cortex of Noise-Induced Tinnitus Animal Model. ACS Chem Neurosci 2024; 15:1197-1205. [PMID: 38451201 DOI: 10.1021/acschemneuro.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 μM) increases relative to that in the control group (1.34 ± 0.22 μM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 μM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.
Collapse
Affiliation(s)
- Wanxin Cao
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Shan Xiong
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Furong Ma
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
49
|
Lu S, Sun X, Zhang W, Li X, Zhou Z, Xiao R, Lv Q, Tang H, Wang B, Qu J, Cao R, He J, Wang S, Yang P, Yang Z, Rao B. Effects of the Mediterranean Diet on metabolic indices and quality of life in cancer patients: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2024; 114:106074. [DOI: 10.1016/j.jff.2024.106074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
50
|
Wu P, Li B, Liu Y, Bian Z, Xiong J, Wang Y, Zhu B. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response. Int J Mol Sci 2024; 25:1832. [PMID: 38339111 PMCID: PMC10855474 DOI: 10.3390/ijms25031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Ascorbic acid (AsA) is an important nutrient for human health and disease cures, and it is also a crucial indicator for the quality of fruit and vegetables. As a reductant, AsA plays a pivotal role in maintaining the intracellular redox balance throughout all the stages of plant growth and development, fruit ripening, and abiotic stress responses. In recent years, the de novo synthesis and regulation at the transcriptional level and post-transcriptional level of AsA in plants have been studied relatively thoroughly. However, a comprehensive and systematic summary about AsA-involved biochemical pathways, as well as AsA's physiological functions in plants, is still lacking. In this review, we summarize and discuss the multiple physiological and biochemical functions of AsA in plants, including its involvement as a cofactor, substrate, antioxidant, and pro-oxidant. This review will help to facilitate a better understanding of the multiple functions of AsA in plant cells, as well as provide information on how to utilize AsA more efficiently by using modern molecular biology methods.
Collapse
Affiliation(s)
- Peiwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Bowen Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Ye Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Zheng Bian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Jiaxin Xiong
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| |
Collapse
|