1
|
Ma W, Xu Z, Teng C, Cao C, Wu R, Meng X, Sui Q, Gao Q, Zong C, Li T. Enhanced Antitumor Immunity of a Globo H-Based Vaccine Enabled by the Combination Adjuvants of 3D-MPL and QS-21. Angew Chem Int Ed Engl 2025; 64:e202418948. [PMID: 39679641 DOI: 10.1002/anie.202418948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Globo H, a specific carbohydrate antigen overexpressed on various human malignancies, has attracted considerable interest as an antigenic target for anticancer vaccine development. Despite several Globo H-based carbohydrate vaccines that have been designed, efficient access to Globo H hexasaccharide antigen and development of powerful adjuvants for enhancing antitumor immunity remain challenging. Herein, we reported a streamlined chemoenzymatic approach to prepare this hexasaccharide antigen, relying on chemical synthesis of Gb5 pentasaccharide by a stereoconvergent [2+3] strategy and subsequent enzymatic α-fucosylation to easily install α1,2-fucose residue. Separately, a modular assembly approach to efficiently synthesize 3-O-deacyl-monophosphoryl lipid A (3D-MPL) was developed by the integration of stereocontrolled glycosylation, regioselective acylation, site-specific phosphorylation, and facile global deprotection. After efficient construction of Globo H-CRM197 conjugate, we conducted systematic immunological evaluations of Globo H-CRM197 formulated with various adjuvants and adjuvant combinations, comprising saponin QS-21, synthetic 3D-MPL and α-galactosylceramide derivative S34. The results revealed that Globo H-CRM197 conjugate adjuvanted with QS-21 and 3D-MPL elicited robust IgG2a and IgG3 antibody responses and Th1 cellular immunity in mice. Moreover, antibodies induced by this formulation effectively bound to Globo H-positive MCF-7 cancer cells and exhibited superior complement-dependent cytotoxicity and antibody-dependent cellular phagocytosis, holding promise for further development of effective anticancer vaccines.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changcai Teng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Chang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruixue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Meng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Sui
- Shanghai Anyikang Biotechnology Co., LTD, Shanghai, 200131, China
| | - Qi Gao
- Shanghai Anyikang Biotechnology Co., LTD, Shanghai, 200131, China
| | - Chengli Zong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
2
|
Bagheri Hashkavayi A, Alizadeh A, Chun H. Review of advances in glycan analysis on exosomes, cancer cells, and circulating cancer-derived glycoproteins with an emphasis on electrochemistry. Anal Chim Acta 2025; 1336:343277. [PMID: 39788689 DOI: 10.1016/j.aca.2024.343277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 01/12/2025]
Abstract
Glycosylation, the intricate process of adding carbohydrate motifs to proteins, lipids, and exosomes on the cell surface, is crucial for both physiological and pathological mechanisms. Alterations in glycans significantly affect cancer cell metastasis by mediating cell-cell and cell-matrix interactions. The subtle changes in glycosylation during malignant transformations highlight the importance of analyzing cell and exosome surface glycosylation for prognostic and early treatment strategies in cancer. This review focuses on recent advancements in sensors for detecting surface glycans on cancer cells, exosomes, and circulating cancer-derived glycoproteins. Among various methods, electrochemical biosensors stand out as a promising tool, offering rapid and cost-effective glycan detection. These devices detect glycan interactions by measuring changes in electrical signals resulting from specific binding events. Techniques such as differential pulse voltammetry, impedance spectroscopy, and chrono amperometry are commonly employed for glycan detection using electrochemical biosensors. Researchers are exploring novel electrode materials and surface functionalization strategies to enhance sensor performance. Notably, selective binding probes such as lectins, aptamers, antibodies, and boronic acids are discussed, with lectins being the most prevalent for specific glycan analysis. By highlighting the significance of electrochemical techniques, emphasizing the role of selective binding probes, integrating microfluidics and miniaturized devices could lead to point-of-care applications for cancer diagnosis and monitoring. This review aims to provide valuable insights for researchers and clinicians working in the field of cancer glycomics.
Collapse
Affiliation(s)
- Ayemeh Bagheri Hashkavayi
- Department of Applied Physical Sciences, University of North Carolina- Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC, 27599-2100, USA
| | - Abdolhossein Alizadeh
- Department of Chemical Industry, Bushehr Branch, Technical and Vocational University, Bushehr, Iran
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
3
|
Wolters-Eisfeld G, Oliveira-Ferrer L. Glycan diversity in ovarian cancer: Unraveling the immune interplay and therapeutic prospects. Semin Immunopathol 2024; 46:16. [PMID: 39432076 PMCID: PMC11493797 DOI: 10.1007/s00281-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Ovarian cancer remains a formidable challenge in oncology due to its late-stage diagnosis and limited treatment options. Recent research has revealed the intricate interplay between glycan diversity and the immune microenvironment within ovarian tumors, shedding new light on potential therapeutic strategies. This review seeks to investigate the complex role of glycans in ovarian cancer and their impact on the immune response. Glycans, complex sugar molecules decorating cell surfaces and secreted proteins, have emerged as key regulators of immune surveillance in ovarian cancer. Aberrant glycosylation patterns can promote immune evasion by shielding tumor cells from immune recognition, enabling disease progression. Conversely, certain glycan structures can modulate the immune response, leading to either antitumor immunity or immune tolerance. Understanding the intricate relationship between glycan diversity and immune interactions in ovarian cancer holds promise for the development of innovative therapeutic approaches. Immunotherapies that target glycan-mediated immune evasion, such as glycan-based vaccines or checkpoint inhibitors, are under investigation. Additionally, glycan profiling may serve as a diagnostic tool for patient stratification and treatment selection. This review underscores the emerging importance of glycan diversity in ovarian cancer, emphasizing the potential for unraveling immune interplay and advancing tailored therapeutic prospects for this devastating disease.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
4
|
Marglous S, Brown CE, Padler-Karavani V, Cummings RD, Gildersleeve JC. Serum antibody screening using glycan arrays. Chem Soc Rev 2024; 53:2603-2642. [PMID: 38305761 PMCID: PMC7616341 DOI: 10.1039/d3cs00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Humans and other animals produce a diverse collection of antibodies, many of which bind to carbohydrate chains, referred to as glycans. These anti-glycan antibodies are a critical part of our immune systems' defenses. Whether induced by vaccination or natural exposure to a pathogen, anti-glycan antibodies can provide protection against infections and cancers. Alternatively, when an immune response goes awry, antibodies that recognize self-glycans can mediate autoimmune diseases. In any case, serum anti-glycan antibodies provide a rich source of information about a patient's overall health, vaccination history, and disease status. Glycan microarrays provide a high-throughput platform to rapidly interrogate serum anti-glycan antibodies and identify new biomarkers for a variety of conditions. In addition, glycan microarrays enable detailed analysis of the immune system's response to vaccines and other treatments. Herein we review applications of glycan microarray technology for serum anti-glycan antibody profiling.
Collapse
Affiliation(s)
- Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
5
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Kahn RM, Ragupathi G, Zhou QC, Iasonos A, Kravetz S, Hensley ML, Konner JA, Makker V, Tew WP, Aghajanian C, Sabbatini PJ, O'Cearbhaill RE. Long-term outcomes of patients with recurrent ovarian cancer treated with a polyvalent vaccine with bevacizumab combination. Cancer Immunol Immunother 2023; 72:183-191. [PMID: 35779095 PMCID: PMC10123530 DOI: 10.1007/s00262-022-03225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND To characterize the safety, immunogenicity, and outcomes of patients with high-grade serous ovarian cancer (HGSOC) in second or greater remission treated with a polyvalent antigen-KLH plus OPT-821 vaccine construct and bevacizumab. METHODS Patients with recurrent HGSOC were treated with the vaccine plus bevacizumab at our institution from 01/05/2011 to 03/20/2012. Follow-up continued until 03/2021. Blood/urine samples were collected. "Responders" had an immunogenic response to ≥ 3 antigens; "non-responders" to ≤ 2 antigens. RESULTS Twenty-one patients were treated on study. One developed a dose-limiting toxicity (grade 4 fever). Two (10%) experienced bevacizumab-related grade 3 hypertension. Thirteen (68%) and 16 (84%) of 19 responded to ≥ 3 and ≥ 2 antigens, respectively (Globo-H, GM2, TF cluster Tn, MUC-1). Four of 21 patients were alive > 5 years post-treatment. Responders and non-responders had a median PFS of 4.9 months (95% CI: 2.8-8.1) and 5.0 months (95% CI: 0.7-cannot estimate), respectively; median OS was 30.7 months (95% CI: 16.9-52.0) and 34.2 months (95% CI: 12.8-cannot estimate), respectively. On two-timepoint analysis (baseline, week 17), increased IL-8 exhibited improved PFS (HR as 10-unit increase, 0.43; p = 0.04); increased PDGF exhibited worse OS (HR as 10-unit increase, 1.01; p = 0.02). CONCLUSIONS This is the longest follow-up of vaccine administration with bevacizumab in patients with ovarian cancer. The vaccine was well tolerated with bevacizumab. Response was not associated with improved survival. On two-timepoint analysis, increased IL-8 was associated with significant improvement in PFS; increased PDGF with significantly worse OS. For all timepoint measurements, cytokine levels were not significantly associated with survival. TRIAL REGISTRATION NCT01223235.
Collapse
Affiliation(s)
- Ryan M Kahn
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Govind Ragupathi
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin C Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Kravetz
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Martee L Hensley
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jason A Konner
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - William P Tew
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Paul J Sabbatini
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- National University of Ireland, Galway, Ireland.
| |
Collapse
|
7
|
Palladino P, Papi F, Minunni M, Nativi C, Scarano S. Structurally Constrained MUC1-Tn Mimetic Antigen as Template for Molecularly Imprinted Polymers (MIPs): A Promising Tool for Cancer Diagnostics. Chempluschem 2022; 87:e202200068. [PMID: 35502851 DOI: 10.1002/cplu.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Abnormal glycoconjugates have distinctly been recognized as potential biomarkers for cancer diagnosis. A great deal of attention has been focused on Tn antigen, an oversimplified mucin-1 O-glycan, over-expressed in different cancers. Herein, we investigate the possibility to replace the use of anti-Tn monoclonal antibodies with an innovative class of catecholamine-based Molecularly Imprinted Polymers (MIPs), emerging in recent years as promising tools for bioanalytical applications. MIPs are synthetic receptors characterized by high sensitivity and specificity towards the imprinted target. Here, original polynorepinephrine-based MIPs coupled to Surface Plasmon Resonance biosensing for Tn antigen recognition are reported. We have verified the imprinting and binding capacity of these MIPs towards very small antigenic entities, represented by the natural Tn antigen and the TnThr mimetic 1 (conjugated to BSA or linked to a MUC1 hexapeptide analogue), and compared the biosensor performances with an anti-Tn monoclonal antibody. The results clearly display the effectiveness of the pursued imprinting strategies.
Collapse
Affiliation(s)
- Pasquale Palladino
- Department of Chemistry, DICUS, University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Francesco Papi
- Department of Chemistry, DICUS, University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Maria Minunni
- Department of Chemistry, DICUS, University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Cristina Nativi
- Department of Chemistry, DICUS, University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| | - Simona Scarano
- Department of Chemistry, DICUS, University of Florence, via della Lastruccia 3-13, 50019, Sesto F.no (FI), Italy
| |
Collapse
|
8
|
Tikhonov A, Smoldovskaya O, Feyzkhanova G, Kushlinskii N, Rubina A. Glycan-specific antibodies as potential cancer biomarkers: a focus on microarray applications. Clin Chem Lab Med 2021; 58:1611-1622. [PMID: 32324152 DOI: 10.1515/cclm-2019-1161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins and lipids. In the case of tumors, cell transformation accompanied by aberrant glycosylation results in the expression of tumor-associated glycans that promote tumor invasion. As part of the innate immunity, anti-glycan antibodies recognize tumor-associated glycans, and these antibodies can be present in the bloodstream in the early stages of cancer. Recently, anti-glycan antibody profiles have been of interest in various cancer studies. Novel advantages in the field of analytical techniques have simplified the analysis of anti-glycan antibodies and made it easier to have more comprehensive knowledge about their functions. One of the robust approaches for studying anti-glycan antibodies engages in microarray technology. The analysis of glycan microarrays can provide more expanded information to simultaneously specify or suggest the role of antibodies to a wide variety of glycans in the progression of different diseases, therefore making it possible to identify new biomarkers for diagnosing cancer and/or the state of the disease. Thus, in this review, we discuss antibodies to various glycans, their application for diagnosing cancer and one of the most promising tools for the investigation of these molecules, microarrays.
Collapse
Affiliation(s)
- Aleksei Tikhonov
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Smoldovskaya
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Guzel Feyzkhanova
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay Kushlinskii
- Laboratory of Clinical Biochemistry, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» оf the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alla Rubina
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Wang S, Chen C, Gadi MR, Saikam V, Liu D, Zhu H, Bollag R, Liu K, Chen X, Wang F, Wang PG, Ling P, Guan W, Li L. Chemoenzymatic modular assembly of O-GalNAc glycans for functional glycomics. Nat Commun 2021; 12:3573. [PMID: 34117223 PMCID: PMC8196059 DOI: 10.1038/s41467-021-23428-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/29/2021] [Indexed: 01/16/2023] Open
Abstract
O-GalNAc glycans (or mucin O-glycans) play pivotal roles in diverse biological and pathological processes, including tumor growth and progression. Structurally defined O-GalNAc glycans are essential for functional studies but synthetic challenges and their inherent structural diversity and complexity have limited access to these compounds. Herein, we report an efficient and robust chemoenzymatic modular assembly (CEMA) strategy to construct structurally diverse O-GalNAc glycans. The key to this strategy is the convergent assembly of O-GalNAc cores 1-4 and 6 from three chemical building blocks, followed by enzymatic diversification of the cores by 13 well-tailored enzyme modules. A total of 83 O-GalNAc glycans presenting various natural glycan epitopes are obtained and used to generate a unique synthetic mucin O-glycan microarray. Binding specificities of glycan-binding proteins (GBPs) including plant lectins and selected anti-glycan antibodies towards these O-GalNAc glycans are revealed by this microarray, promoting their applicability in functional O-glycomics. Serum samples from colorectal cancer patients and healthy controls are assayed using the array reveal higher bindings towards less common cores 3, 4, and 6 than abundant cores 1 and 2, providing insights into O-GalNAc glycan structure-activity relationships.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, 266237, Shandong, China
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, Shandong, China
| | | | - Varma Saikam
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, Shandong, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, 266237, Shandong, China.
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, 250101, Shandong, China.
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, 250012, Shandong, China.
| | - Wanyi Guan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
10
|
Anti-glycan antibodies: roles in human disease. Biochem J 2021; 478:1485-1509. [PMID: 33881487 DOI: 10.1042/bcj20200610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.
Collapse
|
11
|
Yang MC, Shia CS, Li WF, Wang CC, Chen IJ, Huang TY, Chen YJ, Chang HW, Lu CH, Wu YC, Wang NH, Lai JS, Yu CD, Lai MT. Preclinical Studies of OBI-999: A Novel Globo H-Targeting Antibody-Drug Conjugate. Mol Cancer Ther 2021; 20:1121-1132. [PMID: 33722855 DOI: 10.1158/1535-7163.mct-20-0763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Globo H (GH), a hexasaccharide, is expressed at low levels in normal tissues but is highly expressed in multiple cancer types, rendering it a promising target for cancer immunotherapy. OBI-999, a novel antibody-drug conjugate, is derived from a conjugation of a GH-specific mAb with a monomethyl auristatin E (MMAE) payload through a site-specific ThioBridge and a cleavable linker. OBI-999 high homogeneity with a drug-to-antibody ratio of 4 (>95%) was achieved using ThioBridge. OBI-999 displayed GH-dependent cellular internalization and trafficked to endosome and lysosome within 1 and 5 hours, respectively. Furthermore, OBI-999 showed low nanomolar cytotoxicity in the assay with high GH expression on tumor cells and exhibited a bystander killing effect on tumor cells with minimal GH expression. Tissue distribution indicated that OBI-999 and free MMAE gradually accumulated in the tumor, reaching maximum level at 168 hours after treatment, whereas OBI-999 and free MMAE decreased quickly at 4 hours after treatment in normal organs. Maximum MMAE level in the tumor was 16-fold higher than in serum, suggesting that OBI-999 is stable during circulation and MMAE is selectively released in the tumor. Excellent tumor growth inhibition of OBI-999 was demonstrated in breast, gastric, and pancreatic cancer xenograft or lung patient-derived xenograft models in a dose-dependent manner. The highest nonseverely toxic dose in cynomolgus monkeys is 10 mg/kg determined by a 3-week repeated-dose toxicology study demonstrating an acceptable safety margin. Taken together, these results support further clinical development of OBI-999, which is currently in a phase I/II clinical study in multiple solid tumors (NCT04084366). OBI-999, the first GH-targeting ADC, displayed excellent tumor inhibition in animal models across multiple cancer types, including breast, gastric, pancreatic, and lung cancers, warranting further investigation in the treatment of solid tumors.
Collapse
|
12
|
Kappler K, Restin T, Lasanajak Y, Smith DF, Bassler D, Hennet T. Limited Neonatal Carbohydrate-Specific Antibody Repertoire Consecutive to Partial Prenatal Transfer of Maternal Antibodies. Front Immunol 2020; 11:573629. [PMID: 33162988 PMCID: PMC7591393 DOI: 10.3389/fimmu.2020.573629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the prominence of carbohydrate-specific antibodies in human sera, data on their emergence and antigen specificities are limited. Whereas maternal IgG are transferred prenatally to the fetal circulation, IgM present in cord blood originate from fetal B lymphocytes. Considering the limited exposure of the fetus to foreign antigens, we assessed the repertoire of carbohydrate-specific antibodies in human cord blood and matched maternal blood samples using glycan arrays. Carbohydrate-specific IgM was absent in cord blood, whereas low cord blood IgG reactivity to glycans was detectable. Comparing IgG reactivities of matched pairs, we observed a general lack of correlation in the antigen specificity of IgG from cord blood and maternal blood due to a selective exclusion of most carbohydrate-specific IgG from maternofetal transfer. Given the importance of intestinal bacteria in inducing carbohydrate-specific antibodies, we analyzed global antibody specificities toward commensal bacteria. Similar IgG reactivities to specific Bacteroides species were detected in matched cord and maternal blood samples, thus pointing to an efficient maternal transfer of anti-microbial IgG. Due to the observed selectivity in maternofetal IgG transfer, the lack of fetal antibodies to carbohydrate epitopes is only partially compensated by maternal IgG, thus resulting in a weak response to carbohydrate antigens in neonates.
Collapse
Affiliation(s)
| | - Tanja Restin
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yi Lasanajak
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - David F Smith
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Yu ZY, Li WW, Yang HM, Mañucat-Tan NB, Wang J, Wang YR, Sun BL, Hu ZC, Zhang LL, Tan L, Deng J, Liu YH. Naturally Occurring Antibodies to Tau Exists in Human Blood and Are Not Changed in Alzheimer's Disease. Neurotox Res 2020; 37:1029-1035. [PMID: 32026360 DOI: 10.1007/s12640-020-00161-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022]
Abstract
Hyperphosphorylated tau is an important pathological agent in Alzheimer's disease (AD). Tau effluxes from the brain to the blood could potentially stimulate the production of naturally occurring antibodies (NAbs). We aimed to investigate whether NAbs to tau (NAbs-tau) was generated in human blood and to figure out the alteration of plasma NAbs-tau level in AD patients. About 192 AD patients and 192 age-matched and non-demented controls (NC) were enrolled in the present study. Immunofluorescence staining and western blot assays were used to confirm the existence of NAbs-tau in human blood. The plasma level of NAbs-tau in NC and AD group was analyzed by ELISA. Immunofluorescence staining and western blot assays confirmed the existence of NAbs-tau in human blood. However, no significant difference in the plasma level of NAbs-tau was observed between NC and AD group. Furthermore, the plasma level of NAbs-tau had no significant correlation with MMSE scores. The present study confirmed that NAbs-tau exists in human blood but does not differ in level between the NC and AD group. Plasma NAbs-tau is not a reliable biomarker for AD.
Collapse
Affiliation(s)
- Zhong-Yuan Yu
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Basic Medical College, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei-Wei Li
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hai-Mei Yang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Noralyn B Mañucat-Tan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Jun Wang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ye-Ran Wang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bin-Lu Sun
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zi-Cheng Hu
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li-Li Zhang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liang Tan
- Southwest hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juan Deng
- Department of Healthy Management, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China.
| | - Yu-Hui Liu
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
14
|
Purohit S, Ferris DG, Alvarez M, Tran PMH, Tran LKH, Mysona DP, Hopkins D, Zhi W, Dun B, Wallbillich JJ, Cummings RD, Wang PG, She JX. Better survival is observed in cervical cancer patients positive for specific anti-glycan antibodies and receiving brachytherapy. Gynecol Oncol 2020; 157:181-187. [PMID: 31955861 DOI: 10.1016/j.ygyno.2020.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To measure anti-glycan antibodies (AGA) in cervical cancer (CC) patient sera and assess their effect on therapeutic outcome. PATIENTS AND METHODS Serum AGA was measured in 276 stage II and 292 stage III Peruvian CC patients using a high content and throughput Luminex multiplex glycan array (LMGA) containing 177 glycans. Association with disease-specific survival (DSS) and progression free survival (PFS) were analyzed using Cox regression. RESULTS AGAs were detected against 50 (28.3%) of the 177 glycans assayed. Of the 568 patients, 84.5% received external beam radiation therapy (EBRT) plus brachytherapy (BT), while 15.5% only received EBRT. For stage-matched patients (Stage III), receiving EBRT alone was significantly associated with worse survival (HR 6.4, p < 0.001). Stage III patients have significantly worse survival than Stage II patients after matching for treatment (HR = 2.8 in EBRT+BT treatment group). Furthermore, better PFS and DSS were observed in patients positive for AGA against multiple glycans belonging to the blood group H, Lewis, Ganglio, Isoglobo, lacto and sialylated tetrarose antigens (best HR = 0.49, best p = 0.0008). CONCLUSIONS Better PFS and DSS are observed in cervical cancer patients that are positive for specific antiglycan antibodies and received brachytherapy.
Collapse
Affiliation(s)
- Sharad Purohit
- Center for Biotechnology and Genomic Medicine, USA; Department of Obstetrics and Gynecology, Medical College of, Georgia; Department of Undergraduate Health Professionals, College of Allied Health Sciences, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Daron G Ferris
- Department of Obstetrics and Gynecology, Medical College of, Georgia
| | - Manual Alvarez
- Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | | | - David P Mysona
- University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | | | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, USA; Department of Obstetrics and Gynecology, Medical College of, Georgia
| | - Boying Dun
- Center for Biotechnology and Genomic Medicine, USA; Department of Obstetrics and Gynecology, Medical College of, Georgia
| | | | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, USA; Department of Obstetrics and Gynecology, Medical College of, Georgia.
| |
Collapse
|
15
|
Blsakova A, Kveton F, Kasak P, Tkac J. Antibodies against aberrant glycans as cancer biomarkers. Expert Rev Mol Diagn 2019; 19:1057-1068. [PMID: 31665948 DOI: 10.1080/14737159.2020.1687295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: The review provides a comprehensive overview about applicability of serological detection of autoantibodies against aberrant glycans as cancer biomarkers.Areas covered: Clinical usefulness of autoantibodies as cancer biomarkers is discussed for seven types of cancers with sensitivity and specificity of such biomarkers provided. Moreover, an option of using serological antibodies against a non-natural form of sialic acid - N-glycolylneuraminic acid (Neu5Gc), which is taken into our bodies together with red meat, as a potential cancer biomarker is discussed shortly as well.Expert opinion: In the final part of the review, we discuss what measures need to be applied for selective implementation of autoantibody assays into a clinical practice. Moreover, we discuss key challenges ahead for reliable and robust detection of autoantibodies against aberrant glycans as biomarkers for disease diagnostics and for stratification of cancer patients.
Collapse
Affiliation(s)
- Anna Blsakova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Filip Kveton
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
16
|
Lantsberg D, Fernando S, Cohen Y, Rombauts L. The Role of Fertility Preservation in Women with Endometriosis: A Systematic Review. J Minim Invasive Gynecol 2019; 27:362-372. [PMID: 31546067 DOI: 10.1016/j.jmig.2019.09.780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To summarize the available evidence concerning fertility preservation techniques in the context of women with endometriosis. DATA SOURCES We searched for studies published between 1984 and 2019 on endometriosis and Assisted Reproductive Technology outcomes. We searched MEDLINE and PubMed and performed a manual search of reference lists within identified studies. METHODS OF STUDY SELECTION A total of 426 articles were identified, and 7 studies were eligible to be included for the systematic review. We included all published studies, excluding reviews, case reports, and animal studies. TABULATION, INTEGRATION, AND RESULTS Despite a significant increase in the number of studies addressing fertility preservation over the study period, we found a relative lack of evidence addressing the use of fertility preservation techniques in women with endometriosis. The studies identified included 2 case reports, 1 histological science study, and 4 retrospective cohort studies. CONCLUSION Women with endometriosis may benefit from fertility preservation techniques. However, there currently is a paucity of data in this population, especially when compared with other indications for fertility preservation. Although much knowledge can be translated from the oncofertility discipline, we have identified and discussed endometriosis-related changes to ovarian reserve and oocyte health that justify further well-designed research to confirm that fertility preservation outcomes are similar for women with endometriosis.
Collapse
Affiliation(s)
- Daniel Lantsberg
- Department of Obstetrics, Gynecology and Fertility, Lis Maternity Hospital (Drs. Lantsberg and Cohen); Sourasky Tel-Aviv Medical Center (Drs. Lantsberg and Cohen), and Sackler Faculty of Medicine (Drs. Lantsberg and Cohen), Tel-Aviv University, Israel.
| | - Shavi Fernando
- Department of Obstetrics and Gynecology, Monash University, Clayton (Prof. Rombauts and Dr. Fernando), Australia; Women's Health, Monash Health, Clayton (Prof. Rombauts and Dr. Fernando), Australia
| | - Yoni Cohen
- Sourasky Tel-Aviv Medical Center (Drs. Lantsberg and Cohen), and Sackler Faculty of Medicine (Drs. Lantsberg and Cohen), Tel-Aviv University, Israel
| | - Luk Rombauts
- Department of Obstetrics and Gynecology, Monash University, Clayton (Prof. Rombauts and Dr. Fernando), Australia; Women's Health, Monash Health, Clayton (Prof. Rombauts and Dr. Fernando), Australia; Monash IVF Group, Richmond (Prof Rombauts), Australia
| |
Collapse
|
17
|
Abstract
Natural antibodies are an innate-like subset of serum antibodies involved in host defense, tumor surveillance, homeostasis, and autoimmunity. Defining the natural antibody repertoire is critical for identifying biomarkers, developing vaccines, controlling and preventing autoimmunity, and understanding the development and organization of the immune system. While natural antibodies to protein antigens have been studied in depth, little is known about natural antibodies to carbohydrate antigens. To address this, we profiled IgM from umbilical cord blood and matched maternal sera on a glycan microarray. Since standard methods to detect maternal contamination in cord serum did not have sufficient sensitivity for our study, we developed a highly sensitive microarray-based assay. Using this method, we found that over 50% of the cord samples had unacceptable levels of maternal contamination. For the cord samples with high purity, anti-glycan IgM antibodies were prevalent and recognized a broad range of non-human and human glycans. Using principal component analysis and hierarchical clustering, cord IgM repertoires showed a high degree of similarity with each other but were distinct from maternal IgM repertoires. Our results demonstrate that many anti-glycan antibodies in human serum are natural antibodies and provide new insights into the development of anti-glycan antibody repertoires.
Collapse
|
18
|
Durbin S, Wright WS, Gildersleeve JC. Development of a Multiplex Glycan Microarray Assay and Comparative Analysis of Human Serum Anti-Glycan IgA, IgG, and IgM Repertoires. ACS OMEGA 2018; 3:16882-16891. [PMID: 30613809 PMCID: PMC6312630 DOI: 10.1021/acsomega.8b02238] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Serum antibodies that recognize carbohydrate antigens play a fundamental role in immune defense, homeostasis, and autoimmunity. In addition, they serve as potential biomarkers for a variety of medical applications. For most anti-glycan antibodies found in human serum, however, the origins, regulation, and biological significance are not well understood. Antibody subpopulations that are relevant to a particular biological process or disease are often difficult to identify from the myriad of anti-glycan antibodies present in human serum. While prior studies have examined anti-glycan IgG and/or IgM repertoires, little is known about IgA repertoires or how IgA, IgG, and IgM are related. In this study, we describe the development of a multiplex assay to simultaneously detect IgA, IgG, and IgM on a glycan microarray and its application to studying anti-glycan repertoires in healthy subjects. The multiplex glycan microarray assay revealed unique insights and systems-level relationships that would be difficult to uncover using traditional approaches. In particular, we found that anti-glycan IgA, IgG, and IgM expression levels appear to be tightly regulated, coordinated within individuals, and stable over time. Additionally, our results help define natural fluctuations over time, which is critical for identifying changes that are beyond normal biological variation.
Collapse
|
19
|
Pazynina GV, Tsygankova SV, Ryzhov IM, Paramonov AS, Nicolai, Bovin V. Synthesis of H (type 4) trisaccharide, key structural fragment of globo-H and fucosyl-GM1 cancer-associated antigens. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Purohit S, Li T, Guan W, Song X, Song J, Tian Y, Li L, Sharma A, Dun B, Mysona D, Ghamande S, Rungruang B, Cummings RD, Wang PG, She JX. Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun 2018; 9:258. [PMID: 29343722 PMCID: PMC5772357 DOI: 10.1038/s41467-017-02747-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
Glycan-binding proteins (GBPs) play critical roles in diverse cellular functions such as cell adhesion, signal transduction and immune response. Studies of the interaction between GBPs and glycans have been hampered by the availability of high throughput and high-content technologies. Here we report multiplex glycan bead array (MGBA) that allows simultaneous analyses of 384 samples and up to 500 glycans in a single assay. The specificity, sensitivity and reproducibility of MGBA are evaluated using 39 plant lectins, 13 recombinant anti-glycan antibodies, and mammalian GBPs. We demonstrate the utility of this platform by the analyses of natural anti-glycan IgM and IgG antibodies in 961 human serum samples and the discovery of anti-glycan antibody biomarkers for ovarian cancer. Our data indicate that the MGBA platform is particularly suited for large population-based studies that require the analyses of large numbers of samples and glycans.
Collapse
Affiliation(s)
- Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health Sciences Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Tiehai Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Wanyi Guan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jing Song
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yanna Tian
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Boying Dun
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - David Mysona
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Sharad Ghamande
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Bunja Rungruang
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|