1
|
Lan D, Zhang D, Dai X, Cai J, Zhou H, Song T, Wang X, Kong Q, Tang Z, Tan J, Zhang J. Mesenchymal stem cells and exosomes: A novel therapeutic approach for aging. Exp Gerontol 2025; 206:112781. [PMID: 40349806 DOI: 10.1016/j.exger.2025.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Mesenchymal stem cells (MSCs), a vital component of the adult stem cell repertoire, are distinguished by their dual capacity for self-renewal and multilineage differentiation. The therapeutic effects of MSCs are primarily mediated through mechanisms such as homing, paracrine signaling, and cellular differentiation. Exosomes (Exos), a type of extracellular vesicles (EVs) secreted by MSCs via the paracrine pathway, play a pivotal role in conveying the biological functions of MSCs. Accumulating evidence from extensive research underscores the remarkable anti-aging potential of both MSCs and their Exos. This review comprehensively explores the impact of MSCs and their Exos on key hallmarks of aging, including genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Furthermore, this paper highlights emerging strategies and novel approaches for modulating the aging process, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Zhengzhen Tang
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
2
|
Ichikado K, Kotani T, Kawamura K, Kondoh Y, Imanaka H, Johkoh T, Fujimoto K, Nunomiya S, Kawayama T, Sawada M, Tasaka S, Ichiyasu H, Sakagami T, Hashimoto S. Clinical efficacy of invimestrocel for acute respiratory distress syndrome caused by pneumonia: Comparison with historical data using propensity score analysis. Regen Ther 2025; 29:35-42. [PMID: 40124470 PMCID: PMC11930531 DOI: 10.1016/j.reth.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a life-threatening inflammatory lung injury often resulting from pneumonia. The efficacy and safety of invimestrocel in patients with pneumonia-induced ARDS have been demonstrated previously in a phase II randomized, open-label trial (the ONE-BRIDGE study). In this study, we aimed to compare data from the intervention (invimestrocel) arm of the ONE-BRIDGE study with matched historical data from a previously established cohort to provide further support for the beneficial effects of invimestrocel in patients with pneumonia-induced ARDS. Methods Twenty patients from the invimestrocel arm of the ONE-BRIDGE study (Invimestrocel group) and 104 from the historical cohort were included in this study. A matched historical data group (n = 20) was extracted from the historical cohort based on the propensity score analysis using age, sex, PaO2/FIO2 ratio, and high-resolution computed tomography scores. The primary outcomes measured were ventilator-free days (VFDs) during the first 28 days following treatment and mortality on days 28, 60, 90, and 180. Results Patients in the Invimestrocel group showed higher VFDs (14.8 ± 11.0 vs. 6.7 ± 9.4 days; 95 % confidence interval [CI], 1.4-14.7; p = 0.0110) and survival rates (log-rank testing; hazard ratio, 0.330; 95 % CI, 0.116-0.938) than those in the matched historical data group. Conclusions The addition of invimestrocel to the standard treatment for pneumonia-induced ARDS may result in early withdrawal from the ventilator and lower mortality. However, further randomized, blinded, and placebo-controlled studies without or addressing multiplicity are required to confirm these findings.
Collapse
Affiliation(s)
- Kazuya Ichikado
- Division of Respiratory Medicine, Social Welfare Organization Saiseikai Imperial Gift Foundation, Inc., Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Toru Kotani
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kodai Kawamura
- Division of Respiratory Medicine, Social Welfare Organization Saiseikai Imperial Gift Foundation, Inc., Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Aichi, Japan
| | - Hideaki Imanaka
- Department of Emergency Medicine, Takarazuka City Hospital, Hyogo, Japan
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Hyogo, Japan
| | - Kiminori Fujimoto
- Department of Radiology, Kurume University School of Medicine, Fukuoka, Japan
| | - Shin Nunomiya
- Department of Intensive Care, Yokosuka General Hospital Uwamachi, Kanagawa, Japan
| | - Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | | | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hidenori Ichiyasu
- Department of Respiratory Medicine, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Premer C, Hare JM, Yuan SY, Wilson JW. Mesenchymal stem/stromal cells as a therapeutic for sepsis: a review on where do we stand? Stem Cell Res Ther 2025; 16:245. [PMID: 40375314 PMCID: PMC12082945 DOI: 10.1186/s13287-025-04371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Sepsis is one of the leading causes of morbidity and mortality in the United States and Worldwide despite advances in quick recognition and early antibiotics, fluids, and vasopressors. Mesenchymal stem/stromal cells (MSCs) have gained attention as a biologic therapy given their unique anti-inflammatory, immunomodulatory, and anti-bacterial characteristics. MSCs have had success in treating a range of diseases, however limited clinical trials exist specifically for MSC use in sepsis. This article reviews the properties of MSCs that make them favorable for treating sepsis, as well as the current state of clinical trials. All clinical trials presented here demonstrated MSC safety, with a mixture of efficacy results and a heterogeneity of trial methods. Ultimately, MSCs are a promising novel therapeutic for sepsis, however a consensus in cell source, dosage, preparation, and delivery needs to be further investigated for MSCs to transition from bench to bedside and become a true therapeutic for sepsis.
Collapse
Affiliation(s)
- Courtney Premer
- Department of Emergency Medicine, McGaw Medical Center of Northwestern University, 211 E Ontario Street, Suite 200, Chicago, IL, 60611, USA.
| | - Joshua M Hare
- Department of Medicine, Division of Cardiovascular Medicine, Interdisciplinary Stem Cell Institute (ISCI), University of Miami, Miami, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jason W Wilson
- Department of Emergency Medicine, Morsani College of Medicine, Tampa General Hospital, University of South Florida, Tampa, FL, USA
| |
Collapse
|
4
|
da Silva MMA, Rocco PRM, Cruz FF. Challenges and limitations of mesenchymal stem cell therapy for lung diseases in clinical trials. Expert Opin Emerg Drugs 2025:1-4. [PMID: 40186620 DOI: 10.1080/14728214.2025.2489700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Affiliation(s)
- Mayck Medeiros Amaral da Silva
- Laboratory of Pulmonary Investigation, Carlos ChagasFilho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos ChagasFilho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos ChagasFilho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Tonelli R, Pischiutta F, Elice F, Zanier ER, Grisendi G, Astori G, Samarelli AV, Bruzzi G, Manicardi L, Spano C, Nattino G, Signorini F, Bernardi M, Catanzaro D, Merlo A, Lisi I, Pasetto L, Bonetto V, Fiammenghi L, Boschi L, Guidi S, Candini O, Zoerle T, Dander E, D'Amico G, De Pierri F, Maur M, Pettorelli E, Ruggieri V, Cerri S, Mari G, De Berardis G, Mighali P, Baschieri MC, Lazzari L, Bambi F, Ciccocioppo R, Clini E, Dominici M. Impact of mesenchymal stromal/stem cell infusions on circulating inflammatory biomarkers in COVID-19 patients: analysis of a phase I-IIa trial. Cytotherapy 2025:S1465-3249(25)00677-2. [PMID: 40353787 DOI: 10.1016/j.jcyt.2025.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND AIMS SARS-CoV-2 infection triggers respiratory inflammation with potentially fatal systemic effects. Mesenchymal stromal/stem cells (MSCs) are promising for treating severe COVID-19 due to their anti-inflammatory and regenerative capacities. This study investigates the effects of allogeneic MSCs in severe COVID-19 pneumonia. METHODS In the phase I/IIa RESCAT trial (May 2021-Feb 2022), patients with severe COVID-19 pneumonia received two intravenous MSC infusions and were compared to a control group (CTRL). To assess cytokine and biomarker responses, the MSC group was matched 1:2 with standard care patients (mCTRL) by age, gender, BMI, and PaO2/FiO2 (Nov 2020-Feb 2021). Random-effects linear regression evaluated cytokine and biomarker trends over time between MSC and control groups. RESULTS Seventeen patients (MSC = 5, CTRL = 2, mCTRL = 10) were analyzed. Two MSC infusions were feasible and safe, with all patients discharged on average 15 ± 3.7 days postsecond infusion. While IL1RA and IL18 levels significantly increased in CTRL-mCTRL patients (P = 0.044 and P = 0.032), MSC treatment averted these rises, showing a distinct trajectory, particularly for IL1RA. MSC treatment also reduced IL6 levels compared to CTRL-mCTRL, while both groups showed similar reductions in Long pentraxin. Furthermore, MSC infusions prevented the neurofilament light chain surge observed in CTRL patients. CONCLUSIONS MSC in COVID-19 patients resulted safe and feasible, effectively modulating inflammatory cytokines, in particular mitigating brain damage related biomarker, suggesting both reduced inflammation and a potential neurological protection.
Collapse
Affiliation(s)
- Roberto Tonelli
- Respiratory Intermediate Care Unit, University Hospital of Modena, Modena, Italy; Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy; Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy
| | - Francesca Pischiutta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Elice
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Grisendi
- Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy; Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Giuseppe Astori
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Anna Valeria Samarelli
- Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy; Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy
| | - Giulia Bruzzi
- Respiratory Intermediate Care Unit, University Hospital of Modena, Modena, Italy; Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Lung Disease Unit, Arcispedale IRCCS Santa Maria Nuova, Reggio Emilia, Italy
| | - Carlotta Spano
- Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy; Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Giovanni Nattino
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabiola Signorini
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Martina Bernardi
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Daniela Catanzaro
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Anna Merlo
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Ilaria Lisi
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Pasetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Valentina Bonetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | | | | | - Tommaso Zoerle
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, Monza, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, Monza, Italy
| | - Ferruccio De Pierri
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Michela Maur
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Elisa Pettorelli
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Valentina Ruggieri
- Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Rare Lung Disease Unit, University Hospital of Modena, Modena, Italy
| | | | - Giorgia De Berardis
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH) S.r.l., Pescara, Italy
| | - Pasquale Mighali
- Innovation and Research Office, University Hospital of Modena, Modena, Italy
| | - Maria Cristina Baschieri
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapies, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franco Bambi
- Unità Operativa Complessa di Immunoematologia, Medicina Trasfusionale e Laboratorio Azienda Ospedaliera Universitaria Meyer, Firenze, Italy
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Enrico Clini
- Respiratory Intermediate Care Unit, University Hospital of Modena, Modena, Italy; Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy; Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy.
| | - Massimo Dominici
- Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy; Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| |
Collapse
|
6
|
Smallbone P, Kebriaei P, Mendt M, Shpall EJ, Olson AL, Fingrut WB. Mesenchymal stem cells in hematology: Therapeutic initiatives and future directions. Best Pract Res Clin Haematol 2025; 38:101613. [PMID: 40274341 DOI: 10.1016/j.beha.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
In recent years, the landscape of hematology has undergone rapid transformation, driven by innovative therapeutic strategies harnessing the properties of novel cellular therapies. Mesenchymal stem cells (MSCs) represent one of these promising therapies, with potential applications across a range of hematologic conditions. These cells are notable for their immunomodulatory properties, key role in supporting the hematopoietic micro-environment and capacity for multi-directional differentiation. This review will focus on the biologic mechanisms underlying MSC therapeutic use, current avenues of clinical investigation, and potential challenges and future directions for MSC derived therapies.
Collapse
Affiliation(s)
- Portia Smallbone
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda L Olson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren B Fingrut
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Gasanov VAO, Kashirskikh DA, Khotina VA, Kuzmina DM, Nikitochkina SY, Mukhina IV, Vorotelyak EA, Vasiliev AV. Preclinical Evaluation of the Safety, Toxicity and Efficacy of Genetically Modified Wharton's Jelly Mesenchymal Stem/Stromal Cells Expressing the Antimicrobial Peptide SE-33. Cells 2025; 14:341. [PMID: 40072070 PMCID: PMC11898551 DOI: 10.3390/cells14050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) offer promising therapeutic potential in cell-based therapies for various diseases. However, the safety of genetically modified MSCs remains poorly understood. This study aimed to evaluate the general toxicity and safety of Wharton's Jelly-Derived MSCs (WJ-MSCs) engineered to express the antimicrobial peptide SE-33 in an animal model. Genetically modified WJ-MSCs expressing SE-33 were administered to C57BL/6 mice at both therapeutic and excessive doses, either once or repeatedly. Animal monitoring included mortality, clinical signs, and behavioral observations. The toxicity assessment involved histopathological, hematological, and biochemical analyses of major organs and tissues, while immunotoxicity and immunogenicity were examined through humoral and cellular immune responses, macrophage phagocytic activity, and lymphocyte blast transformation. Antimicrobial efficacy was evaluated in a Staphylococcus aureus-induced pneumonia model by monitoring animal mortality and assessing bacterial load and inflammatory processes in the lungs. Mice receiving genetically modified WJ-MSCs exhibited no acute or chronic toxicity, behavioral abnormalities, or pathological changes, regardless of the dose or administration frequency. No significant immunotoxicity or alterations in immune responses were observed, and there were no notable changes in hematological or biochemical serum parameters. Infected animals treated with WJ-MSC-SE33 showed a significant reduction in bacterial load and lung inflammation and improved survival compared to control groups, demonstrating efficacy over native WJ-MSCs. Our findings suggest that WJ-MSCs expressing SE-33 are well tolerated, displaying a favorable safety profile comparable to native WJ-MSCs and potent antimicrobial activity, significantly reducing bacterial load, inflammation, and mortality in an S. aureus pneumonia model. These data support the safety profile of WJ-MSCs expressing SE-33 as a promising candidate for cell-based therapies for bacterial infections, particularly those complicated by antibiotic resistance.
Collapse
Affiliation(s)
- Vagif Ali oglu Gasanov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | | | - Victoria Alexandrovna Khotina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Daria Mikhailovna Kuzmina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Sofya Yurievna Nikitochkina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Irina Vasilievna Mukhina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Ekaterina Andreevna Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
- Department of Cell Biology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Andrey Valentinovich Vasiliev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| |
Collapse
|
8
|
Sigaut S, Tardivon C, Jacquens A, Bottlaender M, Gervais P, Habert MO, Monsel A, Roquilly A, Boutonnet M, Galanaud D, Cras A, Boucher-Pillet H, Florence AM, Cavalier I, Menasche P, Degos V, Couffignal C. Effects of intravascular administration of mesenchymal stromal cells derived from Wharton's Jelly of the umbilical cord on systemic immunomodulation and neuroinflammation after traumatic brain injury (TRAUMACELL): study protocol for a multicentre randomised controlled trial. BMJ Open 2024; 14:e091441. [PMID: 39740941 PMCID: PMC11749534 DOI: 10.1136/bmjopen-2024-091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. A growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post-traumatic disorders. Consequently, new therapies triggering immunomodulation and promoting neurological recovery are the subject of major research efforts. We hypothesise that repeated intravenous treatment with mesenchymal stromal cells derived from Wharton's Jelly of the umbilical cord-derived mesenchymal stromal cells ((WJ-UC-MSC) may be associated with a significant decrease of post-TBI neuroinflammation and improvement of neurological status. METHODS AND ANALYSIS The TRAUMACELL trial is a prospective, national multicentre, phase III, superiority, double-arm comparative randomised (1:1) double-blinded clinical trial. Among patients aged between 18-50, with a severe TBI defined by a Glasgow score less than 12 (within the first 48 hours) with brain traumatic lesion on CT Scan and needing intracranial pressure monitoring, with no other significant organ trauma (abbreviated injury scale<2) and unresponsive to verbal commands after 5 days of sedation discontinuation, 68 will be randomly allocated to receive either WJ-UC-MSC solution or placebo, with three intravenous injections 1 week apart. The primary outcome is the [18F]-DPA-714 signal intensity in corpus callosum measured by dynamic positron emission tomography (PET)-MRI at 6 months after the last injection, blinded to the randomisation arm, to evaluate the post-traumatic neuro-inflammation. ETHICS AND DISSEMINATION The TRAUMACELL trial has been approved by an independent ethics committee (CPP SUD EST II) and French Medicines Agency (2023-504415-33-00) for all study centres. Participant recruitment will be starting in September 2024. Results will be published in international peer-reviewed medical journals. TRIAL REGISTRATION NUMBER NCT06146062, first posted 24 November 2023 PROTOCOL VERSION IDENTIFIER: TRAUMACELL-V.2.0_20240102.
Collapse
Affiliation(s)
- Stéphanie Sigaut
- Anesthesiology and Intensive Care, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, Île-de-France, France
- NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, INSERM, Paris, Île-de-France, France
| | - Coralie Tardivon
- Hôpital Bichat, DMU PRISME, Biostatistics Department and Clinical Trial Units, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Alice Jacquens
- NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, INSERM, Paris, Île-de-France, France
- Department of Neuroanesthesiology and Neurointensive Care, Pitié Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Michel Bottlaender
- CEA, INSERM, CNRS, BioMaps, Service Hospitalier Frédéric Joliot, Université Paris-Saclay Faculté des Sciences d'Orsay, Orsay, Île-de-France, France
- CEA, Neurospin, UNIACT, Université Paris-Saclay, Gif-sur-Yvette, Île-de-France, France
| | - Philippe Gervais
- CEA, INSERM, CNRS, BioMaps, Service Hospitalier Frédéric Joliot, Paris-Saclay University Faculty of Science Orsay, Orsay, Île-de-France, France
| | - Marie-Odile Habert
- Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Assistance Publique-Hopitaux de Paris, Paris, Île-de-France, France
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne University, Paris, Île-de-France, France
| | - Antoine Monsel
- Hôpital Pitié-Salpêtrière, Multidisciplinary Intensive Care Unit, Department of Anaesthesia and Critical Care, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
- UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), INSERM, Paris, Île-de-France, France
| | - Antoine Roquilly
- SAR, CHU Nantes, Nantes, France
- Center for Research in Transplantation and Translational Immunology, UMR 1064, Université de Nantes, Nantes, Pays de la Loire, France
| | - Mathieu Boutonnet
- Federation of Anaesthesiology, Intensive Care Unit, Burns and Operating Theatre, Hopital d'Instruction des Armees Percy, Clamart, France
| | - Damien Galanaud
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Sorbonne University, Paris, Île-de-France, France
- Hôpital de la Pitié-Salpêtrière, Neuroradiology Department, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Audrey Cras
- Hôpital Saint-Louis, MEARY Center for Cell and Gene Therapy, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Hélène Boucher-Pillet
- Hôpital Saint-Louis, MEARY Center for Cell and Gene Therapy, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Aline-Marie Florence
- Hôpital Bichat, DMU PRISME, Biostatistics Department and Clinical Trial Units, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Ines Cavalier
- Hôpital Bichat, DMU PRISME, Biostatistics Department and Clinical Trial Units, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Philippe Menasche
- Cardiovascular Surgery, Hopital Europeen Georges Pompidou, Paris, France
| | - Vincent Degos
- NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, INSERM, Paris, Île-de-France, France
- Anesthésie et Neuro-Réanimation chirurgicale Babinski, Assistance Publique Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Camille Couffignal
- Unité de recherche Clinique, Hôpital Bichat-Claude-Bernard, Paris, Île-de-France, France
| |
Collapse
|
9
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
10
|
Edström D, Niroomand A, Stenlo M, Broberg E, Hirdman G, Ghaidan H, Hyllén S, Pierre L, Olm F, Lindstedt S. Amniotic fluid-derived mesenchymal stem cells reduce inflammation and improve lung function following transplantation in a porcine model. J Heart Lung Transplant 2024; 43:2018-2030. [PMID: 39182800 DOI: 10.1016/j.healun.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Lung transplantation is hindered by low donor lung utilization rates. Infectious complications are reasons to decline donor grafts due to fear of post-transplant primary graft dysfunction. Mesenchymal stem cells are a promising therapy currently investigated in treating lung injury. Full-term amniotic fluid-derived lung-specific mesenchymal stem cell treatment may regenerate damaged lungs. These cells have previously demonstrated inflammatory mediation in other respiratory diseases, and we hypothesized that treatment would improve donor lung quality and postoperative outcomes. METHODS In a transplantation model, donor pigs were stratified to either the treated or the nontreated group. Acute respiratory distress syndrome was induced in donor pigs and harvested lungs were placed on ex vivo lung perfusion (EVLP) before transplantation. Treatment consisted of 3 doses of 2 × 106 cells/kg: one during EVLP and 2 after transplantation. Donors and recipients were assessed on clinically relevant parameters and recipients were followed for 3 days before evaluation for primary graft dysfunction (PGD). RESULTS Repeated injection of the cell treatment showed reductions in inflammation seen through lowered immune cell counts, reduced histology signs of inflammation, and decreased cytokines in the plasma and bronchoalveolar lavage fluid. Treated recipients showed improved pulmonary function, including increased PaO2/FiO2 ratios and reduced incidence of PGD. CONCLUSIONS Repeated injection of lung-specific cell treatment during EVLP and post transplant was associated with improved function of previously damaged lungs. Cell treatment may be considered as a potential therapy to increase the number of lungs available for transplantation and the improvement of postoperative outcomes.
Collapse
Affiliation(s)
- Dag Edström
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, New York
| | - Martin Stenlo
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Ellen Broberg
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Gabriel Hirdman
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
11
|
Liu QK, Xiang GH, Liu WL, Dong JY, Wen YQ, Hao H. Efficacy and safety of several common drugs in the treatment of acute respiratory distress syndrome: A systematic review and network meta-analysis. Medicine (Baltimore) 2024; 103:e40472. [PMID: 39809198 PMCID: PMC11596352 DOI: 10.1097/md.0000000000040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND This study aimed to compare the effectiveness and safety of neuromuscular blockers, mesenchymal stem cells (MSC), and inhaled pulmonary vasodilators (IV) for acute respiratory distress syndrome through a network meta-analysis of randomized controlled trials (RCTs). METHODS We searched Chinese and English databases, including China National Knowledge Infrastructure, The Cochrane Library, PubMed, and EMbase, with no time restrictions. We conducted a network meta-analysis and reported the results according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. We included 27 clinical RCTs, all of which were two-arm trials, totaling 3492 patients. We selected 28-day mortality as the primary outcome measure, whereas 90-day mortality, ventilator-free days, and oxygenation served as secondary outcome measures for analysis and comparison. RESULTS We selected 3 treatment modalities and evaluated their clinical trials in comparison with the standard control group. For the 28-day in-hospital mortality, we included 21 RCTs, involving 2789 patients. Compared to standard treatment, neuromuscular blockers were associated with reduced 28-day hospital mortality (odds ratios [OR] 0.52, 95% confidence intervals [CI] (0.31, 0.88)), while IV and MSC were not associated with reduced hospital mortality (OR 0.89, 95% CI (0.50, 1.55); OR 0.90, 95% CI (0.49, 1.66)). In terms of 90-day mortality, days free of mechanical ventilation, and improvement in oxygenation, there were no significant differences compared to standard treatment with neuromuscular blockers, MSC, and IV. CONCLUSION Neuromuscular blockers significantly reduced the 28-day mortality rate in acute respiratory distress syndrome patients. However, in terms of 90-day mortality, ventilator-free days, oxygenation improvement, IV, MSC, and neuromuscular blockers did not significantly improve.
Collapse
Affiliation(s)
- Qing-Kuo Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guo-Han Xiang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wen-Li Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jin-Yan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Qi Wen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hao Hao
- Intensive Care Unit, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
12
|
Wick KD, Ware LB, Matthay MA. Acute respiratory distress syndrome. BMJ 2024; 387:e076612. [PMID: 39467606 DOI: 10.1136/bmj-2023-076612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The understanding of acute respiratory distress syndrome (ARDS) has evolved greatly since it was first described in a 1967 case series, with several subsequent updates to the definition of the syndrome. Basic science advances and clinical trials have provided insight into the mechanisms of lung injury in ARDS and led to reduced mortality through comprehensive critical care interventions. This review summarizes the current understanding of the epidemiology, pathophysiology, and management of ARDS. Key highlights include a recommended new global definition of ARDS and updated guidelines for managing ARDS on a backbone of established interventions such as low tidal volume ventilation, prone positioning, and a conservative fluid strategy. Future priorities for investigation of ARDS are also highlighted.
Collapse
Affiliation(s)
- Katherine D Wick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Reijnders TDY, Laterre PF, François B, Sánchez García M, van Engelen TSR, Sie D, Scicluna BP, Ostanin DV, Galinsky KJ, Butler JM, Lombardo E, van der Poll T. Effect of mesenchymal stem cells on the host response in severe community-acquired pneumonia. Thorax 2024; 79:1086-1090. [PMID: 39322407 PMCID: PMC11503173 DOI: 10.1136/thorax-2024-222026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Mesenchymal stem cells (MSC) have immune regulatory properties that may ameliorate pathophysiological processes in sepsis. We determined the effect of allogeneic adipose-derived MSCs (Cx611) on the host response during sepsis due to community-acquired bacterial pneumonia (CABP) by measuring 29 plasma biomarkers and blood transcriptomes at six time points in 82 patients randomised to two intravenous infusions of Cx611 or placebo. Cx611 treatment enhanced several endothelial cell and procoagulant response plasma biomarkers, and led to increased expression of pathways related to innate immunity, haemostasis and apoptosis. Cx611 infusion in sepsis due to CABP is associated with broad host response alterations.
Collapse
Affiliation(s)
- Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre-François Laterre
- Department of Intensive Care Medicine, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bruno François
- Intensive care unit and Inserm CIC 1435 & UMR 1092, University Hospital Centre of Limoges, Limoges, France
| | | | - Tjitske S R van Engelen
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Daoud Sie
- Department of Human Genetics, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Applied Biomedical Science, University of Malta, Msida, Malta
| | - Dmitry V Ostanin
- Translational Biomarker Research, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Kevin J Galinsky
- Translational Biomarker Research, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Joe M Butler
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Tang C, Dziedzic A, Khatib MN, Alhumaid S, Thangavelu L, Parameswari RP, Satapathy P, Zahiruddin QS, Rustagi S, Alanazi MA, Al-Thaqafy MS, Hazazi A, Alotaibi J, Al Faraj NJ, Al-Zaki NA, Al Marshood MJ, Al Saffar TY, Alsultan KA, Al-Ahmed SH, Rabaan AA. Stem cell therapy for COVID-19 treatment: an umbrella review. Int J Surg 2024; 110:6402-6417. [PMID: 38967503 PMCID: PMC11487013 DOI: 10.1097/js9.0000000000001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND COVID-19 has presented significant obstacles to healthcare. Stem cell therapy, particularly mesenchymal stem cells, has emerged as a potential treatment modality due to its immunomodulatory and regenerative properties. This umbrella review aims to synthesize current evidence from systematic reviews on the safety and efficacy of stem cell therapy in COVID-19 treatment. METHODS A thorough literature search was performed across Embase, PubMed, Cochrane, and Web of Science from December 2019 to February 2024. Systematic reviews focusing on the use of stem cell therapy for COVID-19 were included. Evidence was synthesized by meta-analysis using R software (V 4.3) for each outcome. The certainty of evidence was assessed using the GRADE approach. RESULTS A total of 24 systematic reviews were included. Stem cell therapy was associated with reduced mortality [risk ratio (RR) 0.72, 95% CI: 0.60-0.86]; shorter hospital stays (mean difference -4.00 days, 95% CI: -4.68 to -3.32), and decreased need for invasive ventilation (RR 0.521, 95% CI: 0.320-0.847). Symptom remission rates improved (RR 1.151, 95% CI: 0.998-1.330), and a reduction in C-reactive protein levels was noted (standardized mean difference -1.198, 95% CI: -2.591 to 0.195), albeit with high heterogeneity. For adverse events, no significant differences were found between stem cell therapy and standard care (RR 0.87, 95% CI: 0.607-1.265). The certainty of evidence ranged from low to moderate. CONCLUSION Stem cell therapy demonstrates a potential benefit in treating COVID-19, particularly in reducing mortality and hospital stay duration. Despite these promising findings, the evidence is varied, and future large-scale randomized trials are essential to confirm the efficacy and optimize the therapeutic protocols for stem cell therapy in the management of the disease. The safety profile is encouraging, with no significant increase in adverse events, suggesting a viable avenue for treatment expansion.
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, Katowice, Poland
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education
| | - Saad Alhumaid
- School of Pharmacy, University of Tasmania, Hobart, Australia
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | - RP Parameswari
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Quazi Syed Zahiruddin
- South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Majid S. Al-Thaqafy
- Infection Prevention and Control Department, King Abdulaziz Medical City, National Guard Health Affairs
- Epidemiology and Public Health, King Abdullah International Medical Research Center, National Guard Health Affairs
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Jeddah
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh
| | | | | | | | | | | | | | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
15
|
Litman K, Bouch S, Litvack ML, Post M. Therapeutic characteristics of alveolar-like macrophages in mouse models of hyperoxia and LPS-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2024; 327:L269-L281. [PMID: 38887793 PMCID: PMC11444498 DOI: 10.1152/ajplung.00270.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung disease of high mortality (30-50%). Patients require lifesaving supplemental oxygen therapy; however, hyperoxia can induce pulmonary inflammation and cellular damage. Although alveolar macrophages (AMs) are essential for lung immune homeostasis, they become compromised during inflammatory lung injury. To combat this, stem cell-derived alveolar-like macrophages (ALMs) are a prospective therapeutic for lung diseases like ARDS. Using in vitro and in vivo approaches, we investigated the impact of hyperoxia on murine ALMs during acute inflammation. In vitro, ALMs retained their viability, growth, and antimicrobial abilities when cultured at 60% O2, whereas they die at 90% O2. In contrast, ALMs instilled in mouse lungs remained viable during exposure of mice to 90% O2. The ability of the delivered ALMs to phagocytose Pseudomonas aeruginosa was not impaired by exposure to 60 or 90% O2. Furthermore, ALMs remained immunologically stable in a murine model of LPS-induced lung inflammation when exposed to 60 and 90% O2 and effectively attenuated the accumulation of CD11b+ inflammatory cells in the airways. These results support the potential use of ALMs in patients with ARDS receiving supplemental oxygen therapy.NEW & NOTEWORTHY The current findings support the prospective use of stem cell-derived alveolar-like macrophages (ALMs) as a therapeutic for inflammatory lung disease such as acute respiratory distress syndrome (ARDS) during supplemental oxygen therapy where lungs are exposed to high levels of oxygen. Alveolar-like macrophages directly delivered to mouse lungs were found to remain viable, immunologically stable, phagocytic toward live Pseudomonas aeruginosa, and effective in reducing CD11b+ inflammatory cell numbers in LPS-challenged lungs during moderate and extreme hyperoxic exposure.
Collapse
Affiliation(s)
- Kymberly Litman
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sheena Bouch
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael L Litvack
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Programme, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Jang JH, Choi E, Kim T, Yeo HJ, Jeon D, Kim YS, Cho WH. Navigating the Modern Landscape of Sepsis: Advances in Diagnosis and Treatment. Int J Mol Sci 2024; 25:7396. [PMID: 39000503 PMCID: PMC11242529 DOI: 10.3390/ijms25137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis poses a significant threat to human health due to its high morbidity and mortality rates worldwide. Traditional diagnostic methods for identifying sepsis or its causative organisms are time-consuming and contribute to a high mortality rate. Biomarkers have been developed to overcome these limitations and are currently used for sepsis diagnosis, prognosis prediction, and treatment response assessment. Over the past few decades, more than 250 biomarkers have been identified, a few of which have been used in clinical decision-making. Consistent with the limitations of diagnosing sepsis, there is currently no specific treatment for sepsis. Currently, the general treatment for sepsis is conservative and includes timely antibiotic use and hemodynamic support. When planning sepsis-specific treatment, it is important to select the most suitable patient, considering the heterogeneous nature of sepsis. This comprehensive review summarizes current and evolving biomarkers and therapeutic approaches for sepsis.
Collapse
Affiliation(s)
- Jin Ho Jang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eunjeong Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Taehwa Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Ju Yeo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Doosoo Jeon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun Seong Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
17
|
Christy BA, Herzig MC, Wu X, Mohammadipoor A, McDaniel JS, Bynum JA. Cell Therapies for Acute Radiation Syndrome. Int J Mol Sci 2024; 25:6973. [PMID: 39000080 PMCID: PMC11241804 DOI: 10.3390/ijms25136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
The risks of severe ionizing radiation exposure are increasing due to the involvement of nuclear powers in combat operations, the increasing use of nuclear power, and the existence of terrorist threats. Exposure to a whole-body radiation dose above about 0.7 Gy results in H-ARS (hematopoietic acute radiation syndrome), which is characterized by damage to the hematopoietic system; higher doses result in further damage to the gastrointestinal and nervous systems. Only a few medical countermeasures for ARS are currently available and approved for use, although others are in development. Cell therapies (cells or products produced by cells) are complex therapeutics that show promise for the treatment of radiation injury and have been shown to reduce mortality and morbidity in animal models. Since clinical trials for ARS cannot be ethically conducted, animal testing is extremely important. Here, we describe cell therapies that have been tested in animal models. Both cells and cell products appear to promote survival and lessen tissue damage after whole-body irradiation, although the mechanisms are not clear. Because radiation exposure often occurs in conjunction with other traumatic injuries, animal models of combined injury involving radiation and future countermeasure testing for these complex medical problems are also discussed.
Collapse
Affiliation(s)
- Barbara A Christy
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Maryanne C Herzig
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Xiaowu Wu
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Arezoo Mohammadipoor
- Hemorrhage and Vascular Dysfunction, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Jennifer S McDaniel
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - James A Bynum
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Surgery, UT Health San Antonio, San Antonio, TX 78229, USA
- Trauma Research and Combat Casualty Care Collaborative, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Battaglini D, Iavarone IG, Rocco PRM. An update on the pharmacological management of acute respiratory distress syndrome. Expert Opin Pharmacother 2024; 25:1229-1247. [PMID: 38940703 DOI: 10.1080/14656566.2024.2374461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is characterized by acute inflammatory injury to the lungs, alterations in vascular permeability, loss of aerated tissue, bilateral infiltrates, and refractory hypoxemia. ARDS is considered a heterogeneous syndrome, which complicates the search for effective therapies. The goal of this review is to provide an update on the pharmacological management of ARDS. AREAS COVERED The difficulties in finding effective pharmacological therapies are mainly due to the challenges in designing clinical trials for this unique, varied population of critically ill patients. Recently, some trials have been retrospectively analyzed by dividing patients into hyper-inflammatory and hypo-inflammatory sub-phenotypes. This approach has led to significant outcome improvements with some pharmacological treatments that previously failed to demonstrate efficacy, which suggests that a more precise selection of ARDS patients for clinical trials could be the key to identifying effective pharmacotherapies. This review is provided after searching the main studies on this topics on the PubMed and clinicaltrials.gov databases. EXPERT OPINION The future of ARDS therapy lies in precision medicine, innovative approaches to drug delivery, immunomodulation, cell-based therapies, and robust clinical trial designs. These should lead to more effective and personalized treatments for patients with ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Gareev I, Beylerli O, Ilyasova T, Ahmad A, Shi H, Chekhonin V. Therapeutic application of adipose-derived stromal vascular fraction in myocardial infarction. iScience 2024; 27:109791. [PMID: 38736548 PMCID: PMC11088339 DOI: 10.1016/j.isci.2024.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
The insufficiency of natural regeneration processes in higher organisms, including humans, underlies myocardial infarction (MI), which is one of the main causes of disability and mortality in the population of developed countries. The solution to this problem lies in the field of revealing the mechanisms of regeneration and creating on this basis new technologies for stimulating endogenous regenerative processes or replacing lost parts of tissues and organs with transplanted cells. Of great interest is the use of the so-called stromal vascular fraction (SVF), derived from autologous adipose tissue. It is known that the main functions of SVF are angiogenetic, antiapoptotic, antifibrotic, immune regulation, anti-inflammatory, and trophic. This study presents data on the possibility of using SVF, targeted regulation of its properties and reparative potential, as well as the results of research studies on its use for the restoration of damaged ischemic tissue after MI.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa 450008, Russian Federation
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 1500, China
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- The National Medical Research Center for Endocrinology, Moscow, Russian Federation
| |
Collapse
|
20
|
Wang J, Chen ZJ, Zhang ZY, Shen MP, Zhao B, Zhang W, Zhang Y, Lei JG, Ren CJ, Chang J, Xu CL, Li M, Pi YY, Lu TL, Dai CX, Li SK, Li P. Manufacturing, quality control, and GLP-grade preclinical study of nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. Stem Cell Res Ther 2024; 15:95. [PMID: 38566259 PMCID: PMC10988864 DOI: 10.1186/s13287-024-03708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Human adipose stromal cells-derived extracellular vesicles (haMSC-EVs) have been shown to alleviate inflammation in acute lung injury (ALI) animal models. However, there are few systemic studies on clinical-grade haMSC-EVs. Our study aimed to investigate the manufacturing, quality control (QC) and preclinical safety of clinical-grade haMSC-EVs. METHODS haMSC-EVs were isolated from the conditioned medium of human adipose MSCs incubated in 2D containers. Purification was performed by PEG precipitation and differential centrifugation. Characterizations were conducted by nanoparticle tracking analysis, transmission electron microscopy (TEM), Western blotting, nanoflow cytometry analysis, and the TNF-α inhibition ratio of macrophage [after stimulated by lipopolysaccharide (LPS)]. RNA-seq and proteomic analysis with liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to inspect the lot-to-lot consistency of the EV products. Repeated toxicity was evaluated in rats after administration using trace liquid endotracheal nebulizers for 28 days, and respiratory toxicity was evaluated 24 h after the first administration. In vivo therapeutic effects were assessed in an LPS-induced ALI/ acute respiratory distress syndrome (ARDS) rat model. RESULTS The quality criteria have been standardized. In a stability study, haMSC-EVs were found to remain stable after 6 months of storage at - 80°C, 3 months at - 20 °C, and 6 h at room temperature. The microRNA profile and proteome of haMSC-EVs demonstrated suitable lot-to-lot consistency, further suggesting the stability of the production processes. Intratracheally administered 1.5 × 108 particles/rat/day for four weeks elicited no significant toxicity in rats. In LPS-induced ALI/ARDS model rats, intratracheally administered haMSC-EVs alleviated lung injury, possibly by reducing the serum level of inflammatory factors. CONCLUSION haMSC-EVs, as an off-shelf drug, have suitable stability and lot-to-lot consistency. Intratracheally administered haMSC-EVs demonstrated excellent safety at the tested dosages in systematic preclinical toxicity studies. Intratracheally administered haMSC-EVs improved the lung function and exerted anti-inflammatory effects on LPS-induced ALI/ARDS model rats.
Collapse
Affiliation(s)
- Jing Wang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Zhong-Jin Chen
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Ze-Yi Zhang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Mei-Ping Shen
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Bo Zhao
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Wei Zhang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Ye Zhang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Ji-Gang Lei
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Cheng-Jie Ren
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Jing Chang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Cui-Li Xu
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Meng Li
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Yang-Yang Pi
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Tian-Lun Lu
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Cheng-Xiang Dai
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China.
- Daxing Research Institute, University of Science and Technology Beijing, 100083, Beijing, China.
| | - Su-Ke Li
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China.
| | - Ping Li
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China.
| |
Collapse
|
21
|
Cao JK, Hong XY, Feng ZC, Li QP. Mesenchymal stem cells-based therapies for severe ARDS with ECMO: a review. Intensive Care Med Exp 2024; 12:12. [PMID: 38332384 PMCID: PMC10853094 DOI: 10.1186/s40635-024-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the primary cause of respiratory failure in critically ill patients. Despite remarkable therapeutic advances in recent years, ARDS remains a life-threatening clinical complication with high morbidity and mortality, especially during the global spread of the coronavirus disease 2019 (COVID-19) pandemic. Previous studies have demonstrated that mesenchymal stem cell (MSC)-based therapy is a potential alternative strategy for the treatment of refractory respiratory diseases including ARDS, while extracorporeal membrane oxygenation (ECMO) as the last resort treatment to sustain life can help improve the survival of ARDS patients. In recent years, several studies have explored the effects of ECMO combined with MSC-based therapies in the treatment of ARDS, and some of them have demonstrated that this combination can provide better therapeutic effects, while others have argued that some critical issues need to be solved before it can be applied to clinical practice. This review presents an overview of the current status, clinical challenges and future prospects of ECMO combined with MSCs in the treatment of ARDS.
Collapse
Affiliation(s)
- Jing-Ke Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yang Hong
- Department of Pediatric Intensive Care Unit, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO.5 Nanmencang, Dongcheng District, 100700, Beijing, China
| | - Zhi-Chun Feng
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Qiu-Ping Li
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X, He Z. Enhancing regenerative medicine: the crucial role of stem cell therapy. Front Neurosci 2024; 18:1269577. [PMID: 38389789 PMCID: PMC10881826 DOI: 10.3389/fnins.2024.1269577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Lettieri S, Bertuccio FR, del Frate L, Perrotta F, Corsico AG, Stella GM. The Plastic Interplay between Lung Regeneration Phenomena and Fibrotic Evolution: Current Challenges and Novel Therapeutic Perspectives. Int J Mol Sci 2023; 25:547. [PMID: 38203718 PMCID: PMC10779349 DOI: 10.3390/ijms25010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of pulmonary disorders characterized by variable degrees of inflammation, interstitial thickening, and fibrosis leading to distortion of the pulmonary architecture and gas exchange impairment. Among them, idiopathic pulmonary fibrosis (IPF) displays the worst prognosis. The only therapeutic options consist of the two antifibrotic drugs, pirfenidone and nintedanib, which limit fibrosis progression but do not reverse the lung damage. The shift of the pathogenetic paradigm from inflammatory disease to epithelium-derived disease has definitively established the primary role of type II alveolar cells, which lose their epithelial phenotype and acquire a mesenchymal phenotype with production of collagen and extracellular matrix (EMC) deposition. Some predisposing environmental and genetic factors (e.g., smoke, pollution, gastroesophageal reflux, variants of telomere and surfactant genes) leading to accelerated senescence set a pro-fibrogentic microenvironment and contribute to the loss of regenerative properties of type II epithelial cells in response to pathogenic noxae. This review provides a complete overview of the different pathogenetic mechanisms leading to the development of IPF. Then, we summarize the currently approved therapies and the main clinical trials ongoing. Finally, we explore the potentialities offered by agents not only interfering with the processes of fibrosis but also restoring the physiological properties of alveolar regeneration, with a particular focus on potentialities and concerns about cell therapies based on mesenchymal stem cells (MSCs), whose anti-inflammatory and immunomodulant properties have been exploited in other fibrotic diseases, such as graft versus host disease (GVHD) and COVID-19-related ARDS.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco R. Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lucia del Frate
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, 80055 Naples, Italy;
| | - Angelo G. Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia M. Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
24
|
Monsel A, Sitbon A. Exosome-Based Cell-Free Therapy in COVID-19-Associated Severe Pneumonia: A New Lease of Life for Cell Therapy? Chest 2023; 164:1343-1344. [PMID: 38070953 DOI: 10.1016/j.chest.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France.
| | - Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| |
Collapse
|
25
|
Zhang Z, Yang X, Meng Q, Long Y, Shi X, Wang Y. Adipose tissue-derived mesenchymal stromal cells attenuate acute lung injury induced by trauma and haemorrhagic shock. Immunobiology 2023; 228:152765. [PMID: 38029515 DOI: 10.1016/j.imbio.2023.152765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have shown promising therapeutic options for acute lung injury (ALI) caused by multiple factors. Here, we evaluated the therapeutic potential of adipose tissue-derived mesenchymal stromal cells (ADSCs) in trauma and hemorrhagic shock (THS)-induced ALI. METHODS ALI model induced by THS was constructed by fractures plus abdominal trauma plus acute hemorrhage plus fluid resuscitation. The ADSCs group rats were generated by injecting 2 × 106 ADSCs at 0 and 1 h after THS. The sham, ALI, and ADSCs group rats were sacrificed at 24 h after resuscitation. The changes in lung histopathology, total protein in bronchoalveolar lavage fluid (BALF), mRNA expression of pro-inflammatory/anti-inflammatory cytokines, antioxidant, and anti-apoptotic indicator, and the activity of Toll-like receptor 4 (TLR4) signaling in lung tissues were evaluated. RESULTS Administration of the ADSCs reversed ALI induced by THS, including lung histopathological changes/scores, and BALF total protein concentration. Additionally, ADSCs therapy also significantly down-regulated mRNA expression of pro-inflammatory TNF-α, IL-1β, and IL-6, up-regulated mRNA expression of anti-inflammatory IL-10, anti-apoptotic molecule Bcl-2, and anti-oxidative molecule HO-1 in THS rats. Furthermore, ADSCs suppressed the expression of TLR4 in lung tissue. CONCLUSION Our data show that ADSCs administration can exert therapeutic effects on THS-induced ALI in rats and may provide beneficial in preventative strategies for ALI.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Emergency, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xiaoxia Yang
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Qinghong Meng
- Department of Clinical Laboratory Medicine, Eco-city Hospital of Tianjin Fifth Central Hospital, Tianjin 300467, China
| | - Yiyin Long
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Xiaofeng Shi
- Department of Emergency, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Yuliang Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China.
| |
Collapse
|
26
|
Araldi RP, Delvalle DA, da Costa VR, Alievi AL, Teixeira MR, Dias Pinto JR, Kerkis I. Exosomes as a Nano-Carrier for Chemotherapeutics: A New Era of Oncology. Cells 2023; 12:2144. [PMID: 37681875 PMCID: PMC10486723 DOI: 10.3390/cells12172144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Despite the considerable advancements in oncology, cancer remains one of the leading causes of death worldwide. Drug resistance mechanisms acquired by cancer cells and inefficient drug delivery limit the therapeutic efficacy of available chemotherapeutics drugs. However, studies have demonstrated that nano-drug carriers (NDCs) can overcome these limitations. In this sense, exosomes emerge as potential candidates for NDCs. This is because exosomes have better organotropism, homing capacity, cellular uptake, and cargo release ability than synthetic NDCs. In addition, exosomes can serve as NDCs for both hydrophilic and hydrophobic chemotherapeutic drugs. Thus, this review aimed to summarize the latest advances in cell-free therapy, describing how the exosomes can contribute to each step of the carcinogenesis process and discussing how these nanosized vesicles could be explored as nano-drug carriers for chemotherapeutics.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
- BioDecision Analytics Ltd.a., São Paulo 13271-650, SP, Brazil;
| | - Denis Adrián Delvalle
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Vitor Rodrigues da Costa
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Anderson Lucas Alievi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Michelli Ramires Teixeira
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | | | - Irina Kerkis
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
| |
Collapse
|
27
|
Zanier ER, Pischiutta F, Rulli E, Vargiolu A, Elli F, Gritti P, Gaipa G, Belotti D, Basso G, Zoerle T, Stocchetti N, Citerio G. MesenchymAl stromal cells for Traumatic bRain Injury (MATRIx): a study protocol for a multicenter, double-blind, randomised, placebo-controlled phase II trial. Intensive Care Med Exp 2023; 11:56. [PMID: 37620640 PMCID: PMC10449745 DOI: 10.1186/s40635-023-00535-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant cause of death and disability, with no effective neuroprotective drugs currently available for its treatment. Mesenchymal stromal cell (MSC)-based therapy shows promise as MSCs release various soluble factors that can enhance the injury microenvironment through processes, such as immunomodulation, neuroprotection, and brain repair. Preclinical studies across different TBI models and severities have demonstrated that MSCs can improve functional and structural outcomes. Moreover, clinical evidence supports the safety of third-party donor bank-stored MSCs in adult subjects. Building on this preclinical and clinical data, we present the protocol for an academic, investigator-initiated, multicenter, double-blind, randomised, placebo-controlled, adaptive phase II dose-finding study aiming to evaluate the safety and efficacy of intravenous administration of allogeneic bone marrow-derived MSCs to severe TBI patients within 48 h of injury. METHODS/DESIGN The study will be conducted in two steps. Step 1 will enrol 42 patients, randomised in a 1:1:1 ratio to receive 80 million MSCs, 160 million MSCs or a placebo to establish safety and identify the most promising dose. Step 2 will enrol an additional 36 patients, randomised in a 1:1 ratio to receive the selected dose of MSCs or placebo. The activity of MSCs will be assessed by quantifying the plasmatic levels of neurofilament light (NfL) at 14 days as a biomarker of neuronal damage. It could be a significant breakthrough if the study demonstrates the safety and efficacy of MSC-based therapy for severe TBI patients. The results of this trial could inform the design of a phase III clinical trial aimed at establishing the efficacy of the first neurorestorative therapy for TBI. DISCUSSION Overall, the MATRIx trial is a critical step towards developing an effective treatment for TBI, which could significantly improve the lives of millions worldwide affected by this debilitating condition. Trial Registration EudraCT: 2022-000680-49.
Collapse
Affiliation(s)
- Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Pischiutta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eliana Rulli
- Department of Clinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessia Vargiolu
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesca Elli
- Neurological Intensive Care Unit, Department of Neurosciences, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Paolo Gritti
- Department of Anesthesia, Emergency and Critical Care Medicine, ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Daniela Belotti
- M. Tettamanti Research Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Neurosciences, Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anaesthesia and Critical Care, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.
- Neurological Intensive Care Unit, Department of Neurosciences, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| |
Collapse
|
28
|
Battaglini D, Iavarone IG, Al-Husinat L, Ball L, Robba C, Silva PL, Cruz FF, Rocco PR. Anti-inflammatory therapies for acute respiratory distress syndrome. Expert Opin Investig Drugs 2023; 32:1143-1155. [PMID: 37996088 DOI: 10.1080/13543784.2023.2288080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Treatments for the acute respiratory distress syndrome (ARDS) are mainly supportive, and ventilatory management represents a key approach in these patients. Despite progress in pharmacotherapy, anti-inflammatory strategies for the treatment of ARDS have shown controversial results. Positive outcomes with pharmacologic and nonpharmacologic treatments have been found in two different biological subphenotypes of ARDS, suggesting that, with a personalized medicine approach, pharmacotherapy for ARDS can be effective. AREAS COVERED This article reviews the literature concerning anti-inflammatory therapies for ARDS, focusing on pharmacological and stem-cell therapies, including extracellular vesicles. EXPERT OPINION Despite advances, ARDS treatments remain primarily supportive. Ventilatory and fluid management are important strategies in these patients that have demonstrated significant impacts on outcome. Anti-inflammatory drugs have shown some benefits, primarily in preclinical research and in specific clinical scenarios, but no recommendations are available from guidelines to support their use in patients with ARDS, except in particular settings such as different subphenotypes, specific etiologies, or clinical trials. Personalized medicine seems promising insofar as it may identify specific subgroups of patients with ARDS who may benefit from anti-inflammatory treatment. However, additional efforts are needed to move subphenotype characterization from bench to bedside.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Lorenzo Ball
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Nykänen AI, Liu M, Keshavjee S. Mesenchymal Stromal Cell Therapy in Lung Transplantation. Bioengineering (Basel) 2023; 10:728. [PMID: 37370659 DOI: 10.3390/bioengineering10060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lung transplantation is often the only viable treatment option for a patient with end-stage lung disease. Lung transplant results have improved substantially over time, but ischemia-reperfusion injury, primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD) continue to be significant problems. Mesenchymal stromal cells (MSC) are pluripotent cells that have anti-inflammatory and protective paracrine effects and may be beneficial in solid organ transplantation. Here, we review the experimental studies where MSCs have been used to protect the donor lung against ischemia-reperfusion injury and alloimmune responses, as well as the experimental and clinical studies using MSCs to prevent or treat CLAD. In addition, we outline ex vivo lung perfusion (EVLP) as an optimal platform for donor lung MSC delivery, as well as how the therapeutic potential of MSCs could be further leveraged with genetic engineering.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
30
|
Wandling EN, Rhoads K, Ohman DE, Heise RL. Electrosprayed Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles Accelerate Cellular Wound Healing and Reduce Gram-Negative Bacterial Growth. Pharmaceutics 2023; 15:1277. [PMID: 37111762 PMCID: PMC10142868 DOI: 10.3390/pharmaceutics15041277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Treatments for acute respiratory distress syndrome are still unavailable, and the prevalence of the disease has only increased due to the COVID-19 pandemic. Mechanical ventilation regimens are still utilized to support declining lung function but also contribute to lung damage and increase the risk for bacterial infection. The anti-inflammatory and pro-regenerative abilities of mesenchymal stromal cells (MSCs) have shown to be a promising therapy for ARDS. We propose to utilize the regenerative effects of MSCs and the extracellular matrix (ECM) in a nanoparticle. Our mouse MSC (MMSC) ECM nanoparticles were characterized using size, zeta potential, and mass spectrometry to evaluate their potential as pro-regenerative and antimicrobial treatments. The nanoparticles had an average size of 273.4 nm (±25.6) and possessed a negative zeta potential, allowing them to surpass defenses and reach the distal regions of the lung. It was found that the MMSC ECM nanoparticles are biocompatible with mouse lung epithelial cells and MMSCs, increasing the wound healing rate of human lung fibroblasts while also inhibiting the growth of Pseudomonas aeruginosa, a common lung pathogen. Our MMSC ECM nanoparticles display characteristics of healing injured lungs while preventing bacterial infection, which can increase recovery time.
Collapse
Affiliation(s)
- Emily N. Wandling
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Keera Rhoads
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Research Service, McGuire Veterans Affairs Medical Center, Richmond, VA 23249, USA
| | - Rebecca L. Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|