1
|
Hang Q, Li W, Guo J, Zuo S, Yang Y, Wu C, Yong W, Li C, Gu J, Hou S. Inhibitory effects of β-galactoside α2,6-sialyltransferase 1 on the Hippo pathway in breast cancer cells. J Biol Chem 2025:110266. [PMID: 40409546 DOI: 10.1016/j.jbc.2025.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
The Hippo signaling pathway is crucial in pathological functions such as tumors. Yes-associated protein (YAP), a well-known downstream effector of the Hippo pathway, has been intensively studied; emerging evidence suggests that multiple cell membrane receptors can regulate the Hippo pathway. However, the mechanistic roles of these upstream pathways remain largely unknown. Here, we identified the β-galactoside α2,6-sialyltransferase 1 (ST6GAL1) catalyzed α2,6-sialylation as a pivotal upstream modulator of Hippo pathway by a glycosyltransferases (GTs) overexpression sub-library screening. Depletion of ST6GAL1 results in increased phosphorylation of LATS1 and YAP, which induces YAP's nuclear localization, transcriptional activity, and multiple biological functions in breast cancer cells, including cell adhesion, spreading, growth, migration, and metastasis. These phenotypes were majorly due to the altered signal transduction of cell surface receptors, as deletion of ST6GAL1 exhibited attenuated GPCR, EGFR, and Integrins response and suppression of dephosphorylation of YAP. Mechanistically, these representative membrane receptors are α2,6-sialylated proteins, and their α2,6-sialylation could be inhibited by β-galactoside α2,3-sialyltransferase 4 (ST3GAL4) via substrate competition. In addition, the α2,6-sialylation is essential for Integrin β1-EGFR/LPAR4 complex formation. Altogether, our findings demonstrate ST6GAL1 is an upstream negative regulator of the Hippo pathway in breast cancer cells, providing a new insight into the regulation between N-glycosylation and Hippo signaling.
Collapse
Affiliation(s)
- Qinglei Hang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, Suining, Jiangsu 221200, China; Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.
| | - Wenqian Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jingya Guo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shiying Zuo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yawen Yang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Can Wu
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Wen Yong
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Caimin Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, China.
| |
Collapse
|
2
|
Li Z, Zhu Z, Wang P, Hou C, Ren L, Xu D, Wang X, Guo F, Meng Q, Liang W, Xue J, Zhi X. Diagnostic, prognostic, and immunological roles of FUT8 in lung adenocarcinoma and lung squamous cell carcinoma. PLoS One 2025; 20:e0321756. [PMID: 40373023 PMCID: PMC12080848 DOI: 10.1371/journal.pone.0321756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/11/2025] [Indexed: 05/17/2025] Open
Abstract
Lung cancer remains the leading cause of malignant tumors worldwide in terms of the incidence and mortality, posing a significant threat to human health. Given that distant metastases typically occur at the time of initial diagnosis, leading to a poor 5-year survival rate among patients, it is crucial to identify markers for diagnosis, prognosis, and therapeutic efficacy monitoring. Abnormal glycosylation is a hallmark of cancer cells, characterized by the disruption of core fucosylation, which is predominantly driven by the enzyme fucosyltransferase 8 (FUT8). Evidence indicates that FUT8 is a pivotal enzyme in cancer onset and progression, influencing cellular glycosylation pathways. Utilizing bioinformatics approaches, we have investigated FUT8 in lung cancer, resulting in a more systematic and comprehensive understanding of its role in the disease's pathogenesis. In this study, we employed bioinformatics to analyze the differential expression of FUT8 between LUAD and LUSC. We observed upregulation of FUT8 in both LUAD and LUSC, associated with unfavorable prognosis, and higher diagnostic utility in LUAD. GO/KEGG analysis revealed a primary association between LUAD and the spliceosome. Immunologically, FUT8 expression was significantly associated with immune cell infiltration and immune checkpoint activity, with a notable positive correlation with M2 macrophage infiltration. Our analysis of FUT8 indicates that it may serve as a potential biomarker for lung cancer diagnosis and prognosis, and could represent a therapeutic target for LUAD and LUSC immunotherapy.
Collapse
Affiliation(s)
- Zhijun Li
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Zhenpeng Zhu
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Peng Wang
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Chenyang Hou
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Lijuan Ren
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Dandan Xu
- Hebei Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xiran Wang
- Department of Bioinformatics, School of Health Care, Changchun Vocational College of Health, Changchun City, Jilin Province, China
| | - Fei Guo
- Department of Surgery, Hebei Key Laboratory of Systems Biology and Gene Regulation, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Weizheng Liang
- Hebei Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Jun Xue
- Department of Surgery, Hebei Key Laboratory of Systems Biology and Gene Regulation, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| |
Collapse
|
3
|
Bastian K, Orozco‐Moreno M, Thomas H, Hodgson K, Visser EA, Rossing E, Pijnenborg JFA, Eerden N, Wilson L, Saravannan H, Hanley O, Grimsley G, Frame F, Peng Z, Knight B, McCullagh P, McGrath J, Crundwell M, Harries L, Maitland NJ, Heer R, Wang N, Goddard‐Borger ED, Guerrero RH, Boltje TJ, Drake RR, Scott E, Elliott DJ, Munkley J. FUT8 Is a Critical Driver of Prostate Tumour Growth and Can Be Targeted Using Fucosylation Inhibitors. Cancer Med 2025; 14:e70959. [PMID: 40387385 PMCID: PMC12086987 DOI: 10.1002/cam4.70959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND An unmet clinical need requires the discovery of new treatments for men facing advanced prostate cancer. Aberrant glycosylation is a universal feature of cancer cells and plays a key role in tumour growth, immune evasion and metastasis. Alterations in tumour glycosylation are closely associated with prostate cancer progression, making glycans promising therapeutic targets. Fucosyltransferase 8 (FUT8) drives core fucosylation by adding α1,6-fucose to the innermost GlcNAc residue on N-glycans. While FUT8 is recognised as a crucial factor in cancer progression, its role in prostate cancer remains poorly understood. METHODS & RESULTS Here, we demonstrate using multiple independent clinical cohorts that FUT8 is upregulated in high grade and metastatic prostate tumours, and in the blood of prostate cancer patients with aggressive disease. Using novel tools, including PhosL lectin immunofluorescence and N-glycan MALDI mass spectrometry imaging (MALDI-MSI), we find FUT8 underpins the biosynthesis of malignant core fucosylated N-glycans in prostate cancer cells and using both in vitro and in vivo models, we find FUT8 promotes prostate tumour growth, cell motility and invasion. Mechanistically we show FUT8 regulates the expression of genes and signalling pathways linked to prostate cancer progression. Furthermore, we find that fucosylation inhibitors can inhibit the activity of FUT8 in prostate cancer to suppress the growth of prostate tumours. CONCLUSIONS Our study cements FUT8-mediated core fucosylation as an important driver of prostate cancer progression and suggests targeting FUT8 activity for prostate cancer therapy as an exciting area to explore.
Collapse
Affiliation(s)
- Kayla Bastian
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Margarita Orozco‐Moreno
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Huw Thomas
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Kirsty Hodgson
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Eline A. Visser
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | | | | | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Hasvini Saravannan
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Oliver Hanley
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Grace Grimsley
- Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Fiona Frame
- Cancer Research Unit, Department of BiologyUniversity of YorkNorth YorkshireUK
| | - Ziqian Peng
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Bridget Knight
- NIHR Exeter Clinical Research FacilityRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Paul McCullagh
- Department of PathologyRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - John McGrath
- Exeter Surgical Health Services Research UnitRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Malcolm Crundwell
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Lorna Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Norman J. Maitland
- Cancer Research Unit, Department of BiologyUniversity of YorkNorth YorkshireUK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical MedicineThe University of SheffieldSheffieldUK
- Leicester Cancer Research Centre, Department of Genetics, Genomics, and Cancer SciencesUniversity of LeicesterLeicesterUK
| | - Ethan D. Goddard‐Borger
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ramon Hurtado Guerrero
- University of ZaragozaZaragozaSpain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Thomas J. Boltje
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | - Richard R. Drake
- Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Emma Scott
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - David J. Elliott
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Jennifer Munkley
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| |
Collapse
|
4
|
Tian Y, Wang Y, Zhang Y, Guo J, Zhang P, Li X, Zhou H, Wen L. One-Step Labeling Strategy for the Profiling of Multiple Types of Protein Glycosylation. Anal Chem 2025; 97:7833-7841. [PMID: 40165718 DOI: 10.1021/acs.analchem.4c06400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Protein glycosylation, classified into N-glycosylation and O-glycosylation, is the most prevalent and complex protein post-translational modification. Bioorthogonal chemistry reactions combining the biotin-streptavidin interaction system are the most commonly used for investigating protein glycosylation. In this study, a one-step enzymatic labeling strategy for the simultaneous and global profiling of multiple types of protein glycosylation was developed. A "one-step probe" directly carrying the enrichment support poly(N-isopropylacrylamide) (PNIPAM) was designed and synthesized. Although the designed probe carried a large enrichment group (the number-average molecular weight of PNIPAM was up to 10,000 Da), it was well accepted by the two substrate-specific sialyltransferases to label N-glycopeptides and O-glycopeptides. PNIPAM is a temperature-sensitive polymer. When the temperature was below the lower critical solution temperature, PNIPAM was water-soluble and precipitated when it was above the lower critical solution temperature. The advantage of this property was that the labeled glycopeptides were enriched from complex biological samples by simply changing the temperature without the need for additional enrichment resins. Following enzymatic and ultraviolet-light-mediated cleavage, the labeled N-glycopeptide, core-fucosylated glycopeptide, and truncated mucin-type O-glycopeptides (Tn, STn, T, and ST antigens) were released sequentially for glycosylation profiling via mass spectrometry. This work provides an effective strategy to significantly reduce enrichment costs for profiling multiple glycosylation types.
Collapse
Affiliation(s)
- Yinping Tian
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqiu Wang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ying Zhang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng 475000, China
| | - Jingyi Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pengfei Zhang
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng 475000, China
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Dai XF, Yang YX, Yang BZ. Glycosylation editing: an innovative therapeutic opportunity in precision oncology. Mol Cell Biochem 2025; 480:1951-1967. [PMID: 38861100 DOI: 10.1007/s11010-024-05033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Cancer is still one of the most arduous challenges in the human society, even though humans have found many ways to try to conquer it. With our incremental understandings on the impact of sugar on human health, the clinical relevance of glycosylation has attracted our attention. The fact that altered glycosylation profiles reflect and define different health statuses provide novel opportunities for cancer diagnosis and therapeutics. By reviewing the mechanisms and critical enzymes involved in protein, lipid and glycosylation, as well as current use of glycosylation for cancer diagnosis and therapeutics, we identify the pivotal connection between glycosylation and cellular redox status and, correspondingly, propose the use of redox modulatory tools such as cold atmospheric plasma (CAP) in cancer control via glycosylation editing. This paper interrogates the clinical relevance of glycosylation on cancer and has the promise to provide new ideas for laboratory practice of cold atmospheric plasma (CAP) and precision oncology therapy.
Collapse
Affiliation(s)
- Xiao-Feng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Yi-Xuan Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Bo-Zhi Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|
6
|
Wang K, Ma W, Meng X, Xu Z, Zhao W, Li T. Chemoenzymatic Synthesis of Core-Fucosylated Asymmetrical N-Glycans with Different-Length Oligo-N-Acetyllactosamine Motifs and Their Sialylated Extensions. Chemistry 2025; 31:e202500183. [PMID: 40079522 DOI: 10.1002/chem.202500183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
An efficient chemoenzymatic approach for the diversity-oriented synthesis of core-fucosylated asymmetrical N-glycans bearing different lengths of oligo-N-acetyllactosamine (LacNAc) and their sialylated extensions is described. Two oligosaccharide precursors were chemically synthesized by length-controlled introduction of oligo-LacNAc motifs through stereoselectively iterative glycosylation of a common hexasaccharide intermediate. Both oligosaccharide precursors can be well recognized by α1,6-fucosyltransferase FUT8 to generate core-fucosylated N-glycans, which were subjected to divergent enzymatic extension using a galactosyltransferase module and two sialyltransferase modules to provide a wide array of core-fucosylated asymmetrical biantennary N-glycans having different-length oligo-LacNAc motifs capped by various sialic acid linkages.
Collapse
Affiliation(s)
- Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Meng
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Zheng Q, Cui M, Xiao J, Yang S, Chen T, Shi Y, Hu Y, Liao Q. Glycomic profiling of parathyroid neoplasms via lectin microarray analysis. Endocrine 2025; 87:1224-1234. [PMID: 39565545 PMCID: PMC11845408 DOI: 10.1007/s12020-024-04107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Parathyroid carcinoma (PC) is a rare malignancy with a poor prognosis. Diagnosis of PC is often difficult in clinical practice and efficient diagnostic markers are still needed for differential diagnosis. Aberrant glycosylations of glycoproteins were identified with lectin microarray in various cancers, while relevant information is lacking in PC. METHODS In this study, 8 PC and 6 parathyroid adenoma (PA) tissues were assessed using a microarray consisting of 70 lectins. Overall lectin-specific glycosylation patterns were compared between PA and PC tissues. Lectins with significant differential response between PC and PA were further validated by lectin histochemistry. RESULTS The difference in signal intensities was found in 71.4% (50/70) of the lectins between the two groups (P < 0.05). The vast majority of PCs had higher intensity signals than PAs (PCs vs. PAs, ratio >1) and amaranthus caudatus (ACL) showed the most significantly different response between them (ratio = 2.45). Lectin histochemistry further confirmed higher ACL intensity in PCs than in PAs. The differentially expressed glycans in PC tissues were primarily glucose, mannose, and galactose-based. CONCLUSION PC presented unique glycomic features and ACL may serve as a candidate diagnostic marker for PC.
Collapse
Affiliation(s)
- Qingyuan Zheng
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinheng Xiao
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sen Yang
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tianqi Chen
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanan Shi
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Qu J, Wang MH, Gao YH, Zhang HW. Identification of Molecular Subtypes and Prognostic Features of Breast Cancer Based on TGF-β Signaling-related Genes. Cancer Inform 2025; 24:11769351251316398. [PMID: 39902175 PMCID: PMC11789128 DOI: 10.1177/11769351251316398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025] Open
Abstract
Objectives The TGF-β signaling pathway is widely acknowledged for its role in various aspects of cancer progression, including cellular invasion, epithelial-mesenchymal transition, and immunosuppression. Immune checkpoint inhibitors (ICIs) and pharmacological agents that target TGF-β offer significant potential as therapeutic options for cancer. However, the specific role of TGF-β in prognostic assessment and treatment strategies for breast cancer (BC) remains unclear. Methods The Cancer Genome Atlas (TCGA) database was utilized to develop a predictive model incorporating five TGF-β signaling-related genes (TSRGs). The GSE161529 dataset from the Gene Expression Omnibus was employed to conduct single-cell analyses aimed at further elucidating the characteristics of these TSRGs. Additionally, an unsupervised clustering algorithm was applied to categorize BC patients into two distinct groups based on the five TSRGs, with a focus on immune response and overall survival (OS). Further investigations were conducted to explore variations in pharmacotherapy and the tumor microenvironment across different patient cohorts and clusters. Results The predictive model for BC identified five TSRGs: FUT8, IFNG, ID3, KLF10, and PARD6A. Single-cell analysis revealed that IFNG is predominantly expressed in CD8+ T cells. Consensus clustering effectively categorized BC patients into two distinct clusters, with cluster B demonstrating a longer OS and a more favorable prognosis. Immunological assessments indicated a higher presence of immune checkpoints and immune cells in cluster B, suggesting a greater likelihood of responsiveness to ICIs. Conclusion The findings of this study highlight the potential of the TGF-β signaling pathway for prognostic classification and the development of personalized treatment strategies for BC patients, thereby enhancing our understanding of its significance in BC prognosis.
Collapse
Affiliation(s)
- Jia Qu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mei-Huan Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yue-Hua Gao
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hua-Wei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
9
|
Cai Z, Isaji T, Liang C, Fukuda T, Zhang D, Gu J. Fucosyltransferase 4 upregulates P-gp expression for chemoresistance via NF-κB signaling pathway. Biochim Biophys Acta Gen Subj 2025; 1869:130753. [PMID: 39725242 DOI: 10.1016/j.bbagen.2024.130753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Multidrug resistance (MDR) poses a significant obstacle to developing chemotherapeutic treatments. In previous studies using a traditional model of adriamycin resistance (ADR) with K562 cells, we demonstrated that N-acetylglucosaminyltransferase III (GnT-III) expression negatively regulates chemoresistance. Additionally, we observed that fucosylation levels were increased in the ADR cells. METHOD Fucosylation levels were determined using lectin blot, western blot, and flow cytometry. Gene expression levels were analyzed via qPCR. We generated a FUT4 knockout (KO) ADR cell line using CRISPR/Cas9 technology. Cytotoxicity and drug efflux assays were conducted to evaluate chemotherapy tolerance. RESULTS The expression levels of FUT4 and its products, the LeX antigens, were significantly upregulated in the ADR cells compared to the parental K562 cells. The FUT4 KO reduced the elevated levels of P-glycoprotein (P-gp) found in ADR cells and exhibited increased sensitivity to chemotherapeutic drugs. Furthermore, restoring FUT4 expression in the KO cells effectively reversed P-gp expression, drug efflux, and chemoresistance. Given the critical role of the NF-κB pathway in P-gp expression, we investigated NF-κB signaling and found that the phosphorylation levels of p65 were significantly increased in the ADR cells but were downregulated in the FUT4 KO cells. Furthermore, the restoration of FUT4 rescued the phosphorylation levels of p65. CONCLUSIONS FUT4 specifically upregulates P-gp expression related to chemoresistance through the NF-κB signaling pathway. GENERAL SIGNIFICANCE This study highlights the importance of FUT4 in chemoresistance and suggests it may serve as a promising target for combating MDR.
Collapse
Affiliation(s)
- Zixuan Cai
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Caixia Liang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
10
|
Pan Q, Zhang XL. Roles of core fucosylation modification in immune system and diseases. CELL INSIGHT 2025; 4:100211. [PMID: 39624801 PMCID: PMC11609374 DOI: 10.1016/j.cellin.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 01/04/2025]
Abstract
Core fucosylation, catalyzed by α1,6-fucosyltransferase (FUT8), is an important N-glycosylation modification process that attaches a fucose residue via an α1,6-linkage to the core N-acetylglucosamine of N-glycans in mammals. Research over the past three decades has revealed the critical role of FUT8-mediated core fucosylation modification in various physiological and pathological processes, including cell growth, adhesion, receptor activation, antibody-dependent cellular cytotoxicity (ADCC), tumor metastasis and infections. This review discusses the immune system function involving FUT8 and the mechanisms by which core fucosylation regulates immunity and contributes to disease. A deeper understanding of these mechanisms can provide insights into cellular biology and suggest new therapeutic approaches and targets for related diseases.
Collapse
Affiliation(s)
- Qiu Pan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital of Wuhan University, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, 430071, China
| |
Collapse
|
11
|
Shu L, Lin S, Zhou S, Yuan T. Glycan-Lectin interactions between platelets and tumor cells drive hematogenous metastasis. Platelets 2024; 35:2315037. [PMID: 38372252 DOI: 10.1080/09537104.2024.2315037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Glycosylation is a ubiquitous cellular or microenvironment-specific post-translational modification that occurs on the surface of normal cells and tumor cells. Tumor cell-associated glycosylation is involved in hematogenous metastasis. A wide variety of tumors undergo aberrant glycosylation to interact with platelets. As platelets have many opportunities to engage circulating tumor cells, they represent an important avenue into understanding the role glycosylation plays in tumor metastasis. Platelet involvement in tumor metastasis is evidenced by observations that platelets protect tumor cells from damaging shear forces and immune system attack, aid metastasis through the endothelium at specific sites, and facilitate tumor survival and colonization. During platelet-tumor-cell interactions, many opportunities for glycan-ligand binding emerge. This review integrates the latest information about glycans, their ligands, and how they mediate platelet-tumor interactions. We also discuss adaptive changes that tumors undergo upon glycan-lectin binding and the impact glycans have on targeted therapeutic strategies for treating tumors in clinical settings.
Collapse
Affiliation(s)
- Longqiang Shu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanyi Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Peking University People's Hospital, Beijing, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Chen X, Zhang D, Ou H, Su J, Wang Y, Zhou F. Bulk and single-cell RNA sequencing analyses coupled with multiple machine learning to develop a glycosyltransferase associated signature in colorectal cancer. Transl Oncol 2024; 49:102093. [PMID: 39217850 PMCID: PMC11402624 DOI: 10.1016/j.tranon.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aims to identify key glycosyltransferases (GTs) in colorectal cancer (CRC) and establish a robust prognostic signature derived from GTs. METHODS Utilizing the AUCell, UCell, singscore, ssgsea, and AddModuleScore algorithms, along with correlation analysis, we redefined genes related to GTs in CRC at the single-cell RNA level. To improve risk model accuracy, univariate Cox and lasso regression were employed to discover a more clinically subset of GTs in CRC. Subsequently, the efficacy of seven machine learning algorithms for CRC prognosis was assessed, focusing on survival outcomes through nested cross-validation. The model was then validated across four independent external cohorts, exploring variations in the tumor microenvironment (TME), response to immunotherapy, mutational profiles, and pathways of each risk group. Importantly, we identified potential therapeutic agents targeting patients categorized into the high-GARS group. RESULTS In our research, we classified CRC patients into distinct subgroups, each exhibiting variations in prognosis, clinical characteristics, pathway enrichments, immune infiltration, and immune checkpoint genes expression. Additionally, we established a Glycosyltransferase-Associated Risk Signature (GARS) based on machine learning. GARS surpasses traditional clinicopathological features in both prognostic power and survival prediction accuracy, and it correlates with higher malignancy levels, providing valuable insights into CRC patients. Furthermore, we explored the association between the risk score and the efficacy of immunotherapy. CONCLUSION A prognostic model based on GTs was developed to forecast the response to immunotherapy, offering a novel approach to CRC management.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - Dan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - Haibin Ou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - Jing Su
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China.
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China.
| |
Collapse
|
13
|
Yan A, Wu H, Jiang W. RACK1 inhibits ferroptosis of cervical cancer by enhancing SLC7A11 core-fucosylation. Glycoconj J 2024; 41:229-240. [PMID: 39356381 DOI: 10.1007/s10719-024-10167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Receiver for Activated C Kinase 1 (RACK1) is a highly conserved scaffold protein that can assemble multiple kinases and proteins together to form complexes, thereby regulating signal transduction process and various cellular biological processes, including cell cycle regulation, differentiation, and immune response. However, the function and mechanism of RACK1 in cervical cancer remain incompletely understood. Here we identified that RACK1 could significantly suppress cell ferroptosis in cervical cancer cells. Mechanistically, RACK1 increased the expression of FUT8 by inhibiting miR-1275, which in turn promoted the FUT8-catalyzed core-fucosylation of cystine/glutamate antiporter SLC7A11, thereby inhibiting SLC7A11 degradation and cell ferroptosis. Our data highlight the role of RACK1 in cervical cancer progression and its suppression of ferroptosis via the RACK1/miR-1275/FUT8/SLC7A11 axis, suggesting that inhibiting this pathway may be a promising therapeutic approach for patients with cervical cancer.
Collapse
Affiliation(s)
- Anqi Yan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, China
| | - Hao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, China.
| | - Wei Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, China.
| |
Collapse
|
14
|
Zhu Q, Chaubard JL, Geng D, Shen J, Ban L, Cheung ST, Wei F, Liu Y, Sun H, Calderon A, Dong W, Qin W, Li T, Wen L, Wang PG, Sun S, Yi W, Hsieh-Wilson LC. Chemoenzymatic Labeling, Detection and Profiling of Core Fucosylation in Live Cells. J Am Chem Soc 2024; 146:26408-26415. [PMID: 39279393 DOI: 10.1021/jacs.4c09303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Core fucosylation, the attachment of an α-1,6-linked-fucose to the N-glycan core pentasaccharide, is an abundant protein modification that plays critical roles in various biological processes such as cell signaling, B cell development, antibody-dependent cellular cytotoxicity, and oncogenesis. However, the tools currently used to detect core fucosylation suffer from poor specificity, exhibiting cross-reactivity against all types of fucosylation. Herein we report the development of a new chemoenzymatic strategy for the rapid and selective detection of core fucosylated glycans. This approach employs a galactosyltransferase enzyme identified fromCaenorhabditis elegansthat specifically transfers an azido-appended galactose residue onto core fucose via a β-1,4 glycosidic linkage. We demonstrate that the approach exhibits superior specificity toward core fucose on a variety of complex N-glycans. The method enables detection of core fucosylated glycoproteins from complex cell lysates, as well as on live cell surfaces, and it can be integrated into a diagnostic platform to profile protein-specific core fucosylation levels. This chemoenzymatic labeling approach offers a new strategy for the identification of disease biomarkers and will allow researchers to further characterize the fundamental role of this important glycan in normal and disease physiology.
Collapse
Affiliation(s)
- Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Jean-Luc Chaubard
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Didi Geng
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Lan Ban
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Sheldon T Cheung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Fangyu Wei
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Yating Liu
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Haofan Sun
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Angie Calderon
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology Institution, Shenzhen, Guangdong 518055, China
| | - Wenbo Dong
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Tiehai Li
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology Institution, Shenzhen, Guangdong 518055, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Khorami-Sarvestani S, Hanash SM, Fahrmann JF, León-Letelier RA, Katayama H. Glycosylation in cancer as a source of biomarkers. Expert Rev Proteomics 2024; 21:345-365. [PMID: 39376081 DOI: 10.1080/14789450.2024.2409224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Pote MS, Singh D, M. A A, Suchita J, Gacche RN. Cancer metastases: Tailoring the targets. Heliyon 2024; 10:e35369. [PMID: 39170575 PMCID: PMC11336595 DOI: 10.1016/j.heliyon.2024.e35369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metastasis is an intricate and formidable pathophysiological process encompassing the dissemination of cancer cells from the primary tumour body to distant organs. It stands as a profound and devastating phenomenon that constitutes the primary driver of cancer-related mortality. Despite great strides of advancements in cancer research and treatment, tailored anti-metastasis therapies are either lacking or have shown limited success, necessitating a deeper understanding of the intrinsic elements driving cancer invasiveness. This comprehensive review presents a contemporary elucidation of pivotal facets within the realm of cancer metastasis, commencing with the intricate processes of homing and invasion. The process of angiogenesis, which supports tumour growth and metastasis, is addressed, along with the pre-metastatic niche, wherein the primary tumour prepares for a favorable microenvironment at distant sites for subsequent metastatic colonization. The landscape of metastasis-related genetic and epigenetic mechanisms, involvement of metastasis genes and metastasis suppressor genes, and microRNAs (miRNA) are also discussed. Furthermore, immune modulators' impact on metastasis and their potential as therapeutic targets are addressed. The interplay between cancer cells and the immune system, including immune evasion mechanisms employed by metastatic cells, is discussed, highlighting the importance of targeting immune modulation in arresting metastatic progression. Finally, this review presents promising treatment opportunities derived from the insights gained into the mechanisms of metastasis. Identifying novel therapeutic targets and developing innovative strategies to disrupt the metastatic cascade holds excellent potential for improving patient outcomes and ultimately reducing cancer-related mortality.
Collapse
Affiliation(s)
| | | | | | | | - Rajesh N. Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
17
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
18
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
19
|
Yang H, Lin Z, Wu B, Xu J, Tao SC, Zhou S. Deciphering disease through glycan codes: leveraging lectin microarrays for clinical insights. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1145-1155. [PMID: 39099413 PMCID: PMC11399442 DOI: 10.3724/abbs.2024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024] Open
Abstract
Glycosylation, a crucial posttranslational modification, plays a significant role in numerous physiological and pathological processes. Lectin microarrays, which leverage the high specificity of lectins for sugar binding, are ideally suited for profiling the glycan spectra of diverse and complex biological samples. In this review, we explore the evolution of lectin detection technologies, as well as the applications and challenges of lectin microarrays in analyzing the glycome profiles of various clinical samples, including serum, saliva, tissues, sperm, and urine. This review not only emphasizes significant advancements in the high-throughput analysis of polysaccharides but also provides insight into the potential of lectin microarrays for diagnosing and managing diseases such as tumors, autoimmune diseases, and chronic inflammation. We aim to provide a clear, concise, and comprehensive overview of the use of lectin microarrays in clinical settings, thereby assisting researchers in conducting clinical studies in glycobiology.
Collapse
Affiliation(s)
- Hangzhou Yang
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Zihan Lin
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Bo Wu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Jun Xu
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghai200233China
| | - Sheng-Ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People’s HospitalShanghai200233China
| |
Collapse
|
20
|
Kamiya T. Role of copper and SOD3-mediated extracellular redox regulation in tumor progression. J Clin Biochem Nutr 2024; 75:1-6. [PMID: 39070539 PMCID: PMC11273271 DOI: 10.3164/jcbn.24-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/03/2024] [Indexed: 07/30/2024] Open
Abstract
Copper (Cu), an essential micronutrient, participates in several physiological processes, including cell proliferation and development. Notably, the disturbance of Cu homeostasis promotes tumor progression through the generation of oxidative stress. Chronic or excessive accumulation of reactive oxygen species (ROS) causes lipid peroxidation, protein denaturation, and enzyme inactivation, which leads to a breakdown of intracellular homeostasis and exacerbates tumor progression. The disruption of the ROS scavenging mechanism also reduces resistance to oxidative stress, leading to further deterioration in a disease state, and maintenance of redox homeostasis is thought to inhibit the onset and progression of various diseases. Superoxide dismutase 3 (SOD3), a Cu-containing secretory antioxidative enzyme, plays a key role in extracellular redox regulation, and the significant reduction in SOD3 facilitates tumor progression. Furthermore, the significant induction of SOD3 participates in tumor metastasis. This review focuses on the role of Cu homeostasis and antioxidative enzymes, including SOD3, in tumor progression, to help clarify the role of redox regulation.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
21
|
Rujchanarong D, Spruill L, Sandusky GE, Park Y, Mehta AS, Drake RR, Ford ME, Nakshatri H, Angel PM. Spatial N-glycomics of the normal breast microenvironment reveals fucosylated and high-mannose N-glycan signatures related to BI-RADS density and ancestry. Glycobiology 2024; 34:cwae043. [PMID: 38869882 PMCID: PMC11193881 DOI: 10.1093/glycob/cwae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 96 Jonathan Lucas St. Ste. 601, MSC 617, Charleston, SC 29425, United States
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 340 West 10th Street Fairbanks Hall, Suite 6200 Indianapolis, IN 46202-3082, United States
| | - Yeonhee Park
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Warf Office Bldg, 610 Walnut St Room 201, Madison, WI 53726, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| | - Marvella E Ford
- Department of Public Health Sciences, Medical University of South Carolina, 35 Cannon Street, Charleston, SC 29425, United States
| | - Harikrishna Nakshatri
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, United States
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Dr, Indianapolis, IN 46202, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| |
Collapse
|
22
|
Zhu Q, Geng D, Li J, Zhang J, Sun H, Fan Z, He J, Hao N, Tian Y, Wen L, Li T, Qin W, Chu X, Wang Y, Yi W. A Computational and Chemical Design Strategy for Manipulating Glycan-Protein Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308522. [PMID: 38582526 PMCID: PMC11199974 DOI: 10.1002/advs.202308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Glycans are complex biomolecules that encode rich information and regulate various biological processes, such as fertilization, host-pathogen binding, and immune recognition, through interactions with glycan-binding proteins. A key driving force for glycan-protein recognition is the interaction between the π electron density of aromatic amino acid side chains and polarized C─H groups of the pyranose (termed the CH-π interaction). However, the relatively weak binding affinity between glycans and proteins has hindered the application of glycan detection and imaging. Here, computational modeling and molecular dynamics simulations are employed to design a chemical strategy that enhances the CH-π interaction between glycans and proteins by genetically incorporating electron-rich tryptophan derivatives into a lectin PhoSL, which specifically recognizes core fucosylated N-linked glycans. This significantly enhances the binding affinity of PhoSL with the core fucose ligand and enables sensitive detection and imaging of core fucosylated glycans in vitro and in xenograft tumors in mice. Further, the study showed that this strategy is applicable to improve the binding affinity of GafD lectin for N-acetylglucosamine-containing glycans. The approach thus provides a general and effective way to manipulate glycan-protein recognition for glycoscience applications.
Collapse
Affiliation(s)
- Qiang Zhu
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Didi Geng
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Jingchao Li
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Jinqiu Zhang
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Haofan Sun
- National Center for Protein Sciences BeijingState Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of LifeomicsBeijing100026China
| | - Zhiya Fan
- National Center for Protein Sciences BeijingState Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of LifeomicsBeijing100026China
| | - Jiahui He
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
| | - Ninghui Hao
- The Provincial International Science and Technology Cooperation Base on Engineering BiologyShanghai Institute for Advanced StudyInstitute of Quantitative BiologyInternational Campus of Zhejiang UniversityHaining314499China
| | - Yinping Tian
- Carbohydrate‐Based Drug Research CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Liuqing Wen
- Carbohydrate‐Based Drug Research CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Tiehai Li
- Carbohydrate‐Based Drug Research CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Weijie Qin
- National Center for Protein Sciences BeijingState Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of LifeomicsBeijing100026China
| | - Xiakun Chu
- Advanced Materials ThrustFunction HubThe Hong Kong University of Science and TechnologyGuangzhou511400China
| | - Yong Wang
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
- The Provincial International Science and Technology Cooperation Base on Engineering BiologyShanghai Institute for Advanced StudyInstitute of Quantitative BiologyInternational Campus of Zhejiang UniversityHaining314499China
| | - Wen Yi
- Departments of Biochemistry & BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310012China
- Cancer CentreZhejiang UniversityHangzhou310012China
| |
Collapse
|
23
|
Tian Y, Ma S, Wen L. Towards chemoenzymatic labeling strategies for profiling protein glycosylation. Curr Opin Chem Biol 2024; 80:102460. [PMID: 38678979 DOI: 10.1016/j.cbpa.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Protein glycosylation is one of the most common and important post-translational modifications of proteins involved in regulating glycoprotein functions. The chemoenzymatic glycan labeling strategy allows rapid, efficient, and selective interrogation of glycoproteins. Glycoproteomics identifies protein glycosylation events at a large scale, providing information such as peptide sequences, glycan structures, and glycosylated sites. This review discusses the recent development of chemoenzymatic labeling strategies for glycoprotein analysis, mainly including glycoprotein and glycosite profiling. Furthermore, we highlight the chemoenzymatic enrichment approaches in mass spectrometry analysis for three classes of glycan modifications, including N-glycosylation, O-GlcNAcylation, and mucin-type O-glycosylation. Finally, we highlight the emerging trends in new tools and cutting-edge technologies available for glycoproteomic research.
Collapse
Affiliation(s)
- Yinping Tian
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shengzhou Ma
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liuqing Wen
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Pekdemir B, Karav S. Exploring the diverse biological significance and roles of fucosylated oligosaccharides. Front Mol Biosci 2024; 11:1403727. [PMID: 38863964 PMCID: PMC11165149 DOI: 10.3389/fmolb.2024.1403727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Long since, carbohydrates were thought to be used just as an energy source and structural material. However, in recent years, with the emergence of the field of glycobiology and advances in glycomics, much has been learned about the biological role of oligosaccharides, a carbohydrate polymer containing a small number of monosaccharides, in cell-cell interaction, signal transduction, immune response, pathogen adhesion processes, early embryogenesis, and apoptosis. The function of oligosaccharides in these processes is diversified by fucosylation, also known as modification of oligosaccharides. Fucosylation has allowed the identification of more than 100 different oligosaccharide structures that provide functional diversity. ABO blood group and Lewis antigens are among the best known fucosyl-linked oligosaccharides. In addition, the antigens in the ABO system are composed of various sugar molecules, including fucosylated oligosaccharides, and Lewis antigens are structurally similar to ABO antigens but differ in the linkage of sugars. Variation in blood group antigen expression affects the host's susceptibility to many infections. However, altered expression of ABO and Lewis antigens is related with prognosis in carcinoma types. In addition, many pathogens recognize and bind to human tissues using a protein receptor with high affinity for the fucose molecule in glycoconjugates, such as lectin. Fucosylated oligosaccharides also play vital roles during fertilization and early embryogenesis. Learning and memory-related processes such as neurite growth, neurite migration, and synapse formation seen during the development of the brain, which is among the first organs to develop in embryogenesis, are regulated by fucosylated oligosaccharides. In conclusion, this review mentions the vital roles of fucosylated oligosaccharides in biology, drawing attention to their importance in the development of chemical tools to be used in function analysis and the investigation of various therapeutic targets.
Collapse
Affiliation(s)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
25
|
Li Y, Fu B, Li Y, Li C, Zhai Y, Feng X, Wang J, Zhang Y, Lu H. O-GlycoIsoQuant: A Novel O-Glycome Quantitative Approach through Superbase Release and Isotopic Girard's P Labeling. Anal Chem 2024; 96:7289-7296. [PMID: 38666489 DOI: 10.1021/acs.analchem.4c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Quantitative glycosylation analysis serves as an effective tool for detecting changes in glycosylation patterns in cancer and various diseases. However, compared with N-glycans, O-glycans present challenges in both qualitative and quantitative mass spectrometry analysis due to their low abundance, ease of peeling, lack of a universal enzyme, and difficult accessibility. To address this challenge, we developed O-GlycoIsoQuant, a novel O-glycome quantitative approach utilizing superbase release and isotopic Girard's P labeling. This method facilitates rapid and efficient nonreducing β-elimination to dissociate O-glycans from proteins using the organic superbase, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), combined with light and heavy isotopic Girard's reagent P (GP) labeling for relative quantification of O-glycans by mass spectrometry. Employing this method, labeled O-glycans exhibit a double peak with a mass difference of 5 Da, suitable for stable relative quantification. The O-GlycoIsoQuant method is characterized by its high labeling efficiency, excellent reproducibility (CV < 20%), and good linearity (R2 > 0.99), across a dynamic range spanning a 100-fold range. This method was applied to various complex sample types, including human serum, porcine spermatozoa, human saliva, and urinary extracellular vesicles, detecting 33, 39, 49, and 37 O-glycans, respectively, thereby demonstrating its broad applicability.
Collapse
Affiliation(s)
- Yueyue Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Fu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Yang Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chong Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujia Zhai
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Xiaoxiao Feng
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jun Wang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
26
|
Alvear-Hernandez NP, Hernández-Ramírez VI, Villegas-Pineda JC, Osorio-Trujillo JC, Guzmán-Mendoza JJ, Gallardo-Rincón D, Toledo-Leyva A, Talamás-Rohana P. Overexpression of Fut 2, 4, and 8, and nuclear localization of Fut 4 in ovarian cancer cell lines induced by ascitic fluids from epithelial ovarian cancer patients. Cell Biol Int 2024; 48:610-625. [PMID: 38263584 DOI: 10.1002/cbin.12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Fucosyltransferases (Fut) regulate the fucosylation process associated with tumorogenesis in different cancer types. Ascitic fluid (AF) from patients diagnosed with advanced stage of epithelial ovarian cancer (EOC) is considered as a dynamic tumor microenvironment associated with poor prognosis. Previous studies from our laboratory showed increased fucosylation in SKOV-3 and OVCAR-3, cancer-derived cell lines, when these cells were incubated with AFs derived from patients diagnosed with EOC. In the present work we studied three fucosyltransferases (Fut 2, Fut 4, and Fut 8) in SKOV-3, OVCAR-3 and CAOV-3 cell lines in combination with five different AFs from patients diagnosed with this disease, confirming that all tested AFs increased fucosylation. Then, we demonstrate that mRNAs of these three enzymes were overexpressed in the three cell lines under treatment with AFs. SKOV-3 showed the higher overexpression of Fut 2, Fut 4, and Fut 8 in comparison with the control condition. We further confirmed, in the SKOV-3 cell line, by endpoint PCR, WB, and confocal microscopy, that the three enzymes were overexpressed, being Fut 4 the most overexpressed enzyme compared to Fut 2 and Fut 8. These enzymes were concentrated in vesicular structures with a homogeneous distribution pattern throughout the cytoplasm. Moreover, we found that among the three enzymes, only Fut 4 was located inside the nuclei. The nuclear location of Fut 4 was confirmed for the three cell lines. These results allow to propose Fut 2, Fut 4, and Fut 8 as potential targets for EOC treatment or as diagnostic tools for this disease.
Collapse
Affiliation(s)
- Nayely Paulina Alvear-Hernandez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Gustavo A Madero, Mexico
| | | | - Julio César Villegas-Pineda
- Departamento de Microbiología y, Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Juan Carlos Osorio-Trujillo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Gustavo A Madero, Mexico
| | - José Jesús Guzmán-Mendoza
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Gustavo A Madero, Mexico
| | | | - Alfredo Toledo-Leyva
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Instituto Nacional de Salud, Ciudad de México, Mexico
| | - Patricia Talamás-Rohana
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Gustavo A Madero, Mexico
| |
Collapse
|
27
|
Martín-Leyva A, Peinado FM, Ocón-Hernández O, Olivas-Martínez A, Luque A, León J, Lendínez I, Cardona J, Lara-Ramos A, Olea N, Fernández MF, Artacho-Cordón F. Environmental Exposure to Persistent Organic Pollutants and Its Association with Endometriosis Risk: Implications in the Epithelial-Mesenchymal Transition Process. Int J Mol Sci 2024; 25:4420. [PMID: 38674005 PMCID: PMC11050161 DOI: 10.3390/ijms25084420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to explore the relationship of adipose tissue concentrations of some persistent organic pollutants (POPs) with the risk of endometriosis and the endometriotic tissue expression profile of genes related to the endometriosis-related epithelial-mesenchymal transition (EMT) process. This case-control study enrolled 109 women (34 cases and 75 controls) between January 2018 and March 2020. Adipose tissue samples and endometriotic tissues were intraoperatively collected to determine concentrations of nine POPs and the gene expression profiles of 36 EMT-related genes, respectively. Associations of POPs with endometriosis risk were explored with multivariate logistic regression, while the relationship between exposure and gene expression profiles was assessed through Spearman correlation or Mann-Whitney U tests. After adjustment, increased endometriosis risk was associated with p,p'-DDT, PCB-180, and ΣPCBs. POP exposure was also associated with reduced gene expression levels of the CLDN7 epithelial marker and increased levels of the ITGB2 mesenchymal marker and a variety of EMT promoters (HMGA1, HOXA10, FOXM1, DKK1, CCR1, TNFRSF1B, RRM2, ANG, ANGPT1, and ESR1). Our findings indicate that exposure to POPs may increase the risk of endometriosis and might have a role in the endometriosis-related EMT development, contributing to the disease onset and progression. Further studies are warranted to corroborate these findings.
Collapse
Affiliation(s)
- Ana Martín-Leyva
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
| | - Francisco M. Peinado
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
| | - Olga Ocón-Hernández
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Gynaecology and Obstetrics Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain;
| | - Alicia Olivas-Martínez
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
| | - Antonio Luque
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
| | - Josefa León
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Digestive Medicine Unit, ‘San Cecilio’ University Hospital, E-18012 Granada, Spain
- CIBER Hepatic and Digestive Diseases (CIBEREHD), E-28029 Madrid, Spain
| | | | - Jesús Cardona
- Gynaecology and Obstetrics Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain;
| | - Ana Lara-Ramos
- Gynaecology and Obstetrics Unit, ‘Virgen de las Nieves’ University Hospital, E-18014 Granada, Spain;
| | - Nicolás Olea
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
- Nuclear Medicine Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain
| | - Mariana F. Fernández
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
| | - Francisco Artacho-Cordón
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
| |
Collapse
|
28
|
Nie H, Saini P, Miyamoto T, Liao L, Zielinski RJ, Liu H, Zhou W, Wang C, Murphy B, Towers M, Yang T, Qi Y, Kannan T, Kossenkov A, Tateno H, Claiborne DT, Zhang N, Abdel-Mohsen M, Zhang R. Targeting branched N-glycans and fucosylation sensitizes ovarian tumors to immune checkpoint blockade. Nat Commun 2024; 15:2853. [PMID: 38565883 PMCID: PMC10987604 DOI: 10.1038/s41467-024-47069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Aberrant glycosylation is a crucial strategy employed by cancer cells to evade cellular immunity. However, it's unclear whether homologous recombination (HR) status-dependent glycosylation can be therapeutically explored. Here, we show that the inhibition of branched N-glycans sensitizes HR-proficient, but not HR-deficient, epithelial ovarian cancers (EOCs) to immune checkpoint blockade (ICB). In contrast to fucosylation whose inhibition sensitizes EOCs to anti-PD-L1 immunotherapy regardless of HR-status, we observe an enrichment of branched N-glycans on HR-proficient compared to HR-deficient EOCs. Mechanistically, BRCA1/2 transcriptionally promotes the expression of MGAT5, the enzyme responsible for catalyzing branched N-glycans. The branched N-glycans on HR-proficient tumors augment their resistance to anti-PD-L1 by enhancing its binding with PD-1 on CD8+ T cells. In orthotopic, syngeneic EOC models in female mice, inhibiting branched N-glycans using 2-Deoxy-D-glucose sensitizes HR-proficient, but not HR-deficient EOCs, to anti-PD-L1. These findings indicate branched N-glycans as promising therapeutic targets whose inhibition sensitizes HR-proficient EOCs to ICB by overcoming immune evasion.
Collapse
Affiliation(s)
- Hao Nie
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Pratima Saini
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Taito Miyamoto
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Liping Liao
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Rafal J Zielinski
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Chen Wang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Brennah Murphy
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Martina Towers
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Tyler Yang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yuan Qi
- Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Toshitha Kannan
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Daniel T Claiborne
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nan Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| | - Rugang Zhang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Di Gregorio J, Di Giuseppe L, Terreri S, Rossi M, Battafarano G, Pagliarosi O, Flati V, Del Fattore A. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy. Cells 2024; 13:537. [PMID: 38534381 PMCID: PMC10969184 DOI: 10.3390/cells13060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy;
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Olivia Pagliarosi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| |
Collapse
|
30
|
Lin Y, Lubman DM. The role of N-glycosylation in cancer. Acta Pharm Sin B 2024; 14:1098-1110. [PMID: 38486989 PMCID: PMC10935144 DOI: 10.1016/j.apsb.2023.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 03/17/2024] Open
Abstract
Despite advances in understanding the development and progression of cancer in recent years, there remains a lack of comprehensive characterization of the cancer glycoproteome. Glycoproteins play an important role in medicine and are involved in various human disease conditions including cancer. Glycan-moieties participate in fundamental cancer processes like cell signaling, invasion, angiogenesis, and metastasis. Aberrant N-glycosylation significantly impacts cancer processes and targeted therapies in clinic. Therefore, understanding N-glycosylation in a tumor is essential for comprehending disease progression and discovering anti-cancer targets and biomarkers for therapy monitoring and diagnosis. This review presents the fundamental process of protein N-glycosylation and summarizes glycosylation changes in tumor cells, including increased terminal sialylation, N-glycan branching, and core-fucosylation. Also, the role of N-glycosylation in tumor signaling pathways, migration, and metabolism are discussed. Glycoproteins and glycopeptides as potential biomarkers for early detection of cancer based on site specificity have been introduced. Collectively, understanding and exploring the cancer glycoproteome, along with its role in medicine, implication in cancer and other human diseases, highlights the significance of N-glycosylation in tumor processes, necessitating further research for potential anti-cancer targets and biomarkers.
Collapse
Affiliation(s)
- Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Pendiuk Goncalves J, Cruz Villarreal J, Walker SA, Tan XNS, Borges C, Wolfram J. High-throughput analysis of glycan sorting into extracellular vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119641. [PMID: 37996057 DOI: 10.1016/j.bbamcr.2023.119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Extracellular vesicles (EVs) are cell-released vesicles that mediate intercellular communication by transferring bioactive cargo. Protein and RNA sorting into EVs has been extensively assessed, while selective enrichment of glycans in EVs remains less explored. In this study, a mass spectrometry-based approach, glycan node analysis (GNA), was applied to broadly assess the sorting of glycan features into EVs. Two metastatic variants (lung and bone) generated in mouse modes from the MDA-MB-231 human breast cancer cell line were assessed, as these EVs are known to contain distinct organotropic biomolecules. EVs were isolated from conditioned cell culture medium by tangential flow filtration and authenticated by standard techniques. GNA analysis revealed selective enrichment of several glycan features in EVs compared to the originating cells, particularly those associated with binding to the extracellular matrix, which was also observed in EVs from the parental MDA-MB-231 cell line (human pleural metastases). The bone-tropic variant displayed enrichment of distinct EV glycan features compared to the lung-tropic one. Additionally, the metastatic variants generated in mouse models displayed reduced EV glycan sorting compared to the parental metastatic cell line. This study represents the first comprehensive assessment of differences in glycan features between EVs and originating cells and provides evidence that the diversity of EV glycan sorting is reduced upon generation of variant cell lines in mouse models. Future research is likely to uncover novel mechanisms of EV glycan sorting, shed light on glycan features for EV authentication or biomarker purposes, and assess functional roles of the EV glycocode in (patho)physiology.
Collapse
Affiliation(s)
- Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | - Sierra A Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xuan Ning Sharon Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Chad Borges
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA.
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
32
|
Xin Z, Wen X, Zhou M, Lin H, Liu J. Identification of molecular characteristics of FUT8 and alteration of core fucosylation in kidney renal clear cell cancer. Aging (Albany NY) 2024; 16:2299-2319. [PMID: 38277230 PMCID: PMC10911337 DOI: 10.18632/aging.205482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Kidney renal clear cell cancer (KIRC) is a type of urological cancer that occurs worldwide. Core fucosylation (CF), as the most common post-translational modification, is involved in the tumorigenesis. METHODS The alterations of CF-related genes were summarized in pan-cancer. The "ConsensusClusterPlus" package was utilized to identify two CF-related KIRC subtypes. The "ssgsea" function was chosen to estimate the CF score, signaling pathways and cell deaths. Multiple algorithms were applied to assess immune responses. The "oncoPredict" was utilized to estimate the drug sensitivity. The IHC and subgroup analysis was performed to reveal the molecular features of FUT8. Single-cell RNA sequencing (scRNA-seq) data were scrutinized to evaluate the CF state. RESULTS In pan-cancer, there was a noticeable alteration in the expression of CF-related genes. In KIRC, two CF-related subtypes (i.e., C1, C2) were obtained. In comparison to C2, C1 exhibited a higher CF score and correlated with poorer overall survival. Additionally, the TME of C2 demonstrated increased activity in neutrophils, macrophages, myeloid dendritic cells, and B cells, alongside a higher presence of silent mast cells, NK cells, and endothelial cells. Compared to normal samples, higher expression of FUT8 is observed in KIRC. The mutation of SETD2 was more frequent in low-FUT8 samples while the mutation of DNAH9 was more frequent in high-FUT8 samples. scRNA-seq analyses revealed that the CF score was predominantly higher in endothelial cells and fibroblast cells. CONCLUSIONS Two CF-related subtypes with distinct prognosis and TME were identified in KIRC. FUT8 exhibited elevated expression in KIRC samples.
Collapse
Affiliation(s)
- Zhu Xin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
- Liaoning Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xinyu Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
| | - Mengying Zhou
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Pan Q, Xie Y, Zhang Y, Guo X, Wang J, Liu M, Zhang XL. EGFR core fucosylation, induced by hepatitis C virus, promotes TRIM40-mediated-RIG-I ubiquitination and suppresses interferon-I antiviral defenses. Nat Commun 2024; 15:652. [PMID: 38253527 PMCID: PMC10803816 DOI: 10.1038/s41467-024-44960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Aberrant N-glycosylation has been implicated in viral diseases. Alpha-(1,6)-fucosyltransferase (FUT8) is the sole enzyme responsible for core fucosylation of N-glycans during glycoprotein biosynthesis. Here we find that multiple viral envelope proteins, including Hepatitis C Virus (HCV)-E2, Vesicular stomatitis virus (VSV)-G, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-Spike and human immunodeficiency virus (HIV)-gp120, enhance FUT8 expression and core fucosylation. HCV-E2 manipulates host transcription factor SNAIL to induce FUT8 expression through EGFR-AKT-SNAIL activation. The aberrant increased-FUT8 expression promotes TRIM40-mediated RIG-I K48-ubiquitination and suppresses the antiviral interferon (IFN)-I response through core fucosylated-EGFR-JAK1-STAT3-RIG-I signaling. FUT8 inhibitor 2FF, N-glycosylation site-specific mutation (Q352AT) of EGFR, and tissue-targeted Fut8 silencing significantly increase antiviral IFN-I responses and suppress RNA viral replication, suggesting that core fucosylation mediated by FUT8 is critical for antiviral innate immunity. These findings reveal an immune evasion mechanism in which virus-induced FUT8 suppresses endogenous RIG-I-mediated antiviral defenses by enhancing core fucosylated EGFR-mediated activation.
Collapse
Grants
- This work was supported by grants from the National Natural Science Foundation of China (82230078, 22077097, 91740120, 82272978, 21572173 and 21721005), National Outstanding Youth Foundation of China (81025008), National Key R&D Program of China (2022YFA1303500, 2018YFA0507603), Medical Science Advancement Program (Basical Medical Sciences) of Wuhan University (TFJC 2018002.), Key R&D Program of Hubei Province (2020BCB020), the Hubei Province&#x2019;s Outstanding Medical Academic Leader Program (523-276003), the Innovative Group Project of Hubei Health Committee (WJ2021C002), the Foundational Research Funds for the Central University of China (2042022dx0003, 2042023kf1011) and Natural Science Foundation Project of Hubei Province (2021CFB484), Natural Science Foundation Project of Hubei Province (2021CFB484 to M.L).
- This work was supported by grants from the Natural Science Foundation of Hubei Province (2021CFB484), National Natural Science Foundation of China 82272978
Collapse
Affiliation(s)
- Qiu Pan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Yan Xie
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Ying Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Xinqi Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Jing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Min Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
- Department of Allergy, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
34
|
Shi M, Nan XR, Liu BQ. The Multifaceted Role of FUT8 in Tumorigenesis: From Pathways to Potential Clinical Applications. Int J Mol Sci 2024; 25:1068. [PMID: 38256141 PMCID: PMC10815953 DOI: 10.3390/ijms25021068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
FUT8, the sole glycosyltransferase responsible for N-glycan core fucosylation, plays a crucial role in tumorigenesis and development. Aberrant FUT8 expression disrupts the function of critical cellular components and triggers the abnormality of tumor signaling pathways, leading to malignant transformations such as proliferation, invasion, metastasis, and immunosuppression. The association between FUT8 and unfavorable outcomes in various tumors underscores its potential as a valuable diagnostic marker. Given the remarkable variation in biological functions and regulatory mechanisms of FUT8 across different tumor types, gaining a comprehensive understanding of its complexity is imperative. Here, we review how FUT8 plays roles in tumorigenesis and development, and how this outcome could be utilized to develop potential clinical therapies for tumors.
Collapse
Affiliation(s)
| | | | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China; (M.S.); (X.-R.N.)
| |
Collapse
|
35
|
Benesova I, Nenutil R, Urminsky A, Lattova E, Uhrik L, Grell P, Kokas FZ, Halamkova J, Zdrahal Z, Vojtesek B, Novotny MV, Hernychova L. N-glycan profiling of tissue samples to aid breast cancer subtyping. Sci Rep 2024; 14:320. [PMID: 38172220 PMCID: PMC10764792 DOI: 10.1038/s41598-023-51021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer is a highly heterogeneous disease. Its intrinsic subtype classification for diagnosis and choice of therapy traditionally relies on the presence of characteristic receptors. Unfortunately, this classification is often not sufficient for precise prediction of disease prognosis and treatment efficacy. The N-glycan profiles of 145 tumors and 10 healthy breast tissues were determined using Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry. The tumor samples were classified into Mucinous, Lobular, No-Special-Type, Human Epidermal Growth Factor 2 + , and Triple-Negative Breast Cancer subtypes. Statistical analysis was conducted using the reproducibility-optimized test statistic software package in R, and the Wilcoxon rank sum test with continuity correction. In total, 92 N-glycans were detected and quantified, with 59 consistently observed in over half of the samples. Significant variations in N-glycan signals were found among subtypes. Mucinous tumor samples exhibited the most distinct changes, with 28 significantly altered N-glycan signals. Increased levels of tri- and tetra-antennary N-glycans were notably present in this subtype. Triple-Negative Breast Cancer showed more N-glycans with additional mannose units, a factor associated with cancer progression. Individual N-glycans differentiated Human Epidermal Growth Factor 2 + , No-Special-Type, and Lobular cancers, whereas lower fucosylation and branching levels were found in N-glycans significantly increased in Luminal subtypes (Lobular and No-Special-Type tumors). Clinically normal breast tissues featured a higher abundance of signals corresponding to N-glycans with bisecting moiety. This research confirms that histologically distinct breast cancer subtypes have a quantitatively unique set of N-glycans linked to clinical parameters like tumor size, proliferative rate, lymphovascular invasion, and metastases to lymph nodes. The presented results provide novel information that N-glycan profiling could accurately classify human breast cancer samples, offer stratification of patients, and ongoing disease monitoring.
Collapse
Affiliation(s)
- Iva Benesova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Rudolf Nenutil
- Department of Pathology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Adam Urminsky
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Erika Lattova
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Zavadil Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Zbynek Zdrahal
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Milos V Novotny
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
36
|
Lou YC, Tu CF, Chou CC, Yeh HH, Chien CY, Sadotra S, Chen C, Yang RB, Hsu CH. Structural insights into the role of N-terminal integrity in PhoSL for core-fucosylated N-glycan recognition. Int J Biol Macromol 2024; 255:128309. [PMID: 37995778 DOI: 10.1016/j.ijbiomac.2023.128309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
PhoSL (Pholiota squarrosa Lectin) has an exceptional binding affinity for biomolecules with core-fucosylated N-glycans. This modification involves the addition of fucose to the inner N-acetylglucosamine within the N-glycan structure and is known to influence many physiological processes. Nevertheless, the molecular interactions underlying high-affinity binding of native PhoSL to core-fucosylated N-glycans remain largely unknown. In this study, we devised a strategy to produce PhoSL with the essential structural characteristics of the native protein (n-PhoSL). To do so, a fusion protein was expressed in E. coli and purified. Then, enzymatic cleavage and incubation with glutathione were utilized to recapitulate the native primary structure and disulfide bonding pattern. Subsequently, we identified the residues crucial for n-PhoSL binding to core-fucosylated chitobiose (N2F) via NMR spectroscopy. Additionally, crystal structures were solved for both apo n-PhoSL and its N2F complex. These analyses suggested a pivotal role of the N-terminal amine in maintaining the integrity of the binding pocket and actively contributing to core-fucose recognition. In support of this idea, the inclusion of additional residues at the N-terminus considerably reduced binding affinity and PhoSL cytotoxicity toward breast cancer cells. Taken together, these findings can facilitate the utilization of PhoSL in basic research, diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Chi Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Hong Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Sushant Sadotra
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
37
|
Alsharabasy AM, Aljaabary A, Bohara R, Farràs P, Glynn SA, Pandit A. Nitric Oxide-Scavenging, Anti-Migration Effects, and Glycosylation Changes after Hemin Treatment of Human Triple-Negative Breast Cancer Cells: A Mechanistic Study. ACS Pharmacol Transl Sci 2023; 6:1416-1432. [PMID: 37854626 PMCID: PMC10580390 DOI: 10.1021/acsptsci.3c00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/20/2023]
Abstract
The enhanced expression of nitric oxide (•NO) synthase predicts triple-negative breast cancer outcome and its resistance to different therapeutics. Our earlier work demonstrated the efficiency of hemin to scavenge the intra- and extracellular •NO, proposing its potency as a therapeutic agent for inhibiting cancer cell migration. In continuation, the present work evaluates the effects of •NO on the migration of MDA-MB-231 cells and how hemin modulates the accompanied cellular behavior, focusing on the corresponding expression of cellular glycoproteins, migration-associated markers, and mitochondrial functions. We demonstrated for the first time that while •NO induced cell migration, hemin contradicted that by •NO-scavenging. This was in combination with modulation of the •NO-enhanced glycosylation patterns of cellular proteins with inhibition of the expression of specific proteins involved in the epithelial-mesenchymal transition. These effects were in conjunction with changes in the mitochondrial functions related to both •NO, hemin, and its nitrosylated product. Together, these results suggest that hemin can be employed as a potential anti-migrating agent targeting •NO-scavenging and regulating the expression of migration-associated proteins.
Collapse
Affiliation(s)
- Amir M. Alsharabasy
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Amal Aljaabary
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Raghvendra Bohara
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Pau Farràs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway H91 TK33, Ireland
| | - Sharon A. Glynn
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- Discipline
of Pathology, Lambe Institute for Translational Research, School of
Medicine, University of Galway, Galway H91 YR71, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
38
|
Zhang W, Lin W, Zeng X, Zhang M, Chen Q, Tang Y, Sun J, Liang B, Zha L, Yu Z. FUT8-Mediated Core Fucosylation Promotes the Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Aging Dis 2023; 14:1927-1944. [PMID: 37196106 PMCID: PMC10529761 DOI: 10.14336/ad.2023.0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/18/2023] [Indexed: 05/19/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease with unclear underlying molecular mechanisms and limited therapeutic options. This study aimed to explore the role of core fucosylation and the only glycosyltransferase FUT8 in PAH. We observed increased core fucosylation in a monocrotaline (MCT)-induced PAH rat model and isolated rat pulmonary artery smooth muscle cells (PASMCs) treated with platelet-derived growth factor-BB (PDGF-BB). We found that 2-fluorofucose (2FF), a drug used to inhibit core fucosylation, improved hemodynamics and pulmonary vascular remodeling in MCT-induced PAH rats. In vitro, 2FF effectively restrains the proliferation, migration, and phenotypic switching of PASMCs and promotes apoptosis. Compared with controls, serum FUT8 concentration in PAH patients and MCT-induced rats was significantly elevated. FUT8 expression appeared increased in the lung tissues of PAH rats, and the co-localization of FUT8 with α-SMA was also observed. SiRNA was used to knockdown FUT8 in PASMCs (siFUT8). After effectively silencing FUT8 expression, phenotypic changes induced in PASMCs by PDGF-BB stimulation were alleviated. FUT8 activated the AKT pathway, while the admission of AKT activator SC79 could partially counteract the negative effect of siFUT8 on the proliferation, apoptotic resistance, and phenotypic switching of PASMCs, which may be involved in the core fucosylation of vascular endothelial growth factor receptor (VEGFR). Our research confirmed the critical role of FUT8 and its mediated core fucosylation in pulmonary vascular remodeling in PAH, providing a potential novel therapeutic target for PAH.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenchao Lin
- Department of nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqiu Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Chen
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Sun
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiang Ya), Changsha, Hunan, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiang Ya), Changsha, Hunan, China
| |
Collapse
|
39
|
Jiang Y, Wang Z, Hu J, Wang W, Zhang N, Gao L. Core fucosylation regulates alveolar epithelial cells senescence through activating of transforming growth factor-β pathway in pulmonary fibrosis. Aging (Albany NY) 2023; 15:9572-9589. [PMID: 37724903 PMCID: PMC10564423 DOI: 10.18632/aging.205036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), a fatal disorder associated with aging, has a terrible prognosis. However, the potential causes of IPF remain a riddle. In this study, we designed to explore whether the modification of the core fucosylation (CF) can ameliorate pulmonary fibrosis by targeting alveolar epithelial cells (AECs) senescence. First, we verified that cellular senescence occurs in the bleomycin-induced lung fibrosis mice models and CF modifications accompanying senescent AECs in pulmonary fibrosis. Next, both gain- and loss- of function research on CF were performed to elucidate its role in promoting AECs senescence and triggering pulmonary fibrosis in vitro. Notably, using alveolar epithelial cell-specific FUT8 conditional knockout mouse models, however, inhibition of cellular senescence by deleting the FUT8 gene could attenuate pulmonary fibrosis in vivo. Finally, blocking the CF modification of transforming growth factor -β type I receptor (TGF-βR I) could reduce the activation of downstream transforming growth factor -β (TGF-β) pathways in AECs senescence both in vivo and in vitro. This study reveals that CF is a crucial interventional target for the treatment of pulmonary fibrosis. Blocking CF modification contributes importantly to inhibiting AECs senescence resulting in pulmonary fibrosis lessen.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinying Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Nephrology, Affiliated Xinhua Hospital of Dalian University, Dalian, China
| | - Na Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
40
|
Zhang M, Wang Y, Yu L, Zhang Y, Wang Y, Shang Z, Xin Y, Li X, Ning N, Zhang Y, Zhang X. Fusobacterium nucleatum promotes colorectal cancer metastasis by excretion of miR-122-5p from cells via exosomes. iScience 2023; 26:107686. [PMID: 37694140 PMCID: PMC10485600 DOI: 10.1016/j.isci.2023.107686] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
Fusobacterium nucleatum (Fn) infection and microRNAs (miRNAs) are closely associated with colorectal cancer (CRC) development, but the mechanism by which Fn regulates tumor-suppressive miRNAs via exosomes and facilitates CRC metastasis remains unclear. Here, we identified that Fn infection significantly increased exosomal miR-122-5p levels in the serum of CRC patients and CRC cell culture supernatants through two miRNA panels of high-throughput sequencing and RT-qPCR analysis. In Fn-infected patients, the serum exosomal levels of miR-122-5p were negatively associated with their expression levels of tissues. Downregulated miR-122-5p was demonstrated to enhance the migration, invasion, and metastasis abilities of CRC cells in vivo and in vitro. Secretion of miR-122-5p into exosomes is mediated by hnRNPA2B1. Mechanistically, Fn activated the TGF-β1/Smads signaling pathway to promote EMT by regulation of the miR-122-5p/FUT8 axis. In conclusion, Fn infection may stimulate CRC cells to excrete exosome-wrapped miR-122-5p, and activate the FUT8/TGF-β1/Smads axis to promote metastasis.
Collapse
Affiliation(s)
- Mengjiao Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Yifeng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ziqi Shang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Yiwei Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Xinyang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Nannan Ning
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012, China
| |
Collapse
|
41
|
Wen Y, Wang Y, Huang Y, Liu Z, Hui C. PLVAP protein expression correlated with microbial composition, clinicopathological features, and prognosis of patients with stomach adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:7139-7153. [PMID: 36884119 DOI: 10.1007/s00432-023-04607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE Plasmalemma vesicle-associated protein (PLVAP) is involved in many immune‑related signals; however, its role in stomach adenocarcinoma (STAD) remains to be elucidated. This study investigated PLVAP expression in tumor tissues and defined the value in STAD patients. METHODS A total of 96 patient paraffin-embedded STAD specimens and 30 paraffin-embedded adjacent non-tumor specimens from the Ninth Hospital of Xi'an were consecutively recruited in analyses. All RNA‑sequence data were available from the Cancer Genome Atlas database (TCGA). PLVAP protein expression was detected using immunohistochemistry. Microbial community analysis was performed by 16S rRNA gene sequencing using Illumina MiSeq. PLVAP mRNA expression was explored with the Tumor Immune Estimation Resource (TIMER), GEPIA, and UALCAN databases. The effect of PLVAP mRNA on prognosis was analyzed via GEPIA, and Kaplan-Meier plotter database. GeneMANIA and STRING databases were used to predict gene/protein interactions and functions. The relationships between PLVAP mRNA expression and tumor-infiltrated immune cells were analyzed via the TIMER and GEPIA databases. RESULTS Significantly elevated transcriptional and proteomic PLVAP expressions were found in STAD samples. Increased PLVAP protein and mRNA expression were significantly associated with advanced clinicopathological parameters and correlated with shorter disease-free survival (DFS) and overall survival (OS) in TCGA (P < 0.001). The microbiota in the PLVAP-rich (3+) group was significantly different from that in the PLVAP-poor (1+) group (P < 0.05). The results from TIMER showed that high PLVAP mRNA expression had significant positive correlations with CD4 + T cell (r = 0.42, P < 0.001). CONCLUSION PLVAP is a potential biomarker to predict the prognosis of patients with STAD, and the high level of PLVAP protein expression was closely related to bacteria. The relative abundance of Fusobacteriia was positvely associated with the level of PLVAP. In conclusion, positive staining for PLVAP was useful for predicting the poor prognosis of STAD with Fusobacteriia infection.
Collapse
Affiliation(s)
- Yuting Wen
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| | - Yi Wang
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| | - Yao Huang
- Department of Oncology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, 710054, Shaanxi, China.
| | - Zhe Liu
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| | - Chan Hui
- Department of Pathology, The Ninth Hospital Affiliated to Xi'an Jiaotong University Medical College, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
42
|
Zhang NZ, Zhao LF, Zhang Q, Fang H, Song WL, Li WZ, Ge YS, Gao P. Core fucosylation and its roles in gastrointestinal glycoimmunology. World J Gastrointest Oncol 2023; 15:1119-1134. [PMID: 37546555 PMCID: PMC10401475 DOI: 10.4251/wjgo.v15.i7.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Glycosylation is a common post-translational modification in eukaryotic cells. It is involved in the production of many biologically active glycoproteins and the regulation of protein structure and function. Core fucosylation plays a vital role in the immune response. Most immune system molecules are core fucosylated glycoproteins such as complements, cluster differentiation antigens, immunoglobulins, cytokines, major histocompatibility complex molecules, adhesion molecules, and immune molecule synthesis-related transcription factors. These core fucosylated glycoproteins play important roles in antigen recognition and clearance, cell adhesion, lymphocyte activation, apoptosis, signal transduction, and endocytosis. Core fucosylation is dominated by fucosyltransferase 8 (Fut8), which catalyzes the addition of α-1,6-fucose to the innermost GlcNAc residue of N-glycans. Fut8 is involved in humoral, cellular, and mucosal immunity. Tumor immunology is associated with aberrant core fucosylation. Here, we summarize the roles and potential modulatory mechanisms of Fut8 in various immune processes of the gastrointestinal system.
Collapse
Affiliation(s)
- Nian-Zhu Zhang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Li-Fen Zhao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Qian Zhang
- Department of Cell Therapy, Shanghai Tianze Yuntai Biomedical Co., Ltd., Shanghai 200100, China
| | - Hui Fang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-0005, Ibaraki, Japan
| | - Wan-Li Song
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Zhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Song Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
43
|
Guo J, Cheng Q, Li Y, Tian L, Ma D, Li Z, Gao J, Zhu J. Fucosyltransferase 5 Promotes the Proliferative and Migratory Properties of Intrahepatic Cholangiocarcinoma Cells via Regulating Protein Glycosylation Profiles. Clin Med Insights Oncol 2023; 17:11795549231181189. [PMID: 37435017 PMCID: PMC10331077 DOI: 10.1177/11795549231181189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Background The incidence of intrahepatic cholangiocarcinoma (ICC) is increasing globally, and its prognosis has not improved substantially in recent years. Understanding the pathogenesis of ICC may provide a theoretical basis for its treatment. In this study, we investigated the effects and underlying mechanisms of fucosyltransferase 5 (FUT5) on the malignant progression of ICC. Methods FUT5 expression in ICC samples and adjacent nontumor tissues was compared using quantitative real-time polymerase chain reaction and immunohistochemical assays. We performed cell counting kit-8, colony formation, and migration assays to determine whether FUT5 influenced the proliferation and mobility of ICC cells. Finally, mass spectrometry was performed to identify the glycoproteins regulated by FUT5. Results FUT5 mRNA was significantly upregulated in most ICC samples compared with corresponding adjacent nontumor tissues. The ectopic expression of FUT5 promoted the proliferation and migration of ICC cells, whereas FUT5 knockdown significantly suppressed these cellular properties. Mechanistically, we demonstrated that FUT5 is essential for the synthesis and glycosylation of several proteins, including versican, β3 integrin, and cystatin 7, which may serve key roles in the precancer effects of FUT5. Conclusions FUT5 is upregulated in ICC and promotes ICC development by promoting glycosylation of several proteins. Therefore, FUT5 may serve as a therapeutic target for the treatment of ICC.
Collapse
Affiliation(s)
- Jingheng Guo
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Yongjian Li
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Lingyu Tian
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Delin Ma
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
- Peking University Institute of Organ
Transplantation, Peking University, Beijing, China
- Peking University Center of Liver
Cancer Diagnosis and Treatment, Peking University, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery,
Peking University People’s Hospital, Beijing, China
- Beijing Key Surgical Basic Research
Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People’s Hospital,
Beijing, China
- Peking University Institute of Organ
Transplantation, Peking University, Beijing, China
- Peking University Center of Liver
Cancer Diagnosis and Treatment, Peking University, Beijing, China
| |
Collapse
|
44
|
Man D, Jiang Y, Zhang D, Wu J, Ding B, Liu H, Xu G, Lu J, Ru J, Tong R, Zheng S, Chen D, Wu J. ST6GALNAC4 promotes hepatocellular carcinogenesis by inducing abnormal glycosylation. J Transl Med 2023; 21:420. [PMID: 37381011 DOI: 10.1186/s12967-023-04191-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal tumor types worldwide. Glycosylation has shown promise in the study of tumor mechanisms and treatment. The glycosylation status of HCC and the underlying molecular mechanisms are still not fully elucidated. Using bioinformatic analysis we obtained a more comprehensive characterization of glycosylation of HCC. Our analysis presented that high glycosylation levels might correlate with tumor progression and poor prognosis. Subsequent Experiments identified key molecular mechanisms for ST6GALNAC4 promoting malignant progression by inducing abnormal glycosylation. We confirmed the contribution of ST6GALNAC4 to proliferation, migration, and invasion in vitro and in vivo. Mechanistic studies revealed that ST6GALNAC4 may be induced abnormal TGFBR2 glycosylation, resulting in the higher protein levels of TGFBR2 and TGF[Formula: see text] pathway increased activation. Our study also provided a further understand of immunosuppressive function of ST6GALNAC4 through T antigen-galectin3+ TAMs axis. This study has provided one such possibility that galectin3 inhibitors might be an acceptable treatment choice for HCC patients with high T antigen expression.
Collapse
Affiliation(s)
- Da Man
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Deguo Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Hanqing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Guangming Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Junnan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Shusheng Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
45
|
Liang D, Gao Q, Meng Z, Li W, Song J, Xue K. Glycosylation in breast cancer progression and mammary development: Molecular connections and malignant transformations. Life Sci 2023; 326:121781. [PMID: 37207809 DOI: 10.1016/j.lfs.2023.121781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The cellular behavior in normal mammary gland development and the progression of breast cancer is like the relationship between an object and its mirror image: they may appear similar, but their essence is completely different. Breast cancer can be considered as temporal and spatial aberrations of normal development in mammary gland. Glycans have been shown to regulate key pathophysiological steps during mammary development and breast cancer progression, and the glycoproteins that play a key role in both processes can affect the normal differentiation and development of mammary cells, and even cause malignant transformation or accelerate tumorigenesis due to differences in their type and level of glycosylation. KEY FINDINGS In this review, we summarize the roles of glycan alterations in essential cellular behaviors during breast cancer progression and mammary development, and also highlight the importance of key glycan-binding proteins such as epidermal growth factor receptor, transforming growth factor β receptors and other proteins, which are pivotal in the modulation of cellular signaling in mammary gland. Our review takes an overall view of the molecular interplay, signal transduction and cellular behaviors in mammary gland development and breast cancer progression from a glycobiological perspective. SIGNIFICANCE This review will give a better understanding of the similarities and differences in glycosylation between mammary gland development and breast cancer progression, laying the foundation for elucidating the key molecular mechanisms of glycobiology underlying the malignant transformation of mammary cells.
Collapse
Affiliation(s)
- Dongyang Liang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Qian Gao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Zixuan Meng
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jiazhe Song
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| | - Kai Xue
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| |
Collapse
|
46
|
Yeh ES. Special Issue: Cancer Metastasis and Therapeutic Resistance. Biomedicines 2023; 11:biomedicines11051347. [PMID: 37239018 DOI: 10.3390/biomedicines11051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Metastasis and resistance to cancer therapeutics are critical barriers to curing cancer. This special issue entitled "Cancer Metastasis and Therapeutic Resistance" contains nine original contributions. The articles span a variety of human cancers, including breast, lung, brain, prostate, and skin and touch upon significant areas of interest such as cancer stem cell function, cancer immunology, and glycosylation.
Collapse
Affiliation(s)
- Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
47
|
Jin LW, di Lucente J, Mendiola UR, Tang X, Zivkovic AM, Lebrilla CB, Maezawa I. The role of FUT8-catalyzed core fucosylation in Alzheimer's amyloid-β oligomer-induced activation of human microglia. Glia 2023; 71:1346-1359. [PMID: 36692036 PMCID: PMC11021125 DOI: 10.1002/glia.24345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Fucosylation, especially core fucosylation of N-glycans catalyzed by α1-6 fucosyltransferase (fucosyltransferase 8 or FUT8), plays an important role in regulating the peripheral immune system and inflammation. However, its role in microglial activation is poorly understood. Here we used human induced pluripotent stem cells-derived microglia (hiMG) as a model to study the role of FUT8-catalyzed core fucosylation in amyloid-β oligomer (AβO)-induced microglial activation, in view of its significant relevance to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AβO and lipopolysaccharides (LPS) with a pattern of pro-inflammatory activation as well as enhanced core fucosylation and FUT8 expression within 24 h. Furthermore, we found increased FUT8 expression in both human AD brains and microglia isolated from 5xFAD mice, a model of AD-like cerebral amyloidosis. Inhibition of fucosylation in AβO-stimulated hiMG reduced the induction of pro-inflammatory cytokines, suppressed the activation of p38MAPK, and rectified phagocytic deficits. Specific inhibition of FUT8 by siRNA-mediated knockdown also reduced AβO-induced pro-inflammatory cytokines. We further showed that p53 binds to the two consensus binding sites in the Fut8 promoter, and that p53 knockdown abolished FUT8 overexpression in AβO-activated hiMG. Taken together, our evidence supports that FUT8-catalyzed core fucosylation is a signaling pathway required for AβO-induced microglia activation and that FUT8 is a component of the p53 signaling cascade regulating microglial behavior. Because microglia are a key driver of AD pathogenesis, our results suggest that microglial FUT8 could be an anti-inflammatory therapeutic target for AD.
Collapse
Affiliation(s)
- Lee-Way Jin
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| | - Jacopo di Lucente
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| | - Ulises R. Mendiola
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, CA 95618
| | | | | | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| |
Collapse
|
48
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
49
|
Čaval T, Alisson-Silva F, Schwarz F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics. Theranostics 2023; 13:2605-2615. [PMID: 37215580 PMCID: PMC10196828 DOI: 10.7150/thno.81760] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cell surface glycosylation has a variety of functions, and its dysregulation in cancer contributes to impaired signaling, metastasis and the evasion of the immune responses. Recently, a number of glycosyltransferases that lead to altered glycosylation have been linked to reduced anti-tumor immune responses: B3GNT3, which is implicated in PD-L1 glycosylation in triple negative breast cancer, FUT8, through fucosylation of B7H3, and B3GNT2, which confers cancer resistance to T cell cytotoxicity. Given the increased appreciation of the relevance of protein glycosylation, there is a critical need for the development of methods that allow for an unbiased interrogation of cell surface glycosylation status. Here we provide an overview of the broad changes in glycosylation at the surface of cancer cell and describe selected examples of receptors with aberrant glycosylation leading to functional changes, with emphasis on immune checkpoint inhibitors, growth-promoting and growth-arresting receptors. Finally, we posit that the field of glycoproteomics has matured to an extent where large-scale profiling of intact glycopeptides from the cell surface is feasible and is poised for discovery of new actionable targets against cancer.
Collapse
|
50
|
Mao C, Li J, Feng L, Gao W. Beyond antibody fucosylation: α-(1,6)-fucosyltransferase (Fut8) as a potential new therapeutic target for cancer immunotherapy. Antib Ther 2023; 6:87-96. [PMID: 37077473 PMCID: PMC10108557 DOI: 10.1093/abt/tbad004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Aberrant post-translational glycosylation is a well-established hallmark of cancer. Altered core fucosylation mediated by α-(1,6)-fucosyltransferase (Fut8) is one of the key changes in tumor glycan patterns that contributes to neoplastic transformation, tumor metastasis, and immune evasion. Increased Fut8 expression and activity are associated with many types of human cancers, including lung, breast, melanoma, liver, colorectal, ovarian, prostate, thyroid, and pancreatic cancer. In animal models, inhibition of Fut8 activity by gene knockout, RNA interference, and small analogue inhibitors led to reduced tumor growth/metastasis, downregulation of immune checkpoint molecules PD-1, PD-L1/2, and B7-H3, and reversal of the suppressive state of tumor microenvironment. Although the biologics field has long benefited tremendously from using FUT8 -/- Chinese hamster ovary cells to manufacture IgGs with greatly enhanced effector function of antibody-dependent cellular cytotoxicity for therapy, it is only in recent years that the roles of Fut8 itself in cancer biology have been studied. Here, we summarize the pro-oncogenic mechanisms involved in cancer development that are regulated by Fut8-mediated core fucosylation, and call for more research in this area where modifying the activity of this sole enzyme responsible for core fucosylation could potentially bring rewarding surprises in fighting cancer, infections, and other immune-related diseases.
Collapse
Affiliation(s)
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Lili Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Wenda Gao
- Antagen Pharmaceuticals, Inc., Canton, MA 02021, USA
| |
Collapse
|