1
|
Kang Y, Cao X, Fan Y, Li Y, Xu T, Zhou Q, He B. Exosome biomarkers in breast cancer: Systematic review and meta-analysis. Clin Chim Acta 2025; 574:120342. [PMID: 40311726 DOI: 10.1016/j.cca.2025.120342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Breast cancer (BC) has become the primary cancer that threatens women's health and life expectancy. Early diagnosis is crucial for effective treatment and favourable prognosis. As a non-invasive and valuable liquid biopsy method, exosomes are promising for the diagnosis and prognosis of BC. The aim of this meta-analysis is to evaluate the diagnostic and prognostic value of exosome biomarkers in BC. METHODS A systematic search of relevant English literature was conducted in PubMed, Web of Science, and Cochrane library until August 2024 (diagnosis) and October 2024 (prognosis). QUADAS-2 and QUAPAS were used to assess the quality of the literature. Summary statistics and analyses of relevant effect sizes were conducted using STATA software. Subgroup analysis and sensitivity analysis were performed to identify potential sources of heterogeneity. RESULTS For diagnosis, a total of 31 articles with 3,778 patients and 2,722 controls were included, the pooled sensitivity (SEN), specificity (SPE), and area under the receiver operating characteristic curve (AUC) of overall exosome biomarkers were 0.89 (95 %CI: 0.86-0.91), 0.87 (95 %CI: 0.85-0.90), and 0.94 (95 %CI: 0.92-0.96), respectively, indicating a high diagnostic value of exosomes in BC patients. Subgroup analysis suggested that miRNAs in exosomes exhibited better diagnostic value compared to proteins and non-miRNAs, the SEN, SPE, and AUC were 0.89 (95 %CI: 0.82-0.93), 0.86 (95 %CI: 0.80-0.90), and 0.92 (95 %CI: 0.90-0.94), respectively. Among all miRNAs, the pooled SEN, SPE, and AUC of miR-21 were 0.86 (95 %CI: 0.67-0.95), 0.90 (95 %CI: 0.78-0.96), and 0.95 (95 %CI: 0.92-0.96), respectively. The diagnostic efficiency was improved when biomarkers were combined as a panel (SEN 0.91 versus 0.87, SPE 0.89 versus 0.86, AUC 0.96 versus 0.91). In terms of prognosis, we retrieved 14 articles with 2,781 patients. The pooled HR of overall survival (OS) and progression-free survival (PFS) were 1.41 (95 %CI: 0.92-1.90) and 4.39 (95 %CI: 1.87-6.91), respectively, indicating exosome biomarkers like soluble HLA-G, miR-1246, miR-155, and PSMA were a predictor of poor PFS in BC patients. Subgroup analysis in OS group revealed a significant association between the overexpression of exosome proteins (soluble HLA-G, AnxA2, NGF, CXCL13) and worse OS in BC patients (HR = 2.91, 95 %CI: 1.36-4.47). Similarly, the overexpression of miR-1246 and miR-155 was associated with worse PFS in BC patients (HR = 4.13, 95 %CI: 1.24-7.03). Moreover, when biomarkers were combined as a panel, the prognostic efficiency significantly improved in OS (HR = 4.05, 95 %CI: 2.26-5.84) outcome. CONCLUSION The meta-analysis revealed that exosome miR-21 might serve as a promising diagnostic biomarker in BC. Dysregulated exosome proteins and miRNAs could predict poor OS and PFS outcomes, respectively.
Collapse
Affiliation(s)
- Yurou Kang
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoqing Cao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yujing Fan
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yimin Li
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Qing Zhou
- NHC Key Laboratory of Contraceptives Vigilance and Fertility Surveillance, Jiangsu Health Development Research Center, Jiangsu Provincial Medical Key Laboratory of Fertility Protection and Health Technology Assessment, NO.277 Fenghuang West Street, Nanjing, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Zhou X, Huang J, Zhang D, Qian Z, Zuo X, Sun Y. Small extracellular vesicles: the origins, current status, future prospects, and applications. Stem Cell Res Ther 2025; 16:184. [PMID: 40247402 PMCID: PMC12004682 DOI: 10.1186/s13287-025-04330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Small extracellular vesicles (sEVs) are membrane-bound vesicles with a size of less than 200 nm, released by cells. Due to their relatively small molecular weight and ability to participate in intercellular communication, sEVs can serve not only as carriers of biomarkers for disease diagnosis but also as effective drug delivery agents. Furthermore, these vesicles are involved in regulating the onset and progression of various diseases, reflecting the physiological and functional states of cells. This paper introduces the classification of extracellular vesicles, with a focus on the extraction and identification of sEVs and their significant role in repair, diagnosis, and intercellular communication. Additionally, the paper addresses the engineering modification of sEVs to provide a reference for enhanced understanding and application.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Clinical Laboratory, the Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Jin Huang
- Department of Geriatrics, the Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dianqi Zhang
- Department of Central Laboratory, the Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Zhenyu Qian
- Department of Neurology, the Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Xin Zuo
- Department of Geriatrics, the Affiliated Yixing Hospital of Jiangsu University, Yixing, China.
| | - Yaoxiang Sun
- Department of Clinical Laboratory, the Affiliated Yixing Hospital of Jiangsu University, Yixing, China.
- Department of Central Laboratory, the Affiliated Yixing Hospital of Jiangsu University, Yixing, China.
| |
Collapse
|
3
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
4
|
Huang L, Xu K, Yang Q, Ding Z, Shao Z, Li E. ANXA2 in cancer: aberrant regulation of tumour cell apoptosis and its immune interactions. Cell Death Discov 2025; 11:174. [PMID: 40234383 PMCID: PMC12000292 DOI: 10.1038/s41420-025-02469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Annexin A2 (ANXA2) is a multifunctional protein that binds to calcium and phospholipids and plays a critical role in various pathological conditions, including cancer and inflammation. Recently, there has been increasing recognition of the significant role of ANXA2 in inhibiting apoptosis and promoting immune evasion in tumour cells. Therefore, a deep understanding of the regulatory mechanisms of ANXA2 in tumour cell apoptosis and its relationship with immune evasion can provide new targets for cancer therapy. This review summarizes the role and mechanisms of ANXA2 in regulating apoptosis in tumour cells, the connection between apoptosis regulation and tumour immunity, and the potential role of ANXA2 in therapy resistance.
Collapse
Affiliation(s)
- Le Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Kailing Xu
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qingping Yang
- Department of Reproductive Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai zheng Street, Nanchang, Jiangxi, 330006, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhenduo Shao
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
6
|
Wan X, Yang L, Wu L, Lei J, Li J. Role of Triple-Negative Breast Cancer-Derived Extracellular Vesicles in Metastasis: Implications for Therapeutics and Biomarker Development. J Cell Mol Med 2025; 29:e70448. [PMID: 40032646 PMCID: PMC11875785 DOI: 10.1111/jcmm.70448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer with a poor prognosis and high mortality. The chemotherapeutic regimen remains the predominant treatment modality for TNBC in current clinical practice. However, chemotherapy resistance significantly complicates the development of an effective treatment regimen. Furthermore, the immunosuppressive microenvironment of TNBC contributes to enhanced tumour aggressiveness. Consequently, understanding its mechanisms of progression and finding effective therapeutic interventions is crucial. Recent evidence has identified extracellular vesicles (EVs) as key mediators of cell-to-cell communication in TNBC progression and immune regulation. In view of the remarkable ability of EVs to transfer active molecules, such as proteins and nucleic acids, from parental to recipient cells, they are regarded as a promising biomarker and novel drug delivery system. In this review, we provide an overview of how EVs derived from TNBC cells and tumour microenvironment cells play a role in regulating tumour progression. We also discuss the potential of EVs for immune regulation and their application as novel therapeutic strategies and tumour markers in TNBC. The knowledge gained from studying EV-mediated communication in TNBC could lead to the development of targeted therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Xue Wan
- Department of Laboratory MedicineLeshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Liqi Yang
- Department of Laboratory MedicineLeshan Maternal and Child Health HospitalLeshanChina
| | - Linjun Wu
- Department of Laboratory MedicineLeshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Jiandong Lei
- Department of Laboratory MedicineLeshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Jintao Li
- Department of Laboratory MedicineLeshan Maternal and Child Health HospitalLeshanChina
| |
Collapse
|
7
|
Sergazy S, Seydahmetova R, Gulyayev A, Shulgau Z, Aljofan M. The Role of Exosomes in Cancer Progression and Therapy. BIOLOGY 2025; 14:27. [PMID: 39857258 PMCID: PMC11763171 DOI: 10.3390/biology14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are small extracellular vesicles and are crucial in intercellular communication. Interestingly, tumor-derived exosomes carry oncogenic molecules, such as proteins and microRNAs, which can reprogram recipient cells, promote angiogenesis, and stimulate cancer pre-metastatic niche, supporting cancer growth and metastasis. On the other hand, their biocompatibility, stability, and ability to cross biological barriers make them attractive candidates for drug delivery. Recent advances have shown the potential for exosomes to be used in early disease detection and in targeted drug therapy by delivering therapeutic agents specifically to tumor sites. Despite the promising applications, a number of challenges remain, including exosome isolation and characterization, as well as their inherent heterogeneity. Thus, the current review aims to describe the roles of exosomes in health and disease, and discuss the challenges that hinder their development into becoming useful medical tools.
Collapse
Affiliation(s)
- Shynggys Sergazy
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Roza Seydahmetova
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
| | - Alexandr Gulyayev
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zarina Shulgau
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Mohamad Aljofan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
8
|
Zhang J, Liu H, Wu Q, Liu T, Liu X, Cai J, Yi X, Wang Z, Gao L. Exosomal ANXA2 facilitates ovarian cancer peritoneal metastasis by activating peritoneal mesothelial cells through binding with TLR2. Cell Commun Signal 2024; 22:616. [PMID: 39709496 DOI: 10.1186/s12964-024-01987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Peritoneal dissemination of ovarian cancer (OvCa) can be largely attributed to the formation of a metastatic microenvironment driven by tumoral exosomes. Here, we aimed to elucidate the mechanisms through which exosomal annexin A2 (ANXA2) derived from OvCa cells induces an HPMC phenotypic shift in favour of peritoneal metastasis. METHODS Immunohistochemistry and orthotopic and intraperitoneal OvCa xenograft mouse models were used to clarify the relationship between tumour ANXA2 expression and peritoneal metastasis. Exosomes were isolated from OvCa cell lines via ultracentrifugation. Functional experiments on cell proliferation and motility, and western blot were performed to investigate the activation of HPMCs and its impact on tumour cell in vitro. High-throughput transcriptional sequencing and rescue experiments in which ANXA2 inhibitor (LCKLSL) or the toll-like receptor 2 (TLR2) inhibitor (C29) was used to co-culture the HPMCs with exosome were employed to identify the crucial functional molecules through which exosomal ANXA2 activates HPMCs. The impact of exosomal ANXA2-activated HPMCs on tumour progression was assessed via functional experiments. RESULTS Primary OvCa samples with high ANXA2 expression exhibited a stronger tendency to metastasize to the abdominal cavity. Tumoral ANXA2 promoted OvCa peritoneal metastasis through the secretion of exosomes carrying ANXA2. ANXA2-loaded exosomes activated HPMCs through exosomal ANXA2 binding to TLR2, shifting the phenotype of HPMCs towards mesenchymal cells, increasing their migration and invasion capacities, and elevating the expression of lipocalin 2 (LCN2). High LCN2 expression in HPMCs promoted OvCa cell adhesion, proliferation, motility, and lipid metabolism reprogramming. CONCLUSION Exosomal ANXA2 secreted by tumour cells activates HPMCs and induces the expression of LCN2, which in turn promotes the peritoneal metastasis of OvCa.
Collapse
Affiliation(s)
- Jingni Zhang
- Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongmei Liu
- Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiulei Wu
- Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tong Liu
- Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoli Liu
- Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Cai
- Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Yi
- Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zehua Wang
- Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lingling Gao
- Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Weijie S. Annexin A2: the feasibility of being a therapeutic target associated with cancer metastasis and drug resistance in cancer microenvironment. Discov Oncol 2024; 15:783. [PMID: 39692932 DOI: 10.1007/s12672-024-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
At present, there is still a lack of effective treatment strategies for cancer metastasis and drug resistance, so finding effective biomarkers is particularly important. AnnexinA2 (ANXA2), a vital membrane protein, critically influences cancer progression, tumor invasion, and tumor microenvironment modulation. To assess the possible application of ANXA2 as a therapeutic target against cancer cell metastasis and drug resistance to chemotherapeutic drugs in the tumor microenvironment, we elucidated the functionality of ANXA2 in stromal cells, angiogenic vascular cells, and infiltrated immune cells that mediate metastasis and drug resistance, as well as its potential as a therapeutic target. ANXA2 shows a high expression level in many tissues, and its expression level is even higher in several tumors and their microenvironments. ANXA2 is a crucial regulator of many factors and may serve as a target against drug-resistant cancers.
Collapse
Affiliation(s)
- Song Weijie
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
10
|
He D, Cui B, Lv H, Lu S, Zhu Y, Cheng Y, Dang L, Zhang H. Blood-Derived Extracellular Vesicles as a Promising Liquid Biopsy Diagnostic Tool for Early Cancer Detection. Biomolecules 2024; 14:847. [PMID: 39062561 PMCID: PMC11275243 DOI: 10.3390/biom14070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a significant public health challenge worldwide, and timely screening has the potential to mitigate cancer progression and reduce mortality rates. Currently, early identification of most tumors relies on imaging techniques and tissue biopsies. However, the use of low-cost, highly sensitive, non-invasive detection methods for early cancer screening has become more attractive. Extracellular Vesicles (EVs) released by all living cells contain distinctive biological components, such as nucleic acids, proteins, and lipids. These vesicles play crucial roles in the tumor microenvironment and intercellular communication during tumor progression, rendering liquid biopsy a particularly suitable method for diagnosis. Nevertheless, challenges related to purification methods and validation of efficacy currently hinder its widespread clinical implementation. These limitations underscore the importance of refining isolation techniques and conducting comprehensive investigations on EVs. This study seeks to evaluate the potential of liquid biopsy utilizing blood-derived EVs as a practical, cost-effective, and secure approach for early cancer detection.
Collapse
Affiliation(s)
- Dan He
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China;
| | - Hongkai Lv
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Shuxian Lu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuan Zhu
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| | - Yuqiang Cheng
- Department of Clinical Medicine of Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Y.C.)
| | - Lin Dang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hong Zhang
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (D.H.); (S.L.); (Y.Z.)
| |
Collapse
|
11
|
Bandu R, Oh JW, Kim KP. Extracellular vesicle proteins as breast cancer biomarkers: Mass spectrometry-based analysis. Proteomics 2024; 24:e2300062. [PMID: 38829178 DOI: 10.1002/pmic.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 06/05/2024]
Abstract
Extracellular vesicles (EVs) are membrane-surrounded vesicles released by various cell types into the extracellular microenvironment. Although EVs vary in size, biological function, and components, their importance in cancer progression and the potential use of EV molecular species to serve as novel cancer biomarkers have become increasingly evident. Cancer cells actively release EVs into surrounding tissues, which play vital roles in cancer progression and metastasis, including invasion and immune modulation. EVs released by cancer cells are usually chosen as a gateway in the search for biomarkers for cancer. In this review, we mainly focused on molecular profiling of EV protein constituents from breast cancer, emphasizing mass spectrometry (MS)-based proteomic approaches. To further investigate the potential use of EVs as a source of breast cancer biomarkers, we have discussed the use of these proteins as predictive marker candidates. Besides, we have also summarized the key characteristics of EVs as potential therapeutic targets in breast cancer and provided significant information on their implications in breast cancer development and progression. Information provided in this review may help understand the recent progress in understanding EV biology and their potential role as new noninvasive biomarkers as well as emerging therapeutic opportunities and associated challenges.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jae Won Oh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Abdul-Rahman T, Roy P, Herrera-Calderón RE, Khidri FF, Omotesho QA, Rumide TS, Fatima M, Roy S, Wireko AA, Atallah O, Roy S, Amekpor F, Ghosh S, Agyigra IA, Horbas V, Teslyk T, Bumeister V, Papadakis M, Alexiou A. Extracellular vesicle-mediated drug delivery in breast cancer theranostics. Discov Oncol 2024; 15:181. [PMID: 38780753 PMCID: PMC11116322 DOI: 10.1007/s12672-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
Collapse
Affiliation(s)
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | - Ranferi Eduardo Herrera-Calderón
- Center for Research in Health Sciences (CICSA), Faculty of Medicine, Anahuac University North Campus, 52786, Huixquilucan, Mexico
| | | | | | | | | | - Sakshi Roy
- School of Medicine, Queens University Belfast, Northern Ireland, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Subham Roy
- Hull York Medical School, University of York, York, UK
| | - Felix Amekpor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India.
- Department of Research and Development, Funogen, 11741, Athens, Greece.
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria.
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
| |
Collapse
|
13
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Extracellular Vesicles in Breast Cancer: From Intercellular Communication to Therapeutic Opportunities. Pharmaceutics 2024; 16:654. [PMID: 38794316 PMCID: PMC11125876 DOI: 10.3390/pharmaceutics16050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer, a multifaceted and heterogeneous disease, poses significant challenges in terms of understanding its intricate resistance mechanisms and devising effective therapeutic strategies. This review provides a comprehensive overview of the intricate landscape of extracellular vesicles (EVs) in the context of breast cancer, highlighting their diverse subtypes, biogenesis, and roles in intercellular communication within the tumour microenvironment (TME). The discussion spans various aspects, from EVs and stromal cells in breast cancer to their influence on angiogenesis, immune response, and chemoresistance. The impact of EV production in different culture systems, including two dimensional (2D), three dimensional (3D), and organoid models, is explored. Furthermore, this review delves into the therapeutic potential of EVs in breast cancer, presenting emerging strategies such as engineered EVs for gene delivery, nanoplatforms for targeted chemotherapy, and disrupting tumour derived EVs as a treatment approach. Understanding these complex interactions of EV within the breast cancer milieu is crucial for identifying resistance mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
14
|
Ye S, Chen S, Yang X, Lei X. Drug resistance in breast cancer is based on the mechanism of exocrine non-coding RNA. Discov Oncol 2024; 15:138. [PMID: 38691224 PMCID: PMC11063018 DOI: 10.1007/s12672-024-00993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Breast cancer (BC) ranks first among female malignant tumors and involves hormonal changes and genetic as well as environmental risk factors. In recent years, with the improvement of medical treatment, a variety of therapeutic approaches for breast cancer have emerged and have strengthened to accommodate molecular diversity. However, the primary way to improve the effective treatment of breast cancer patients is to overcome treatment resistance. Recent studies have provided insights into the mechanisms of resistance to exosome effects in BC. Exosomes are membrane-bound vesicles secreted by both healthy and malignant cells that facilitate intercellular communication. Specifically, exosomes released by tumor cells transport their contents to recipient cells, altering their properties and promoting oncogenic components, ultimately resulting in drug resistance. As important coordinators, non-coding RNAs (ncRNAs) are involved in this process and are aberrantly expressed in various human cancers. Exosome-derived ncRNAs, including microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as crucial components in understanding drug resistance in breast cancer. This review provides insights into the mechanism of exosome-derived ncRNAs in breast cancer drug resistance, thereby suggesting new strategies for the treatment of BC.
Collapse
Affiliation(s)
- Simin Ye
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Shiyu Chen
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Li J, Lu S, Chen F, Zhu H. Unveiling the hidden role of extracellular vesicles in brain metastases: a comprehensive review. Front Immunol 2024; 15:1388574. [PMID: 38726015 PMCID: PMC11079170 DOI: 10.3389/fimmu.2024.1388574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Background Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
16
|
Ram Kumar RM, Logesh R, Joghee S. Breast cancer derived exosomes: Theragnostic perspectives and implications. Clin Chim Acta 2024; 557:117875. [PMID: 38493944 DOI: 10.1016/j.cca.2024.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Breast cancer (BC) is the most prevalent malignancy affecting women worldwide. Although conventional treatments such as chemotherapy, surgery, hormone therapy, radiation therapy, and biological therapy are commonly used, they often entail significant side effects. Therefore, there is a critical need to investigate more cost-effective and efficient treatment modalities in BC. Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, play a crucial role in modulating recipient cell behaviour and driving cancer progression. Among the EVs, exosomes provide valuable insights into cellular dynamics under both healthy and diseased conditions. In cancer, exosomes play a critical role in driving tumor progression and facilitating the development of drug resistance. BC-derived exosomes (BCex) dynamically influence BC progression by regulating cell proliferation, immunosuppression, angiogenesis, metastasis, and the development of treatment resistance. Additionally, BCex serve as promising diagnostic markers in BC which are detectable in bodily fluids such as urine and saliva. Targeted manipulation of BCex holds significant therapeutic potential. This review explores the therapeutic and diagnostic implications of exosomes in BC, underscoring their relevance to the disease. Furthermore, it discusses future directions for exosome-based research in BC, emphasizing the necessity for further exploration in this area.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India.
| | - Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Suresh Joghee
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| |
Collapse
|
17
|
Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024; 24:322. [PMID: 38454346 PMCID: PMC10921614 DOI: 10.1186/s12885-024-11819-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Liquid biopsy can detect circulating cancer cells or tumor cell-derived DNA at various stages of cancer. The fluid from these biopsies contains extracellular vesicles (EVs), such as apoptotic bodies, microvesicles, exomeres, and exosomes. Exosomes contain proteins and nucleic acids (DNA/RNA) that can modify the microenvironment and promote cancer progression, playing significant roles in cancer pathology. Clinically, the proteins and nucleic acids within the exosomes from liquid biopsies can be biomarkers for the detection and prognosis of cancer. We review EVs protein and miRNA biomarkers identified for select cancers, specifically melanoma, glioma, breast, pancreatic, hepatic, cervical, prostate colon, and some hematological malignancies. Overall, this review demonstrates that EV biomolecules have great potential to expand the diagnostic and prognostic biomarkers used in Oncology; ultimately, EVs could lead to earlier detection and novel therapeutic targets. Clinical implicationsEVs represent a new paradigm in cancer diagnostics and therapeutics. The potential use of exosomal contents as biomarkers for diagnostic and prognostic indicators may facilitate cancer management. Non-invasive liquid biopsy is helpful, especially when the tumor is difficult to reach, such as in pancreatic adenocarcinoma. Moreover, another advantage of using minimally invasive liquid biopsy is that monitoring becomes more manageable. Identifying tumor-derived exosomal proteins and microRNAs would allow a more personalized approach to detecting cancer and improving treatment.
Collapse
Affiliation(s)
- Mickensone Andre
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Allen Caobi
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Jana S Miles
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Arti Vashist
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Marco A Ruiz
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
- Medical Oncology, Baptist Health Miami Cancer Institute, Miami, 33176, FL, USA
| | - Andrea D Raymond
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA.
| |
Collapse
|
18
|
Koh M, Lim H, Jin H, Kim M, Hong Y, Hwang YK, Woo Y, Kim ES, Kim SY, Kim KM, Lim HK, Jung J, Kang S, Park B, Lee HB, Han W, Lee MS, Moon A. ANXA2 (annexin A2) is crucial to ATG7-mediated autophagy, leading to tumor aggressiveness in triple-negative breast cancer cells. Autophagy 2024; 20:659-674. [PMID: 38290972 PMCID: PMC10936647 DOI: 10.1080/15548627.2024.2305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.
Collapse
Affiliation(s)
- Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Minjoo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yeji Hong
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Young Keun Hwang
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yunjung Woo
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women’s University, Seoul, Korea
| | - Kyung Mee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hyun Kyung Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| |
Collapse
|
19
|
Shen HY, Xu JL, Zhang W, Chen QN, Zhu Z, Mao Y. Exosomal circRHCG promotes breast cancer metastasis via facilitating M2 polarization through TFEB ubiquitination and degradation. NPJ Precis Oncol 2024; 8:22. [PMID: 38287113 PMCID: PMC10825185 DOI: 10.1038/s41698-024-00507-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/06/2023] [Indexed: 01/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive cancer with distant metastasis. Accumulated evidence has demonstrated that exosomes are involved in TNBC metastasis. Elucidating the mechanism underlying TNBC metastasis has important clinical significance. In the present study, exosomes were isolated from clinical specimens and TNBC cell lines. Colony formation, EdU incorporation, wound healing, and transwell assays were performed to examine TNBC cell proliferation, migration, and metastasis. Macrophage polarization was evaluated by flow cytometry and RT-qPCR analysis of polarization markers. A mouse model of subcutaneous tumor was established for assessment of tumor growth and metastasis. RNA pull-down, RIP and Co-IP assays were used for analyzing molecular interactions. Here, we proved that high abundance of circRHCG was observed in exosomes derived from TNBC patients, and increased exosomal circRHCG indicated poor prognosis. Silencing of circRHCG suppressed TNBC cell proliferation, migration, and metastasis. TNBC cell-derived exosomes promoted M2 polarization via delivering circRHCG. Exosomal circRHCG stabilized BTRC mRNA via binding FUS and naturally enhanced BTRC expression, thus promoting the ubiquitination and degradation of TFEB in THP-1 cells. In addition, knockdown of BTRC or overexpression of TFEB counteracted exosomal circRHCG-mediated facilitation of M2 polarization. Furthermore, exosomal circRHCG promoted TNBC cell proliferation and metastasis by facilitating M2 polarization. Knockdown of circRHCG reduced tumor growth, metastasis, and M2 polarization through the BTRC/TFEB axis in vivo. In summary, exosomal circRHCG promotes M2 polarization by stabilizing BTRC and promoting TFEB degradation, thereby accelerating TNBC metastasis and growth. Our study provides promising therapeutic strategies against TNBC.
Collapse
Affiliation(s)
- Hong-Yu Shen
- Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Lin Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Division of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Qin-Nan Chen
- Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China.
| | - Zhen Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan Mao
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Lei J, Sun P, Sheng J, Wang H, Xie Y, Song J. The intricate role of annexin A2 in kidney: a comprehensive review. Ren Fail 2023; 45:2273427. [PMID: 37955107 PMCID: PMC10653649 DOI: 10.1080/0886022x.2023.2273427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
21
|
Jung HH, Kim JY, Cho EY, Lee JE, Kim SW, Nam SJ, Park YH, Ahn JS, Im YH. A Retrospective Exploratory Analysis for Serum Extracellular Vesicles Reveals APRIL (TNFSF13), CXCL13, and VEGF-A as Prognostic Biomarkers for Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:15576. [PMID: 37958571 PMCID: PMC10647725 DOI: 10.3390/ijms242115576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) is widely used as a standard treatment for early-stage triple-negative breast cancer (TNBC). While patients who achieve pathologic complete response (pCR) have a highly favorable outcome, patients who do not achieve pCR have variable prognoses. It is important to identify patients who are most likely to have poor survival outcomes to identify candidates for more aggressive therapeutic approaches after NAC. Many studies have demonstrated that cytokines and growth factors packaged into extracellular vesicles (EVs) have an essential role in tumor progression and drug resistance. In this study, we examined the role of serum-derived EV-associated cytokines as prognostic biomarkers for long-term outcomes in patients who underwent anthracycline-taxane-based NAC. We isolated extracellular vesicles from the serum of 190 TNBC patients who underwent NAC between 2015 and 2018 at Samsung Medical Center. EV-associated cytokine concentrations were measured with ProcartaPlex Immune Monitoring 65-plex panels. The prognostic value of EV-associated cytokines was studied. We found that patients with high EV_APRIL, EV_CXCL13, and EV_VEGF-A levels had shorter overall survival (OS). We further evaluated the role of these selected biomarkers as prognostic factors in patients with residual disease (RD) after NAC. Even in patients with RD, high levels of EV_APRIL, EV_CXCL13, and EV_VEGF-A were correlated with poor OS. In all subgroup analyses, EV_CXCL13 overexpression was significantly associated with poor overall survival. Moreover, multivariate analysis indicated that a high level of EV_CXCL13 was an independent predictor of poor OS. Correlation analysis between biomarker levels in EVs and serum showed that EV_VEGF-A positively correlated with soluble VEGF-A but not CXCL13. An elevated level of soluble VEGF-A was also associated with poor OS. These findings suggest that EV_APRIL, EV_CXCL13, and EV_VEGF-A may be useful in identifying TNBC patients at risk of poor survival outcomes after NAC.
Collapse
Affiliation(s)
- Hae Hyun Jung
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (H.H.J.); (J.-Y.K.); (Y.H.P.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Ji-Yeon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (H.H.J.); (J.-Y.K.); (Y.H.P.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea;
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Eun Yoon Cho
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
- Department of Pathology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jeong Eon Lee
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Seok Won Kim
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Seok Jin Nam
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Yeon Hee Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (H.H.J.); (J.-Y.K.); (Y.H.P.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea;
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea;
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Young-Hyuck Im
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (H.H.J.); (J.-Y.K.); (Y.H.P.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea;
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
| |
Collapse
|
22
|
Guo Q, Pan K, Qiu P, Liu Z, Chen J, Lin J. Identification of an exosome-related signature associated with prognosis and immune infiltration in breast cancer. Sci Rep 2023; 13:18198. [PMID: 37875600 PMCID: PMC10598067 DOI: 10.1038/s41598-023-45325-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023] Open
Abstract
Exosomes, nanosized vesicles, play a vital role in breast cancer (BC) occurrence, development, and drug resistance. Hence, we proceeded to study the potential prognostic value of exosome-related genes and their relationship to the immune microenvironment in BC. 121 exosome-related genes were provided by the ExoBCD database, and 7 final genes were selected to construct the prognostic signature. Besides, the expression levels of the 7 exosome-related genes were validated by the experiment in BC cell lines. Based on the signature, BC patients from the training and validation cohorts were separated into low- and high-risk groups. Subsequently, the R clusterProfiler package was applied to identify the distinct enrichment pathways between high-risk groups and low-risk groups. The relevance of the tumor immune microenvironment and exosome-related gene risk score were analyzed in BC. Eventually, the different expression levels of immune checkpoint-related genes were compared between the two risk groups. Based on the risk model, the low-risk groups were identified with a higher survival rate both in the training and validation cohorts. A better overall survival was revealed in patients with higher scores evaluated by the estimation of stromal and immune cells in malignant tumor tissues using expression (ESTIMATE) algorithm. Subsequently, BC patients with lower risk scores were indicated by higher expression levels of some immune checkpoint-related genes and immune cell infiltration. Exosomes are closely associated with the prognosis and immune cell infiltration of BC. These findings may contribute to improving immunotherapy and provide a new vision for BC treatment strategies.
Collapse
Affiliation(s)
- Qiaonan Guo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Kelun Pan
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pengjun Qiu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zundong Liu
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jianpeng Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianqing Lin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
23
|
Lee Y, Ni J, Wasinger VC, Graham P, Li Y. Comparison Study of Small Extracellular Vesicle Isolation Methods for Profiling Protein Biomarkers in Breast Cancer Liquid Biopsies. Int J Mol Sci 2023; 24:15462. [PMID: 37895140 PMCID: PMC10607056 DOI: 10.3390/ijms242015462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are an important intercellular communicator, participating in all stages of cancer metastasis, immunity, and therapeutic resistance. Therefore, protein cargoes within sEVs are considered as a superior source for breast cancer (BC) biomarker discovery. Our study aimed to optimise the approach for sEV isolation and sEV proteomic analysis to identify potential sEV protein biomarkers for BC diagnosis. sEVs derived from BC cell lines, BC patients' plasma, and non-cancer controls were isolated using ultracentrifugation (UC), a Total Exosome Isolation kit (TEI), and a combined approach named UCT. In BC cell lines, the UC isolates showed a higher sEV purity and marker expression, as well as a higher number of sEV proteins. In BC plasma samples, the UCT isolates showed the highest proportion of sEV-related proteins and the lowest percentage of lipoprotein-related proteins. Our data suggest that the assessment of both the quantity and quality of sEV isolation methods is important in selecting the optimal approach for the specific sEV research purpose, depending on the sample types and downstream analysis.
Collapse
Affiliation(s)
- Yujin Lee
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Jie Ni
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052, Australia;
| | - Peter Graham
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
24
|
Mukherjee S, Dhar R, Jonnalagadda S, Gorai S, Nag S, Kar R, Mukerjee N, Mukherjee D, Vatsa R, Arikketh D, Krishnan A, Gundamaraju R, Jha SK, Alexiou A, Papadakis M. Exosomal miRNAs and breast cancer: a complex theranostics interlink with clinical significance. Biomarkers 2023; 28:502-518. [PMID: 37352015 DOI: 10.1080/1354750x.2023.2229537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Breast cancer (BC) remains the most challenging global health crisis of the current decade, impacting a large population of females annually. In the field of cancer research, the discovery of extracellular vesicles (EVs), specifically exosomes (a subpopulation of EVs), has marked a significant milestone. In general, exosomes are released from all active cells but tumour cell-derived exosomes (TDXs) have a great impact (TDXs miRNAs, proteins, lipid molecules) on cancer development and progression. TDXs regulate multiple events in breast cancer such as tumour microenvironment remodelling, immune cell suppression, angiogenesis, metastasis (EMT-epithelial mesenchymal transition, organ-specific metastasis), and therapeutic resistance. In BC, early detection is the most challenging event, exosome-based BC screening solved the problem. Exosome-based BC treatment is a sign of the transforming era of liquid biopsy, it is also a promising therapeutic tool for breast cancer. Exosome research goes to closer precision oncology via a single exosome profiling approach. Our hope is that this review will serve as motivation for researchers to explore the field of exosomes and develop an efficient, and affordable theranostics approach for breast cancer.
Collapse
Affiliation(s)
- Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Rajib Dhar
- Department of Genetic Engineering, Cancer and Stem Cell Biology Laboratory, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Rishav Kar
- Department of Medical Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math,India
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| | | | - Rishabh Vatsa
- Department of Microbiology, Vels Institute of Science, Technology and Advanced Studies, Chennai, India
| | - Devi Arikketh
- Department of Genetic Engineering, Cancer and Stem Cell Biology Laboratory, SRM Institute of Science and Technology, Kattankulathur, India
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, University of the Free State, Bloemfontein, South Africa
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| |
Collapse
|
25
|
Wang X, Xia J, Yang L, Dai J, He L. Recent progress in exosome research: isolation, characterization and clinical applications. Cancer Gene Ther 2023; 30:1051-1065. [PMID: 37106070 DOI: 10.1038/s41417-023-00617-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Exosomes, a kind of nano-vesicles released by various cell types, carry a variety of "cargos" including proteins, RNAs, DNAs and lipids. There is substantial evidence that exosomes are involved in intercellular communication by exchanging "cargos" among cells and play important roles in cancer development. Because of the different expressions of "cargos" carried by exosomes in biological fluids under physiological and pathological conditions, exosomes have the potential as a minimally invasive method of liquid biopsy for cancer diagnosis and prognosis. In addition, due to their good biocompatibility, safety, biodistribution and low immunogenicity, exosomes also have potential applications in the development of promising cancer treatment methods. In this review, we summarize the recent progress in the isolation and characterization techniques of exosomes. Moreover, we review the biological functions of exosomes in regulating tumor metastasis, drug resistance and immune regulation during cancer development and outline the applications of exosomes in cancer therapy.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jingyi Xia
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Yang
- Department of Pharmacy, The people's hospital of jianyang city, Jianyang, 641400, China
| | - Jingying Dai
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lin He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
26
|
Mishra A, Bharti PS, Rani N, Nikolajeff F, Kumar S. A tale of exosomes and their implication in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188908. [PMID: 37172650 DOI: 10.1016/j.bbcan.2023.188908] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cancer is a cause of high deaths worldwide and also a huge burden for the health system. Cancer cells have unique properties such as a high rate of proliferation, self-renewal, metastasis, and treatment resistance, therefore, the development of novel diagnoses of cancers is a tedious task. Exosomes are secreted by virtually all cell types and have the ability to carry a multitude of biomolecules crucial for intercellular communication, hence, contributing a crucial part in the onset and spread of cancer. These exosomal components can be utilized in the development of markers for diagnostic and prognostic purposes for various cancers. This review emphasized primarily the following topics: exosomes structure and functions, isolation and characterization strategies of exosomes, the role of exosomal contents in cancer with a focus in particular on noncoding RNA and protein, exosomes, and the cancer microenvironment interactions, cancer stem cells, and tumor diagnosis and prognosis based on exosomes.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden.
| |
Collapse
|
27
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
28
|
Lee Y, Ni J, Beretov J, Wasinger VC, Graham P, Li Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol Cancer 2023; 22:33. [PMID: 36797736 PMCID: PMC9933347 DOI: 10.1186/s12943-023-01741-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Current clinical tools for breast cancer (BC) diagnosis are insufficient but liquid biopsy of different bodily fluids has recently emerged as a minimally invasive strategy that provides a real-time snapshot of tumour biomarkers for early diagnosis, active surveillance of progression, and post-treatment recurrence. Extracellular vesicles (EVs) are nano-sized membranous structures 50-1000 nm in diameter that are released by cells into biological fluids. EVs contain proteins, nucleic acids, and lipids which play pivotal roles in tumourigenesis and metastasis through cell-to-cell communication. Proteins and miRNAs from small EVs (sEV), which range in size from 50-150 nm, are being investigated as a potential source for novel BC biomarkers using mass spectrometry-based proteomics and next-generation sequencing. This review covers recent developments in sEV isolation and single sEV analysis technologies and summarises the sEV protein and miRNA biomarkers identified for BC diagnosis, prognosis, and chemoresistance. The limitations of current sEV biomarker research are discussed along with future perspective applications.
Collapse
Affiliation(s)
- Yujin Lee
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Jie Ni
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Julia Beretov
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia ,grid.416398.10000 0004 0417 5393Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Valerie C. Wasinger
- grid.1005.40000 0004 4902 0432Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Medical Science, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Peter Graham
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
29
|
Yi YW. Therapeutic Implications of the Drug Resistance Conferred by Extracellular Vesicles Derived from Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24043704. [PMID: 36835116 PMCID: PMC9960576 DOI: 10.3390/ijms24043704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Anticancer drug resistance is a significant impediment in current cancer treatment. Extracellular vesicles (EVs) derived from cancer cells were recently acknowledged as a critical mechanism of drug resistance, tumor progression, and metastasis. EVs are enveloped vesicles comprising a lipid bilayer that transfers various cargo, including proteins, nucleic acids, lipids, and metabolites, from an originating cell to a recipient cell. Investigating the mechanisms whereby EVs confer drug resistance is still in the early stages. In this review, I analyze the roles of EVs derived from triple-negative breast cancer cells (TNBC-EVs) in anticancer drug resistance and discuss strategies to overcome TNBC-EV-mediated drug resistance.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
30
|
Komalasari NLGY, Tomonobu N, Kinoshita R, Chen Y, Sakaguchi Y, Gohara Y, Jiang F, Yamamoto KI, Murata H, Ruma IMW, Sumardika IW, Zhou J, Yamauchi A, Kuribayashi F, Inoue Y, Toyooka S, Sakaguchi M. Lysyl oxidase-like 4 exerts an atypical role in breast cancer progression that is dependent on the enzymatic activity that targets the cell-surface annexin A2. Front Oncol 2023; 13:1142907. [PMID: 37091157 PMCID: PMC10114587 DOI: 10.3389/fonc.2023.1142907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Background LOX family members are reported to play pivotal roles in cancer. Unlike their enzymatic activities in collagen cross-linking, their precise cancer functions are unclear. We revealed that LOXL4 is highly upregulated in breast cancer cells, and we thus sought to define an unidentified role of LOXL4 in breast cancer. Methods We established the MDA-MB-231 sublines MDA-MB-231-LOXL4 mutCA and -LOXL4 KO, which stably overexpress mutant LOXL4 that loses its catalytic activity and genetically ablates the intrinsic LOXL4 gene, respectively. In vitro and in vivo evaluations of these cells' activities of cancer outgrowth were conducted by cell-based assays in cultures and an orthotopic xenograft model, respectively. The new target (s) of LOXL4 were explored by the MS/MS analytic approach. Results Our in vitro results revealed that both the overexpression of mutCA and the KO of LOXL4 in cells resulted in a marked reduction of cell growth and invasion. Interestingly, the lowered cellular activities observed in the engineered cells were also reflected in the mouse model. We identified a novel binding partner of LOXL4, i.e., annexin A2. LOXL4 catalyzes cell surface annexin A2 to achieve a cross-linked multimerization of annexin A2, which in turn prevents the internalization of integrin β-1, resulting in the locking of integrin β-1 on the cell surface. These events enhance the promotion of cancer cell outgrowth. Conclusions LOXL4 has a new role in breast cancer progression that occurs via an interaction with annexin A2 and integrin β-1 on the cell surface.
Collapse
Affiliation(s)
- Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
- Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Youyi Chen
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yuma Gohara
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Ken-ich Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | | | | | - Jin Zhou
- Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
- *Correspondence: Masakiyo Sakaguchi,
| |
Collapse
|
31
|
Desai PP, Narra K, James JD, Jones HP, Tripathi AK, Vishwanatha JK. Combination of Small Extracellular Vesicle-Derived Annexin A2 Protein and mRNA as a Potential Predictive Biomarker for Chemotherapy Responsiveness in Aggressive Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010212. [PMID: 36612209 PMCID: PMC9818227 DOI: 10.3390/cancers15010212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Small extracellular vesicles (sEVs), mainly exosomes, are nanovesicles that shed from the membrane as intraluminal vesicles of the multivesicular bodies, serve as vehicles that carry cargo influential in modulating the tumor microenvironment for the multi-step process of cancer metastasis. Annexin A2 (AnxA2), a calcium(Ca2+)-dependent phospholipid-binding protein, is among sEV cargoes. sEV-derived AnxA2 (sEV-AnxA2) protein is involved in the process of metastasis in triple-negative breast cancer (TNBC). The objective of the current study is to determine whether sEV-AnxA2 protein and/or mRNA could be a useful biomarkers to predict the responsiveness of chemotherapy in TNBC. Removal of Immunoglobulin G (IgG) from the serum as well as using the System Bioscience's ExoQuick Ultra kit resulted in efficient sEV isolation and detection of sEV-AnxA2 protein and mRNA compared to the ultracentrifugation method. The standardized method was applied to the twenty TNBC patient sera for sEV isolation. High levels of sEV-AnxA2 protein and/or mRNA were associated with stage 3 and above in TNBC. Four patients who responded to neoadjuvant chemotherapy had high expression of AnxA2 protein and/or mRNA in sEVs, while other four who did not respond to chemotherapy had low levels of AnxA2 protein and mRNA in sEVs. Our data suggest that the sEV-AnxA2 protein and mRNA could be a combined predictive biomarker for responsiveness to chemotherapy in aggressive TNBC.
Collapse
Affiliation(s)
- Priyanka P. Desai
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, TX 76107, USA
| | - Kalyani Narra
- Department of Internal Medicine, John Peter Smith (JPS) Oncology Infusion Center, Fort Worth, Texas, TX 76104, USA
| | - Johanna D. James
- Biosample Repository Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, TX 76107, USA
| | - Amit K. Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, TX 76107, USA
| | - Jamboor K. Vishwanatha
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, TX 76107, USA
- Correspondence:
| |
Collapse
|
32
|
Feng L, Guo L, Tanaka Y, Su L. Tumor-Derived Small Extracellular Vesicles Involved in Breast Cancer Progression and Drug Resistance. Int J Mol Sci 2022; 23:ijms232315236. [PMID: 36499561 PMCID: PMC9736664 DOI: 10.3390/ijms232315236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Breast cancer is one of the most serious and terrifying threats to the health of women. Recent studies have demonstrated that interaction among cancer cells themselves and those with other cells, including immune cells, in a tumor microenvironment potentially and intrinsically regulate and determine cancer progression and metastasis. Small extracellular vesicles (sEVs), a type of lipid-bilayer particles derived from cells, with a size of less than 200 nm, are recognized as one form of important mediators in cell-to-cell communication. sEVs can transport a variety of bioactive substances, including proteins, RNAs, and lipids. Accumulating evidence has revealed that sEVs play a crucial role in cancer development and progression, with a significant impact on proliferation, invasion, and metastasis. In addition, sEVs systematically coordinate physiological and pathological processes, such as coagulation, vascular leakage, and stromal cell reprogramming, to bring about premetastatic niche formation and to determine metastatic organ tropism. There are a variety of oncogenic factors in tumor-derived sEVs that mediate cellular communication between local stromal cells and distal microenvironment, both of which are important in cancer progression and metastasis. Tumor-derived sEVs contain substances that are similar to parental tumor cells, and as such, sEVs could be biomarkers in cancer progression and potential therapeutic targets, particularly for predicting and preventing future metastatic development. Here, we review the mechanisms underlying the regulation by tumor-derived sEVs on cancer development and progression, including proliferation, metastasis, drug resistance, and immunosuppression, which coordinately shape the pro-metastatic microenvironment. In addition, we describe the application of sEVs to the development of cancer biomarkers and potential therapeutic modalities and discuss how they can be engineered and translated into clinical practice.
Collapse
Affiliation(s)
- Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lijuan Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| |
Collapse
|
33
|
Guo C, Trivedi R, Tripathi AK, Nandy RR, Wagner DC, Narra K, Chaudhary P. Higher Expression of Annexin A2 in Metastatic Bladder Urothelial Carcinoma Promotes Migration and Invasion. Cancers (Basel) 2022; 14:cancers14225664. [PMID: 36428758 PMCID: PMC9688257 DOI: 10.3390/cancers14225664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we aim to evaluate the significance of AnxA2 in BLCA and establish its metastatic role in bladder cancer cells. Analysis of TCGA data showed that AnxA2 mRNA expression was significantly higher in BLCA tumors than in normal bladder tissues. High mRNA expression of AnxA2 in BLCA was significantly associated with high pathological grades and stages, non-papillary tumor histology, and poor overall survival (OS), progression-free survival (PFS), and diseases specific survival (DSS). Similarly, we found that AnxA2 expression was higher in bladder cancer cells derived from high-grade metastatic carcinoma than in cells derived from low-grade urothelial carcinoma. AnxA2 expression significantly mobilized to the surface of highly metastatic bladder cancer cells compared to cells derived from low-grade tumors and associated with high plasmin generation and AnxA2 secretion. In addition, the downregulation of AnxA2 cells significantly inhibited the proliferation, migration, and invasion in bladder cancer along with the reduction in proangiogenic factors and cytokines such as PDGF-BB, ANGPT1, ANGPT2, Tie-2, bFGF, GRO, IL-6, IL-8, and MMP-9. These findings suggest that AnxA2 could be a promising biomarker and therapeutic target for high-grade BLCA.
Collapse
Affiliation(s)
- Christina Guo
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rucha Trivedi
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amit K. Tripathi
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rajesh R. Nandy
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Diana C. Wagner
- Department of Anatomic Pathology, JPS Health Network, Fort Worth, TX 76104, USA
| | - Kalyani Narra
- JPS Oncology and Infusion Center, JPS Health Network, Fort Worth, TX 76104, USA
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-5178
| |
Collapse
|
34
|
Weaver JW, Zhang J, Rojas J, Musich PR, Yao Z, Jiang Y. The application of exosomes in the treatment of triple-negative breast cancer. Front Mol Biosci 2022; 9:1022725. [PMID: 36438660 PMCID: PMC9684310 DOI: 10.3389/fmolb.2022.1022725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous and invasive breast cancer (BC) subtype that is estrogen receptor-negative, progesterone receptor-negative, and human epidermal growth factor receptor 2 (Her2)-negative. So far, the treatment of TNBC is still ineffective due to the lack of well-defined molecular targets. Exosomes are nanosized extracellular vesicles composed of lipid bilayers. They originate from various types of donor cells and release a complex mixture of contents including diverse nucleic acid types (miRNA, LnRNA, siRNA, and DNA) and proteins; after binding to recipient cells the exosomes release their contents that execute their biological functions. Exosomes have been reported to play an important role in the tumorigenesis of TNBC, including tumor initiation, metastasis, angiogenesis, cell proliferation, immune escape, and drug resistance. On the other hand, exosomes can be valuable biomarkers for diagnosis, monitoring, and treatment of TNBC. More interestingly, exosomes can be harnessed as a nanosized drug-delivery system specifically targeting TNBC. In this review, we present the most recent mechanistic findings and clinical applications of exosomes in TNBC therapy, focusing on their use as diagnostic and prognostic biomarkers, nanoscale drug delivery platforms, and immunotherapeutic agents. In addition, the associated challenges and future directions of using exosomes for TNBC treatment will be discussed.
Collapse
Affiliation(s)
- John W. Weaver
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Juan Rojas
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Phillip R. Musich
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zhiqiang Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Yong Jiang
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
35
|
Kugeratski FG, Santi A, Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci Signal 2022; 15:eaaz4742. [PMID: 36166511 DOI: 10.1126/scisignal.aaz4742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Sara Zanivan
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
36
|
Yi X, Huang D, Li Z, Wang X, Yang T, Zhao M, Wu J, Zhong T. The role and application of small extracellular vesicles in breast cancer. Front Oncol 2022; 12:980404. [PMID: 36185265 PMCID: PMC9515427 DOI: 10.3389/fonc.2022.980404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related deaths in women worldwide. Currently, patients’ survival remains a challenge in BC due to the lack of effective targeted therapies and the difficult condition of patients with higher aggressiveness, metastasis and drug resistance. Small extracellular vesicles (sEVs), which are nanoscale vesicles with lipid bilayer envelopes released by various cell types in physiological and pathological conditions, play an important role in biological information transfer between cells. There is growing evidence that BC cell-derived sEVs may contribute to the establishment of a favorable microenvironment that supports cancer cells proliferation, invasion and metastasis. Moreover, sEVs provide a versatile platform not only for the diagnosis but also as a delivery vehicle for drugs. This review provides an overview of current new developments regarding the involvement of sEVs in BC pathogenesis, including tumor proliferation, invasion, metastasis, immune evasion, and drug resistance. In addition, sEVs act as messenger carriers carrying a variety of biomolecules such as proteins, nucleic acids, lipids and metabolites, making them as potential liquid biopsy biomarkers for BC diagnosis and prognosis. We also described the clinical applications of BC derived sEVs associated MiRs in the diagnosis and treatment of BC along with ongoing clinical trials which will assist future scientific endeavors in a more organized direction.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
37
|
Chen X, Feng J, Chen W, Shao S, Chen L, Wan H. Small extracellular vesicles: from promoting pre-metastatic niche formation to therapeutic strategies in breast cancer. Cell Commun Signal 2022; 20:141. [PMID: 36096820 PMCID: PMC9465880 DOI: 10.1186/s12964-022-00945-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the most common cancer in females, and to date, the mortality rate of breast cancer metastasis cannot be ignored. The metastasis of breast cancer is a complex, staged process, and the pattern of metastatic spread is not random. The pre-metastatic niche, as an organ-specific home for metastasis, is a favourable environment for tumour cell colonization. As detection techniques improve, the role of the pre-metastatic niche in breast cancer metastasis is being uncovered. sEVs (small extracellular vesicles) can deliver cargo, which is vital for the formation of pre-metastatic niches. sEVs participate in multiple aspects of creating a distant microenvironment to promote tumour invasion, including the secretion of inflammatory molecules, immunosuppression, angiogenesis and enhancement of vascular permeability, as well as regulation of the stromal environment. Here, we discuss the multifaceted mechanisms through which breast cancer-derived sEVs contribute to pre-metastatic niches. In addition, sEVs as biomarkers and antimetastatic therapies are also discussed, particularly their use in transporting exosomal microRNAs. The study of sEVs may provide insight into immunotherapy and targeted therapies for breast cancer, and we also provide an overview of their potential role in antitumour metastasis. Video Abstract
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Jiamei Feng
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Weili Chen
- Department of Breast, Yueyang Hospital Integated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Shijun Shao
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Wan
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China.
| |
Collapse
|
38
|
Zeng Y, Qiu Y, Jiang W, Shen J, Yao X, He X, Li L, Fu B, Liu X. Biological Features of Extracellular Vesicles and Challenges. Front Cell Dev Biol 2022; 10:816698. [PMID: 35813192 PMCID: PMC9263222 DOI: 10.3389/fcell.2022.816698] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| |
Collapse
|
39
|
Cheng J, Wang X, Yuan X, Liu G, Chu Q. Emerging roles of exosome-derived biomarkers in cancer theranostics: messages from novel protein targets. Am J Cancer Res 2022; 12:2226-2248. [PMID: 35693088 PMCID: PMC9185602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Effective biomarkers that guide therapeutics with limited adverse effects, have emerged as attractive research topics in cancer diagnosis and treatment. Cancer-derived exosomes, a type of extracellular vesicles representing molecular signatures of cells of origin, could serve as stable reservoirs for potential biomarkers (i.e., proteins, nucleic acids) in non-invasive cancer diagnosis and prognosis. In this review, the physiological and pathological roles of exosomes and their protein components in facilitating tumorigenesis are highlighted. Exosomes carrying proteins can participate in tumor development and progression through multiple signaling pathways, including EMT, invasion and metastasis. Meanwhile, the practical applications of exosomal proteins in detecting and monitoring several solid-tumor cancers (including lung, breast, pancreatic, colorectal and prostate cancers) were also summarized. More clinically relevant, exosomal proteins play pivotal roles in transmitting oncogenic potential or resistance to therapies in recipient cells, which might further support therapeutic strategy determinations.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Xuechun Yuan
- Department of Medicinal Chemistry, China Pharmaceutical UniversityNanjing 211198, Jiangsu, China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Qian Chu
- Department of Medicinal Chemistry, China Pharmaceutical UniversityNanjing 211198, Jiangsu, China
| |
Collapse
|
40
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
41
|
Wu HJ, Chu PY. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers (Basel) 2022; 14:2052. [PMID: 35565189 PMCID: PMC9105073 DOI: 10.3390/cancers14092052] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and leading cause of cancer mortality among woman worldwide. The techniques of diagnosis, prognosis, and therapy monitoring of breast cancer are critical. Current diagnostic techniques are mammography and tissue biopsy; however, they have limitations. With the development of novel techniques, such as personalized medicine and genetic profiling, liquid biopsy is emerging as the less invasive tool for diagnosing and monitoring breast cancer. Liquid biopsy is performed by sampling biofluids and extracting tumor components, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free mRNA (cfRNA) and microRNA (miRNA), proteins, and extracellular vehicles (EVs). In this review, we summarize and focus on the recent discoveries of tumor components and biomarkers applied in liquid biopsy and novel development of detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and microfluidic devices.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| |
Collapse
|
42
|
Dong M, Liu Q, Xu Y, Zhang Q. Extracellular Vesicles: The Landscape in the Progression, Diagnosis, and Treatment of Triple-Negative Breast Cancer. Front Cell Dev Biol 2022; 10:842898. [PMID: 35300426 PMCID: PMC8920975 DOI: 10.3389/fcell.2022.842898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer (BC) with diverse biological behavior, high aggressiveness, and poor prognosis. Extracellular vesicles (EVs) are nano-sized membrane-bound vesicles secreted by nearly all cells, and are involved in physiological and pathological processes. EVs deliver multiple functional cargos into the extracellular space, including proteins, lipids, mRNAs, non-coding RNAs (ncRNAs), and DNA fragments. Emerging evidence confirms that EVs enable pro-oncogenic secretome delivering and trafficking for long-distance cell-to-cell communication in shaping the tumor microenvironment (TME). The transferred tumor-derived EVs modify the capability of invasive behavior and organ-specific metastasis in recipient cells. In addition, TNBC cell-derived EVs have been extensively investigated due to their promising potential as valuable biomarkers for diagnosis, monitoring, and treatment evaluation. Here, the present review will discuss the recent progress of EVs in TNBC growth, metastasis, immune regulation, as well as the potential in TNBC diagnosis and treatment application, hoping to decipher the advantages and challenges of EVs for combating TNBC.
Collapse
Affiliation(s)
- Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Liu
- Department of Thyroid and Breast Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yi Xu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Altei WF, Pachane BC, Souza C, Marques MMC, Selistre-de-Araújo H. New insights into the discovery of drugs for triple-negative breast cancer metastasis. Expert Opin Drug Discov 2022; 17:365-376. [PMID: 35179448 DOI: 10.1080/17460441.2022.2039619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is of great concern due to its aggressiveness and lack of targeted therapy. For these reasons, TNBC is one of the main causes of death in women, mainly due to metastases. Tumor dissemination has highlighted a set of possible targets, with extensive research into new single-target drugs, in addition to drug repurposing strategies, being undertaken to discover new classes of potential inhibitors of metastasis. AREAS COVERED The authors here describe the main proposed targets and the bases of their pharmacological inhibition with different chemical compounds. The authors also discuss the state-of-the-art from the latest clinical trials and highlight other potential targets for metastatic TNBC. EXPERT OPINION In the last decade, oncology research has changed its focus from primary tumors to moving tumor cells, their products, and to the secondary tumor and its surroundings, for the purpose of finding targets to treat metastasis. Consequently, our comprehension of the complexity of the metastatic process has increased drastically, with, furthermore, the discovery of new potential targets. Although promising, the wide range of strategies is still not effective to suppress TNBC metastasis in terms of increasing patient survival or decreasing the number of metastases. Treating or preventing metastasis continues to be a great challenge.
Collapse
Affiliation(s)
- Wanessa Fernanda Altei
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Radiotherapy Department, Barretos Cancer Hospital, Barretos, Brazil
| | - Bianca Cruz Pachane
- Graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Cristiano Souza
- Department of Clinical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, Brazil
| | | |
Collapse
|
44
|
Extracellular Vesicles as Mediators of Therapy Resistance in the Breast Cancer Microenvironment. Biomolecules 2022; 12:biom12010132. [PMID: 35053279 PMCID: PMC8773878 DOI: 10.3390/biom12010132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Resistance to various therapies, including novel immunotherapies, poses a major challenge in the management of breast cancer and is the leading cause of treatment failure. Bidirectional communication between breast cancer cells and the tumour microenvironment is now known to be an important contributor to therapy resistance. Several studies have demonstrated that crosstalk with the tumour microenvironment through extracellular vesicles is an important mechanism employed by cancer cells that leads to drug resistance via changes in protein, lipid and nucleic acid cargoes. Moreover, the cargo content enables extracellular vesicles to be used as effective biomarkers for predicting response to treatments and as potential therapeutic targets. This review summarises the literature to date regarding the role of extracellular vesicles in promoting therapy resistance in breast cancer through communication with the tumour microenvironment.
Collapse
|
45
|
Huang M, Lei Y, Zhong Y, Chung C, Wang M, Hu M, Deng L. New Insights Into the Regulatory Roles of Extracellular Vesicles in Tumor Angiogenesis and Their Clinical Implications. Front Cell Dev Biol 2021; 9:791882. [PMID: 34966744 PMCID: PMC8710745 DOI: 10.3389/fcell.2021.791882] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis is required for tumor growth and development. Extracellular vesicles (EVs) are important signaling entities that mediate communication between diverse types of cells and regulate various cell biological processes, including angiogenesis. Recently, emerging evidence has suggested that tumor-derived EVs play essential roles in tumor progression by regulating angiogenesis. Thousands of molecules are carried by EVs, and the two major types of biomolecules, noncoding RNAs (ncRNAs) and proteins, are transported between cells and regulate physiological and pathological functions in recipient cells. Understanding the regulation of EVs and their cargoes in tumor angiogenesis has become increasingly important. In this review, we summarize the effects of tumor-derived EVs and their cargoes, especially ncRNAs and proteins, on tumor angiogenesis and their mechanisms, and we highlight the clinical implications of EVs in bodily fluids as biomarkers and as diagnostic, prognostic, and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Maohua Huang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chiwing Chung
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Mei Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Min Hu
- Department of Hepatobiliary Surgery, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
46
|
Tang W, Xia M, Liao Y, Fang Y, Wen G, Zhong J. Exosomes in triple negative breast cancer: From bench to bedside. Cancer Lett 2021; 527:1-9. [PMID: 34902521 DOI: 10.1016/j.canlet.2021.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Exosomes are lipid bilayer extracellular vesicles with a size of 30-150 nm, which can be released by various types of cells including breast cancer cells. Exosomes are enriched with multiple nucleic acids, lipids, proteins and play critical biological roles by binding to recipient cells and transmitting various biological cargos. Studies have reported that tumor-derived exosomes are involved in cancer initiation and progression, such as promoting cancer invasion and metastasis, accelerating angiogenesis, contributing to epithelial-mesenchymal transition, and enhancing drug resistance in tumors. Recently the dysregulating of exosomes has been found in triple-negative breast cancer (TNBC), relating to the clinicopathological characteristics and prognosis of TNBC patients. Considering the poor prognosis and lack of adequate response to conventional therapy of TNBC, the discovery of certain exosomes as a new target for diagnosis and treatment of TNBC may be a good choice that provides new opportunities for the early diagnosis, clinical treatment of TNBC. Here, we first discuss the innovative prognostic and predictive effects of exosomes on TNBC, as well as the practical clinical problems. Secondly, we focus on the new therapeutic areas represented by exosomes, especially the impact of introducing exosomes in TNBC treatment in the future.
Collapse
Affiliation(s)
- Weiqiang Tang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajie Liao
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Gebo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
47
|
Siddharth S, Parida S, Muniraj N, Hercules S, Lim D, Nagalingam A, Wang C, Gyorffy B, Daniel JM, Sharma D. Concomitant activation of GLI1 and Notch1 contributes to racial disparity of human triple negative breast cancer progression. eLife 2021; 10:70729. [PMID: 34889737 PMCID: PMC8664295 DOI: 10.7554/elife.70729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/19/2021] [Indexed: 01/16/2023] Open
Abstract
Mortality from triple negative breast cancer (TNBC) is significantly higher in African American (AA) women compared to White American (WA) women emphasizing ethnicity as a major risk factor; however, the molecular determinants that drive aggressive progression of AA-TNBC remain elusive. Here, we demonstrate for the first time that AA-TNBC cells are inherently aggressive, exhibiting elevated growth, migration, and cancer stem-like phenotype compared to WA-TNBC cells. Meta-analysis of RNA-sequencing data of multiple AA- and WA-TNBC cell lines shows enrichment of GLI1 and Notch1 pathways in AA-TNBC cells. Enrichment of GLI1 and Notch1 pathway genes was observed in AA-TNBC. In line with this observation, analysis of TCGA dataset reveals a positive correlation between GLI1 and Notch1 in AA-TNBC and a negative correlation in WA-TNBC. Increased nuclear localization and interaction between GLI1 and Notch1 is observed in AA-TNBC cells. Of importance, inhibition of GLI1 and Notch1 synergistically improves the efficacy of chemotherapy in AA-TNBC cells. Combined treatment of AA-TNBC-derived tumors with GANT61, DAPT, and doxorubicin/carboplatin results in significant tumor regression, and tumor-dissociated cells show mitigated migration, invasion, mammosphere formation, and CD44+/CD24- population. Indeed, secondary tumors derived from triple-therapy-treated AA-TNBC tumors show diminished stem-like phenotype. Finally, we show that TNBC tumors from AA women express significantly higher level of GLI1 and Notch1 expression in comparison to TNBC tumors from WA women. This work sheds light on the racial disparity in TNBC, implicates the GLI1 and Notch1 axis as its functional mediators, and proposes a triple-combination therapy that can prove beneficial for AA-TNBC.
Collapse
Affiliation(s)
- Sumit Siddharth
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Sheetal Parida
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Nethaji Muniraj
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Shawn Hercules
- Department of Biology, MacMaster University, Hamilton, Canada
| | - David Lim
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Arumugam Nagalingam
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Chenguang Wang
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Balazs Gyorffy
- MTA TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary.,Semmelweis University, Department of Bioinformatics and 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Juliet M Daniel
- Department of Biology, MacMaster University, Hamilton, Canada
| | - Dipali Sharma
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| |
Collapse
|
48
|
Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021; 16:2605-2631. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape. In addition, recent strategies in targeting breast cancer stem cells are discussed. The role of naturally cell-secreted nanovesicles (exosomes) in the management of triple-negative breast cancer is also discussed.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore, 117559
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.,Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
49
|
Abstract
Exosomes are nano-sized extracellular vesicles (30–160 nm diameter) with lipid bilayer membrane secrete by various cells that mediate the communication between cells and tissue, which contain a variety of non-coding RNAs, mRNAs, proteins, lipids and other functional substances. Adipose tissue is important energy storage and endocrine organ in the organism. Recent studies have revealed that adipose tissue-derived exosomes (AT-Exosomes) play a critical role in many physiologically and pathologically functions. Physiologically, AT-Exosomes could regulate the metabolic homoeostasis of various organs or cells including liver and skeletal muscle. Pathologically, they could be used in the treatment of disease and or that they may be involved in the progression of the disease. In this review, we describe the basic principles and methods of exosomes isolation and identification, as well as further summary the specific methods. Moreover, we categorize the relevant studies of AT-Exosomes and summarize the different components and biological functions of mammalian exosomes. Most importantly, we elaborate AT-Exosomes crosstalk within adipose tissue and their functions on other tissues or organs from the physiological and pathological perspective. Based on the above analysis, we discuss what remains to be discovered problems in AT-Exosomes studies and prospect their directions needed to be further explored in the future.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Tiantian Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Zhaozhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Rui Cai
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| |
Collapse
|
50
|
Wang X, Sun C, Huang X, Li J, Fu Z, Li W, Yin Y. The Advancing Roles of Exosomes in Breast Cancer. Front Cell Dev Biol 2021; 9:731062. [PMID: 34790660 PMCID: PMC8591197 DOI: 10.3389/fcell.2021.731062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) develops from breast tissue and is the most common aggressive malignant tumor in women worldwide. Although advanced treatment strategies have been applied and reduced current mortality rates, BC control remains unsatisfactory. It is essential to elucidate the underlying molecular mechanisms to assist clinical options. Exosomes are a type of extracellular vesicles and mediate cellular communications by delivering various biomolecules (oncogenes, oncomiRs, proteins, and even pharmacological compounds). These bioactive molecules can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. Extensive studies have implicated exosomes in BC biology, including therapeutic resistance and the surrounding microenvironment. This review focuses on discussing the functions of exosomes in tumor treatment resistance, invasion and metastasis of BC. Moreover, we will also summarize multiple interactions between exosomes and the BC tumor microenvironment. Finally, we propose promising clinical applications of exosomes in BC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternity and Child Medical Institute, Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|