1
|
Quintana-Escobar AO, Méndez-Hernández HA, De-la-Peña C, Loyola-Vargas VM. Beyond the surface: the plant secretome as a bridge between the cell and its environment. PLANTA 2025; 261:67. [PMID: 40000454 DOI: 10.1007/s00425-025-04648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
MAIN CONCLUSIONS We describe the biological importance of proteins secreted in plants under different conditions and biological processes, the secretion mechanisms, methodologies for obtaining and identifying these proteins, and future perspectives. Molecule secretion inside and outside the cell is relevant to all areas of plant biology. Protein secretion, in particular, has intriguing possibilities due to the different secretion pathways that the cell uses to send biochemical messages. The secretion of proteins-secretomes-into extracellular space in response to different stimuli or stress situations, in vitro or in planta conditions, has been studied in plants and plant tissues. Proteomics has allowed the quantitative and qualitative analysis of this process and the measurement of proteins associated with the cellular development of different tissues. This has provided the means of evaluating a more precise biochemical state of the cells and the changes that occur during their growth. With the development of new techniques in proteomics, such as mass spectrometry, sequencing, and bioinformatics, it is now possible to elucidate the main proteins secreted, with all their posttranslational modifications, in different plant species and under different specific conditions. This review presents the different pathways of protein secretion in plants, highlighting the well-known importance of signal peptides. The advances and disadvantages of in planta and in vitro systems used for proteomic purposes are discussed. The principal proteomic techniques to better understand the biological function of the secretome are summarized.
Collapse
Affiliation(s)
- Ana O Quintana-Escobar
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Hugo A Méndez-Hernández
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Víctor M Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Yan T, Cai B, Li F, Guo D, Xia C, Lv H, Lin B, Gao H, Geng Z. Proteomic and metabolomic revealed the effect of shading treatment on cigar tobacco. FRONTIERS IN PLANT SCIENCE 2024; 15:1433575. [PMID: 39100083 PMCID: PMC11294240 DOI: 10.3389/fpls.2024.1433575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Shading or low light conditions are essential cultivation techniques for cigar wrapper tobacco leaves production, yet their impact on protein and metabolic regulatory networks is not well understood. In this study, we integrated proteomic and metabolomic analyses to uncover the potential molecular mechanisms affecting cigar tobacco leaves under shading treatment. Our findings include: (1) Identification of 780 significantly differentially expressed proteins (DEPs) in the cigar wrapper tobacco leaves, comprising 560 up-regulated and 220 down-regulated proteins, predominantly located in the chloroplast, cytoplasm, and nucleus, collectively accounting for 50.01%. (2) Discovery of 254 significantly differentially expressed metabolites (DEMs), including 148 up-regulated and 106 down-regulated metabolites. (3) KEGG pathway enrichment analysis revealed that the mevalonate (MVA) pathway within 'Terpenoid backbone biosynthesis' was inhibited, leading to a down-regulation of 'Sesquiterpenoid and triterpenoid biosynthesis'. Conversely, the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway was enhanced, resulting in an up-regulation of 'Monoterpenoid biosynthesis', 'Diterpenoid biosynthesis', and 'Carotenoid biosynthesis', thereby promoting the synthesis of terpenoids such as carotenoids and chlorophylls. Simultaneously, the Calvin cycle in 'Carbon fixation in photosynthetic organisms' was amplified, increasing photosynthetic efficiency. These results suggest that under low light conditions, cigar tobacco optimizes photosynthetic efficiency by reconfiguring its energy metabolism and terpenoid biosynthesis. This study contributes valuable insights into protein and metabolic analyses, paving the way for future functional studies on plant responses to low light.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huajun Gao
- Haikou cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, China
| | - Zhaoliang Geng
- Haikou cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, China
| |
Collapse
|
3
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
4
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Suanno C, Tonoli E, Fornari E, Savoca MP, Aloisi I, Parrotta L, Faleri C, Cai G, Coveney C, Boocock DJ, Verderio EAM, Del Duca S. Small extracellular vesicles released from germinated kiwi pollen (pollensomes) present characteristics similar to mammalian exosomes and carry a plant homolog of ALIX. FRONTIERS IN PLANT SCIENCE 2023; 14:1090026. [PMID: 36760648 PMCID: PMC9905850 DOI: 10.3389/fpls.2023.1090026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Introduction In the last decade, it has been discovered that allergen-bearing extracellular nanovesicles, termed "pollensomes", are released by pollen during germination. These extracellular vesicles (EVs) may play an important role in pollen-pistil interaction during fertilization, stabilizing the secreted bioactive molecules and allowing long-distance signaling. However, the molecular composition and the biological role of these EVs are still unclear. The present study had two main aims: (I) to clarify whether pollen germination is needed to release pollensomes, or if they can be secreted also in high humidity conditions; and (II) to investigate the molecular features of pollensomes following the most recent guidelines for EVs isolation and identification. Methods To do so, pollensomes were isolated from hydrated and germinated kiwi (Actinidia chinensis Planch.) pollen, and characterized using imaging techniques, immunoblotting, and proteomics. Results These analyses revealed that only germinated kiwi pollen released detectable concentrations of nanoparticles compatible with small EVs for shape and protein content. Moreover, a plant homolog of ALIX, which is a well-recognized and accepted marker of small EVs and exosomes in mammals, was found in pollensomes. Discussion The presence of this protein, along with other proteins involved in endocytosis, is consistent with the hypothesis that pollensomes could comprehend a prominent subpopulation of plant exosome-like vesicles.
Collapse
Affiliation(s)
- Chiara Suanno
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Bologna, Italy
| | - Elisa Tonoli
- Nottingham Trent University, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham, United Kingdom
| | - Enzo Fornari
- Chrysalis Health & Beauty Creation House, Nottingham, United Kingdom
| | - Maria P. Savoca
- Nottingham Trent University, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham, United Kingdom
| | - Iris Aloisi
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Bologna, Italy
| | - Luigi Parrotta
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Bologna, Italy
- University of Bologna, Interdepartmental Centre for Agri-Food Industrial Research, Cesena, Italy
| | - Claudia Faleri
- University of Siena, Department of Life Sciences, Siena, Italy
| | - Giampiero Cai
- University of Siena, Department of Life Sciences, Siena, Italy
| | - Clare Coveney
- Nottingham Trent University, Department of Biosciences, Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham, United Kingdom
- Nottingham Trent University, John van Geest Cancer Research Centre, Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham, United Kingdom
| | - David J. Boocock
- Nottingham Trent University, Department of Biosciences, Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham, United Kingdom
- Nottingham Trent University, John van Geest Cancer Research Centre, Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham, United Kingdom
| | - Elisabetta A. M. Verderio
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Bologna, Italy
- Nottingham Trent University, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham, United Kingdom
| | - Stefano Del Duca
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Bologna, Italy
- University of Bologna, Interdepartmental Centre for Agri-Food Industrial Research, Cesena, Italy
| |
Collapse
|
6
|
Chang Y, Gong W, Xu J, Gong H, Song Q, Xiao S, Yuan D. Integration of semi- in vivo assays and multi-omics data reveals the effect of galloylated catechins on self-pollen tube inhibition in Camellia oleifera. HORTICULTURE RESEARCH 2023; 10:uhac248. [PMID: 36643738 PMCID: PMC9832949 DOI: 10.1093/hr/uhac248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 05/02/2023]
Abstract
Camellia oil extracted from the seeds of Camellia oleifera Abel. is a popular and high-quality edible oil, but its yield is limited by seed setting, which is mainly caused by self-incompatibility (SI). One of the obvious biological features of SI plants is the inhibition of self-pollen tubes; however, the underlying mechanism of this inhibition in C. oleifera is poorly understood. In this study, we constructed a semi-in vivo pollen tube growth test (SIV-PGT) system that can screen for substances that inhibit self-pollen tubes without interference from the genetic background. Combined with multi-omics analysis, the results revealed the important role of galloylated catechins in self-pollen tube inhibition, and a possible molecular regulatory network mediated by UDP-glycosyltransferase (UGT) and serine carboxypeptidase-like (SCPL) was proposed. In summary, galloylation of catechins and high levels of galloylated catechins are specifically involved in pollen tube inhibition under self-pollination rather than cross-pollination, which provides a new understanding of SI in C. oleifera. These results will contribute to sexual reproduction research on C. oleifera and provide theoretical support for improving Camellia oil yield in production.
Collapse
Affiliation(s)
- Yihong Chang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jinming Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Han Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiling Song
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shixin Xiao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
7
|
Weng X, Wang H. Apical vesicles: Social networking at the pollen tube tip. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Klodová B, Potěšil D, Steinbachová L, Michailidis C, Lindner AC, Hackenberg D, Becker JD, Zdráhal Z, Twell D, Honys D. Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. PLANT REPRODUCTION 2022:10.1007/s00497-022-00452-5. [PMID: 36282332 PMCID: PMC10363097 DOI: 10.1007/s00497-022-00452-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model. Further, the role of alternative splicing has not been fully addressed, yet post-transcriptional and post-translational regulation may have a key role in gene expression dynamics during microgametogenesis. We have refined and substantially updated global transcriptomic and proteomic changes in developing pollen for two Arabidopsis accessions. Despite the superiority of RNA-seq over microarray-based platforms, we demonstrate high reproducibility and comparability. We identify thousands of long non-coding RNAs as potential regulators of pollen development, hundreds of changes in alternative splicing and provide insight into mRNA translation rate and storage in developing pollen. Our analysis delivers an integrated perspective of gene expression dynamics in developing Arabidopsis pollen and a foundation for studying the role of alternative splicing in this model.
Collapse
Affiliation(s)
- Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Praha 2, 128 00, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ann-Cathrin Lindner
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- KWS SAAT SE & Co. KGaA, Grimsehlstraße 31, 37574, Einbeck, Germany
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
9
|
Rathi D, Verma JK, Chakraborty S, Chakraborty N. Suspension cell secretome of the grain legume Lathyrus sativus (grasspea) reveals roles in plant development and defense responses. PHYTOCHEMISTRY 2022; 202:113296. [PMID: 35868566 DOI: 10.1016/j.phytochem.2022.113296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Plant secretomics has been especially important in understanding the molecular basis of plant development, stress resistance and biomarker discovery. In addition to sharing a similar role in maintaining cell metabolism and biogenesis with the animal secretome, plant-secreted proteins actively participate in signaling events crucial for cellular homeostasis during stress adaptation. However, investigation of the plant secretome remains largely overlooked, particularly in pulse crops, demanding urgent attention. To better understand the complexity of the secretome, we developed a reference map of a stress-resilient orphan legume, Lathyrus sativus (grasspea), which can be utilized as a potential proteomic resource. Secretome analysis of L. sativus led to the identification of 741 nonredundant proteins belonging to a myriad of functional classes, including antimicrobial, antioxidative and redox potential. Computational prediction of the secretome revealed that ∼29% of constituents are predicted to follow unconventional protein secretion (UPS) routes. We conducted additional in planta analysis to determine the localization of two secreted proteins, recognized as cell surface residents. Sequence-based homology comparison revealed that L. sativus shares ∼40% of the constituents reported thus far from in vitro and in planta secretome analysis in model and crop species. Significantly, we identified 571 unique proteins secreted from L. sativus involved in cell-to-cell communication, organ development, kinase-mediated signaling, and stress perception, among other critical roles. Conclusively, the grasspea secretome participates in putative crosstalk between genetic circuits that regulate developmental processes and stress resilience.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra Kumar Verma
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Hormonal Signaling in the Progamic Phase of Fertilization in Plants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants and has been the subject of intense fundamental research that has a pronounced practical value. The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin, gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence different stages of plant development and growth. Here, we mainly focus on the information about the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the coordination of successive events in the developing anther, including the TAP development and cell death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both ET and CK take part in the regulation of E. ET signaling accompanies adhesion, hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues. Thus, ET production may be implicated in the pollination signaling between organs accumulated in the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest that ET and CK signaling are involved in S-RNase-based SI.
Collapse
|
11
|
Cong M, Tan S, Li S, Gao L, Huang L, Zhang HG, Qiao H. Technology insight: Plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev 2022; 182:114108. [PMID: 34990792 DOI: 10.1016/j.addr.2021.114108] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/19/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Within the past decades, extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. Besides EVs, exosome-like nanoparticles (ELNs) derived from plants were also emerging. Comparing to EVs, ELNs are source-widespread, cost-effective and easy to obtain. Their definite activities can be utilized for potential prevention/treatment of an abundance of diseases, including metabolic syndrome, cancer, colitis, alcoholic hepatitis and infectious diseases, which highlights ELNs as promising biotherapeutics. In addition, the potential of ELNs as natural or engineered drug carriers is also attractive. In this review, we tease out the timeline of plant EVs and ELNs, introduce the arising separation, purification and characterization techniques, state the stability and transport manner, discuss the therapeutic opportunities as well as the potential as novel drug carriers. Finally, the challenges and the direction of efforts to realize the clinical transformation of ELNs are also discussed.
Collapse
|
12
|
Steinbachová L, Matoušek J, Steger G, Matoušková H, Radišek S, Honys D. Transformation of Seed Non-Transmissible Hop Viroids in Nicotiana benthamiana Causes Distortions in Male Gametophyte Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112398. [PMID: 34834761 PMCID: PMC8624972 DOI: 10.3390/plants10112398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 05/27/2023]
Abstract
Viroids are small, non-coding, parasitic RNAs that promote developmental distortions in sensitive plants. We analyzed pollen of Nicotiana benthamiana after infection and/or ectopic transformation with cDNAs of citrus bark cracking viroid (CBCVd), apple fruit crinkle viroid (AFCVd) and potato spindle tuber viroid (PSTVd) variant AS1. These viroids were seed non-transmissible in N. benthamiana. All viroids propagated to high levels in immature anthers similar to leaves, while their levels were drastically reduced by approximately 3.6 × 103, 800 and 59 times in mature pollen of CBCVd, AFCVd and PSTVd infected N. benthamiana, respectively, in comparison to leaves. These results suggest similar elimination processes during male gametophyte development as in the Nicotiana tabacum we presented in our previous study. Mature pollen of N. benthamiana showed no apparent defects in infected plants although all three viroids induced strong pathological symptoms on leaves. While Nicotiana species have naturally bicellular mature pollen, we noted a rare occurrence of mature pollen with three nuclei in CBCVd-infected N. benthamiana. Changes in the expression of ribosomal marker proteins in AFCVd-infected pollen were detected, suggesting some changes in pollen metabolism. N. benthamiana transformed with 35S-driven viroid cDNAs showed strong symptoms including defects in pollen development. A large number of aborted pollen (34% and 62%) and a slight increase of young pollen grains (8% and 15%) were found in mature pollen of AFCVd and CBCVd transformants, respectively, in comparison to control plants (3.9% aborted pollen and 0.3% young pollen). Moreover, pollen grains with malformed nuclei or trinuclear pollen were found in CBCVd-transformed plants. Our results suggest that "forcing" overexpression of seed non-transmissible viroid led to strong pollen pathogenesis. Viroid adaptation to pollen metabolism can be assumed as an important factor for viroid transmissibility through pollen and seeds.
Collapse
Affiliation(s)
- Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic;
| | - Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (H.M.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, D-40204 Düsseldorf, Germany;
| | - Helena Matoušková
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (H.M.)
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia;
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic;
| |
Collapse
|
13
|
Abstract
The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| |
Collapse
|
14
|
Flores-Tornero M, Wang L, Potěšil D, Hafidh S, Vogler F, Zdráhal Z, Honys D, Sprunck S, Dresselhaus T. Comparative analyses of angiosperm secretomes identify apoplastic pollen tube functions and novel secreted peptides. PLANT REPRODUCTION 2021; 34:47-60. [PMID: 33258014 PMCID: PMC7902602 DOI: 10.1007/s00497-020-00399-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/10/2020] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE Analyses of secretomes of in vitro grown pollen tubes from Amborella, maize and tobacco identified many components of processes associated with the cell wall, signaling and metabolism as well as novel small secreted peptides. Flowering plants (angiosperms) generate pollen grains that germinate on the stigma and produce tubes to transport their sperm cells cargo deep into the maternal reproductive tissues toward the ovules for a double fertilization process. During their journey, pollen tubes secrete many proteins (secreted proteome or secretome) required, for example, for communication with the maternal reproductive tissues, to build a solid own cell wall that withstands their high turgor pressure while softening simultaneously maternal cell wall tissue. The composition and species specificity or family specificity of the pollen tube secretome is poorly understood. Here, we provide a suitable method to obtain the pollen tube secretome from in vitro grown pollen tubes of the basal angiosperm Amborella trichopoda (Amborella) and the Poaceae model maize. The previously published secretome of tobacco pollen tubes was used as an example of eudicotyledonous plants in this comparative study. The secretome of the three species is each strongly different compared to the respective protein composition of pollen grains and tubes. In Amborella and maize, about 40% proteins are secreted by the conventional "classic" pathway and 30% by unconventional pathways. The latter pathway is expanded in tobacco. Proteins enriched in the secretome are especially involved in functions associated with the cell wall, cell surface, energy and lipid metabolism, proteolysis and redox processes. Expansins, pectin methylesterase inhibitors and RALFs are enriched in maize, while tobacco secretes many proteins involved, for example, in proteolysis and signaling. While the majority of proteins detected in the secretome occur also in pollen grains and pollen tubes, and correlate in the number of mapped peptides with relative gene expression levels, some novel secreted small proteins were identified. Moreover, the identification of secreted proteins containing pro-peptides indicates that these are processed in the apoplast. In conclusion, we provide a proteome resource from three distinct angiosperm clades that can be utilized among others to study the localization, abundance and processing of known secreted proteins and help to identify novel pollen tube secreted proteins for functional studies.
Collapse
Affiliation(s)
- María Flores-Tornero
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lele Wang
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Frank Vogler
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
15
|
Reimann R, Kah D, Mark C, Dettmer J, Reimann TM, Gerum RC, Geitmann A, Fabry B, Dietrich P, Kost B. Durotropic Growth of Pollen Tubes. PLANT PHYSIOLOGY 2020; 183:558-569. [PMID: 32241878 PMCID: PMC7271775 DOI: 10.1104/pp.19.01505] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/23/2020] [Indexed: 05/06/2023]
Abstract
To reach the female gametophyte, growing pollen tubes must penetrate different tissues within the pistil, the female reproductive organ of a flower. Past research has identified various chemotropic cues that guide pollen tubes through the transmitting tract of the pistil, which represents the longest segment of its growth path. In addition, physical mechanisms also play a role in pollen tube guidance; however, these processes remain poorly understood. Here we show that pollen tubes from plants with solid transmitting tracts actively respond to the stiffness of the environment. We found that pollen tubes from Nicotiana tabacum and other plant species with a solid or semisolid transmitting tract increase their growth rate in response to an increasing matrix stiffness. By contrast, pollen tubes from Lilium longiflorum and other plant species with a hollow transmitting tract decrease their growth rate with increasing matrix stiffness, even though the forces needed to maintain a constant growth rate remain far below the maximum penetration force these pollen tubes are able to generate. Moreover, when confronted with a transition from a softer to a stiffer matrix, pollen tubes from N. tabacum display a greater ability to penetrate into a stiffer matrix compared with pollen tubes from L. longiflorum, even though the maximum force generated by pollen tubes from N. tabacum (11 µN) is smaller than the maximum force generated by pollen tubes from L. longiflorum (36 µN). These findings demonstrate a mechano-sensitive growth behavior, termed here durotropic growth, that is only expressed in pollen tubes from plants with a solid or semisolid transmitting tract and thus may contribute to an effective pollen tube guidance within the pistil.
Collapse
Affiliation(s)
- Ronny Reimann
- Cell Biology, Department of Biology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Delf Kah
- Biophysics, Department of Physics, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Christoph Mark
- Biophysics, Department of Physics, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Jan Dettmer
- Cell Biology, Department of Biology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Theresa M Reimann
- Cell Biology, Department of Biology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Richard C Gerum
- Biophysics, Department of Physics, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Ben Fabry
- Biophysics, Department of Physics, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Benedikt Kost
- Cell Biology, Department of Biology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| |
Collapse
|
16
|
Matoušek J, Steinbachová L, Drábková LZ, Kocábek T, Potěšil D, Mishra AK, Honys D, Steger G. Elimination of Viroids from Tobacco Pollen Involves a Decrease in Propagation Rate and an Increase of the Degradation Processes. Int J Mol Sci 2020; 21:E3029. [PMID: 32344786 PMCID: PMC7216239 DOI: 10.3390/ijms21083029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Some viroids-single-stranded, non-coding, circular RNA parasites of plants-are not transmissible through pollen to seeds and to next generation. We analyzed the cause for the elimination of apple fruit crinkle viroid (AFCVd) and citrus bark cracking viroid (CBCVd) from male gametophyte cells of Nicotiana tabacum by RNA deep sequencing and molecular methods using infected and transformed tobacco pollen tissues at different developmental stages. AFCVd was not transferable from pollen to seeds in reciprocal pollinations, due to a complete viroid eradication during the last steps of pollen development and fertilization. In pollen, the viroid replication pathway proceeds with detectable replication intermediates, but is dramatically depressed in comparison to leaves. Specific and unspecific viroid degradation with some preference for (-) chains occurred in pollen, as detected by analysis of viroid-derived small RNAs, by quantification of viroid levels and by detection of viroid degradation products forming "comets" on Northern blots. The decrease of viroid levels during pollen development correlated with mRNA accumulation of several RNA-degrading factors, such as AGO5 nuclease, DICER-like and TUDOR S-like nuclease. In addition, the functional status of pollen, as a tissue with high ribosome content, could play a role during suppression of AFCVd replication involving transcription factors IIIA and ribosomal protein L5.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Lenka Záveská Drábková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.M.); (T.K.); (A.K.M.)
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| |
Collapse
|
17
|
Fíla J, Klodová B, Potěšil D, Juříček M, Šesták P, Zdráhal Z, Honys D. The beta Subunit of Nascent Polypeptide Associated Complex Plays A Role in Flowers and Siliques Development of Arabidopsis thaliana. Int J Mol Sci 2020; 21:E2065. [PMID: 32192231 PMCID: PMC7139743 DOI: 10.3390/ijms21062065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/06/2023] Open
Abstract
The nascent polypeptide-associated (NAC) complex was described in yeast as a heterodimer composed of two subunits, α and β, and was shown to bind to the nascent polypeptides newly emerging from the ribosomes. NAC function was widely described in yeast and several information are also available about its role in plants. The knock down of individual NAC subunit(s) led usually to a higher sensitivity to stress. In Arabidopsis thaliana genome, there are five genes encoding NACα subunit, and two genes encoding NACβ. Double homozygous mutant in both genes coding for NACβ was acquired, which showed a delayed development compared to the wild type, had abnormal number of flower organs, shorter siliques and greatly reduced seed set. Both NACβ genes were characterized in more detail-the phenotype of the double homozygous mutant was complemented by a functional NACβ copy. Then, both NACβ genes were localized to nuclei and cytoplasm and their promoters were active in many organs (leaves, cauline leaves, flowers, pollen grains, and siliques together with seeds). Since flowers were the most affected organs by nacβ mutation, the flower buds' transcriptome was identified by RNA sequencing, and their proteome by gel-free approach. The differential expression analyses of transcriptomic and proteomic datasets suggest the involvement of NACβ subunits in stress responses, male gametophyte development, and photosynthesis.
Collapse
Affiliation(s)
- Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - Miloslav Juříček
- Station of Apple Breeding for Disease Resistance, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic;
| | - Petr Šesták
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (D.P.); (Z.Z.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| |
Collapse
|
18
|
Abstract
Detection of secreted proteins and peptides during pollen tube guidance has been impeded due to lack of techniques to capture the pollen tube secretome without contamination from the female secreted proteins. Here we present a protocol to detect tobacco pollen tube secreted proteins, semi-in vivo pollen tube secretome assay (SIV-PS), following pollen tube crosstalk with the female reproductive tissues. This method combines the advantages of in vivo pollen tube-pistil interaction and filter-aided sample preparation (FASP) techniques to obtain an in-depth proteome coverage. The SIV-PS method is rapid, efficient, inexpensive, does not require specialized equipment or expertise, and provides a snapshot of the ongoing molecular interplay. We show that the secretome obtained is of greater purity (<1.4% ADH activities) and that pollen tubes are physiologically and cytologically unaffected. A compendium of quality controls is described and a rough guide on downstream bioinformatics analysis is outlined. The SIV-PS method is applicable to all studies of protein secretion using pollen tube as a model and can be easily adapted to other flowering species with modification. The overall duration for this protocol is approximately 8 hours spanning 4 days (an average of 2 h/day per two workers) excluding microscopy and LC-MS/MS analysis.
Collapse
|
19
|
Kulichová K, Kumar V, Steinbachová L, Klodová B, Timofejeva L, Juříček M, Honys D, Hafidh S. PRP8A and PRP8B spliceosome subunits act co-ordinately to control pollen tube attraction in Arabidopsis. Development 2020; 147:dev.186742. [DOI: 10.1242/dev.186742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/14/2020] [Indexed: 02/04/2023]
Abstract
Precise guided pollen tube growth by the female gametophyte is a pre-requisite for successful sexual reproduction in flowering plants. Cysteine-rich proteins (CRPs) secreted from the embryo sac are known pollen tube attractants perceived by pollen tube receptor-like kinases (RLK's). How pre-mRNA splicing facilitates this cell-to-cell communication is not understood. Here, we report novel function of Pre-mRNA PROCESSING factor 8 paralogs, PRP8A and PRP8B, as regulators of pollen tube attraction. Double mutant prp8a prp8b ovules cannot attract pollen tubes, and prp8a prp8b pollen tubes fail in sensing ovules attraction signals. Only 3% of ovule-expressed genes were misregulated in prp8a prp8b. Combination of RNA-seq and MYB98/LURE1.2-YFP reporter revealed the expression of MYB98, LUREs and 49 other CRPs were downregulated suggesting loss of synergid cell fate. Differential Exon usage (DEU) and Intron-retention (IR) analysis revealed autoregulation of PPR8A/PRP8B splicing. In vivo, PRP8A coimmunoprecipitates with splicing enhancer AtSF3A1, suggesting involvement of PRP8A in 3′-splice site selection. Our data hint that PRP8A/PRP8B module exhibit spliceosome-autoregulation to facilitate pollen tube attraction via transcriptional regulation of MYB98, CRPs and LURE pollen tube attractants.
Collapse
Affiliation(s)
- Katarína Kulichová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Ljudmilla Timofejeva
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Miloslav Juříček
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
- Department of Plant Experimental Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 263, 165 02 Prague 6, Czech Republic
| |
Collapse
|
20
|
Wang Y, Li G, Guo X, Sun R, Dong T, Yang Q, Wang Q, Li C. Dissecting the genetic architecture of seed-cotton and lint yields in Upland cotton using genome-wide association mapping. BREEDING SCIENCE 2019; 69:611-620. [PMID: 31988625 PMCID: PMC6977443 DOI: 10.1270/jsbbs.19057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/23/2019] [Indexed: 05/18/2023]
Abstract
Seed-cotton yield (SY) and lint yield (LY) are the most important yield traits of cotton. Thus, it is critical to dissect their genetic architecture. Upland cotton (Gossypium hirsutum) is widely grown worldwide. In this study, a genome-wide association mapping was performed based on the CottonSNP80K array to dissect the genetic architecture of SY and LY in Upland cotton. Twenty-three significant associations were detected within four environments, including 11 associated with SY and 12 associated with LY. Seven single nucleotide polymorphisms (SNPs), TM234, TM237, TM247, TM255, TM256, TM263, and TM264, were co-associated with the two traits, which may indicate pleiotropy or intergenic tight linkages. Five SNPs, TM13332, TM39771, TM57119, TM81653, and TM81660, were coincided with those of previous reports and could be used in marker-assisted selection. Combining functional annotations with expression analyses of the genes identified within 400 kb of the significantly associated SNPs, we hypothesize that the three genes, Gh_D05G1077 and Gh_D13G1571 for SY, and Gh_A11G0775 for LY, may have the potential to increase cotton yield. The results would provide useful information for understanding the genetic basis of yield traits in Upland cotton and for facilitating its high-yield breeding through molecular design.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Guirong Li
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Xinlei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics,
Beijing 100081,
China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Tao Dong
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Qiuyue Yang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Chengqi Li
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
- Corresponding author (e-mail: )
| |
Collapse
|
21
|
Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, Kramdi A, Olas J, Mueller-Roeber B, Sokolowska E, Zhang W, Li R, Pitzalis N, Heinlein M, Zhang S, Genovesio A, Colot V, Kragler F. m 5C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants. Curr Biol 2019; 29:2465-2476.e5. [PMID: 31327714 DOI: 10.1016/j.cub.2019.06.042] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thaliana mRNAs harboring the modified base 5-methylcytosine (m5C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m5C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function.
Collapse
Affiliation(s)
- Lei Yang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Valentina Perrera
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Eleftheria Saplaoura
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Federico Apelt
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Amira Kramdi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Justyna Olas
- Institute of Biochemistry and Biology, University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Ewelina Sokolowska
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Wenna Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany; China Agricultural University, 17 Qinghua East Road, 100080 Haidian, Beijing, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China; Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, China
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Friedrich Kragler
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany.
| |
Collapse
|
22
|
Zhou LZ, Dresselhaus T. Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 2018; 131:453-496. [PMID: 30612627 DOI: 10.1016/bs.ctdb.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
23
|
A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Nat Commun 2018; 9:3678. [PMID: 30202064 PMCID: PMC6131150 DOI: 10.1038/s41467-018-06139-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/04/2018] [Indexed: 11/08/2022] Open
Abstract
Unilateral cross-incompatibility (UCI) is a unidirectional inter/intra-population reproductive barrier when both parents are self-compatible. Maize Gametophyte factor1 (Ga1) is an intraspecific UCI system and has been utilized in breeding. However, the mechanism underlying maize UCI specificity has remained mysterious for decades. Here, we report the cloning of ZmGa1P, a pollen-expressed PECTIN METHYLESTERASE (PME) gene at the Ga1 locus that can confer the male function in the maize UCI system. Homozygous transgenic plants expressing ZmGa1P in a ga1 background can fertilize Ga1-S plants and can be fertilized by pollen of ga1 plants. ZmGa1P protein is predominantly localized to the apex of growing pollen tubes and may interact with another pollen-specific PME protein, ZmPME10-1, to maintain the state of pectin methylesterification required for pollen tube growth in Ga1-S silks. Our study discloses a PME-mediated UCI mechanism and provides a tool to manipulate hybrid breeding. Unilateral cross-incompatibility between certain varieties of maize prevents cross-fertilization and can facilitate hybrid breeding. Here the authors show that a PECTIN METHYLESTERASE gene is able to overcome this reproductive barrier and confer fertility when expressed in pollen of the male parent.
Collapse
|
24
|
Hafidh S, Potěšil D, Müller K, Fíla J, Michailidis C, Herrmannová A, Feciková J, Ischebeck T, Valášek LS, Zdráhal Z, Honys D. Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics. PLANT PHYSIOLOGY 2018; 178:258-282. [PMID: 30007911 PMCID: PMC6130014 DOI: 10.1104/pp.18.00648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 05/19/2023]
Abstract
Reproduction success in angiosperm plants depends on robust pollen tube growth through the female pistil tissues to ensure successful fertilization. Accordingly, there is an apparent evolutionary trend to accumulate significant reserves during pollen maturation, including a population of stored mRNAs, that are utilized later for a massive translation of various proteins in growing pollen tubes. Here, we performed a thorough transcriptomic and proteomic analysis of stored and translated transcripts in three subcellular compartments of tobacco (Nicotiana tabacum), long-term storage EDTA/puromycin-resistant particles, translating polysomes, and free ribonuclear particles, throughout tobacco pollen development and in in vitro-growing pollen tubes. We demonstrated that the composition of the aforementioned complexes is not rigid and that numerous transcripts were redistributed among these complexes during pollen development, which may represent an important mechanism of translational regulation. Therefore, we defined the pollen sequestrome as a distinct and highly dynamic compartment for the storage of stable, translationally repressed transcripts and demonstrated its dynamics. We propose that EDTA/puromycin-resistant particle complexes represent aggregated nontranslating monosomes as the primary mediators of messenger RNA sequestration. Such organization is extremely useful in fast tip-growing pollen tubes, where rapid and orchestrated protein synthesis must take place in specific regions.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Karel Müller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - Christos Michailidis
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Jana Feciková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 00 Prague 6, Czech Republic
| |
Collapse
|
25
|
Mizuta Y, Higashiyama T. Chemical signaling for pollen tube guidance at a glance. J Cell Sci 2018; 131:131/2/jcs208447. [DOI: 10.1242/jcs.208447] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
Pollen tube guidance is a unique navigating system that is required for the successful sexual reproduction of plants. As plant sperm cells are non-motile and egg cells are embedded deep inside the female tissues, a pollen tube delivers the two sperm cells that it contains by growing towards the ovule, in which the egg cell resides. Pollen tube growth towards the ovule is precisely controlled and divided into two stages, preovular and ovular guidance. In this Cell Science at a Glance article and accompanying poster, we provide a comprehensive overview of pollen tube guidance and highlight some of the attractant peptides used during ovular guidance. We further discuss the precise one-to-one guidance system that exists in multi-ovular plants. The pollen tube-blocking system, which is mediated by male–female crosstalk communication, to avoid attraction of multiple pollen tubes, is also reviewed.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
26
|
Kanaoka MM. Cell-cell communications and molecular mechanisms in plant sexual reproduction. JOURNAL OF PLANT RESEARCH 2018; 131:37-47. [PMID: 29181649 DOI: 10.1007/s10265-017-0997-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Sexual reproduction is achieved by precise interactions between male and female reproductive organs. In plant fertilization, sperm cells are carried to ovules by pollen tubes. Signals from the pistil are involved in elongation and control of the direction of the pollen tube. Genetic, reverse genetic, and cell biological analyses using model plants have identified various factors related to the regulation of pollen tube growth and guidance. In this review, I summarize the mechanisms and molecules controlling pollen tube growth to the ovule, micropylar guidance, reception of the guidance signal in the pollen tube, rupture of the pollen tube to release sperm cells, and cessation of the tube guidance signal. I also briefly introduce various techniques used to analyze pollen tube guidance in vitro.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
27
|
Ghatak A, Chaturvedi P, Paul P, Agrawal GK, Rakwal R, Kim ST, Weckwerth W, Gupta R. Proteomics survey of Solanaceae family: Current status and challenges ahead. J Proteomics 2017; 169:41-57. [PMID: 28528990 DOI: 10.1016/j.jprot.2017.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/19/2017] [Accepted: 05/16/2017] [Indexed: 10/25/2022]
Abstract
Solanaceae is one of the major economically important families of higher plants and has played a central role in human nutrition since the dawn of human civilization. Therefore, researchers have always been interested in understanding the complex behavior of Solanaceae members to identify key transcripts, proteins or metabolites, which are potentially associated with major traits. Proteomics studies have contributed significantly to understanding the physiology of Solanaceae members. A compilation of all the published reports showed that both gel-based (75%) and gel-free (25%) proteomic technologies have been utilized to establish the proteomes of different tissues, organs, and organelles under normal and adverse environmental conditions. Among the Solanaceae members, most of the research has been focused on tomato (42%) followed by potato (28%) and tobacco (20%), owing to their economic importance. This review comprehensively covers the progress made so far in the field of Solanaceae proteomics including novel methods developed to isolate the proteins from different tissues. Moreover, key proteins presented in this review can serve as a resource to select potential targets for crop improvement. We envisage that information presented in this review would enable us to design the stress tolerant plants with enhanced yields.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 68583-0915, USA
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal; Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea.
| |
Collapse
|
28
|
Rotsch AH, Kopka J, Feussner I, Ischebeck T. Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:129-146. [PMID: 28685881 DOI: 10.1111/tpj.13633] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 05/23/2023]
Abstract
While changes in the transcriptome and proteome of developing pollen have been investigated in tobacco and other species, the metabolic consequences remain rather unclear. Here, a broad range of metabolites was investigated in close succession of developmental stages. Thirteen stages of tobacco male gametophyte development were collected, ranging from tetrads to pollen tubes. Subsequently, the central metabolome and sterol composition were analyzed by GC-mass spectrometry (MS), monitoring 77 metabolites and 29 non-identified analytes. The overall results showed that development and tube growth could be divided into eight metabolic phases with the phase including mitosis I being most distinct. During maturation, compounds such as sucrose and proline accumulated. These were degraded after rehydration, while γ-aminobutyrate transiently increased, possibly deriving from proline breakdown. Sterol analysis revealed that tetrads harbor similar sterols as leaves, but throughout maturation unusual sterols increased. Lastly, two further sterols exclusively accumulated in pollen tubes. This study allows a deeper look into metabolic changes during the development of a quasi-single cell type. Metabolites accumulating during maturation might accelerate pollen germination and tube growth, protect from desiccation, and feed pollinators. Future studies of the underlying processes orchestrating the changes in metabolite levels might give valuable insights into cellular regulation of plant metabolism.
Collapse
Affiliation(s)
- Alexander H Rotsch
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| |
Collapse
|
29
|
Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA. The Molecular Dialog between Flowering Plant Reproductive Partners Defined by SNP-Informed RNA-Sequencing. THE PLANT CELL 2017; 29:984-1006. [PMID: 28400492 PMCID: PMC5466024 DOI: 10.1105/tpc.16.00816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 04/10/2017] [Indexed: 05/25/2023]
Abstract
The molecular interactions between reproductive cells are critical for determining whether sexual reproduction between individuals results in fertilization and can result in barriers to interspecific hybridization. However, it is a challenge to define the complete molecular exchange between reproductive partners because parents contribute to a complex mixture of cells during reproduction. We unambiguously defined male- and female-specific patterns of gene expression during Arabidopsis thaliana reproduction using single nucleotide polymorphism-informed RNA-sequencing analysis. Importantly, we defined the repertoire of pollen tube-secreted proteins controlled by a group of MYB transcription factors that are required for sperm release from the pollen tube to the female gametes, a critical barrier to interspecific hybridization. Our work defines the pollen tube gene products that respond to the pistil and are required for reproductive success; moreover, we find that these genes are highly evolutionarily plastic both at the level of coding sequence and expression across A. thaliana accessions.
Collapse
Affiliation(s)
- Alexander R Leydon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Caleb Weinreb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Elena Venable
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Anke Reinders
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108-6106
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108-6106
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
30
|
Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S. Orchestrating rapid long-distance signaling in plants with Ca 2+ , ROS and electrical signals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:698-707. [PMID: 28112437 PMCID: PMC5677518 DOI: 10.1111/tpj.13492] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 05/18/2023]
Abstract
Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant-wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca2+ and electrical signaling ('trio signaling') appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as the ROS producing NAPDH oxidase RBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor-like channels GLR3.3 and GLR3.6. The plant cell wall presents a plant-specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such as ROS or H+ remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell-to-cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses.
Collapse
Affiliation(s)
- Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA
- For correspondence ( or )
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, The Gonda Medical Diagnostic Research Building (204), Room 211, Ramat-Gan 52900, Israel
| | - Ian Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Jeffrey Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 North Virginia Street, Reno, NV 89557, USA
- For correspondence ( or )
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
31
|
Pompa A, De Marchis F, Pallotta MT, Benitez-Alfonso Y, Jones A, Schipper K, Moreau K, Žárský V, Di Sansebastiano GP, Bellucci M. Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology. Int J Mol Sci 2017; 18:ijms18040703. [PMID: 28346345 PMCID: PMC5412289 DOI: 10.3390/ijms18040703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022] Open
Abstract
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes.
Collapse
Affiliation(s)
- Andrea Pompa
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | | | | | - Alexandra Jones
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.
| | - Kevin Moreau
- Clinical Biochemistry, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 1TN, UK.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic.
- Institute of Experimental Botany, v.v.i., the Czech Academy of Sciences, 16502, Prague 6, Czech Republic.
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, S.P. 6, 73100 Lecce, Italy.
| | - Michele Bellucci
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| |
Collapse
|
32
|
Betsch L, Savarin J, Bendahmane M, Szecsi J. Roles of the Translationally Controlled Tumor Protein (TCTP) in Plant Development. Results Probl Cell Differ 2017; 64:149-172. [PMID: 29149407 DOI: 10.1007/978-3-319-67591-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a conserved protein which expression was associated with several biochemical and cellular functions. Loss-of-function mutants are lethal both in animals and in plants, making the identification of its exact role difficult. Recent data using the model plant Arabidopsis thaliana provided the first viable adult knockout for TCTP and helped addressing the biological role of TCTP during organ development and the functional conservation between plants and animals. This chapter summarizes our up to date knowledge about the role of TCTP in plants and discuss about conserved functions and mechanisms between plants and animals.
Collapse
Affiliation(s)
- Léo Betsch
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Julie Savarin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
33
|
Higashiyama T, Yang WC. Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors. PLANT PHYSIOLOGY 2017; 173:112-121. [PMID: 27920159 PMCID: PMC5210755 DOI: 10.1104/pp.16.01571] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/02/2016] [Indexed: 05/19/2023]
Abstract
Pollen tube guidance in flowering plants is a unique and critical process for successful sexual reproduction. The pollen tube that grows from pollen, which is the male gametophyte, precisely navigates to the embryo sac, which is the female gametophyte, within the pistil. Recent advances have clarified the molecular framework of gametophytic pollen tube guidance. Multiple species-specific attractant peptides are secreted from synergid cells, the proper development and function of which are regulated by female gametes. Multiple receptor-like kinases on the pollen tube tip are involved in sensing species-specific attractant peptides. In this Update article, recent progress in our understanding of the mechanism of gametophytic pollen tube guidance is reviewed, including attraction by synergid cells, control of pollen tube guidance by female gametes, and directional growth of the pollen tube by directional cue sensing. Future directions in the study of pollen tube guidance also are discussed.
Collapse
Affiliation(s)
- Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (T.H.);
- Division of Biological Science, Graduate School of Science, and JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (T.H.); and
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (W.Y.)
| | - Wei-Cai Yang
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (T.H.);
- Division of Biological Science, Graduate School of Science, and JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (T.H.); and
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (W.Y.)
| |
Collapse
|
34
|
Abstract
The translationally controlled tumor protein (TCTP) is a small, multifunctional protein found in most, if not all, eukaryotic lineages, involved in a myriad of key regulatory processes. Among these, the control of proliferation and inhibition of cell death, as well as differentiation, are the most important, and it is probable that other responses are derived from the ability of TCTP to influence them in both unicellular and multicellular organisms. In the latter, an additional function for TCTP stems from its capacity to be secreted via a nonclassical pathway and function in a non-cell autonomous (paracrine) manner, thus affecting the responses of neighboring or distant cells to developmental or environmental stimuli (as in the case of serum TCTP/histamine-releasing factor in mammals and phloem TCTP in Arabidopsis). The additional ability to traverse membranes without a requirement for transmembrane receptors adds to its functional flexibility. The long-distance transport of TCTP mRNA and protein in plants via the vascular system supports the notion that an important aspect of TCTP function is its ability to influence the response of neighboring and distant cells to endogenous and exogenous signals in a supracellular manner. The predicted tridimensional structure of TCTPs indicates a high degree of conservation, more than its amino acid sequence similarity could suggest. However, subtle differences in structure could lead to different activities, as evidenced by TCTPs secreted by Plasmodium spp. Similar structural variations in animal and plant TCTPs, likely the result of convergent evolution, could lead to deviations from the canonical function of this group of proteins, which could have an impact from a biomedical and agricultural perspectives.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, Colonia San Pedro Zacatenco, México City, 07360, México.
| |
Collapse
|
35
|
Abstract
New insights into the molecular dialogue between male and female during sexual plant reproduction show that even plant sex does not work without clear communication. Please see related Research article: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0928-x
Collapse
|