1
|
Arend M, Paulitz E, Hsieh YE, Nikoloski Z. Scaling metabolic model reconstruction up to the pan-genome level: A systematic review and prospective applications to photosynthetic organisms. Metab Eng 2025; 90:67-77. [PMID: 40081464 DOI: 10.1016/j.ymben.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Advances in genomics technologies have generated large data sets that provide tremendous insights into the genetic diversity of taxonomic groups. However, it remains challenging to pinpoint the effect of genetic diversity on different traits without performing resource-intensive phenotyping experiments. Pan-genome-scale metabolic models (panGEMs) extend traditional genome-scale metabolic models by considering the entire reaction repertoire that enables the prediction and comparison of metabolic capabilities within a taxonomic group. Here, we systematically review the state-of-the-art methodologies for constructing panGEMs, focusing on used tools, databases, experimental datasets, and orthology relationships. We highlight the unique advantages of panGEMs compared to single-species GEMs in predicting metabolic phenotypes and in guiding the experimental validation of genome annotations. In addition, we emphasize the disparity between the available (pan-)genomic data on photosynthetic organisms and their under-representation in current (pan)GEMs. Finally, we propose a perspective for tackling the reconstruction of panGEMs for photosynthetic eukaryotes that can help advance our understanding of the metabolic diversity in this taxonomic group.
Collapse
Affiliation(s)
- Marius Arend
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Emilian Paulitz
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Yunli Eric Hsieh
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
2
|
Sun Q, An P, Li P, Wang H, Tao S, Liu Y. Unraveling Time-Resolved Transcriptional and Metabolic Shifts in the Mixed Fermentation of Saccharomyces cerevisiae and Hanseniaspora uvarum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12418-12432. [PMID: 40310988 DOI: 10.1021/acs.jafc.5c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Wine fermentation and flavor formation are shaped by complex biochemical reactions driven by a variety of microorganisms. Non-Saccharomyces yeasts, such as Hanseniaspora uvarum (HU), are often used in mixed fermentation with Saccharomyces cerevisiae (SC) to enhance wine aroma. However, the lack of systematic knowledge regarding transcriptional responses and metabolic behaviors during fermentation has hindered the rational control of the mixed fermentation processes. To address this, we investigated transcriptional dynamics and metabolic behavior throughout the entire fermentation process, with a particular focus on the roles of microbial metabolism in flavor formation during mixed fermentation with HU. At the transcriptional level, the addition of HU led to significant changes in SC's gene expression, particularly in pathways related to glyoxylate and dicarboxylate metabolism, pyruvate metabolism, and amino sugar and nucleotide sugar metabolism. Furthermore, using genome-scale metabolic modeling, we uncovered key metabolic strategies employed by the two strains in mixed fermentation. These include distinct sugar utilization patterns, ethanol production, fatty acid metabolism, and central carbon allocation strategies. Notably, we identified two metabolic bypasses, from dihydroxyacetone phosphate to glycerol and from glucose-6-phosphate to the pentose phosphate pathway, which were found to reduce ethanol production and maintain the metabolic balance. Flux distribution analysis also revealed connections among organic acids, amino acids, and fermentation products, highlighting the role of a partial TCA cycle during fermentation. Additionally, metabolic interactions between SC and HU were identified, contributing to the enhanced production of volatile compounds, such as 2-phenylethanol and indole-3-ethanol in mixed fermentation. These findings provide a more comprehensive understanding of transcriptional regulation and metabolic strategies under fermentation conditions. They also offer practical targets for future bioengineering efforts aimed at controlling and optimizing the wine flavor.
Collapse
Affiliation(s)
- Qing Sun
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng An
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiyang Li
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wang
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiheng Tao
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Vocational & Technical College of Inner Mongolia Agriculture University, Tumed Youqi 110 National Road, Baotou, Inner Mongolia 014109, China
| |
Collapse
|
3
|
Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC, Watson AR, Jabri B, Blekhman R, Willis AD, Yu MK, Fernàndez-Guerra A, Füssel J, Eren AM. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. eLife 2025; 12:RP89862. [PMID: 40377187 PMCID: PMC12084026 DOI: 10.7554/elife.89862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health vs IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.
Collapse
Affiliation(s)
- Iva Veseli
- Biophysical Sciences Program, The University of ChicagoChicagoUnited States
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Yiqun T Chen
- Data Science Institute and Department of Biomedical Data Science, Stanford UniversityStanfordUnited States
| | - Matthew S Schechter
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of BremenBremenGermany
| | - Emily C Fogarty
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Andrea R Watson
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Bana Jabri
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Ran Blekhman
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Amy D Willis
- Department of Biostatistics, University of WashingtonSeattleUnited States
| | - Michael K Yu
- Toyota Technological Institute at ChicagoChicagoUnited States
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
| | - Jessika Füssel
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
| | - A Murat Eren
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
- Marine ‘Omics Bridging Group, Max Planck Institute for Marine MicrobiologyBremenGermany
- Helmholtz Institute for Functional Marine BiodiversityOldenburgGermany
- Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
| |
Collapse
|
4
|
Quinn-Bohmann N, Carr AV, Diener C, Gibbons SM. Moving from genome-scale to community-scale metabolic models for the human gut microbiome. Nat Microbiol 2025; 10:1055-1066. [PMID: 40217129 DOI: 10.1038/s41564-025-01972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/26/2025] [Indexed: 05/08/2025]
Abstract
Metabolic models of individual microorganisms or small microbial consortia have become standard research tools in the bioengineering and systems biology fields. However, extending metabolic modelling to diverse microbial communities, such as those in the human gut, remains a practical challenge from both modelling and experimental validation perspectives. In complex communities, metabolic models accounting for community dynamics, or those that consider multiple objectives, may provide optimal predictions over simpler steady-state models, but require a much higher computational cost. Here we describe some of the strengths and limitations of microbial community-scale metabolic models and argue for a robust validation framework for developing personalized, mechanistic and accurate predictions of microbial community metabolic behaviours across environmental contexts. Ultimately, quantitatively accurate microbial community-scale metabolic models could aid in the design and testing of personalized prebiotic, probiotic and dietary interventions that optimize for translationally relevant outcomes.
Collapse
Affiliation(s)
- Nick Quinn-Bohmann
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Alex V Carr
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA, USA.
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA.
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Basnet BB, Zhou ZY, Wei B, Wang H. Advances in AI-based strategies and tools to facilitate natural product and drug development. Crit Rev Biotechnol 2025:1-32. [PMID: 40159111 DOI: 10.1080/07388551.2025.2478094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 04/02/2025]
Abstract
Natural products and their derivatives have been important for treating diseases in humans, animals, and plants. However, discovering new structures from natural sources is still challenging. In recent years, artificial intelligence (AI) has greatly aided the discovery and development of natural products and drugs. AI facilitates to: connect genetic data to chemical structures or vice-versa, repurpose known natural products, predict metabolic pathways, and design and optimize metabolites biosynthesis. More recently, the emergence and improvement in neural networks such as deep learning and ensemble automated web based bioinformatics platforms have sped up the discovery process. Meanwhile, AI also improves the identification and structure elucidation of unknown compounds from raw data like mass spectrometry and nuclear magnetic resonance. This article reviews these AI-driven methods and tools, highlighting their practical applications and guide for efficient natural product discovery and drug development.
Collapse
Affiliation(s)
- Buddha Bahadur Basnet
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Central Department of Biotechnology, Tribhuvan University, Kathmandu, Nepal
| | - Zhen-Yi Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment, Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Moyer DC, Reimertz J, Segrè D, Fuxman Bass JI. MACAW: a method for semi-automatic detection of errors in genome-scale metabolic models. Genome Biol 2025; 26:79. [PMID: 40156030 PMCID: PMC11954327 DOI: 10.1186/s13059-025-03533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/07/2025] [Indexed: 04/01/2025] Open
Abstract
Genome-scale metabolic models (GSMMs) are used to predict metabolic fluxes, with applications ranging from identifying novel drug targets to engineering microbial metabolism. Erroneous or missing reactions, scattered throughout densely interconnected networks, are a limiting factor in these applications. We present Metabolic Accuracy Check and Analysis Workflow (MACAW), a suite of algorithms that helps to identify and visualize errors at the level of connected pathways, rather than individual reactions. We show how MACAW highlights inaccuracies of varying severity in manually curated and automatically generated GSMMs for humans, yeast, and bacteria and helps to identify systematic issues to be addressed in future model construction efforts.
Collapse
Affiliation(s)
- Devlin C Moyer
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Justin Reimertz
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA.
- Department of Biology, Boston University, Boston, MA, 02215, USA.
- Biological Design Center, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
- Bioinformatics Program, Faculty of Computing and Data Science, Boston, MA, 02215, USA.
| | - Juan I Fuxman Bass
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA.
- Department of Biology, Boston University, Boston, MA, 02215, USA.
- Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Golan O, Gampp O, Eckert L, Sauer U. Overall biomass yield on multiple nutrient sources. NPJ Syst Biol Appl 2025; 11:17. [PMID: 39929850 PMCID: PMC11811147 DOI: 10.1038/s41540-025-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Microorganisms primarily utilize nutrients to generate biomass and replicate. When a single nutrient source is available, the produced biomass typically increases linearly with the initial amount of that nutrient. This linear trend can be accurately predicted by "black box models", which conceptualize growth as a single chemical reaction, treating nutrients as substrates and biomass as a product. However, natural environments usually present multiple nutrient sources, prompting us to extend the black box framework to incorporate catabolism, anabolism, and biosynthesis of biomass precursors. This modification allows for the quantification of co-utilization effects among multiple nutrients on microbial biomass production. The extended model differentiates between different types of nutrients: non-degradable nutrients, which can only serve as a biomass precursor, and degradable nutrients, which can also be used as an energy source. We experimentally demonstrated using Escherichia coli that, in contrast to initial model predictions, different nutrients affect each other's utilization in a mutually dependent manner; i.e., for some combinations, the produced biomass was no longer proportional to the initial amounts of nutrients present. To account for these mutual effects within a black box framework, we phenomenologically introduced an interaction between the metabolic processes involved in utilizing the nutrient sources. This phenomenological model qualitatively captures the experimental observations and, unexpectedly, predicts that the total produced biomass is influenced not only by the combination of nutrient sources but also by their relative initial amounts - a prediction we subsequently validated experimentally. Moreover, the model identifies which metabolic processes - catabolism, anabolism, or precursor biosynthesis-is affected in each specific nutrient combination, offering insights into microbial metabolic coordination.
Collapse
Affiliation(s)
- Ohad Golan
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Olivia Gampp
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Lina Eckert
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Palmer-Rodríguez P, Alberich R, Reyes-Prieto M, Castro JA, Llabrés M. Metadag: a web tool to generate and analyse metabolic networks. BMC Bioinformatics 2025; 26:31. [PMID: 39875845 PMCID: PMC11776228 DOI: 10.1186/s12859-025-06048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND MetaDAG is a web-based tool developed to address challenges posed by big data from omics technologies, particularly in metabolic network reconstruction and analysis. The tool is capable of constructing metabolic networks for specific organisms, sets of organisms, reactions, enzymes, or KEGG Orthology (KO) identifiers. By retrieving data from the KEGG database, MetaDAG helps users visualize and analyze complex metabolic interactions efficiently. RESULTS MetaDAG computes two models: a reaction graph and a metabolic directed acyclic graph (m-DAG). The reaction graph represents reactions as nodes and metabolite flow between them as edges. The m-DAG simplifies the reaction graph by collapsing strongly connected components, significantly reducing the number of nodes while maintaining connectivity. MetaDAG can generate metabolic networks from various inputs, including KEGG organisms or custom data (e.g., reactions, enzymes, KOs). The tool displays these models on an interactive web page and provides downloadable files, including network visualizations. MetaDAG was tested using two datasets. In an eukaryotic analysis, it successfully classified organisms from the KEGG database at the kingdom and phylum levels. In a microbiome study, MetaDAG accurately distinguished between Western and Korean diets and categorized individuals by weight loss outcomes based on dietary interventions. CONCLUSION MetaDAG offers an effective and versatile solution for metabolic network reconstruction from diverse data sources, enabling large-scale biological comparisons. Its ability to generate synthetic metabolisms and its broad application, from taxonomy classification to diet analysis, make it a valuable tool for biological research. MetaDAG is available online, with user support provided via a comprehensive guide. MetaDAG: https://bioinfo.uib.es/metadag/ User guide: https://biocom-uib.github.io/MetaDag/.
Collapse
Affiliation(s)
- Pere Palmer-Rodríguez
- Mathematics and Computer Science Department, University of the Balearic Islands, Ctra Valldemossa, Km 7.5, Palma, 07122, Balearic Islands, Spain.
| | - Ricardo Alberich
- Mathematics and Computer Science Department, University of the Balearic Islands, Ctra Valldemossa, Km 7.5, Palma, 07122, Balearic Islands, Spain
| | - Mariana Reyes-Prieto
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), Avda. de Catalunya, 21, 46020, Valencia, Valencia, Spain
| | - José A Castro
- Biology Department, University of the Balearic Islands, Ctra Valldemossa, Km 7.5, 07122, Palma, Balearic Islands, Spain
| | - Mercè Llabrés
- Mathematics and Computer Science Department, University of the Balearic Islands, Ctra Valldemossa, Km 7.5, Palma, 07122, Balearic Islands, Spain.
| |
Collapse
|
9
|
Yu HL, Liang XL, Ge ZY, Zhang Z, Ruan Y, Tang H, Zhang QY. Metabolic Flux Analysis of Xanthomonas oryzae Treated with Bismerthiazol Revealed Glutathione Oxidoreductase in Glutathione Metabolism Serves as an Effective Target. Int J Mol Sci 2024; 25:12236. [PMID: 39596301 PMCID: PMC11594844 DOI: 10.3390/ijms252212236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pathovar oryzae (Xoo) is a serious global rice disease. Due to increasing bactericide resistance, developing new inhibitors is urgent. Drug repositioning offers a potential strategy to address this issue. In this study, we integrated transcriptional data into a genome-scale metabolic model (GSMM) to screen novel anti-Xoo targets. Two RNA-seq datasets (before and after bismerthiazol treatment) were used to constrain the GSMM and simulate metabolic processes. Metabolic fluxes were calculated using parsimonious flux balance analysis (pFBA) identifying reactions with significant changes for target screening. Glutathione oxidoreductase (GSR) was selected as a potential anti-Xoo target and validated through antibacterial experiments. Virtual screening based on the target identified DB12411 as a lead compound with the potential for new antibacterial agents. This approach demonstrates that integrating metabolic networks and transcriptional data can aid in both understanding antibacterial mechanisms and discovering novel drug targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Qiao Z, Zhou PC, Fan ZT, Wei F, Qin SS, Wang J, Liang Y, Chen LY, Wei KH. Multi-omics analysis uncovers the transcriptional regulatory mechanism of magnesium Ions in the synthesis of active ingredients in Sophora tonkinensis. Sci Rep 2024; 14:25527. [PMID: 39462111 PMCID: PMC11513012 DOI: 10.1038/s41598-024-76575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Magnesium (Mg) plays a pivotal role as an essential component of plant chlorophyll and functions as a critical coenzyme. However, research exploring the regulatory mechanisms of magnesium ions on the synthesis of secondary metabolites is still in its early stages. Sophora tonkinensis is a widely utilized medicinal plant in China, recognized for its diverse secondary metabolites with active properties. This study investigates variations in these ingredients in tissue-cultured seedlings under varying magnesium concentrations. Simultaneously, an omics data analysis was conducted on tissue-cultured seedlings subjected to treatments with magnesium and low magnesium. These comprehensive omics analyses aimed to elucidate the mechanisms through which magnesium influences active components, growth, and development. Magnesium exerts a pervasive influence on various metabolic pathways, forming an intricate network. Research findings indicate that magnesium impacts diverse metabolic processes, including the absorption of potassium and calcium, as well as photosynthetic activity. Consequently, these influences lead to discernible changes in the levels of pharmacologically active compounds and the growth and developmental status.This study is the first to employ a multi-omics data analysis in S. tonkinensis. This methodology allows us to uncover the overarching impact of metabolic networks on the levels of various active ingredients and specific phenotypes.
Collapse
Affiliation(s)
- Zhu Qiao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Peng-Cheng Zhou
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials/ Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Pharmaceutical College, Guangxi Medical University, Nanning, 530023, China
| | - Zhan-Tao Fan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Shuang-Shuang Qin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jing Wang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Ling-Yun Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China, 211198.
| | - Kun-Hua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials/ Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China, 211198.
| |
Collapse
|
11
|
Hu Y, Ruan Y, Zhao XL, Jiang F, Liu D, Zhu Q, Zhang QY, Yang QY. PCMD: A multilevel comparison database of intra- and cross-species metabolic profiling in 530 plant species. PLANT COMMUNICATIONS 2024; 5:101038. [PMID: 38993115 PMCID: PMC11573924 DOI: 10.1016/j.xplc.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Comparative metabolomics plays a crucial role in investigating gene function, exploring metabolite evolution, and accelerating crop genetic improvement. However, a systematic platform for intra- and cross-species comparison of metabolites is currently lacking. Here, we report the Plant Comparative Metabolome Database (PCMD; http://yanglab.hzau.edu.cn/PCMD), a multilevel comparison database based on predicted metabolic profiles of 530 plant species. The PCMD serves as a platform for comparing metabolite characteristics at various levels, including species, metabolites, pathways, and biological taxonomy. The database also provides a number of user-friendly online tools, such as species comparison, metabolite enrichment, and ID conversion, enabling users to perform comparisons and enrichment analyses of metabolites across different species. In addition, the PCMD establishes a unified system based on existing metabolite-related databases by standardizing metabolite numbering. The PCMD is the most species-rich comparative plant metabolomics database currently available, and a case study demonstrates its ability to provide new insights into plant metabolic diversity.
Collapse
Affiliation(s)
- Yue Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Ruan
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Le Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572024, China.
| |
Collapse
|
12
|
Peng X, Feng K, Yang X, He Q, Zhao B, Li T, Wang S, Deng Y. iNAP 2.0: Harnessing metabolic complementarity in microbial network analysis. IMETA 2024; 3:e235. [PMID: 39429886 PMCID: PMC11487609 DOI: 10.1002/imt2.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
With the widespread adoption of metagenomic sequencing, new perspectives have emerged for studying microbial ecological networks, yielding metabolic evidence of interspecies interactions that traditional co-occurrence networks cannot infer. This protocol introduces the integrated Network Analysis Pipeline 2.0 (iNAP 2.0), which features an innovative metabolic complementarity network for microbial studies from metagenomics sequencing data. iNAP 2.0 sets up a four-module process for metabolic interaction analysis, namely: (I) Prepare genome-scale metabolic models; (II) Infer pairwise interactions of genome-scale metabolic models; (III) Construct metabolic interaction networks; and (IV) Analyze metabolic interaction networks. Starting from metagenome-assembled or complete genomes, iNAP 2.0 offers a variety of methods to quantify the potential and trends of metabolic complementarity between models, including the PhyloMint pipeline based on phylogenetic distance-adjusted metabolic complementarity, the SMETANA (species metabolic interaction analysis) approach based on cross-feeding substrate exchange prediction, and metabolic distance calculation based on parsimonious flux balance analysis (pFBA). Notably, iNAP 2.0 integrates the random matrix theory (RMT) approach to find the suitable threshold for metabolic interaction network construction. Finally, the metabolic interaction networks can proceed to analysis using topological feature analysis such as hub node determination. In addition, a key feature of iNAP 2.0 is the identification of potentially transferable metabolites between species, presented as intermediate nodes that connect microbial nodes in the metabolic complementarity network. To illustrate these new features, we use a set of metagenome-assembled genomes as an example to comprehensively document the usage of the tools. iNAP 2.0 is available at https://inap.denglab.org.cn for all users to register and use for free.
Collapse
Affiliation(s)
- Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of Sciences (CAS)BeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of Sciences (CAS)BeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Xingsheng Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of Sciences (CAS)BeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of Sciences (CAS)BeijingChina
| | - Bo Zhao
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of Sciences (CAS)BeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Tong Li
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of Sciences (CAS)BeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of Sciences (CAS)BeijingChina
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental SciencesChinese Academy of Sciences (CAS)BeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Cardiff RAL, Carothers JM, Zalatan JG, Sauro HM. Systems-Level Modeling for CRISPR-Based Metabolic Engineering. ACS Synth Biol 2024; 13:2643-2652. [PMID: 39119666 DOI: 10.1021/acssynbio.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The CRISPR-Cas system has enabled the development of sophisticated, multigene metabolic engineering programs through the use of guide RNA-directed activation or repression of target genes. To optimize biosynthetic pathways in microbial systems, we need improved models to inform design and implementation of transcriptional programs. Recent progress has resulted in new modeling approaches for identifying gene targets and predicting the efficacy of guide RNA targeting. Genome-scale and flux balance models have successfully been applied to identify targets for improving biosynthetic production yields using combinatorial CRISPR-interference (CRISPRi) programs. The advent of new approaches for tunable and dynamic CRISPR activation (CRISPRa) promises to further advance these engineering capabilities. Once appropriate targets are identified, guide RNA prediction models can lead to increased efficacy in gene targeting. Developing improved models and incorporating approaches from machine learning may be able to overcome current limitations and greatly expand the capabilities of CRISPR-Cas9 tools for metabolic engineering.
Collapse
Affiliation(s)
- Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Herbert M Sauro
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Gopalakrishnan S, Johnson W, Valderrama-Gomez MA, Icten E, Tat J, Lay F, Diep J, Gomez N, Stevens J, Schlegel F, Rolandi P, Kontoravdi C, Lewis NE. Multi-omic characterization of antibody-producing CHO cell lines elucidates metabolic reprogramming and nutrient uptake bottlenecks. Metab Eng 2024; 85:94-104. [PMID: 39047894 DOI: 10.1016/j.ymben.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Characterizing the phenotypic diversity and metabolic capabilities of industrially relevant manufacturing cell lines is critical to bioprocess optimization and cell line development. Metabolic capabilities of production hosts limit nutrient and resource channeling into desired cellular processes and can have a profound impact on productivity. These limitations cannot be directly inferred from measured data such as spent media concentrations or transcriptomics. Here, we present an integrated multi-omic analysis pipeline combining exo-metabolomics, transcriptomics, and genome-scale metabolic network analysis and apply it to three antibody-producing Chinese Hamster Ovary cell lines to identify reprogramming features associated with high-producing clones and metabolic bottlenecks limiting product formation in an industrial bioprocess. Analysis of individual datatypes revealed a decreased nitrogenous byproduct secretion in high-producing clones and the topological changes in peripheral metabolic pathway expression associated with phase shifts. An integrated omics analysis in the context of the genome-scale metabolic model elucidated the differences in central metabolism and identified amino acid utilization bottlenecks limiting cell growth and antibody production that were not evident from exo-metabolomics or transcriptomics alone. Thus, we demonstrate the utility of a multi-omics characterization in providing an in-depth understanding of cellular metabolism, which is critical to efforts in cell engineering and bioprocess optimization.
Collapse
Affiliation(s)
| | | | | | | | - Jasmine Tat
- Process Development Amgen, USA; Department of Bioengineering, University of California San Diego, USA
| | | | | | | | | | | | | | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, UK
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego, USA; Department of Bioengineering, University of California San Diego, USA.
| |
Collapse
|
15
|
Kundu P, Beura S, Mondal S, Das AK, Ghosh A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol Adv 2024; 74:108400. [PMID: 38944218 DOI: 10.1016/j.biotechadv.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies has generated a plethora of new and precise information from wide-ranging biological domains. On the other hand, the continuously growing field of machine learning (ML) and its specialized branch of deep learning (DL) provide essential computational architectures for decoding complex and heterogeneous biological data. In recent years, both multi-omics and ML have assisted in the escalation of CBM. Condition-specific omics data, such as transcriptomics and proteomics, helped contextualize the model prediction while analyzing a particular phenotypic signature. At the same time, the advanced ML tools have eased the model reconstruction and analysis to increase the accuracy and prediction power. However, the development of these multi-disciplinary methodological frameworks mainly occurs independently, which limits the concatenation of biological knowledge from different domains. Hence, we have reviewed the potential of integrating multi-disciplinary tools and strategies from various fields, such as synthetic biology, CBM, omics, and ML, to explore the biochemical phenomenon beyond the conventional biological dogma. How the integrative knowledge of these intersected domains has improved bioengineering and biomedical applications has also been highlighted. We categorically explained the conventional genome-scale metabolic model (GEM) reconstruction tools and their improvement strategies through ML paradigms. Further, the crucial role of ML and DL in omics data restructuring for GEM development has also been briefly discussed. Finally, the case-study-based assessment of the state-of-the-art method for improving biomedical and metabolic engineering strategies has been elaborated. Therefore, this review demonstrates how integrating experimental and in silico strategies can help map the ever-expanding knowledge of biological systems driven by condition-specific cellular information. This multiview approach will elevate the application of ML-based CBM in the biomedical and bioengineering fields for the betterment of society and the environment.
Collapse
Affiliation(s)
- Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Mondal
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
16
|
Metz TO, Chang CH, Gautam V, Anjum A, Tian S, Wang F, Colby SM, Nunez JR, Blumer MR, Edison AS, Fiehn O, Jones DP, Li S, Morgan ET, Patti GJ, Ross DH, Shapiro MR, Williams AJ, Wishart DS. Introducing 'identification probability' for automated and transferable assessment of metabolite identification confidence in metabolomics and related studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605945. [PMID: 39131324 PMCID: PMC11312557 DOI: 10.1101/2024.07.30.605945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Methods for assessing compound identification confidence in metabolomics and related studies have been debated and actively researched for the past two decades. The earliest effort in 2007 focused primarily on mass spectrometry and nuclear magnetic resonance spectroscopy and resulted in four recommended levels of metabolite identification confidence - the Metabolite Standards Initiative (MSI) Levels. In 2014, the original MSI Levels were expanded to five levels (including two sublevels) to facilitate communication of compound identification confidence in high resolution mass spectrometry studies. Further refinement in identification levels have occurred, for example to accommodate use of ion mobility spectrometry in metabolomics workflows, and alternate approaches to communicate compound identification confidence also have been developed based on identification points schema. However, neither qualitative levels of identification confidence nor quantitative scoring systems address the degree of ambiguity in compound identifications in context of the chemical space being considered, are easily automated, or are transferable between analytical platforms. In this perspective, we propose that the metabolomics and related communities consider identification probability as an approach for automated and transferable assessment of compound identification and ambiguity in metabolomics and related studies. Identification probability is defined simply as 1/N, where N is the number of compounds in a reference library or chemical space that match to an experimentally measured molecule within user-defined measurement precision(s), for example mass measurement or retention time accuracy, etc. We demonstrate the utility of identification probability in an in silico analysis of multi-property reference libraries constructed from the Human Metabolome Database and computational property predictions, provide guidance to the community in transparent implementation of the concept, and invite the community to further evaluate this concept in parallel with their current preferred methods for assessing metabolite identification confidence.
Collapse
Affiliation(s)
- Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Christine H. Chang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Vasuk Gautam
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Afia Anjum
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Siyang Tian
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fei Wang
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Sean M. Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Jamie R. Nunez
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Madison R. Blumer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Arthur S. Edison
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Shuzhao Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Edward T. Morgan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gary J. Patti
- Center for Mass Spectrometry and Metabolic Tracing, Department of Chemistry, Department of Medicine, Washington University, Saint Louis, Missouri, USA
| | - Dylan H. Ross
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Madelyn R. Shapiro
- Artificial Intelligence & Data Analytics Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Antony J. Williams
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), Research Triangle Park, NC USA
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Palanikumar I, Sinha H, Raman K. Panera: An innovative framework for surmounting uncertainty in microbial community modeling using pan-genera metabolic models. iScience 2024; 27:110358. [PMID: 39092173 PMCID: PMC11292516 DOI: 10.1016/j.isci.2024.110358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
Utilization of 16S rRNA data in constraint-based modeling to characterize microbial communities confronts a major hurdle of lack of species-level resolution, impeding the construction of community models. We introduce "Panera," an innovative framework designed to model communities under this uncertainty and yet perform metabolic inferences using pan-genus metabolic models (PGMMs). We demonstrated PGMMs' utility for comprehending the metabolic capabilities of a genus and in characterizing community models using amplicon data. The unique, adaptable nature of PGMMs unlocks their potential in building hybrid communities, combining genome-scale metabolic models (GSMMs) and PGMMs. Notably, these models provide predictions comparable to the standard GSMM-based community models, while achieving a nearly 46% reduction in error compared to the genus model-based communities. In essence, "Panera" presents a potent and effective approach to aid in metabolic modeling by enabling robust predictions of community metabolic potential when dealing with amplicon data, and offers insights into genus-level metabolic landscapes.
Collapse
Affiliation(s)
- Indumathi Palanikumar
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
- Department of Data Science and AI, Wadhwani School of Data Science and AI, IIT Madras, Chennai 600 036, India
| |
Collapse
|
18
|
Moyer DC, Reimertz J, Segrè D, Fuxman Bass JI. Semi-Automatic Detection of Errors in Genome-Scale Metabolic Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600481. [PMID: 38979177 PMCID: PMC11230171 DOI: 10.1101/2024.06.24.600481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Genome-Scale Metabolic Models (GSMMs) are used for numerous tasks requiring computational estimates of metabolic fluxes, from predicting novel drug targets to engineering microbes to produce valuable compounds. A key limiting step in most applications of GSMMs is ensuring their representation of the target organism's metabolism is complete and accurate. Identifying and visualizing errors in GSMMs is complicated by the fact that they contain thousands of densely interconnected reactions. Furthermore, many errors in GSMMs only become apparent when considering pathways of connected reactions collectively, as opposed to examining reactions individually. Results We present Metabolic Accuracy Check and Analysis Workflow (MACAW), a collection of algorithms for detecting errors in GSMMs. The relative frequencies of errors we detect in manually curated GSMMs appear to reflect the different approaches used to curate them. Changing the method used to automatically create a GSMM from a particular organism's genome can have a larger impact on the kinds of errors in the resulting GSMM than using the same method with a different organism's genome. Our algorithms are particularly capable of identifying errors that are only apparent at the pathway level, including loops, and nontrivial cases of dead ends. Conclusions MACAW is capable of identifying inaccuracies of varying severity in a wide range of GSMMs. Correcting these errors can measurably improve the predictive capacity of a GSMM. The relative prevalence of each type of error we identify in a large collection of GSMMs could help shape future efforts for further automation of error correction and GSMM creation.
Collapse
|
19
|
Lange E, Kranert L, Krüger J, Benndorf D, Heyer R. Microbiome modeling: a beginner's guide. Front Microbiol 2024; 15:1368377. [PMID: 38962127 PMCID: PMC11220171 DOI: 10.3389/fmicb.2024.1368377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.
Collapse
Affiliation(s)
- Emanuel Lange
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Lena Kranert
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jacob Krüger
- Engineering of Software-Intensive Systems, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Dirk Benndorf
- Applied Biosciences and Bioprocess Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Robert Heyer
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Multidimensional Omics Data Analysis, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
20
|
Tarzi C, Zampieri G, Sullivan N, Angione C. Emerging methods for genome-scale metabolic modeling of microbial communities. Trends Endocrinol Metab 2024; 35:533-548. [PMID: 38575441 DOI: 10.1016/j.tem.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Genome-scale metabolic models (GEMs) are consolidating as platforms for studying mixed microbial populations, by combining biological data and knowledge with mathematical rigor. However, deploying these models to answer research questions can be challenging due to the increasing number of available computational tools, the lack of universal standards, and their inherent limitations. Here, we present a comprehensive overview of foundational concepts for building and evaluating genome-scale models of microbial communities. We then compare tools in terms of requirements, capabilities, and applications. Next, we highlight the current pitfalls and open challenges to consider when adopting existing tools and developing new ones. Our compendium can be relevant for the expanding community of modelers, both at the entry and experienced levels.
Collapse
Affiliation(s)
- Chaimaa Tarzi
- School of Computing, Engineering and Digital Technologies, Teesside University, Southfield Rd, Middlesbrough, TS1 3BX, North Yorkshire, UK
| | - Guido Zampieri
- Department of Biology, University of Padova, Padova, 35122, Veneto, Italy
| | - Neil Sullivan
- Complement Genomics Ltd, Station Rd, Lanchester, Durham, DH7 0EX, County Durham, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Southfield Rd, Middlesbrough, TS1 3BX, North Yorkshire, UK; Centre for Digital Innovation, Teesside University, Southfield Rd, Middlesbrough, TS1 3BX, North Yorkshire, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, North Yorkshire, UK.
| |
Collapse
|
21
|
Hsieh YE, Tandon K, Verbruggen H, Nikoloski Z. Comparative analysis of metabolic models of microbial communities reconstructed from automated tools and consensus approaches. NPJ Syst Biol Appl 2024; 10:54. [PMID: 38783065 PMCID: PMC11116368 DOI: 10.1038/s41540-024-00384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Genome-scale metabolic models (GEMs) of microbial communities offer valuable insights into the functional capabilities of their members and facilitate the exploration of microbial interactions. These models are generated using different automated reconstruction tools, each relying on different biochemical databases that may affect the conclusions drawn from the in silico analysis. One way to address this problem is to employ a consensus reconstruction method that combines the outcomes of different reconstruction tools. Here, we conducted a comparative analysis of community models reconstructed from three automated tools, i.e. CarveMe, gapseq, and KBase, alongside a consensus approach, utilizing metagenomics data from two marine bacterial communities. Our analysis revealed that these reconstruction approaches, while based on the same genomes, resulted in GEMs with varying numbers of genes and reactions as well as metabolic functionalities, attributed to the different databases employed. Further, our results indicated that the set of exchanged metabolites was more influenced by the reconstruction approach rather than the specific bacterial community investigated. This observation suggests a potential bias in predicting metabolite interactions using community GEMs. We also showed that consensus models encompassed a larger number of reactions and metabolites while concurrently reducing the presence of dead-end metabolites. Therefore, the usage of consensus models allows making full and unbiased use from aggregating genes from the different reconstructions in assessing the functional potential of microbial communities.
Collapse
Affiliation(s)
- Yunli Eric Hsieh
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kshitij Tandon
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Heroen Verbruggen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
22
|
Sattayawat P, Inwongwan S, Noirungsee N, Li J, Guo J, Disayathanoowat T. Engineering Gut Symbionts: A Way to Promote Bee Growth? INSECTS 2024; 15:369. [PMID: 38786925 PMCID: PMC11121833 DOI: 10.3390/insects15050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Bees play a crucial role as pollinators, contributing significantly to ecosystems. However, the honeybee population faces challenges such as global warming, pesticide use, and pathogenic microorganisms. Promoting bee growth using several approaches is therefore crucial for maintaining their roles. To this end, the bacterial microbiota is well-known for its native role in supporting bee growth in several respects. Maximizing the capabilities of these microorganisms holds the theoretical potential to promote the growth of bees. Recent advancements have made it feasible to achieve this enhancement through the application of genetic engineering. In this review, we present the roles of gut symbionts in promoting bee growth and collectively summarize the engineering approaches that would be needed for future applications. Particularly, as the engineering of bee gut symbionts has not been advanced, the dominant gut symbiotic bacteria Snodgrassella alvi and Gilliamella apicola are the main focus of the paper, along with other dominant species. Moreover, we propose engineering strategies that will allow for the improvement in bee growth with listed gene targets for modification to further encourage the use of engineered gut symbionts to promote bee growth.
Collapse
Affiliation(s)
- Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jilian Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
23
|
Turanli B, Gulfidan G, Aydogan OO, Kula C, Selvaraj G, Arga KY. Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models. Mol Omics 2024; 20:234-247. [PMID: 38444371 DOI: 10.1039/d3mo00152k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The genome-scale metabolic model (GEM) has emerged as one of the leading modeling approaches for systems-level metabolic studies and has been widely explored for a broad range of organisms and applications. Owing to the development of genome sequencing technologies and available biochemical data, it is possible to reconstruct GEMs for model and non-model microorganisms as well as for multicellular organisms such as humans and animal models. GEMs will evolve in parallel with the availability of biological data, new mathematical modeling techniques and the development of automated GEM reconstruction tools. The use of high-quality, context-specific GEMs, a subset of the original GEM in which inactive reactions are removed while maintaining metabolic functions in the extracted model, for model organisms along with machine learning (ML) techniques could increase their applications and effectiveness in translational research in the near future. Here, we briefly review the current state of GEMs, discuss the potential contributions of ML approaches for more efficient and frequent application of these models in translational research, and explore the extension of GEMs to integrative cellular models.
Collapse
Affiliation(s)
- Beste Turanli
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gizem Gulfidan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ozge Onluturk Aydogan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ceyda Kula
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gurudeeban Selvaraj
- Concordia University, Centre for Research in Molecular Modeling & Department of Chemistry and Biochemistry, Quebec, Canada
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Department of Biomaterials, Bioinformatics Unit, Chennai, India
| | - Kazim Yalcin Arga
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
- Marmara University, Genetic and Metabolic Diseases Research and Investigation Center, Istanbul, Turkey
| |
Collapse
|
24
|
Silva-Andrade C, Rodriguez-Fernández M, Garrido D, Martin AJM. Using metabolic networks to predict cross-feeding and competition interactions between microorganisms. Microbiol Spectr 2024; 12:e0228723. [PMID: 38506512 PMCID: PMC11064492 DOI: 10.1128/spectrum.02287-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024] Open
Abstract
Understanding the interactions between microorganisms and their impact on bacterial behavior at the community level is a key research topic in microbiology. Different methods, relying on experimental or mathematical approaches based on the diverse properties of bacteria, are currently employed to study these interactions. Recently, the use of metabolic networks to understand the interactions between bacterial pairs has increased, highlighting the relevance of this approach in characterizing bacteria. In this study, we leverage the representation of bacteria through their metabolic networks to build a predictive model aimed at reducing the number of experimental assays required for designing bacterial consortia with specific behaviors. Our novel method for predicting cross-feeding or competition interactions between pairs of microorganisms utilizes metabolic network features. Machine learning classifiers are employed to determine the type of interaction from automatically reconstructed metabolic networks. Several algorithms were assessed and selected based on comprehensive testing and careful separation of manually compiled data sets obtained from literature sources. We used different classification algorithms, including K Nearest Neighbors, XGBoost, Support Vector Machine, and Random Forest, tested different parameter values, and implemented several data curation approaches to reduce the biological bias associated with our data set, ultimately achieving an accuracy of over 0.9. Our method holds substantial potential to advance the understanding of community behavior and contribute to the development of more effective approaches for consortia design.IMPORTANCEUnderstanding bacterial interactions at the community level is critical for microbiology, and leveraging metabolic networks presents an efficient and effective approach. The introduction of this novel method for predicting interactions through machine learning classifiers has the potential to advance the field by reducing the number of experimental assays required and contributing to the development of more effective bacterial consortia.
Collapse
Affiliation(s)
- Claudia Silva-Andrade
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - María Rodriguez-Fernández
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alberto J. M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
25
|
Santangelo BE, Apgar M, Colorado ASB, Martin CG, Sterrett J, Wall E, Joachimiak MP, Hunter LE, Lozupone CA. Integrating biological knowledge for mechanistic inference in the host-associated microbiome. Front Microbiol 2024; 15:1351678. [PMID: 38638909 PMCID: PMC11024261 DOI: 10.3389/fmicb.2024.1351678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Advances in high-throughput technologies have enhanced our ability to describe microbial communities as they relate to human health and disease. Alongside the growth in sequencing data has come an influx of resources that synthesize knowledge surrounding microbial traits, functions, and metabolic potential with knowledge of how they may impact host pathways to influence disease phenotypes. These knowledge bases can enable the development of mechanistic explanations that may underlie correlations detected between microbial communities and disease. In this review, we survey existing resources and methodologies for the computational integration of broad classes of microbial and host knowledge. We evaluate these knowledge bases in their access methods, content, and source characteristics. We discuss challenges of the creation and utilization of knowledge bases including inconsistency of nomenclature assignment of taxa and metabolites across sources, whether the biological entities represented are rooted in ontologies or taxonomies, and how the structure and accessibility limit the diversity of applications and user types. We make this information available in a code and data repository at: https://github.com/lozuponelab/knowledge-source-mappings. Addressing these challenges will allow for the development of more effective tools for drawing from abundant knowledge to find new insights into microbial mechanisms in disease by fostering a systematic and unbiased exploration of existing information.
Collapse
Affiliation(s)
- Brook E. Santangelo
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Madison Apgar
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Casey G. Martin
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - John Sterrett
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| | - Elena Wall
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Marcin P. Joachimiak
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Biosystems Data Science Department, Berkeley, CA, United States
| | - Lawrence E. Hunter
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Catherine A. Lozupone
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
26
|
Román L, Melis-Arcos F, Pröschle T, Saa PA, Garrido D. Genome-scale metabolic modeling of the human milk oligosaccharide utilization by Bifidobacterium longum subsp. infantis. mSystems 2024; 9:e0071523. [PMID: 38363147 PMCID: PMC10949479 DOI: 10.1128/msystems.00715-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.
Collapse
Affiliation(s)
- Loreto Román
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melis-Arcos
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás Pröschle
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Hari A, Zarrabi A, Lobo D. mergem: merging, comparing, and translating genome-scale metabolic models using universal identifiers. NAR Genom Bioinform 2024; 6:lqae010. [PMID: 38312936 PMCID: PMC10836943 DOI: 10.1093/nargab/lqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Numerous methods exist to produce and refine genome-scale metabolic models. However, due to the use of incompatible identifier systems for metabolites and reactions, computing and visualizing the metabolic differences and similarities of such models is a current challenge. Furthermore, there is a lack of automated tools that can combine the strengths of multiple reconstruction pipelines into a curated single comprehensive model by merging different drafts, which possibly use incompatible namespaces. Here we present mergem, a novel method to compare, merge, and translate two or more metabolic models. Using a universal metabolic identifier mapping system constructed from multiple metabolic databases, mergem robustly can compare models from different pipelines, merge their common elements, and translate their identifiers to other database systems. mergem is implemented as a command line tool, a Python package, and on the web-application Fluxer, which allows simulating and visually comparing multiple models with different interactive flux graphs. The ability to merge, compare, and translate diverse genome scale metabolic models can facilitate the curation of comprehensive reconstructions and the discovery of unique and common metabolic features among different organisms.
Collapse
Affiliation(s)
- Archana Hari
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Arveen Zarrabi
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA
- Greenebaum Comprehensive Cancer Center and Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Ebenhöh O, Ebeling J, Meyer R, Pohlkotte F, Nies T. Microbial Pathway Thermodynamics: Stoichiometric Models Unveil Anabolic and Catabolic Processes. Life (Basel) 2024; 14:247. [PMID: 38398756 PMCID: PMC10890395 DOI: 10.3390/life14020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The biotechnological exploitation of microorganisms enables the use of metabolism for the production of economically valuable substances, such as drugs or food. It is, thus, unsurprising that the investigation of microbial metabolism and its regulation has been an active research field for many decades. As a result, several theories and techniques were developed that allow for the prediction of metabolic fluxes and yields as biotechnologically relevant output parameters. One important approach is to derive macrochemical equations that describe the overall metabolic conversion of an organism and basically treat microbial metabolism as a black box. The opposite approach is to include all known metabolic reactions of an organism to assemble a genome-scale metabolic model. Interestingly, both approaches are rather successful at characterizing and predicting the expected product yield. Over the years, macrochemical equations especially have been extensively characterized in terms of their thermodynamic properties. However, a common challenge when characterizing microbial metabolism by a single equation is to split this equation into two, describing the two modes of metabolism, anabolism and catabolism. Here, we present strategies to systematically identify separate equations for anabolism and catabolism. Based on metabolic models, we systematically identify all theoretically possible catabolic routes and determine their thermodynamic efficiency. We then show how anabolic routes can be derived, and we use these to approximate biomass yield. Finally, we challenge the view of metabolism as a linear energy converter, in which the free energy gradient of catabolism drives the anabolic reactions.
Collapse
Affiliation(s)
- Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Josha Ebeling
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ronja Meyer
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Fabian Pohlkotte
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tim Nies
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Wutkowska M, Tláskal V, Bordel S, Stein LY, Nweze JA, Daebeler A. Leveraging genome-scale metabolic models to understand aerobic methanotrophs. THE ISME JOURNAL 2024; 18:wrae102. [PMID: 38861460 PMCID: PMC11195481 DOI: 10.1093/ismejo/wrae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Genome-scale metabolic models (GEMs) are valuable tools serving systems biology and metabolic engineering. However, GEMs are still an underestimated tool in informing microbial ecology. Since their first application for aerobic gammaproteobacterial methane oxidizers less than a decade ago, GEMs have substantially increased our understanding of the metabolism of methanotrophs, a microbial guild of high relevance for the natural and biotechnological mitigation of methane efflux to the atmosphere. Particularly, GEMs helped to elucidate critical metabolic and regulatory pathways of several methanotrophic strains, predicted microbial responses to environmental perturbations, and were used to model metabolic interactions in cocultures. Here, we conducted a systematic review of GEMs exploring aerobic methanotrophy, summarizing recent advances, pointing out weaknesses, and drawing out probable future uses of GEMs to improve our understanding of the ecology of methane oxidizers. We also focus on their potential to unravel causes and consequences when studying interactions of methane-oxidizing bacteria with other methanotrophs or members of microbial communities in general. This review aims to bridge the gap between applied sciences and microbial ecology research on methane oxidizers as model organisms and to provide an outlook for future studies.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Vojtěch Tláskal
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid 47011, Spain
- Institute of Sustainable Processes, Valladolid 47011, Spain
| | - Lisa Y Stein
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Justus Amuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| | - Anne Daebeler
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
30
|
Cerk K, Ugalde‐Salas P, Nedjad CG, Lecomte M, Muller C, Sherman DJ, Hildebrand F, Labarthe S, Frioux C. Community-scale models of microbiomes: Articulating metabolic modelling and metagenome sequencing. Microb Biotechnol 2024; 17:e14396. [PMID: 38243750 PMCID: PMC10832553 DOI: 10.1111/1751-7915.14396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Building models is essential for understanding the functions and dynamics of microbial communities. Metabolic models built on genome-scale metabolic network reconstructions (GENREs) are especially relevant as a means to decipher the complex interactions occurring among species. Model reconstruction increasingly relies on metagenomics, which permits direct characterisation of naturally occurring communities that may contain organisms that cannot be isolated or cultured. In this review, we provide an overview of the field of metabolic modelling and its increasing reliance on and synergy with metagenomics and bioinformatics. We survey the means of assigning functions and reconstructing metabolic networks from (meta-)genomes, and present the variety and mathematical fundamentals of metabolic models that foster the understanding of microbial dynamics. We emphasise the characterisation of interactions and the scaling of model construction to large communities, two important bottlenecks in the applicability of these models. We give an overview of the current state of the art in metagenome sequencing and bioinformatics analysis, focusing on the reconstruction of genomes in microbial communities. Metagenomics benefits tremendously from third-generation sequencing, and we discuss the opportunities of long-read sequencing, strain-level characterisation and eukaryotic metagenomics. We aim at providing algorithmic and mathematical support, together with tool and application resources, that permit bridging the gap between metagenomics and metabolic modelling.
Collapse
Affiliation(s)
- Klara Cerk
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | | | - Chabname Ghassemi Nedjad
- Inria, University of Bordeaux, INRAETalenceFrance
- University of Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800TalenceFrance
| | - Maxime Lecomte
- Inria, University of Bordeaux, INRAETalenceFrance
- INRAE STLO¸University of RennesRennesFrance
| | | | | | - Falk Hildebrand
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Simon Labarthe
- Inria, University of Bordeaux, INRAETalenceFrance
- INRAE, University of Bordeaux, BIOGECO, UMR 1202CestasFrance
| | | |
Collapse
|
31
|
Kulyashov MA, Kolmykov SK, Khlebodarova TM, Akberdin IR. State-of the-Art Constraint-Based Modeling of Microbial Metabolism: From Basics to Context-Specific Models with a Focus on Methanotrophs. Microorganisms 2023; 11:2987. [PMID: 38138131 PMCID: PMC10745598 DOI: 10.3390/microorganisms11122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Methanotrophy is the ability of an organism to capture and utilize the greenhouse gas, methane, as a source of energy-rich carbon. Over the years, significant progress has been made in understanding of mechanisms for methane utilization, mostly in bacterial systems, including the key metabolic pathways, regulation and the impact of various factors (iron, copper, calcium, lanthanum, and tungsten) on cell growth and methane bioconversion. The implementation of -omics approaches provided vast amount of heterogeneous data that require the adaptation or development of computational tools for a system-wide interrogative analysis of methanotrophy. The genome-scale mathematical modeling of its metabolism has been envisioned as one of the most productive strategies for the integration of muti-scale data to better understand methane metabolism and enable its biotechnological implementation. Herein, we provide an overview of various computational strategies implemented for methanotrophic systems. We highlight functional capabilities as well as limitations of the most popular web resources for the reconstruction, modification and optimization of the genome-scale metabolic models for methane-utilizing bacteria.
Collapse
Affiliation(s)
- Mikhail A. Kulyashov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Semyon K. Kolmykov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
| | - Tamara M. Khlebodarova
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
32
|
Bernstein DB, Akkas B, Price MN, Arkin AP. Evaluating E. coli genome-scale metabolic model accuracy with high-throughput mutant fitness data. Mol Syst Biol 2023; 19:e11566. [PMID: 37888487 DOI: 10.15252/msb.202311566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
The Escherichia coli genome-scale metabolic model (GEM) is an exemplar systems biology model for the simulation of cellular metabolism. Experimental validation of model predictions is essential to pinpoint uncertainty and ensure continued development of accurate models. Here, we quantified the accuracy of four subsequent E. coli GEMs using published mutant fitness data across thousands of genes and 25 different carbon sources. This evaluation demonstrated the utility of the area under a precision-recall curve relative to alternative accuracy metrics. An analysis of errors in the latest (iML1515) model identified several vitamins/cofactors that are likely available to mutants despite being absent from the experimental growth medium and highlighted isoenzyme gene-protein-reaction mapping as a key source of inaccurate predictions. A machine learning approach further identified metabolic fluxes through hydrogen ion exchange and specific central metabolism branch points as important determinants of model accuracy. This work outlines improved practices for the assessment of GEM accuracy with high-throughput mutant fitness data and highlights promising areas for future model refinement in E. coli and beyond.
Collapse
Affiliation(s)
- David B Bernstein
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Batu Akkas
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
33
|
Muñoz-Tamayo R, Davoudkhani M, Fakih I, Robles-Rodriguez CE, Rubino F, Creevey CJ, Forano E. Review: Towards the next-generation models of the rumen microbiome for enhancing predictive power and guiding sustainable production strategies. Animal 2023; 17 Suppl 5:100984. [PMID: 37821326 DOI: 10.1016/j.animal.2023.100984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
The rumen ecosystem harbours a galaxy of microbes working in syntrophy to carry out a metabolic cascade of hydrolytic and fermentative reactions. This fermentation process allows ruminants to harvest nutrients from a wide range of feedstuff otherwise inaccessible to the host. The interconnection between the ruminant and its rumen microbiota shapes key animal phenotypes such as feed efficiency and methane emissions and suggests the potential of reducing methane emissions and enhancing feed conversion into animal products by manipulating the rumen microbiota. Whilst significant technological progress in omics techniques has increased our knowledge of the rumen microbiota and its genome (microbiome), translating omics knowledge into effective microbial manipulation strategies remains a great challenge. This challenge can be addressed by modelling approaches integrating causality principles and thus going beyond current correlation-based approaches applied to analyse rumen microbial genomic data. However, existing rumen models are not yet adapted to capitalise on microbial genomic information. This gap between the rumen microbiota available omics data and the way microbial metabolism is represented in the existing rumen models needs to be filled to enhance rumen understanding and produce better predictive models with capabilities for guiding nutritional strategies. To fill this gap, the integration of computational biology tools and mathematical modelling frameworks is needed to translate the information of the metabolic potential of the rumen microbes (inferred from their genomes) into a mathematical object. In this paper, we aim to discuss the potential use of two modelling approaches for the integration of microbial genomic information into dynamic models. The first modelling approach explores the theory of state observers to integrate microbial time series data into rumen fermentation models. The second approach is based on the genome-scale network reconstructions of rumen microbes. For a given microorganism, the network reconstruction produces a stoichiometry matrix of the metabolism. This matrix is the core of the so-called genome-scale metabolic models which can be exploited by a plethora of methods comprised within the constraint-based reconstruction and analysis approaches. We will discuss how these methods can be used to produce the next-generation models of the rumen microbiome.
Collapse
Affiliation(s)
- R Muñoz-Tamayo
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France.
| | - M Davoudkhani
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| | - I Fakih
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France; Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | | | - F Rubino
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL Northern Ireland, UK
| | - C J Creevey
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL Northern Ireland, UK
| | - E Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| |
Collapse
|
34
|
Yang X, Mao Z, Huang J, Wang R, Dong H, Zhang Y, Ma H. Improving pathway prediction accuracy of constraints-based metabolic network models by treating enzymes as microcompartments. Synth Syst Biotechnol 2023; 8:597-605. [PMID: 37743907 PMCID: PMC10514394 DOI: 10.1016/j.synbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells. The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years. However, if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge, the conflicts between stoichiometric and other constraints, such as thermodynamic feasibility and enzyme resource availability, would lead to distorted predictions. In this work, we investigated a prediction anomaly of EcoETM, a constraints-based metabolic network model, and introduced the idea of enzyme compartmentalization into the analysis process. Through rational combination of reactions, we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites. This allowed us to correct the pathway structures of l-serine and l-tryptophan. A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments. Notably, this work also reveals the trade-off between product yield and thermodynamic feasibility. Our work is of great value for the structural improvement of constraints-based models.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Zhitao Mao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jianfeng Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Ruoyu Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Huaming Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
35
|
Carter EL, Constantinidou C, Alam MT. Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations. Brief Bioinform 2023; 25:bbad439. [PMID: 38048080 PMCID: PMC10694557 DOI: 10.1093/bib/bbad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | | | | |
Collapse
|
36
|
Jotshi A, Sukla KK, Haque MM, Bose C, Varma B, Koppiker CB, Joshi S, Mishra R. Exploring the human microbiome - A step forward for precision medicine in breast cancer. Cancer Rep (Hoboken) 2023; 6:e1877. [PMID: 37539732 PMCID: PMC10644338 DOI: 10.1002/cnr2.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The second most frequent cancer in the world and the most common malignancy in women is breast cancer. Breast cancer is a significant health concern in India with a high mortality-to-incidence ratio and presentation at a younger age. RECENT FINDINGS Recent studies have identified gut microbiota as a significant factor that can have an influence on the development, treatment, and prognosis of breast cancer. This review article aims to describe the influence of microbial dysbiosis on breast cancer occurrence and the possible interactions between oncobiome and specific breast cancer molecular subtypes. The review further also discusses the role of epigenetics and diet/nutrition in the regulation of the gut and breast microbiome and its association with breast cancer prevention, therapy, and recurrence. Additionally, the recent technological advances in microbiome research, including next-generation sequencing (NGS) technologies, genome sequencing, single-cell sequencing, and microbial metabolomics along with recent advances in artificial intelligence (AI) have also been reviewed. This is an attempt to present a comprehensive status of the microbiome as a key cancer biomarker. CONCLUSION We believe that correlating microbiome and carcinogenesis is important as it can provide insights into the mechanisms by which microbial dysbiosis can influence cancer development and progression, leading to the potential use of the microbiome as a tool for prognostication and personalized therapy.
Collapse
Affiliation(s)
- Asmita Jotshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | | | | | - Chandrani Bose
- Life Sciences R&D, TCS Research, Tata Consultancy Services LimitedPuneIndia
| | - Binuja Varma
- TCS Genomics Lab, Tata Consultancy Services LimitedNew DelhiIndia
| | - C. B. Koppiker
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
- Prashanti Cancer Care Mission, Pune, India and Orchids Breast Health Centre, a PCCM initiativePuneIndia
| | - Sneha Joshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | - Rupa Mishra
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| |
Collapse
|
37
|
Shin W, Gennari JH, Hellerstein JL, Sauro HM. An automated model annotation system (AMAS) for SBML models. Bioinformatics 2023; 39:btad658. [PMID: 37882737 PMCID: PMC10628433 DOI: 10.1093/bioinformatics/btad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023] Open
Abstract
MOTIVATION Annotations of biochemical models provide details of chemical species, documentation of chemical reactions, and other essential information. Unfortunately, the vast majority of biochemical models have few, if any, annotations, or the annotations provide insufficient detail to understand the limitations of the model. The quality and quantity of annotations can be improved by developing tools that recommend annotations. For example, recommender tools have been developed for annotations of genes. Although annotating genes is conceptually similar to annotating biochemical models, there are important technical differences that make it difficult to directly apply this prior work. RESULTS We present AMAS, a system that predicts annotations for elements of models represented in the Systems Biology Markup Language (SBML) community standard. We provide a general framework for predicting model annotations for a query element based on a database of annotated reference elements and a match score function that calculates the similarity between the query element and reference elements. The framework is instantiated to specific element types (e.g. species, reactions) by specifying the reference database (e.g. ChEBI for species) and the match score function (e.g. string similarity). We analyze the computational efficiency and prediction quality of AMAS for species and reactions in BiGG and BioModels and find that it has subsecond response times and accuracy between 80% and 95% depending on specifics of what is predicted. We have incorporated AMAS into an open-source, pip-installable Python package that can run as a command-line tool that predicts and adds annotations to species and reactions to an SBML model. AVAILABILITY AND IMPLEMENTATION Our project is hosted at https://github.com/sys-bio/AMAS, where we provide examples, documentation, and source code files. Our source code is licensed under the MIT open-source license.
Collapse
Affiliation(s)
- Woosub Shin
- Auckland Bioengineering Institute, University of Auckland, 1010 Auckland, New Zealand
| | - John H Gennari
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, United States
| | - Joseph L Hellerstein
- eScience Institute, University of Washington, Seattle, WA 98195, United States
- Paul G. Allen School of Computer Science, University of Washington, Seattle, WA 98195, United States
| | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
38
|
Walsh LH, Coakley M, Walsh AM, O'Toole PW, Cotter PD. Bioinformatic approaches for studying the microbiome of fermented food. Crit Rev Microbiol 2023; 49:693-725. [PMID: 36287644 DOI: 10.1080/1040841x.2022.2132850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
High-throughput DNA sequencing-based approaches continue to revolutionise our understanding of microbial ecosystems, including those associated with fermented foods. Metagenomic and metatranscriptomic approaches are state-of-the-art biological profiling methods and are employed to investigate a wide variety of characteristics of microbial communities, such as taxonomic membership, gene content and the range and level at which these genes are expressed. Individual groups and consortia of researchers are utilising these approaches to produce increasingly large and complex datasets, representing vast populations of microorganisms. There is a corresponding requirement for the development and application of appropriate bioinformatic tools and pipelines to interpret this data. This review critically analyses the tools and pipelines that have been used or that could be applied to the analysis of metagenomic and metatranscriptomic data from fermented foods. In addition, we critically analyse a number of studies of fermented foods in which these tools have previously been applied, to highlight the insights that these approaches can provide.
Collapse
Affiliation(s)
- Liam H Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- School of Microbiology, University College Cork, Ireland
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Cork, Ireland
| |
Collapse
|
39
|
Casini I, McCubbin T, Esquivel-Elizondo S, Luque GG, Evseeva D, Fink C, Beblawy S, Youngblut ND, Aristilde L, Huson DH, Dräger A, Ley RE, Marcellin E, Angenent LT, Molitor B. An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter. iScience 2023; 26:108016. [PMID: 37854702 PMCID: PMC10579436 DOI: 10.1016/j.isci.2023.108016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three Methanothermobacter strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates. Using an integrated systems biology approach, we identified differences in formate anabolism between the strains and revealed that formate anabolism influences the diversion of carbon between biomass and methane. This finding, together with the omics datasets and the metabolic models we generated, can be implemented for biotechnological applications of Methanothermobacter in power-to-gas technology, and as a perspective, for value-added chemical production.
Collapse
Affiliation(s)
- Isabella Casini
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sofia Esquivel-Elizondo
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Guillermo G. Luque
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Daria Evseeva
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Christian Fink
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Sebastian Beblawy
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Nicholas D. Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Daniel H. Huson
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Largus T. Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- AG Angenent, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10D, 8000 Aarhus C, Denmark
- The Novo Nordisk Foundation CO2 Research Center (CORC), Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
- Cluster of Excellence – Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
40
|
Vezina B, Watts SC, Hawkey J, Cooper HB, Judd LM, Jenney AWJ, Monk JM, Holt KE, Wyres KL. Bactabolize is a tool for high-throughput generation of bacterial strain-specific metabolic models. eLife 2023; 12:RP87406. [PMID: 37815531 PMCID: PMC10564454 DOI: 10.7554/elife.87406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Metabolic capacity can vary substantially within a bacterial species, leading to ecological niche separation, as well as differences in virulence and antimicrobial susceptibility. Genome-scale metabolic models are useful tools for studying the metabolic potential of individuals, and with the rapid expansion of genomic sequencing there is a wealth of data that can be leveraged for comparative analysis. However, there exist few tools to construct strain-specific metabolic models at scale. Here, we describe Bactabolize, a reference-based tool which rapidly produces strain-specific metabolic models and growth phenotype predictions. We describe a pan reference model for the priority antimicrobial-resistant pathogen, Klebsiella pneumoniae, and a quality control framework for using draft genome assemblies as input for Bactabolize. The Bactabolize-derived model for K. pneumoniae reference strain KPPR1 performed comparatively or better than currently available automated approaches CarveMe and gapseq across 507 substrate and 2317 knockout mutant growth predictions. Novel draft genomes passing our systematically defined quality control criteria resulted in models with a high degree of completeness (≥99% genes and reactions captured compared to models derived from matched complete genomes) and high accuracy (mean 0.97, n=10). We anticipate the tools and framework described herein will facilitate large-scale metabolic modelling analyses that broaden our understanding of diversity within bacterial species and inform novel control strategies for priority pathogens.
Collapse
Affiliation(s)
- Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Stephen C Watts
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Helena B Cooper
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | | | - Jonathan M Monk
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
- Department of Infection Biology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| |
Collapse
|
41
|
Nègre D, Larhlimi A, Bertrand S. Reconciliation and evolution of Penicillium rubens genome-scale metabolic networks-What about specialised metabolism? PLoS One 2023; 18:e0289757. [PMID: 37647283 PMCID: PMC10468094 DOI: 10.1371/journal.pone.0289757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
In recent years, genome sequencing of filamentous fungi has revealed a high proportion of specialised metabolites with growing pharmaceutical interest. However, detecting such metabolites through in silico genome analysis does not necessarily guarantee their expression under laboratory conditions. However, one plausible strategy for enabling their production lies in modifying the growth conditions. Devising a comprehensive experimental design testing in different culture environments is time-consuming and expensive. Therefore, using in silico modelling as a preliminary step, such as Genome-Scale Metabolic Network (GSMN), represents a promising approach to predicting and understanding the observed specialised metabolite production in a given organism. To address these questions, we reconstructed a new high-quality GSMN for the Penicillium rubens Wisconsin 54-1255 strain, a commonly used model organism. Our reconstruction, iPrub22, adheres to current convention standards and quality criteria, incorporating updated functional annotations, orthology searches with different GSMN templates, data from previous reconstructions, and manual curation steps targeting primary and specialised metabolites. With a MEMOTE score of 74% and a metabolic coverage of 45%, iPrub22 includes 5,192 unique metabolites interconnected by 5,919 reactions, of which 5,033 are supported by at least one genomic sequence. Of the metabolites present in iPrub22, 13% are categorised as belonging to specialised metabolism. While our high-quality GSMN provides a valuable resource for investigating known phenotypes expressed in P. rubens, our analysis identifies bottlenecks related, in particular, to the definition of what is a specialised metabolite, which requires consensus within the scientific community. It also points out the necessity of accessible, standardised and exhaustive databases of specialised metabolites. These questions must be addressed to fully unlock the potential of natural product production in P. rubens and other filamentous fungi. Our work represents a foundational step towards the objective of rationalising the production of natural products through GSMN modelling.
Collapse
Affiliation(s)
- Delphine Nègre
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, Nantes, France
- Nantes Université, École Centrale Nantes, CNRS, Nantes, France
| | | | - Samuel Bertrand
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, Nantes, France
| |
Collapse
|
42
|
Scott WT, Benito-Vaquerizo S, Zimmermann J, Bajić D, Heinken A, Suarez-Diez M, Schaap PJ. A structured evaluation of genome-scale constraint-based modeling tools for microbial consortia. PLoS Comput Biol 2023; 19:e1011363. [PMID: 37578975 PMCID: PMC10449394 DOI: 10.1371/journal.pcbi.1011363] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Harnessing the power of microbial consortia is integral to a diverse range of sectors, from healthcare to biotechnology to environmental remediation. To fully realize this potential, it is critical to understand the mechanisms behind the interactions that structure microbial consortia and determine their functions. Constraint-based reconstruction and analysis (COBRA) approaches, employing genome-scale metabolic models (GEMs), have emerged as the state-of-the-art tool to simulate the behavior of microbial communities from their constituent genomes. In the last decade, many tools have been developed that use COBRA approaches to simulate multi-species consortia, under either steady-state, dynamic, or spatiotemporally varying scenarios. Yet, these tools have not been systematically evaluated regarding their software quality, most suitable application, and predictive power. Hence, it is uncertain which tools users should apply to their system and what are the most urgent directions that developers should take in the future to improve existing capacities. This study conducted a systematic evaluation of COBRA-based tools for microbial communities using datasets from two-member communities as test cases. First, we performed a qualitative assessment in which we evaluated 24 published tools based on a list of FAIR (Findability, Accessibility, Interoperability, and Reusability) features essential for software quality. Next, we quantitatively tested the predictions in a subset of 14 of these tools against experimental data from three different case studies: a) syngas fermentation by C. autoethanogenum and C. kluyveri for the static tools, b) glucose/xylose fermentation with engineered E. coli and S. cerevisiae for the dynamic tools, and c) a Petri dish of E. coli and S. enterica for tools incorporating spatiotemporal variation. Our results show varying performance levels of the best qualitatively assessed tools when examining the different categories of tools. The differences in the mathematical formulation of the approaches and their relation to the results were also discussed. Ultimately, we provide recommendations for refining future GEM microbial modeling tools.
Collapse
Affiliation(s)
- William T. Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen, the Netherlands
| | - Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Johannes Zimmermann
- Christian-Albrechts-University Kiel, Institute of Experimental Medicine, Research Group Medical Systems Biology, Kiel, Germany
| | - Djordje Bajić
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Almut Heinken
- Inserm U1256 Laboratoire nGERE, Université de Lorraine, Nancy, France
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen, the Netherlands
| |
Collapse
|
43
|
Shin W, Gennari JH, Hellerstein JL, Sauro HM. An Automated Model Annotation System (AMAS) for SBML Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549722. [PMID: 37503075 PMCID: PMC10370092 DOI: 10.1101/2023.07.19.549722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Motivation Annotations of biochemical models provide details of chemical species, documentation of chemical reactions, and other essential information. Unfortunately, the vast majority of biochemical models have few, if any, annotations, or the annotations provide insufficient detail to understand the limitations of the model. The quality and quantity of annotations can be improved by developing tools that recommend annotations. For example, recommender tools have been developed for annotations of genes. Although annotating genes is conceptually similar to annotating biochemical models, there are important technical differences that make it difficult to directly apply this prior work. Results We present AMAS, a system that predicts annotations for elements of models represented in the Systems Biology Markup Language (SBML) community standard. We provide a general framework for predicting model annotations for a query element based on a database of annotated reference elements and a match score function that calculates the similarity between the query element and reference elements. The framework is instantiated to specific element types (e.g., species, reactions) by specifying the reference database (e.g., ChEBI for species) and the match score function (e.g., string similarity). We analyze the computational efficiency and prediction quality of AMAS for species and reactions in BiGG and BioModels and find that it has sub-second response times and accuracy between 80% and 95% depending on specifics of what is predicted. We have incorporated AMAS into an open-source, pip-installable Python package that can run as a command-line tool that predicts and adds annotations to species and reactions to an SBML model. Availability Our project is hosted at https://github.com/sys-bio/AMAS, where we provide examples, documentation, and source code files. Our source code is licensed under the MIT open-source license.
Collapse
Affiliation(s)
- Woosub Shin
- Auckland Bioengineering Institute, University of Auckland, Auckland,1010,New Zealand
| | - John H. Gennari
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, 98195, WA, USA
| | - Joseph L. Hellerstein
- eScience Institute, University of Washington, Seattle,98195, WA, USA
- Paul G. Allen School of Computer Science, University of Washington, Seattle, 98195, WA, USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, 98195, WA, USA
| |
Collapse
|
44
|
Schäfer M, Pacheco AR, Künzler R, Bortfeld-Miller M, Field CM, Vayena E, Hatzimanikatis V, Vorholt JA. Metabolic interaction models recapitulate leaf microbiota ecology. Science 2023; 381:eadf5121. [PMID: 37410834 DOI: 10.1126/science.adf5121] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Resource allocation affects the structure of microbiomes, including those associated with living hosts. Understanding the degree to which this dependency determines interspecies interactions may advance efforts to control host-microbiome relationships. We combined synthetic community experiments with computational models to predict interaction outcomes between plant-associated bacteria. We mapped the metabolic capabilities of 224 leaf isolates from Arabidopsis thaliana by assessing the growth of each strain on 45 environmentally relevant carbon sources in vitro. We used these data to build curated genome-scale metabolic models for all strains, which we combined to simulate >17,500 interactions. The models recapitulated outcomes observed in planta with >89% accuracy, highlighting the role of carbon utilization and the contributions of niche partitioning and cross-feeding in the assembly of leaf microbiomes.
Collapse
Affiliation(s)
- Martin Schäfer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Alan R Pacheco
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Rahel Künzler
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
45
|
Karlsen ST, Rau MH, Sánchez BJ, Jensen K, Zeidan AA. From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry. FEMS Microbiol Rev 2023; 47:fuad030. [PMID: 37286882 PMCID: PMC10337747 DOI: 10.1093/femsre/fuad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.
Collapse
Affiliation(s)
- Signe T Karlsen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Martin H Rau
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Benjamín J Sánchez
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Kristian Jensen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Ahmad A Zeidan
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| |
Collapse
|
46
|
Fakih I, Got J, Robles-Rodriguez CE, Siegel A, Forano E, Muñoz-Tamayo R. Dynamic genome-based metabolic modeling of the predominant cellulolytic rumen bacterium Fibrobacter succinogenes S85. mSystems 2023; 8:e0102722. [PMID: 37289026 PMCID: PMC10308913 DOI: 10.1128/msystems.01027-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/14/2023] [Indexed: 06/09/2023] Open
Abstract
Fibrobacter succinogenes is a cellulolytic bacterium that plays an essential role in the degradation of plant fibers in the rumen ecosystem. It converts cellulose polymers into intracellular glycogen and the fermentation metabolites succinate, acetate, and formate. We developed dynamic models of F. succinogenes S85 metabolism on glucose, cellobiose, and cellulose on the basis of a network reconstruction done with the automatic reconstruction of metabolic model workspace. The reconstruction was based on genome annotation, five template-based orthology methods, gap filling, and manual curation. The metabolic network of F. succinogenes S85 comprises 1,565 reactions with 77% linked to 1,317 genes, 1,586 unique metabolites, and 931 pathways. The network was reduced using the NetRed algorithm and analyzed for the computation of elementary flux modes. A yield analysis was further performed to select a minimal set of macroscopic reactions for each substrate. The accuracy of the models was acceptable in simulating F. succinogenes carbohydrate metabolism with an average coefficient of variation of the root mean squared error of 19%. The resulting models are useful resources for investigating the metabolic capabilities of F. succinogenes S85, including the dynamics of metabolite production. Such an approach is a key step toward the integration of omics microbial information into predictive models of rumen metabolism. IMPORTANCE F. succinogenes S85 is a cellulose-degrading and succinate-producing bacterium. Such functions are central for the rumen ecosystem and are of special interest for several industrial applications. This work illustrates how information of the genome of F. succinogenes can be translated to develop predictive dynamic models of rumen fermentation processes. We expect this approach can be applied to other rumen microbes for producing a model of rumen microbiome that can be used for studying microbial manipulation strategies aimed at enhancing feed utilization and mitigating enteric emissions.
Collapse
Affiliation(s)
- Ibrahim Fakih
- Université Clermont Auvergne, INRAE, UMR454 Microbiologie Environnement Digestif et Santé, 63000 Clermont-Ferrand, France
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| | - Jeanne Got
- Université Rennes, Inria, CNRS, IRISA, Dyliss team, 35042 Rennes, France
| | | | - Anne Siegel
- Université Rennes, Inria, CNRS, IRISA, Dyliss team, 35042 Rennes, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR454 Microbiologie Environnement Digestif et Santé, 63000 Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| |
Collapse
|
47
|
Jenior ML, Glass EM, Papin JA. Reconstructor: a COBRApy compatible tool for automated genome-scale metabolic network reconstruction with parsimonious flux-based gap-filling. Bioinformatics 2023; 39:btad367. [PMID: 37279743 PMCID: PMC10275916 DOI: 10.1093/bioinformatics/btad367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
MOTIVATION Genome-scale metabolic network reconstructions (GENREs) are valuable for understanding cellular metabolism in silico. Several tools exist for automatic GENRE generation. However, these tools frequently (i) do not readily integrate with some of the widely-used suites of packaged methods available for network analysis, (ii) lack effective network curation tools, (iii) are not sufficiently user-friendly, and (iv) often produce low-quality draft reconstructions. RESULTS Here, we present Reconstructor, a user-friendly, COBRApy-compatible tool that produces high-quality draft reconstructions with reaction and metabolite naming conventions that are consistent with the ModelSEED biochemistry database and includes a gap-filling technique based on the principles of parsimony. Reconstructor can generate SBML GENREs from three input types: annotated protein .fasta sequences (Type 1 input), a BLASTp output (Type 2), or an existing SBML GENRE that can be further gap-filled (Type 3). While Reconstructor can be used to create GENREs of any species, we demonstrate the utility of Reconstructor with bacterial reconstructions. We demonstrate how Reconstructor readily generates high-quality GENRES that capture strain, species, and higher taxonomic differences in functional metabolism of bacteria and are useful for further biological discovery. AVAILABILITY AND IMPLEMENTATION The Reconstructor Python package is freely available for download. Complete installation and usage instructions and benchmarking data are available at http://github.com/emmamglass/reconstructor.
Collapse
Affiliation(s)
- Matthew L Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Emma M Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, United States
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
48
|
Molversmyr H, Øyås O, Rotnes F, Vik JO. Extracting functionally accurate context-specific models of Atlantic salmon metabolism. NPJ Syst Biol Appl 2023; 9:19. [PMID: 37244928 DOI: 10.1038/s41540-023-00280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2023] Open
Abstract
Constraint-based models (CBMs) are used to study metabolic network structure and function in organisms ranging from microbes to multicellular eukaryotes. Published CBMs are usually generic rather than context-specific, meaning that they do not capture differences in reaction activities, which, in turn, determine metabolic capabilities, between cell types, tissues, environments, or other conditions. Only a subset of a CBM's metabolic reactions and capabilities are likely to be active in any given context, and several methods have therefore been developed to extract context-specific models from generic CBMs through integration of omics data. We tested the ability of six model extraction methods (MEMs) to create functionally accurate context-specific models of Atlantic salmon using a generic CBM (SALARECON) and liver transcriptomics data from contexts differing in water salinity (life stage) and dietary lipids. Three MEMs (iMAT, INIT, and GIMME) outperformed the others in terms of functional accuracy, which we defined as the extracted models' ability to perform context-specific metabolic tasks inferred directly from the data, and one MEM (GIMME) was faster than the others. Context-specific versions of SALARECON consistently outperformed the generic version, showing that context-specific modeling better captures salmon metabolism. Thus, we demonstrate that results from human studies also hold for a non-mammalian animal and major livestock species.
Collapse
Affiliation(s)
- Håvard Molversmyr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ove Øyås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Filip Rotnes
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
49
|
Borer B, Magnúsdóttir S. The media composition as a crucial element in high-throughput metabolic network reconstruction. Interface Focus 2023; 13:20220070. [PMID: 36789238 PMCID: PMC9912011 DOI: 10.1098/rsfs.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
In recent years, metagenome-assembled genomes (MAGs) have provided glimpses into the intra- and interspecies genetic diversity and interactions that form the bases of complex microbial communities. High-throughput reconstruction of genome-scale metabolic networks (GEMs) from MAGs is a promising avenue to disentangle the myriad trophic interactions stabilizing these communities. However, high-throughput reconstruction of GEMs relies on accurate gap filling of metabolic pathways using automated algorithms. Here, we systematically explore how the composition of the media (specification of the available nutrients and metabolites) during gap filling influences the resulting GEMs concerning predicted auxotrophies for fully sequenced model organisms and environmental isolates. We expand this analysis by using 106 MAGs from the same species with differing quality. We find that although the completeness of MAGs influences the fraction of gap-filled reactions, the composition of the media plays the dominant role in the accurate prediction of auxotrophies that form the basis of myriad community interactions. We propose that constraining the media composition for gap filling through both experimental approaches and computational approaches will increase the reliability of high-throughput reconstruction of genome-scale metabolic models from MAGs and paves the way for culture independent prediction of trophic interactions in complex microbial communities.
Collapse
Affiliation(s)
- Benedict Borer
- Earth, Atmospheric and Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefanía Magnúsdóttir
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| |
Collapse
|
50
|
van Leeuwen PT, Brul S, Zhang J, Wortel MT. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiol Rev 2023; 47:fuad012. [PMID: 36931888 PMCID: PMC10062696 DOI: 10.1093/femsre/fuad012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The human gut harbors native microbial communities, forming a highly complex ecosystem. Synthetic microbial communities (SynComs) of the human gut are an assembly of microorganisms isolated from human mucosa or fecal samples. In recent decades, the ever-expanding culturing capacity and affordable sequencing, together with advanced computational modeling, started a ''golden age'' for harnessing the beneficial potential of SynComs to fight gastrointestinal disorders, such as infections and chronic inflammatory bowel diseases. As simplified and completely defined microbiota, SynComs offer a promising reductionist approach to understanding the multispecies and multikingdom interactions in the microbe-host-immune axis. However, there are still many challenges to overcome before we can precisely construct SynComs of designed function and efficacy that allow the translation of scientific findings to patients' treatments. Here, we discussed the strategies used to design, assemble, and test a SynCom, and address the significant challenges, which are of microbiological, engineering, and translational nature, that stand in the way of using SynComs as live bacterial therapeutics.
Collapse
Affiliation(s)
- Pim T van Leeuwen
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jianbo Zhang
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike T Wortel
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|