1
|
Nie P, Hu L, Feng X, Xu H. Gut Microbiota Disorders and Metabolic Syndrome: Tales of a Crosstalk Process. Nutr Rev 2025; 83:908-924. [PMID: 39504479 DOI: 10.1093/nutrit/nuae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The microbiota in humans consists of trillions of microorganisms that are involved in the regulation of the gastrointestinal tract and immune and metabolic homeostasis. The gut microbiota (GM) has a prominent impact on the pathogenesis of metabolic syndrome (MetS). This process is reciprocal, constituting a crosstalk process between the GM and MetS. In this review, GM directly or indirectly inducing MetS via the host-microbial metabolic axis has been systematically reviewed. Additionally, the specifically altered GM in MetS are detailed in this review. Moreover, short-chain fatty acids (SCFAs), as unique gut microbial metabolites, have a remarkable effect on MetS, and the role of SCFAs in MetS-related diseases is highlighted to supplement the gaps in this area. Finally, the existing therapeutics are outlined, and the superiority and shortcomings of different therapeutic approaches are discussed, in hopes that this review can contribute to the development of potential treatment strategies.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation Co., Ltd, Nanchang University, Nanchang 330200, China
| |
Collapse
|
2
|
Li N, Li M, Zhang H, Bai Z, Fei Z, Dong Y, Zhang X, Xiao P, Sun X, Zhou D. Effects of post-adulthood environmental hygiene improvement on gut microbiota and immune tolerance in mice. Appl Environ Microbiol 2025; 91:e0247724. [PMID: 40047424 PMCID: PMC12016539 DOI: 10.1128/aem.02477-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/12/2025] [Indexed: 04/24/2025] Open
Abstract
Changes in diet, cleanliness, stress, and exercise patterns may contribute to the disappearance of various gut microbes in humans who relocate to developed countries from developing countries. To explore the impact of environmental cleanliness on the gut microbiota, adult mice housed in a general animal room were divided into three groups. The control group was subjected to an unchanged living environment, SPF mice were moved to a specific pathogen-free (SPF) animal room with higher environmental cleanliness, and SPFL (specific pathogen-free specific with a fecal leakage grid) mice were moved to the SPF animal room and reared in cages with the function of preventing mice from eating feces as much as possible. Metagenome sequencing results showed that the gut microbial diversity decreased after the environmental change, accompanied by a substantial loss in gut microbiota, including genera known to have protective effects against allergies and those involved in short-chain fatty acid production. Additionally, the abundance of functional genes involved in short-chain fatty acid metabolism, amino acid synthesis, vitamin metabolism, flagellar assembly, and bacterial chemotaxis decreased. The environmental hygiene improvement also resulted in significant increases in total serum IgE, IL-4, IL-5, and IL-13 levels in mice with artificially induced chronic inflammatory dermatosis. Compared with SPF mice, preventing mice from eating feces as much as possible decreased the gut microbial diversity but did not markedly change functional gene expression or total serum cytokine levels. IMPORTANCE Research has indicated that the human gut microbial diversity gradually decreases, while the prevalence of allergic diseases increases after movement from developing countries to developed countries. A healthy gut microbiota is necessary for proper human immune function. Movement from undeveloped to developed regions is often accompanied by an increase in environmental cleanliness. However, whether changes in environmental cleanliness are an important factor contributing to the decreased gut microbial diversity and increased prevalence of allergic diseases has not been reported. This study demonstrates the impact of increased environmental cleanliness on gut microbiota and susceptibility to allergic diseases and contributes to a better understanding of the increased incidence rate of various chronic diseases.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing, China
| | - Mengjie Li
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing, China
| | - Honglin Zhang
- College of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Zhimao Bai
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, China
| | - Zhongjie Fei
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Yangyang Dong
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing, China
| | - Xinting Zhang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Dongrui Zhou
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Alver SK, Peters BA, Mossavar-Rahmani Y, Qi Q, McClain AC, Van Horn L, Burk RD, Kaplan RC. Association of meal timing with adiposity measures and gut microbiome characteristics in a cohort study: the Hispanic Community Health Study/Study of Latinos. Am J Clin Nutr 2025:S0002-9165(25)00189-3. [PMID: 40222449 DOI: 10.1016/j.ajcnut.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Time-restricted eating may help control weight through caloric restriction, circadian rhythm, or influence on the gut microbiome (GMB). Physical activity (PA) also plays a role, as people with a longer eating window (EW, time between first and last daily intake) may be more active. The associations between meal timing, adiposity, PA, sedentary behavior (SB), and GMB characteristics are of interest in Hispanic/Latino persons, who experience a high burden of cardiometabolic diseases. OBJECTIVES We explored the relationship of EW with energy intake and accelerometer-measured activity and assessed whether a longer EW and later midpoint of intake (MOI, midpoint time of intake) are associated with adiposity and GMB differences in Hispanic/Latino adults. METHODS Using data from the prospective Hispanic Community Health Study/Study of Latinos (n = 11,778 participants with valid 24-h dietary recall and accelerometer data, no unplanned weight loss, and BMI ≥ 18.5 kg/m2; n = 1925 with GMB data), we explored the relationship between EW, SB, and energy intake. We used multivariable linear regression models to study the relationship between EW or MOI and adiposity measures and GMB characteristics, adjusted for clinical, behavioral, and demographic characteristics. RESULTS Those with longer EW tended to have less SB and greater energy intake, suggesting that some individuals may balance greater intake with greater expenditure. After adjustments including energy balance, each hour of EW was associated with 0.29% higher BMI (95% confidence interval [CI]: 0.07, 0.51; P = 0.011). Longer EW and caloric EW (EWC, EW, caloric meals only) were associated with several obesity-associated GMB taxa, such as Streptococcus (enriched, β: 0.04; 95% CI: 0.01, 0.07, for EW). MOI was not significantly associated with adiposity or GMB characteristics. CONCLUSIONS Shorter EW may promote healthy weight, but some individuals with longer compared with shorter EWs tend to have greater activity that could balance their greater energy intake. EW and EWC may influence GMB characteristics.
Collapse
Affiliation(s)
- Sarah K Alver
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Brandilyn A Peters
- Departments of Epidemiology and Population Health, Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yasmin Mossavar-Rahmani
- Departments of Epidemiology and Population Health, Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qibin Qi
- Departments of Epidemiology and Population Health, Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amanda C McClain
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Linda Van Horn
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert D Burk
- Departments of Epidemiology and Population Health, Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Departments of Epidemiology and Population Health, Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Dubois N, Giroux I. Bidirectional Relationship Between Nutrition and Mental Health and Its Impact on the Health of Canadian Immigrants: An Integrative Review. Healthcare (Basel) 2025; 13:850. [PMID: 40281799 PMCID: PMC12027039 DOI: 10.3390/healthcare13080850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Immigration is a key factor contributing to population growth in Canada, a trend that is expected to continue. Immigrants generally arrive with better health than the Canadian-born population, but this advantage often diminishes over time, partially due to dietary acculturation. Emerging evidence points to a bidirectional link between nutrition and mental health. Objective: To explore the bidirectional relationship between nutrition and mental health and its impact on the health of Canadian immigrants, with a specific focus on immigrants' mental health and the healthy immigrant effect. Methods: For this integrative review, two comprehensive literature searches were conducted in the databases MEDLINE, CINAHL, Embase, PsycINFO, Scopus, and Web of Science from inception to July 2024. The review adhered to Whittemore and Knafl's integrative methodology, with the Mixed Methods Assessment Tool used to assess the quality of the studies. Results: A total of 42 and 34 scientific articles were included from the first and second literature searches, respectively. Four main themes emerged from the literature: (1) food insecurity and mental health, (2) obesity and mental health, (3) diet quality and mental health, and (4) the gut microbiome and mental health. These themes were explored in the context of Canadian immigrants' health. Conclusions: The health of immigrants to Canada is likely shaped by complex, bidirectional interactions among various determinants of health, influencing both physical and mental well-being. As newcomers are expected to form an increasing proportion of the Canadian population, further research is needed to understand how the interaction between nutrition and mental health can help promote and safeguard the health of Canadian immigrants.
Collapse
Affiliation(s)
- Naika Dubois
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Isabelle Giroux
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Institut du Savoir Montfort, Ottawa, ON K1K 0M9, Canada
| |
Collapse
|
5
|
Tian C, Zhang T, Zhuang D, Luo Y, Li T, Zhao F, Sang J, Tang Z, Jiang P, Zhang T, Liu P, Zhu L, Zhang Z. Industrialization drives the gut microbiome and resistome of the Chinese populations. mSystems 2025; 10:e0137224. [PMID: 39902937 PMCID: PMC11915869 DOI: 10.1128/msystems.01372-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 02/06/2025] Open
Abstract
Industrialization has driven lifestyle changes in eastern and western Chinese populations, yet we have a poor understanding of the dynamic changes in their gut microbiome and resistome under industrialization, which is essential for the scientific management of public health. Here, this study employed metagenomics to analyze the gut microbiota of 1,382 healthy individuals from China, including 415 individuals from the eastern region of advanced industrialization and 967 individuals from the western region of developing industrialization. Compared with western populations, eastern populations show a significant increase in interindividual dissimilarity of microbial species composition and metabolic pathways but a significant decrease in intraindividual species and functional diversity. Furthermore, our results found significantly less abundance and richness of antibiotic resistance genes (ARGs) in the gut microbiota of eastern populations, alongside a lower prevalence of unique core ARG subtypes. For the 12 core ARG types shared between eastern and western populations, the mean relative abundance of two types was notably higher in the eastern populations, while eight core ARG types had significantly higher mean relative abundance in the western populations. Based on the reconstruction of metagenomic assembled genomes, we found that Escherichia coli genomes from western populations carried more virulence factor genes (VFGs) and mobile genetic elements (MGEs) compared to those from eastern populations. This large-scale study for the first time revealed industrialization potentially led to unexpected alterations of the gut microbiome and resistome between eastern and western populations that provide a vital implication for Chinese public health and may aid in the development of region-specific strategies for managing pathogenic infections. IMPORTANCE As China experiences rapid but uneven industrialization, understanding its effect on people's gut bacteria is critical for public health. This study reveals how industrialization may reshape the health risks related to gut bacteria and antibiotic resistance. This work provides crucial information to help create customized public health policies for different regions.
Collapse
Affiliation(s)
- Chen Tian
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Daohua Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yu Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Teng Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Fangfang Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jianan Sang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zecheng Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Peicheng Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Lanzhou, Gansu Province, China
- Chayu Monsoon Corridor Observation and Research Station for Multi-Sphere Changes, Xizang Autonomous Region, Chayu, China
| | - Lei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Zhang Y, Luo K, Peters BA, Mossavar-Rahmani Y, Moon JY, Wang Y, Daviglus ML, Van Horn L, McClain AC, Cordero C, Floyd JS, Yu B, Walker RW, Burk RD, Kaplan RC, Qi Q. Sugar-sweetened beverage intake, gut microbiota, circulating metabolites, and diabetes risk in Hispanic Community Health Study/Study of Latinos. Cell Metab 2025; 37:578-591.e4. [PMID: 39892390 PMCID: PMC11885037 DOI: 10.1016/j.cmet.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/17/2024] [Accepted: 12/12/2024] [Indexed: 02/03/2025]
Abstract
No population-based studies examined gut microbiota and related metabolites associated with sugar-sweetened beverage (SSB) intake among US adults. In this cohort of US Hispanic/Latino adults, higher SSB intake was associated with nine gut bacterial species, including lower abundances of several short-chain-fatty-acid producers, previously shown to be altered by fructose and glucose in animal studies, and higher abundances of fructose- and glucose-utilizing Clostridium bolteae and Anaerostipes caccae. Fifty-six serum metabolites were correlated with SSB intake and a gut microbiota score based on these SSB-related species in consistent directions. These metabolites were clustered into several modules, including a glycerophospholipid module, two modules comprising branched-chain amino acid (BCAA) and aromatic amino acid (AAA) derivatives from microbial metabolism, etc. Higher glycerophospholipid and BCAA derivative levels and lower AAA derivative levels were associated with higher incident diabetes risk during follow-up. These findings suggest a potential role of gut microbiota in the association between SSB intake and diabetes.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C McClain
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Christina Cordero
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - James S Floyd
- Department of Medicine, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Ryan W Walker
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Wang W, Wang F, Li Y, Shi Y, Wang X, Chen X, Zheng W, Hsing JC, Lu Y, Wu YS, Hsing AW, Kan J, He W, Zhu S. Distinct Gut Microbiota Profiles in Normal Weight Obesity and Their Association With Cardiometabolic Diseases: Results From Two Independent Cohort Studies. J Cachexia Sarcopenia Muscle 2025; 16:e13644. [PMID: 39723699 DOI: 10.1002/jcsm.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/02/2024] [Accepted: 10/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Normal weight obesity (NWO) is characterized by excess body fat in individuals with normal body mass index (BMI). This study aimed to investigate gut microbiota alterations in NWO and their potential associations with cardiometabolic diseases (CMD) risk in two independent cohorts. METHODS Our NWO-CMD mortality analysis included 168 099 adults with normal BMI from two large open-access databases, while our NWO-gut microbiota study involved 5467 adults with normal BMI from two independent cohorts: the WELL-China cohort and the Lanxi cohort. NWO was defined as having a normal BMI (18.5-23.9 kg/m2) but an excess per cent body fat (PBF, ≥ 25% in men and ≥ 35% in women). Normal weight lean was defined as having a normal BMI and normal PBF. The 16S rRNA gene sequencing method was used to analyse gut microbiota data. RESULTS The study comprised 3620 (64.0% female, median age 58 years) and 1847 (64.3% female, median age 56 years) participants from the WELL-China and Lanxi cohorts. In our meta-analysis, NWO is associated with 26% (95% CI: 1.07-1.41) higher risk of CMD mortality. Gut microbial analyses indicated that the NWO group exhibited reduced levels of observed species (p = 0.009 and p = 0.013) and Chao 1 index (p = 0.002 and p = 0.002) and altered gut microbial compositions (p = 0.009 and p < 0.001) compared with the NWL group. Seven genera were consistently observed to be associated with NWO in both two cohorts (all Q < 0.25). Among them, five (Fusobacterium, Ruminococcus gnavus group, Ruminococcus torques group, Coprococcus and Christensenellaceae_R7_group) have been previously linked to obesity, while the other two (Phascolarctobacterium and Clostridia_UCG-014) were minimally reported. We also found statistically significant differences in the microbial composition between the NWO group and the obesity group (p = 0.001 and p = 0.001). Furthermore, the NWO-related gut microbiome was associated with an elevated risk of hypertension, dyslipidaemia and metabolic syndrome, the corresponding HR (95% CIs) were 1.11 (1.01-1.22), 1.19 (1.10-1.29) and 1.17 (1.05-1.30) in the WELL-China cohort and 1.14 (1.02-1.27), 1.15 (1.02-1.29) and 1.16 (1.02-1.32) in the Lanxi cohort. CONCLUSIONS These two large cohorts provided reliable evidence that gut microbiota alterations in NWO resemble those found in obesity, yet also display unique aspects. This distinct microbiota profile may contribute to heightened cardiometabolic risks in adults with normal BMI.
Collapse
Affiliation(s)
- Wenjie Wang
- Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Yihan Li
- Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuwei Shi
- Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Wang
- Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Chen
- Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weifang Zheng
- Lanxi Hospital of Traditional Chinese Medicine, Lanxi, Zhejiang, China
| | - Julianna C Hsing
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Ying Lu
- Department of Biomedical Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Yi-Shuan Wu
- Department of Medicine, Stanford Prevention Research Center, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Ann W Hsing
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Stanford Prevention Research Center, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Wei He
- Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shankuan Zhu
- Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Jiang M, Yan Y, Wang T, Wang B, Li Y, Tang J, Zheng Y. Chronic exposure to diesel engine exhaust and alteration of the airway bacteriome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117857. [PMID: 39933232 DOI: 10.1016/j.ecoenv.2025.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The detrimental effects of diesel engine exhaust (DEE) on public health are receiving increasing attention, particularly concerning respiratory health. Our understanding of the associations of the airway bacterial ecosystem with exposure to DEE and respiratory health remains limited. Our study aimed to identify the airway bacterial signature and assess its correlation with respiratory health in occupational populations. In this study, we collected induced sputum from 54 diesel-exposed workers and 52 unexposed controls. The exposed participants experienced lower forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) than controls. Importantly, the overall airway bacterial signature and assemblage in exposed individuals differed significantly from controls. The relative abundance of Prevotella nanceiensis, Prevotella shahii, Aggregatibacter segnis, and Lachnoanaerobaculum umeaense displayed remarkable differences between the two groups. Furthermore, exposed individuals showed a less robust correlation network and fewer keystone species in their airway bacteriome than controls. Furthermore, the Spearman analysis indicated notable correlations of specific species with carbon content in airway macrophages (CCAM), club cell protein (CC16), FVC and FEV1. Taken together, our study provided new information on the difference in the airway bacterial signature under exposure to DEE and supported a potential new link between specific species and lung function in occupational populations.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, Shandong, China.
| | - Yongwei Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Tao Wang
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Bojia Wang
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Lotankar M, Houttu N, Mokkala K, Laitinen K. Diet-Gut Microbiota Relations: Critical Appraisal of Evidence From Studies Using Metagenomics. Nutr Rev 2024:nuae192. [PMID: 39718602 DOI: 10.1093/nutrit/nuae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Diet may influence the gut microbiota and subsequently affect the host's health. Recent developments in methods analyzing the composition and function of the gut microbiota allow a deeper understanding of diet-gut microbiota relationships. A state-of-the-art methodology, shotgun metagenomics sequencing, offers a higher taxonomic resolution of the gut microbiota at the bacterial species and strain levels, and more accurate information regarding the functional potential of gut microbiota. Here, the available evidence on the relationship between diet and gut microbiota was critically reviewed, focusing on results emerging from recent metagenomics sequencing studies applied in randomized controlled trials and observational studies. The PubMed and Embase databases were used to search publications between January 2011 and September 2023. Thus far, the number of studies is limited, and the study designs and methods utilized have been variable. Nevertheless, the cumulative evidence from interventions relates to dietary fiber as a modifier of bacterial species, such as Anaerostipes hadrus and Faecalibacterium prausnitzii. Furthermore, observational studies have detected associations between different dietary patterns and food groups with certain microbial species. Utilization of metagenomics sequencing is becoming more common and will undoubtedly provide further insights into diet-gut microbiota relationships at the species level as well as their functional pathways in the near future. For reproducible results and to draw reliable conclusions across various studies on diet-gut microbiota relationships, there is a need for harmonization of the study designs and standardized ways of reporting.
Collapse
Affiliation(s)
- Mrunalini Lotankar
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland
| | - Noora Houttu
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland
| | - Kati Mokkala
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland
- Nutrition and Food Research Center, Faculty of Medicine, University of Turku, 20520 Turku, Finland
| | - Kirsi Laitinen
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland
- Nutrition and Food Research Center, Faculty of Medicine, University of Turku, 20520 Turku, Finland
- Department of Obstetrics and Gynecology, Turku University Hospital, Wellbeing Services County of Southwest Finland, 20520 Turku, Finland
| |
Collapse
|
10
|
Shad NS, Shaikh NI, Cunningham SA. Migration Spurs Changes in the Human Microbiome: a Review. J Racial Ethn Health Disparities 2024; 11:3618-3632. [PMID: 37843778 DOI: 10.1007/s40615-023-01813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
International migration often results in major changes in living environments and lifestyles, and these changes may lead to the observed increases in obesity and diabetes among foreign-born people after resettling in higher-income countries. A possible mechanism linking changes in living environments to the onset of health conditions may be changes in the microbiome. Previous research has shown that unfavorable changes in the composition of the microbiome can increase disposition to diseases such as diabetes, obesity, kidney disease, and inflammatory bowel disease. We investigated the relationship between human migration and microbiome composition through a review using microbiome- and migration-related search terms in PubMed and Web of Science. We included articles examining the gut, oral, or oropharyngeal microbiome in people who migrated internationally. Nine articles met eligibility criteria. All but one examined migration from a non-Western to a Western country. Four of these found a difference in the microbiome of migrants compared with non-migrating residents of their country of birth, seven found differences in the microbiome of migrants compared with the native-born population in the country of resettlement, and five found microbiome differences associated with duration of stay in the country of resettlement. Microbiome composition varies with country of birth, age at migration, time since immigration, and country of resettlement. The results suggest that migration may lead to changes in the microbiome; thus, microbiome characteristics are a plausible pathway to examine changes in health after resettlement in a new country.
Collapse
Affiliation(s)
| | - Nida I Shaikh
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
11
|
Silk ET, Bayer SB, Foster M, Roy NC, Taylor MW, Vatanen T, Gearry RB. Advancing microbiome research in Māori populations: insights from recent literature exploring the gut microbiomes of underrepresented and Indigenous peoples. mSystems 2024; 9:e0090924. [PMID: 39365053 PMCID: PMC11575238 DOI: 10.1128/msystems.00909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The gut microbiome plays vital roles in human health, including mediating metabolism, immunity, and the gut-brain axis. Many ethnicities remain underrepresented in gut microbiome research, with significant variation between Indigenous and non-Indigenous peoples due to dietary, socioeconomic, health, and urbanization differences. Although research regarding the microbiomes of Indigenous peoples is increasing, Māori microbiome literature is lacking despite widespread inequities that Māori populations face. These inequities likely contribute to gut microbiome differences that exacerbate negative health outcomes. Characterizing the gut microbiomes of underrepresented populations is necessary to inform efforts to address health inequities. However, for microbiome research to be culturally responsible and meaningful, study design must improve to better protect the rights and interests of Indigenous peoples. Here, we discuss barriers to Indigenous participation in research and the role disparities may play in shaping the gut microbiomes of Indigenous peoples, with a particular focus on implications for Māori and areas for improvement.
Collapse
Affiliation(s)
- Ella T Silk
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Simone B Bayer
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Meika Foster
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Edible Research, Ohoka, New Zealand
| | - Nicole C Roy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - Michael W Taylor
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
12
|
Xu Q, Fang J, Wang Y, Lang D, Xu B. The causal relationship between gut microbiota and lower extremity deep vein thrombosis combined with pulmonary embolism. Front Microbiol 2024; 15:1301737. [PMID: 39417077 PMCID: PMC11480004 DOI: 10.3389/fmicb.2024.1301737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Background Over the years, numerous studies have explored the relationship between gut microbiota and lower extremity deep vein thrombosis (LEDVT) and pulmonary embolism (PE). The present study utilized Mendelian randomization (MR) to assess the causal link between gut microbiota and LEDVT combined with PE. Methods Human gut microbiota genome-wide association study (GWAS) summary data from the MiBioGen consortium (n = 18,340) were utilized. Summary-level data on LEDVT (2,116 cases and 359,078 controls) and LEDVT combined with PE (4,319 cases and 356,875 controls) were obtained from the IEU Open GWAS project. MR analysis was conducted using the inverse variance weighted (IVW) method as the primary analysis. Additionally, MR-Egger, weighted median, weighted mode, and simple mode were employed as supplementary methods. Sensitivity analyses, including tests for heterogeneity and horizontal pleiotropy, were performed. Lastly, reverse MR analysis was performed. Results The IVW analyses revealed seven causal relationships between genetic liability in the gut microbiota and LEDVT and five causal relationships between genetic liability in the gut microbiota and LEDVT combined with PE. The intersection of these outcomes identified that the genus Butyricicoccus reduced the risk of both LEDVT and LEDVT combined with PE, while the genus Clostridium innocuum increased the risk for both conditions. Conclusion This study demonstrates that the gut microbiota is causally associated with LEDVT and LEDVT combined with PE. Our findings provide valuable insights into the underlying mechanisms and suggest potential avenues for further clinical investigations of these conditions.
Collapse
Affiliation(s)
- Qiyang Xu
- Department of General Surgery, Ningbo No.2 Hospital, Ningbo, China
| | - Jihong Fang
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Lihuili Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yi Wang
- Department of Radiotherapy and Chemotherapy, Ningbo No.2 Hospital, Ningbo, China
| | - Dehai Lang
- Department of General Surgery, Ningbo No.2 Hospital, Ningbo, China
| | - Bin Xu
- Department of General Surgery, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
13
|
Anisman H, Doubad D, Asokumar A, Matheson K. Psychosocial and neurobiological aspects of the worldwide refugee crisis: From vulnerability to resilience. Neurosci Biobehav Rev 2024; 165:105859. [PMID: 39159733 DOI: 10.1016/j.neubiorev.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Anisman, H., Doubad, D., Asokumar, A. & Matheson, K. Psychosocial and neurobiological aspects of the worldwide refugee crisis: From vulnerability to resilience. NEUROSCI BIOBEHAV REV, XXXX. Immigration occurs between countries either to obtain employment, for family reunification or to escape violence and other life-threatening conditions. Refugees and asylum seekers are often obligated to overcome a uniquely challenging set of circumstances prior to and during migration. Settlement following immigration may pose yet another set of stressors related to acculturation to the host country, as well as financial insecurity, discrimination, language barriers, and social isolation. Here we discuss the multiple consequences of immigration experiences, focusing on the health disturbances that frequently develop in adults and children. Aside from the psychosocial influences, immigration-related challenges may cause hormonal, inflammatory immune, and microbiota changes that favor psychological and physical illnesses. Some biological alterations are subject to modification by epigenetic changes, which have implications for intergenerational trauma transmission, as might disruptions in parenting behaviors and family dysfunction. Despite the hardships experienced, many immigrants and their families exhibit positive psychological adjustment after resettlement. We provide information to diminish the impacts associated with immigration and offer strength-based approaches that may foster resilience.
Collapse
Affiliation(s)
- H Anisman
- Carleton University, Department of Neuroscience, Ottawa, Ontario K1S 5B6, Canada.
| | - D Doubad
- Carleton University, Department of Neuroscience, Ottawa, Ontario K1S 5B6, Canada
| | - A Asokumar
- Carleton University, Department of Neuroscience, Ottawa, Ontario K1S 5B6, Canada
| | - K Matheson
- Carleton University, Department of Neuroscience, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
14
|
Shang Z, Chen K, Han T, Bu F, Sun S, Zhu N, Man D, Yang K, Yuan S, Fu H. Natural Foraging Selection and Gut Microecology of Two Subterranean Rodents from the Eurasian Steppe in China. Animals (Basel) 2024; 14:2334. [PMID: 39199868 PMCID: PMC11350848 DOI: 10.3390/ani14162334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
As the most abundant group of mammals, rodents possess a very rich ecotype, which makes them ideal for studying the relationship between diet and host gut microecology. Zokors are specialized herbivorous rodents adapted to living underground. Unlike more generalized herbivorous rodents, they feed on the underground parts of grassland plants. There are two species of the genus Myospalax in the Eurasian steppes in China: one is Myospalax psilurus, which inhabits meadow grasslands and forest edge areas, and the other is M. aspalax, which inhabits typical grassland areas. How are the dietary choices of the two species adapted to long-term subterranean life, and what is the relationship of this diet with gut microbes? Are there unique indicator genera for their gut microbial communities? Relevant factors, such as the ability of both species to degrade cellulose, are not yet clear. In this study, we analyzed the gut bacterial communities and diet compositions of two species of zokors using 16S amplicon technology combined with macro-barcoding technology. We found that the diversity of gut microbial bacterial communities in M. psilurus was significantly higher than that in M. aspalax, and that the two species of zokors possessed different gut bacterial indicator genera. Differences in the feeding habits of the two species of zokors stem from food composition rather than diversity. Based on the results of Mantel analyses, the gut bacterial community of M. aspalax showed a significant positive correlation with the creeping-rooted type food, and there was a complementary relationship between the axis root-type-food- and the rhizome-type-food-dominated (containing bulb types and tuberous root types) food groups. Functional prediction based on KEGG found that M. psilurus possessed a stronger degradation ability in the same cellulose degradation pathway. Neutral modeling results show that the gut flora of the M. psilurus has a wider ecological niche compared to that of the M. aspalax. This provides a new perspective for understanding how rodents living underground in grassland areas respond to changes in food conditions.
Collapse
Affiliation(s)
- Zhenghaoni Shang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Kai Chen
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Tingting Han
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Fan Bu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Shanshan Sun
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Na Zhu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Duhu Man
- College of Agriculture, Hulunbuir University, Hulunbuir 021000, China;
| | - Ke Yang
- Alxa League Meteorological Bureau, Alxa 750300, China;
| | - Shuai Yuan
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Heping Fu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| |
Collapse
|
15
|
Li Y, Peters BA, Yu B, Perreira KM, Daviglus M, Chan Q, Knight R, Boerwinkle E, Isasi CR, Burk R, Kaplan R, Wang T, Qi Q. Blood metabolomic shift links diet and gut microbiota to multiple health outcomes among Hispanic/Latino immigrants in the U.S. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.19.24310722. [PMID: 39072018 PMCID: PMC11275661 DOI: 10.1101/2024.07.19.24310722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Immigrants from less industrialized countries who are living in the U.S. often bear an elevated risk of multiple disease due to the adoption of a U.S. lifestyle. Blood metabolome holds valuable information on environmental exposure and the pathogenesis of chronic diseases, offering insights into the link between environmental factors and disease burden. Analyzing 634 serum metabolites from 7,114 Hispanics (1,141 U.S.-born, 5,973 foreign-born) in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), we identified profound blood metabolic shift during acculturation. Machine learning highlighted the prominent role of non-genetic factors, especially food and gut microbiota, in these changes. Immigration-related metabolites correlated with plant-based foods and beneficial gut bacteria for foreign-born Hispanics, and with meat-based or processed food and unfavorable gut bacteria for U.S.-born Hispanics. Cardiometabolic traits, liver, and kidney function exhibited a link with immigration-related metabolic changes, which were also linked to increased risk of diabetes, severe obesity, chronic kidney disease, and asthma. Graphical abstract Highlights A substantial proportion of identified blood metabolites differ between U.S.-born and foreign-born Hispanics/Latinos in the U.S.Food and gut microbiota are the major modifiable contributors to blood metabolomic difference between U.S.-born and foreign-born Hispanics/Latinos.U.S. nativity related metabolites collectively correlate with a spectrum of clinical traits and chronic diseases.
Collapse
|
16
|
Wang Y, Chen GC, Wang Z, Luo K, Zhang Y, Li Y, McClain AC, Jankowska MM, Perreira KM, Mattei J, Isasi CR, Llabre MM, Thyagarajan B, Daviglus ML, Van Horn L, Farelo DG, Maldonado LE, Levine SR, Yu B, Boerwinkle E, Knight R, Burk RD, Kaplan RC, Qi Q, Peters BA. Dietary Acculturation Is Associated With Altered Gut Microbiome, Circulating Metabolites, and Cardiovascular Disease Risk in US Hispanics and Latinos: Results From HCHS/SOL. Circulation 2024; 150:215-229. [PMID: 39008559 PMCID: PMC11460527 DOI: 10.1161/circulationaha.124.069824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Dietary acculturation, or adoption of dominant culture diet by migrant groups, influences human health. We aimed to examine dietary acculturation and its relationships with cardiovascular disease (CVD), gut microbiota, and blood metabolites among US Hispanic and Latino adults. METHODS In the HCHS/SOL (Hispanic Community Health Study/Study of Latinos), US exposure was defined by years in the United States (50 states and Washington, DC) and US nativity. A dietary acculturation pattern was derived from 14 172 participants with two 24-hour dietary recalls at baseline (2008-2011) using least absolute shrinkage and selection operator regression, with food groups as predictors of US exposure. We evaluated associations of dietary acculturation with incident CVD across ≈7 years of follow-up (n=211/14 172 cases/total) and gut microbiota (n=2349; visit 2, 2014 to 2017). Serum metabolites associated with both dietary acculturation-related gut microbiota (n=694) and incident CVD (n=108/5256 cases/total) were used as proxy measures to assess the association of diet-related gut microbiome with incident CVD. RESULTS We identified an empirical US-oriented dietary acculturation score that increased with US exposure. Higher dietary acculturation score was associated with higher risk of incident CVD (hazard ratio per SD, 1.33 [95% CI, 1.13-1.57]), adjusted for sociodemographic, lifestyle, and clinical factors. Sixty-nine microbial species (17 enriched from diverse species, 52 depleted mainly from fiber-utilizing Clostridia and Prevotella species) were associated with dietary acculturation, driven by lower intakes of whole grains, beans, and fruits and higher intakes of refined grains. Twenty-five metabolites, involved predominantly in fatty acid and glycerophospholipid metabolism (eg, branched-chain 14:0 dicarboxylic acid** and glycerophosphoethanolamine), were associated with both diet acculturation-related gut microbiota and incident CVD. Proxy association analysis based on these metabolites suggested a positive relationship between diet acculturation-related microbiome and risk of CVD (r=0.70, P<0.001). CONCLUSIONS Among US Hispanic and Latino adults, greater dietary acculturation was associated with elevated CVD risk, possibly through alterations in gut microbiota and related metabolites. Diet and microbiota-targeted interventions may offer opportunities to mitigate CVD burdens of dietary acculturation.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Li
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amanda C. McClain
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | | | - Krista M. Perreira
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josiemer Mattei
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carmen R. Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria M. Llabre
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | | | - Luis E. Maldonado
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
17
|
Qiu H, Kan C, Han F, Luo Y, Qu N, Zhang K, Ma Y, Hou N, Wu D, Sun X, Shi J. Metagenomic and metabolomic analysis showing the adverse risk-benefit trade-off of the ketogenic diet. Lipids Health Dis 2024; 23:207. [PMID: 38951816 PMCID: PMC11218088 DOI: 10.1186/s12944-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Ketogenic diets are increasingly popular for addressing obesity, but their impacts on the gut microbiota and metabolome remain unclear. This paper aimed to investigate how a ketogenic diet affects intestinal microorganisms and metabolites in obesity. METHODS Male mice were provided with one of the following dietary regimens: normal chow, high-fat diet, ketogenic diet, or high-fat diet converted to ketogenic diet. Body weight and fat mass were measured weekly using high-precision electronic balances and minispec body composition analyzers. Metagenomics and non-targeted metabolomics data were used to analyze differences in intestinal contents. RESULTS Obese mice on the ketogenic diet exhibited notable improvements in weight and body fat. However, these were accompanied by a significant decrease in intestinal microbial diversity, as well as an increase in Firmicutes abundance and a 247% increase in the Firmicutes/Bacteroidetes ratio. The ketogenic diet also altered multiple metabolic pathways in the gut, including glucose, lipid, energy, carbohydrate, amino acid, ketone body, butanoate, and methane pathways, as well as bacterial secretion and colonization pathways. These changes were associated with increased intestinal inflammation and dysbiosis in obese mice. Furthermore, the ketogenic diet enhanced the secretion of bile and the synthesis of aminoglycoside antibiotics in obese mice, which may impair the gut microbiota and be associated with intestinal inflammation and immunity. CONCLUSIONS The study suggest that the ketogenic diet had an unfavorable risk-benefit trade-off and may compromise metabolic homeostasis in obese mice.
Collapse
Affiliation(s)
- Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Na Qu
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Di Wu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| |
Collapse
|
18
|
Luo K, Taryn A, Moon EH, Peters BA, Solomon SD, Daviglus ML, Kansal MM, Thyagarajan B, Gellman MD, Cai J, Burk RD, Knight R, Kaplan RC, Cheng S, Rodriguez CJ, Qi Q, Yu B. Gut microbiota, blood metabolites, and left ventricular diastolic dysfunction in US Hispanics/Latinos. MICROBIOME 2024; 12:85. [PMID: 38725043 PMCID: PMC11084054 DOI: 10.1186/s40168-024-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/21/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Left ventricular diastolic dysfunction (LVDD) is an important precursor of heart failure (HF), but little is known about its relationship with gut dysbiosis and microbial-related metabolites. By leveraging the multi-omics data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), a study with population at high burden of LVDD, we aimed to characterize gut microbiota associated with LVDD and identify metabolite signatures of gut dysbiosis and incident LVDD. RESULTS We included up to 1996 Hispanic/Latino adults (mean age: 59.4 years; 67.1% female) with comprehensive echocardiography assessments, gut microbiome, and blood metabolome data. LVDD was defined through a composite criterion involving tissue Doppler assessment and left atrial volume index measurements. Among 1996 participants, 916 (45.9%) had prevalent LVDD, and 212 out of 594 participants without LVDD at baseline developed incident LVDD over a median 4.3 years of follow-up. Using multivariable-adjusted analysis of compositions of microbiomes (ANCOM-II) method, we identified 7 out of 512 dominant gut bacterial species (prevalence > 20%) associated with prevalent LVDD (FDR-q < 0.1), with inverse associations being found for Intestinimonas_massiliensis, Clostridium_phoceensis, and Bacteroide_coprocola and positive associations for Gardnerella_vaginali, Acidaminococcus_fermentans, Pseudomonas_aeruginosa, and Necropsobacter_massiliensis. Using multivariable adjusted linear regression, 220 out of 669 circulating metabolites with detection rate > 75% were associated with the identified LVDD-related bacterial species (FDR-q < 0.1), with the majority being linked to Intestinimonas_massiliensis, Clostridium_phoceensis, and Acidaminococcus_fermentans. Furthermore, 46 of these bacteria-associated metabolites, mostly glycerophospholipids, secondary bile acids, and amino acids, were associated with prevalent LVDD (FDR-q < 0.1), 21 of which were associated with incident LVDD (relative risk ranging from 0.81 [p = 0.001, for guanidinoacetate] to 1.25 [p = 9 × 10-5, for 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4)]). The inclusion of these 21 bacterial-related metabolites significantly improved the prediction of incident LVDD compared with a traditional risk factor model (the area under the receiver operating characteristic curve [AUC] = 0.73 vs 0.70, p = 0.001). Metabolite-based proxy association analyses revealed the inverse associations of Intestinimonas_massilliensis and Clostridium_phoceensis and the positive association of Acidaminococcus_fermentans with incident LVDD. CONCLUSION In this study of US Hispanics/Latinos, we identified multiple gut bacteria and related metabolites linked to LVDD, suggesting their potential roles in this preclinical HF entity. Video Abstract.
Collapse
Affiliation(s)
- Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alkis Taryn
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Eun-Hye Moon
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Scott D Solomon
- Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Mayank M Kansal
- Clinical Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine & Pathology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Marc D Gellman
- Department of Psychology, Clinical Research Building, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jianwen Cai
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, La Jolla, San Diego, CA, 92093, USA
- Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
- Department of Pediatrics, University of California, La Jolla, San Diego, CA, 92093, USA
- Department of Computer Science and Engineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Carlos J Rodriguez
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Tilves C, Mueller NT, Zmuda JM, Kuipers AL, Methé B, Li K, Carr JJ, Terry JG, Wheeler V, Nair S, Miljkovic I. Associations of Fecal Microbiota with Ectopic Fat in African Caribbean Men. Microorganisms 2024; 12:812. [PMID: 38674756 PMCID: PMC11052294 DOI: 10.3390/microorganisms12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE The gut microbiome has been associated with visceral fat (VAT) in European and Asian populations; however, associations with VAT and with ectopic fats among African-ancestry individuals are not known. Our objective was to investigate cross-sectional associations of fecal microbiota diversity and composition with VAT and ectopic fat, as well as body mass index (BMI), among middle-aged and older African Caribbean men. METHODS We included in our analysis n = 193 men (mean age = 62.2 ± 7.6 years; mean BMI = 28.3 ± 4.9 kg/m2) from the Tobago Health Study. We assessed fecal microbiota using V4 16s rRNA gene sequencing. We evaluated multivariable-adjusted associations of microbiota features (alpha diversity, beta diversity, microbiota differential abundance) with BMI and with computed tomography-measured VAT and ectopic fats (pericardial and intermuscular fat; muscle and liver attenuation). RESULTS Lower alpha diversity was associated with higher VAT and BMI, and somewhat with higher pericardial and liver fat. VAT, BMI, and pericardial fat each explained similar levels of variance in beta diversity. Gram-negative Prevotellaceae and Negativicutes microbiota showed positive associations, while gram-positive Ruminococcaceae microbiota showed inverse associations, with ectopic fats. CONCLUSIONS Fecal microbiota features associated with measures of general adiposity also extend to metabolically pernicious VAT and ectopic fat accumulation in older African-ancestry men.
Collapse
Affiliation(s)
- Curtis Tilves
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA;
- LEAD Center, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Noel T. Mueller
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA;
- LEAD Center, Colorado School of Public Health, Aurora, CO 80045, USA
- Department of Pediatrics, Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph M. Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.M.Z.); (A.L.K.); (I.M.)
| | - Allison L. Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.M.Z.); (A.L.K.); (I.M.)
| | - Barbara Methé
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.M.); (K.L.)
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.M.); (K.L.)
| | - John Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.); (S.N.)
| | - James G. Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.); (S.N.)
| | - Victor Wheeler
- Tobago Health Studies Office, TTMF Jerningham Court, James Park Upper Scarborough, Scarborough, Trinidad and Tobago;
| | - Sangeeta Nair
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.J.C.); (J.G.T.); (S.N.)
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.M.Z.); (A.L.K.); (I.M.)
| |
Collapse
|
20
|
Wang Z, Peters BA, Yu B, Grove ML, Wang T, Xue X, Thyagarajan B, Daviglus M, Boerwinkle E, Hu G, Mossavar-Rahmani Y, Isasi CR, Knight R, Burk RD, Kaplan RC, Qi Q. Gut Microbiota and Blood Metabolites Related to Fiber Intake and Type 2 Diabetes. Circ Res 2024; 134:842-854. [PMID: 38547246 PMCID: PMC10987058 DOI: 10.1161/circresaha.123.323634] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Consistent evidence suggests diabetes-protective effects of dietary fiber intake. However, the underlying mechanisms, particularly the role of gut microbiota and host circulating metabolites, are not fully understood. We aimed to investigate gut microbiota and circulating metabolites associated with dietary fiber intake and their relationships with type 2 diabetes (T2D). METHODS This study included up to 11 394 participants from the HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Diet was assessed with two 24-hour dietary recalls at baseline. We examined associations of dietary fiber intake with gut microbiome measured by shotgun metagenomics (350 species/85 genera and 1958 enzymes; n=2992 at visit 2), serum metabolome measured by untargeted metabolomics (624 metabolites; n=6198 at baseline), and associations between fiber-related gut bacteria and metabolites (n=804 at visit 2). We examined prospective associations of serum microbial-associated metabolites (n=3579 at baseline) with incident T2D over 6 years. RESULTS We identified multiple bacterial genera, species, and related enzymes associated with fiber intake. Several bacteria (eg, Butyrivibrio, Faecalibacterium) and enzymes involved in fiber degradation (eg, xylanase EC3.2.1.156) were positively associated with fiber intake, inversely associated with prevalent T2D, and favorably associated with T2D-related metabolic traits. We identified 159 metabolites associated with fiber intake, 47 of which were associated with incident T2D. We identified 18 of these 47 metabolites associated with the identified fiber-related bacteria, including several microbial metabolites (eg, indolepropionate and 3-phenylpropionate) inversely associated with the risk of T2D. Both Butyrivibrio and Faecalibacterium were associated with these favorable metabolites. The associations of fiber-related bacteria, especially Faecalibacterium and Butyrivibrio, with T2D were attenuated after further adjustment for these microbial metabolites. CONCLUSIONS Among United States Hispanics/Latinos, dietary fiber intake was associated with favorable profiles of gut microbiota and circulating metabolites for T2D. These findings advance our understanding of the role of gut microbiota and microbial metabolites in the relationship between diet and T2D.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megan L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Louisiana, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA,USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Mai H, Yang X, Xie Y, Zhou J, Wang Q, Wei Y, Yang Y, Lu D, Ye L, Cui P, Liang H, Huang J. The role of gut microbiota in the occurrence and progression of non-alcoholic fatty liver disease. Front Microbiol 2024; 14:1257903. [PMID: 38249477 PMCID: PMC10797006 DOI: 10.3389/fmicb.2023.1257903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic liver disease worldwide, and gut microbes are associated with the development and progression of NAFLD. Despite numerous studies exploring the changes in gut microbes associated with NAFLD, there was no consistent pattern of changes. Method We retrieved studies on the human fecal microbiota sequenced by 16S rRNA gene amplification associated with NAFLD from the NCBI database up to April 2023, and re-analyzed them using bioinformatic methods. Results We finally screened 12 relevant studies related to NAFLD, which included a total of 1,189 study subjects (NAFLD, n = 654; healthy control, n = 398; obesity, n = 137). Our results revealed a significant decrease in gut microbial diversity with the occurrence and progression of NAFLD (SMD = -0.32; 95% CI -0.42 to -0.21; p < 0.001). Alpha diversity and the increased abundance of several crucial genera, including Desulfovibrio, Negativibacillus, and Prevotella, can serve as an indication of their predictive risk ability for the occurrence and progression of NAFLD (all AUC > 0.7). The occurrence and progression of NAFLD are significantly associated with higher levels of LPS biosynthesis, tryptophan metabolism, glutathione metabolism, and lipid metabolism. Conclusion This study elucidated gut microbes relevance to disease development and identified potential risk-associated microbes and functional pathways associated with NAFLD occurrence and progression.
Collapse
Affiliation(s)
- Huanzhuo Mai
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Xing Yang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Yulan Xie
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Jie Zhou
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Qing Wang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Yiru Wei
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Yuecong Yang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Dongjia Lu
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Li Ye
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Hao Liang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Fanfan D, Mulligan CJ, Groer M, Mai V, Weaver M, Huffman F, Lyon DE. The intersection of social determinants of health, the microbiome, and health outcomes in immigrants: A scoping review. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:3-19. [PMID: 37737631 PMCID: PMC11185843 DOI: 10.1002/ajpa.24850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/23/2023]
Abstract
In the present scoping review, we explore whether existing evidence supports the premise that social determinants of health (SDoH) affect immigrant health outcomes through their effects on the microbiome. We adapt the National Institute on Minority Health and Health Disparities' research framework to propose a conceptual model that considers the intersection of SDoH, the microbiome, and health outcomes in immigrants. We use this conceptual model as a lens through which to explore recent research about SDoH, biological factors associated with changes to immigrants' microbiomes, and long-term health outcomes. In the 17 articles reviewed, dietary acculturation, physical activity, ethnicity, birthplace, age at migration and length of time in the host country, socioeconomic status, and social/linguistic acculturation were important determinants of postmigration microbiome-related transformations. These factors are associated with progressive shifts in microbiome profile with time in host country, increasing the risks for cardiometabolic, mental, immune, and inflammatory disorders and antibiotic resistance. The evidence thus supports the premise that SDoH influence immigrants' health postmigration, at least in part, through their effects on the microbiome. Omission of important postmigration social-ecological variables (e.g., stress, racism, social/family relationships, and environment), limited research among minoritized subgroups of immigrants, complexity and inter- and intra-individual differences in the microbiome, and limited interdisciplinary and biosocial collaboration restrict our understanding of this area of study. To identify potential microbiome-based interventions and promote immigrants' well-being, more research is necessary to understand the intersections of immigrant health with factors from the biological, behavioral/psychosocial, physical/built environment, and sociocultural environment domains at all social-ecological levels.
Collapse
Affiliation(s)
- Dany Fanfan
- College of Nursing, University of Florida, Gainesville, Florida, USA
| | - Connie J. Mulligan
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Maureen Groer
- College of Nursing, University of Tennessee, Knoxville, Tennessee, USA
| | - Volker Mai
- College of Public Health and Health Professions and College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Michael Weaver
- College of Nursing, University of Florida, Gainesville, Florida, USA
| | - Fatma Huffman
- College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Debra E. Lyon
- College of Nursing, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
23
|
Luo K, Chen GC, Zhang Y, Moon JY, Xing J, Peters BA, Usyk M, Wang Z, Hu G, Li J, Selvin E, Rebholz CM, Wang T, Isasi CR, Yu B, Knight R, Boerwinkle E, Burk RD, Kaplan RC, Qi Q. Variant of the lactase LCT gene explains association between milk intake and incident type 2 diabetes. Nat Metab 2024; 6:169-186. [PMID: 38253929 PMCID: PMC11097298 DOI: 10.1038/s42255-023-00961-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Cow's milk is frequently included in the human diet, but the relationship between milk intake and type 2 diabetes (T2D) remains controversial. Here, using data from the Hispanic Community Health Study/Study of Latinos, we show that in both sexes, higher milk intake is associated with lower risk of T2D in lactase non-persistent (LNP) individuals (determined by a variant of the lactase LCT gene, single nucleotide polymorphism rs4988235 ) but not in lactase persistent individuals. We validate this finding in the UK Biobank. Further analyses reveal that among LNP individuals, higher milk intake is associated with alterations in gut microbiota (for example, enriched Bifidobacterium and reduced Prevotella) and circulating metabolites (for example, increased indolepropionate and reduced branched-chain amino acid metabolites). Many of these metabolites are related to the identified milk-associated bacteria and partially mediate the association between milk intake and T2D in LNP individuals. Our study demonstrates a protective association between milk intake and T2D among LNP individuals and a potential involvement of gut microbiota and blood metabolites in this association.
Collapse
Affiliation(s)
- Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiaqian Xing
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jun Li
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
24
|
Parizadeh M, Arrieta MC. The global human gut microbiome: genes, lifestyles, and diet. Trends Mol Med 2023; 29:789-801. [PMID: 37516570 DOI: 10.1016/j.molmed.2023.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
A growing number of human gut microbiome studies consistently describe differences between human populations. Here, we review how factors related to host genetics, ethnicity, lifestyle, and geographic location help explain this variation. Studies from contrasting environmental scenarios point to diet and lifestyle as the most influential. The effect of human migration and displacement demonstrates how the microbiome adapts to newly adopted lifestyles and contributes to the profound biological and health consequences attributed to migration. This information strongly suggests against a universal scale for healthy or dysbiotic gut microbiomes, and prompts for additional microbiome population surveys, particularly from less industrialized nations. Considering these important differences will be critical for designing strategies to diagnose and restore dysbiosis in various human populations.
Collapse
Affiliation(s)
- Mona Parizadeh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; International Microbiome Center, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
25
|
Mallott EK, Sitarik AR, Leve LD, Cioffi C, Camargo CA, Hasegawa K, Bordenstein SR. Human microbiome variation associated with race and ethnicity emerges as early as 3 months of age. PLoS Biol 2023; 21:e3002230. [PMID: 37590208 PMCID: PMC10434942 DOI: 10.1371/journal.pbio.3002230] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
Human microbiome variation is linked to the incidence, prevalence, and mortality of many diseases and associates with race and ethnicity in the United States. However, the age at which microbiome variability emerges between these groups remains a central gap in knowledge. Here, we identify that gut microbiome variation associated with race and ethnicity arises after 3 months of age and persists through childhood. One-third of the bacterial taxa that vary across caregiver-identified racial categories in children are taxa reported to also vary between adults. Machine learning modeling of childhood microbiomes from 8 cohort studies (2,756 samples from 729 children) distinguishes racial and ethnic categories with 87% accuracy. Importantly, predictive genera are also among the top 30 most important taxa when childhood microbiomes are used to predict adult self-identified race and ethnicity. Our results highlight a critical developmental window at or shortly after 3 months of age when social and environmental factors drive race and ethnicity-associated microbiome variation and may contribute to adult health and health disparities.
Collapse
Affiliation(s)
- Elizabeth K. Mallott
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Alexandra R. Sitarik
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, United States of America
| | - Leslie D. Leve
- Prevention Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Camille Cioffi
- Prevention Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seth R. Bordenstein
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
- Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
26
|
Baldeon AD, McDonald D, Gonzalez A, Knight R, Holscher HD. Diet Quality and the Fecal Microbiota in Adults in the American Gut Project. J Nutr 2023; 153:2004-2015. [PMID: 36828255 DOI: 10.1016/j.tjnut.2023.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/18/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The Dietary Guidelines for Americans advises on dietary intake to meet nutritional needs, promote health, and prevent diseases. Diet affects the intestinal microbiota and is increasingly linked to health. It is vital to investigate the relationships between diet quality and the microbiota to better understand the impact of nutrition on human health. OBJECTIVES This study aimed to investigate the differences in fecal microbiota composition in adults from the American Gut Project based on their adherence to the Dietary Guidelines for Americans. METHODS This study was a cross-sectional analysis of the 16S sequencing and food frequency data of a subset of adults (n = 432; age = 18-60 y; 65% female, 89% white) participating in the crowdsourced American Gut Project. The Healthy Eating Index-2015 assessed the compliance with Dietary Guideline recommendations. The cohort was divided into tertiles based on Healthy Eating Index-2015 scores, and differences in taxonomic abundances and diversity were compared between high and low scorers. RESULTS The mean Total Score for low-scoring adults (58.1 ± 5.4) was comparable with the reported score of the average American adult (56.7). High scorers for the Total Score and components related to vegetables, grains, and dairy had greater alpha diversity than low scorers. High scorers in the fatty acid component had a lower alpha diversity than low scorers (95% CI: 0.35, 1.85). A positive log-fold difference in abundance of plant carbohydrate-metabolizing taxa in the families Lachnospiraceae and Ruminococcaceae was observed in high-scoring tertiles for Total Score, vegetable, fruit, and grain components (Benjamini-Hochberg; q < 0.05). CONCLUSIONS Adults with greater compliance to the Dietary Guidelines demonstrated higher diversity in their fecal microbiota and greater abundance of bacteria capable of metabolizing complex carbohydrates, providing evidence on how Dietary Guidelines support the gut microbiota.
Collapse
Affiliation(s)
- Alexis D Baldeon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
| | - Hannah D Holscher
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
27
|
Sun C, Li A, Xu C, Ma J, Wang H, Jiang Z, Hou J. Comparative Analysis of Fecal Microbiota in Vegetarians and Omnivores. Nutrients 2023; 15:2358. [PMID: 37242241 PMCID: PMC10221195 DOI: 10.3390/nu15102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Diet has a significant impact on fecal microbiota, which in turn plays an important role in human health. To evaluate the impact of dietary habits on fecal microbiota, we investigated the fecal microbial composition in vegetarians and omnivores using 16S rRNA gene sequencing, and estimated the correlation between fecal microbiota, body mass and diet. The dietary data showed that vegetarians consumed more plant-based foods rich in dietary fiber, omnivores consumed more animal-based foods rich in fat and overweight and obese people consumed more high-energy foods. Compared to omnivores, vegetarians had greater richness and diversity in their fecal microbiota. The Firmicutes/Bacteroidetes ratio was lower and the Prevotella/Bacteroides ratio was higher in vegetarians. The meat intake correlated positively with the proportion of Bacteroides and negatively with the proportion of Prevotella. The composition and diversity in fecal microbiota in the normal weight group, overweight group and obesity group were similar to that of vegetarians and omnivores, respectively. This paper revealed the distinctive characteristics of fecal microbiota in vegetarians and omnivores. The omnivorous diet contained more fat, which reduced the fecal microbial diversity, and was more likely to lead to being overweight or obese.
Collapse
Affiliation(s)
- Changbao Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (C.S.); (C.X.); (J.M.); (Z.J.)
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China;
| | - Ang Li
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China;
| | - Cong Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (C.S.); (C.X.); (J.M.); (Z.J.)
| | - Jiage Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (C.S.); (C.X.); (J.M.); (Z.J.)
| | - Huan Wang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China;
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (C.S.); (C.X.); (J.M.); (Z.J.)
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (C.S.); (C.X.); (J.M.); (Z.J.)
| |
Collapse
|
28
|
Carrizales-Sánchez AK, Tamez-Rivera O, Rodríguez-Gutiérrez NA, Elizondo-Montemayor L, Gradilla-Hernández MS, García-Rivas G, Pacheco A, Senés-Guerrero C. Characterization of gut microbiota associated with metabolic syndrome and type-2 diabetes mellitus in Mexican pediatric subjects. BMC Pediatr 2023; 23:210. [PMID: 37138212 PMCID: PMC10155456 DOI: 10.1186/s12887-023-03983-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Childhood obesity is a serious public health concern that confers a greater risk of developing important comorbidities such as MetS and T2DM. Recent studies evidence that gut microbiota may be a contributing factor; however, only few studies exist in school-age children. Understanding the potential role of gut microbiota in MetS and T2DM pathophysiology from early stages of life might contribute to innovative gut microbiome-based interventions that may improve public health. The main objective of the present study was to characterize and compare gut bacteria of T2DM and MetS children against control subjects and determine which microorganisms might be potentially related with cardiometabolic risk factors to propose gut microbial biomarkers that characterize these conditions for future development of pre-diagnostic tools. RESULTS Stool samples from 21 children with T2DM, 25 with MetS, and 20 controls (n = 66) were collected and processed to conduct 16S rDNA gene sequencing. α- and β-diversity were studied to detect microbial differences among studied groups. Spearman correlation was used to analyze possible associations between gut microbiota and cardiometabolic risk factors, and linear discriminant analyses (LDA) were conducted to determine potential gut bacterial biomarkers. T2DM and MetS showed significant changes in their gut microbiota at genus and family level. Read relative abundance of Faecalibacterium and Oscillospora was significantly higher in MetS and an increasing trend of Prevotella and Dorea was observed from the control group towards T2DM. Positive correlations were found between Prevotella, Dorea, Faecalibacterium, and Lactobacillus with hypertension, abdominal obesity, high glucose levels, and high triglyceride levels. LDA demonstrated the relevance of studying least abundant microbial communities to find specific microbial communities that were characteristic of each studied health condition. CONCLUSIONS Gut microbiota was different at family and genus taxonomic levels among controls, MetS, and T2DM study groups within children from 7 to 17 years old, and some communities seemed to be correlated with relevant subjects' metadata. LDA helped to find potential microbial biomarkers, providing new insights regarding pediatric gut microbiota and its possible use in the future development of gut microbiome-based predictive algorithms.
Collapse
Affiliation(s)
- Ana K Carrizales-Sánchez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon, C.P. 64849, Mexico
| | - Oscar Tamez-Rivera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
| | - Nora A Rodríguez-Gutiérrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
- Hospital Regional Materno Infantil de Alta Especialidad, Av. San Rafael 460, C.P. 67140, Guadalupe, Nuevo Leon, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
| | | | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud, Av. Ignacio Morones Prieto 3000, Monterrey, Nuevo Leon, C.P. 64710, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo Leon, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon, C.P. 64849, Mexico.
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon, C.P. 64849, Mexico.
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Zapopan, Jalisco, C.P. 45138, Mexico.
| |
Collapse
|
29
|
Shanahan F, Ghosh TS, O'Toole PW. Human microbiome variance is underestimated. Curr Opin Microbiol 2023; 73:102288. [PMID: 36889023 DOI: 10.1016/j.mib.2023.102288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/08/2023]
Abstract
Most of the variance in the human microbiome remains unexplained. Although an extensive list of individual lifestyles shaping the microbiome has been identified, important gaps in knowledge persist. Most human microbiome data are from individuals living in socioeconomically developed countries. This may have skewed the interpretation of microbiome variance and its relationship to health and disease. Moreover, striking under-representation of minority groups in microbiome studies is a missed opportunity to assess context, history and the changing nature of the microbiome in relation to the risk of disease. Therefore, we focus here on areas of recent progress - ageing and ethnicity - both of which contribute to microbiome variance with particular lessons for the promise of microbiome-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Fergus Shanahan
- Department of Medicine, University College Cork, National University of Ireland, Ireland; APC Microbiome Ireland, University College Cork, National University of Ireland, Ireland.
| | - Tarini S Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Ireland; Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), New Delhi, India
| | - Paul W O'Toole
- School of Microbiology, University College Cork, National University of Ireland, Ireland; APC Microbiome Ireland, University College Cork, National University of Ireland, Ireland
| |
Collapse
|
30
|
Abjani F, Madhavan P, Chong PP, Chinna K, Rhodes CA, Lim YAL. Urbanisation and its Associated Factors Affecting Human Gut Microbiota: Where are we Heading to? Ann Hum Biol 2023; 50:137-147. [PMID: 36650931 DOI: 10.1080/03014460.2023.2170464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ContextThe continuous rise in urbanisation and its associated factors have been reflected in the structure of the human gut ecosystem.ObjectiveThe main focus of the review is to discuss and summarise the major risk factors associated with urbanisation that affects human gut microbiota thus affecting human health.MethodsMultiple medical literature databases, namely PubMed, Google, Google Scholar, and Web of Science were used to find relevant materials for urbanization and its major factors affecting human gut microbiota/microbiome. Both layman and Medical Subject Headings (MeSH) terms were used in the search. Due to the scarcity of the data, no limitation was set on the publication date. Relevant material in the English language which includes case reports, chapters of books, journal articles, online news reports and medical records was included in this review.ResultsBased on the data discussed in the review, it is quite clear that urbanisation and its associated factors have long-standing effects on the human gut microbiota that result in alterations of gut microbial diversity and composition. This is a matter of serious concern as chronic inflammatory diseases are on the rise in urbanised societies.ConclusionA better understanding of the factors associated with urbanisation will help us to identify and implement new biological and social approaches to prevent and treat diseases and improve health globally by deepening our understanding of these relationships and increasing studies across urbanisation gradients.HIGHLIGHTSHuman gut microbiota has been linked to almost every important function, including metabolism, intestinal homeostasis, immune system, biosynthesis of vitamins, brain processes, and its behaviour.However, dysbiosis i.e., alteration in the composition and diversity of gut microbiota is associated with the pathogenesis of many chronic conditions.In the 21st century, urbanisation represents a major demographic shift in developed and developing countries.During this period of urbanisation, humans have been exposed to many environmental exposures, all of which have led to the dysbiosis of human gut microbiota.The main focus of the review is to discuss and summarize the major risk factors associated with urbanisation and how it affects the diversity and composition of gut microbiota which ultimately affects human health.
Collapse
Affiliation(s)
- Farhat Abjani
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor's University, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Karuthan Chinna
- Faculty of Business and Management, UCSI University 56100 Cheras, Kuala Lumpur, Malaysia
| | - Charles Anthony Rhodes
- Department of Parasitology, University Malaya Medical Centre, 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya. 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Liang S, Wang L, Wu X, Hu X, Wang T, Jin F. The different trends in the burden of neurological and mental disorders following dietary transition in China, the USA, and the world: An extension analysis for the Global Burden of Disease Study 2019. Front Nutr 2023; 9:957688. [PMID: 36698474 PMCID: PMC9869872 DOI: 10.3389/fnut.2022.957688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The highly processed western diet is substituting the low-processed traditional diet in the last decades globally. Increasing research found that a diet with poor quality such as western diet disrupts gut microbiota and increases the susceptibility to various neurological and mental disorders, while a balanced diet regulates gut microbiota and prevents and alleviates the neurological and mental disorders. Yet, there is limited research on the association between the disease burden expanding of neurological and mental disorders with a dietary transition. Methods We compared the disability-adjusted life-years (DALYs) trend by age for neurological and mental disorders in China, in the United States of America (USA), and across the world from 1990 to 2019, evaluated the dietary transition in the past 60 years, and analyzed the association between the burden trend of the two disorders with the changes in diet composition and food production. Results We identified an age-related upward pattern in disease burden in China. Compared with the USA and the world, the Chinese neurological and mental disorders DALY percent was least in the generation over 75 but rapidly increased in younger generations and surpassed the USA and/or the world in the last decades. The age-related upward pattern in Chinese disease burdens had not only shown in the presence of cardiovascular diseases, neoplasms, and diabetes mellitus but also appeared in the presence of depressive disorders, Parkinson's disease, Alzheimer's disease and other dementias, schizophrenia, headache disorders, anxiety disorders, conduct disorders, autism spectrum disorders, and eating disorders, successively. Additionally, the upward trend was associated with the dramatic dietary transition including a reduction in dietary quality and food production sustainability, during which the younger generation is more affected than the older. Following the increase in total calorie intake, alcohol intake, ratios of animal to vegetal foods, and poultry meat to pulses, the burdens of the above diseases continuously rose. Then, following the rise of the ratios of meat to pulses, eggs to pulses, and pork to pulses, the usage of fertilizers, the farming density of pigs, and the burdens of the above disease except diabetes mellitus were also ever-increasing. Even the usage of pesticides was positively correlated with the burdens of Parkinson's disease, schizophrenia, cardiovascular diseases, and neoplasms. Contrary to China, the corresponding burdens of the USA trended to reduce with the improvements in diet quality and food production sustainability. Discussion Our results suggest that improving diet quality and food production sustainability might be a promising way to stop the expanding burdens of neurological and mental disorders.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Li Wang
- Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| |
Collapse
|
32
|
Chen YZ, Gu J, Chuang WT, Du YF, Zhang L, Lu ML, Xu JY, Li HQ, Liu Y, Feng HT, Li YH, Qin LQ. Slowly Digestible Carbohydrate Diet Ameliorates Hyperglycemia and Hyperlipidemia in High-Fat Diet/Streptozocin-Induced Diabetic Mice. Front Nutr 2022; 9:854725. [PMID: 35495933 PMCID: PMC9051025 DOI: 10.3389/fnut.2022.854725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Given that the prevalence rate of type 2 diabetes mellitus (T2DM) continues to increase, it is important to find an effective method to prevent or treat this disease. Previous studies have shown that dietary intervention with a slowly digestible carbohydrate (SDC) diet can improve T2DM with almost no side effects. However, the underlying mechanisms of SDC protect against T2DM remains to be elucidated. Methods The T2DM mice model was established with a high-fat diet and streptozocin injection. Then, SDC was administered for 6 weeks. Bodyweight, food intake, organ indices, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), homeostasis model assessment for insulin resistance (HOMA-IR), and other biochemical parameters were measured. Histopathological and lipid accumulation analyses were performed, and the glucose metabolism-related gene expressions in the liver and skeletal muscle were determined. Lastly, colonic microbiota was also analyzed. Results SDC intervention alleviated the weight loss in the pancreas, lowered blood glucose and glycosylated hemoglobin levels, and improved glucose tolerance and HOMA-IR. SDC intervention improved serum lipid profile, adipocytokines levels, and lowered the lipid accumulation in the liver, subcutaneous adipose tissue, and epididymal visceral adipose tissue. In addition, SDC intervention increased the expression levels of IRS-2 and GLUT-2 in liver tissues and elevated GLUT-4 expression levels in skeletal muscle tissues. Notably, SDC intervention decreased the Bacteroidetes/Firmicutes ratio, increased Desulfovibrio and Lachnospiraceae genus levels, and inhibited the relative abundance of potentially pathogenic bacteria. Conclusions SDC intervention can improve hyperglycemia and hyperlipidemia status in diabetic mice, suggesting that this intervention might be beneficial for T2DM.
Collapse
Affiliation(s)
- Yu-Zhong Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Wei-Ting Chuang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Ya-Fang Du
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Meng-Lan Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hao-Qiu Li
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Hao-Tian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- *Correspondence: Hao-Tian Feng
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
- Yun-Hong Li
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
- Li-Qiang Qin
| |
Collapse
|