1
|
Dodelin JK, Rose AE, Rajpurohit H, Eiteman MA. Increased Mevalonate Production Using Engineered Citrate Synthase and Phosphofructokinase Variants of Escherichia coli. Biotechnol Bioeng 2025; 122:548-560. [PMID: 39654318 PMCID: PMC11808435 DOI: 10.1002/bit.28902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 02/11/2025]
Abstract
Mevalonate is a biochemical precursor to a wide range of isoprenoids. The mevalonate pathway uses three moles of acetyl-CoA, and therefore native pathways which metabolize acetyl-CoA compete with mevalonate synthesis. Moreover, the final step in mevalonate formation, mediated by hydroxymethylglutaryl-CoA reductase, requires NADPH as a co-substrate. This study focuses on chromosomal modification of citrate synthase (GltA) involved in acetyl-CoA utilization and phosphofructokinase (PfkA) involved in NADPH formation to increase the yield and productivity of mevalonate in Escherichia coli overexpressing the three genes of the heterologous mevalonate pathway. Nine GltA variants were compared for mevalonate production with the ΔgltA knockout and the wild-type GltA strain in shake flasks in the absence and presence of casamino acids. In the presence of casamino acids, all variants generated mevalonate at a greater yield than the wild-type control, but less than the GltA knockout. In the absence of casamino acids, the strain expressing wild-type GltA generated the greatest yield of mevalonate, while most variants instead accumulated primarily acetate. Using the wild-type strain and two citrate synthase variants, four phosphofructokinase variants were also compared with the ΔpfkA knockout and the wild-type strain, but PfkA variants generated less mevalonate than the corresponding wild-type PfkA strain. Controlled processes at the 1-liter scale comparing five strains demonstrated the inverse relationship between yield and productivity, with the GltA[K167A] variant showing the best balance for the yield (0.20 g/g) and productivity (0.87 g/L h). A nitrogen-limited process using the GltA[K167A] variant generated 36.9 g/L mevalonate in 31 h at a yield of 0.31 g/g. This study demonstrates that GltA variants offer a means to affect intracellular acetyl-CoA pools for the generation of acetyl-CoA derived products and that the acetyl-CoA pool rather than NADPH availability is the important limiting factor for mevalonate production.
Collapse
Affiliation(s)
| | - Abigail E. Rose
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Hemshikha Rajpurohit
- School of Chemical, Materials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark A. Eiteman
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
- School of Chemical, Materials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Thanh Ta D, Chiang CJ, Xuan Huang Z, Luu NL, Chao YP. High production of poly(3-hydroxybutyrate) in Escherichia coli using crude glycerol. BIORESOURCE TECHNOLOGY 2023:129315. [PMID: 37321309 DOI: 10.1016/j.biortech.2023.129315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Poly(3-hydroxybutyrate) (PHB) is a prominent bio-plastic and recognized as the potential replacement of petroleum-derived plastics. To make PHB cost-effective, the production scheme based on crude glycerol was developed using Escherichia coli. The heterogeneous synthesis pathway of PHB was introduced into the E. coli strain capable of efficiently utilizing glycerol. The central metabolism that links to the synthesis of acetyl-CoA and NADPH was further reprogrammed to improve the PHB production. Key genes were targeted for manipulation, involving those in glycolysis, the pentose phosphate pathway, and the tricarboxylic cycle. As a result, the engineered strain gained a 22-fold increase in the PHB titer. Finally, the fed-batch fermentation was conducted with the producer strain to give the PHB titer, content, and productivity reaching 36.3±3.0 g/L, 66.5±2.8%, and 1.2±0.1 g/L/h, respectively. The PHB yield on crude glycerol accounts for 0.3 g/g. The result indicates that the technology platform as developed is promising for the production of bio-plastics.
Collapse
Affiliation(s)
- Doan Thanh Ta
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Zhu Xuan Huang
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Nguyen Luan Luu
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 40724, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.
| |
Collapse
|
3
|
Islam T, Nguyen-Vo TP, Gaur VK, Lee J, Park S. Metabolic engineering of Escherichia coli for biological production of 1, 3-Butanediol. BIORESOURCE TECHNOLOGY 2023; 376:128911. [PMID: 36934906 DOI: 10.1016/j.biortech.2023.128911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The production of 1,3-butanediol (1,3-BDO) from glucose was investigated using Escherichia coli as the host organism. A pathway was engineered by overexpressing genes phaA (acetyl-CoA acetyltransferase), phaB (acetoacetyl-CoA reductase), bld (CoA-acylating aldehyde dehydrogenase), and yqhD (alcohol dehydrogenase). The expression levels of these genes were optimized to improve 1,3-BDO production and pathways that compete with 1,3-BDO synthesis were disrupted. Culture conditions were also optimized, including the C: N ratio, aeration, induction time, temperature, and supplementation of amino acids, resulting in a strain that could produce 1,3-BDO at 257 mM in 36 h, with a yield of 0.51 mol/mol in a fed-batch bioreactor experiment. To the best of our knowledge, this is the highest titer of 1,3-BDO production ever reported using biological methods, and our findings provide a promising strategy for the development of microbial cell factories for the sustainable synthesis of other acetyl-CoA-derived chemicals.
Collapse
Affiliation(s)
- Tayyab Islam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Thuan Phu Nguyen-Vo
- Department of Chemical and Biochemical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Vivek Kumar Gaur
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junhak Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; R&D Center, ACTIVON Co., Ltd., Cheongju 28104, Republic of Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
4
|
Chiang CJ, Hu MC, Ta T, Chao YP. Glutamate as a non-conventional substrate for high production of the recombinant protein in Escherichia coli. Front Microbiol 2022; 13:991963. [PMID: 36187956 PMCID: PMC9515452 DOI: 10.3389/fmicb.2022.991963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The economic viability of the biomass-based biorefinery is readily acknowledged by implementation of a cascade process that produces value-added products such as enzymes prior to biofuels. Proteins from the waste stream of biorefinery processes generally contain glutamate (Glu) in abundance. Accordingly, this study was initiated to explore the potential of Glu for production of recombinant proteins in Escherichia coli. The approach was first adopted by expression of D-hydantoinase (HDT) in commercially-available BL21(DE3) strain. Equipped with the mutant gltS (gltS*), the strain grown on Glu produced the maximum HDT as compared to the counterpart on glucose, glycerol, or acetate. The Glu-based production scheme was subsequently reprogrammed based on the L-arabinose-regulated T7 expression system. The strain with gltS* was further engineered by rewiring metabolic pathways. With low ammonium, the resulting strain produced 1.63-fold more HDT. The result indicates that Glu can serve as a carbon and nitrogen source. Overall, our proposed approach may open up a new avenue for the enzyme biorefinery platform based on Glu.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Mu-Chen Hu
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Thanh Ta
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Yun-Peng Chao,
| |
Collapse
|
5
|
Chiang CJ, Huang ZC, Ta T, Chao YP. Deciphering glutamate and aspartate metabolism to improve production of succinate in Escherichia coli. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Chiang CJ, Hong YH. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep 2021; 11:18172. [PMID: 34518590 PMCID: PMC8438071 DOI: 10.1038/s41598-021-97457-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Butyrate has a bioactive function to reduce carcinogenesis. To achieve targeted cancer therapy, this study developed bacterial cancer therapy (BCT) with butyrate as a payload. By metabolic engineering, Escherichia coli Nissle 1917 (EcN) was reprogrammed to synthesize butyrate (referred to as biobutyrate) and designated EcN-BUT. The adopted strategy includes construction of a synthetic pathway for biobutyrate and the rational design of central metabolism to increase the production of biobutyrate at the expense of acetate. With glucose, EcN-BUT produced primarily biobutyrate under the hypoxic condition. Furthermore, human colorectal cancer cell was administrated with the produced biobutyrate. It caused the cell cycle arrest at the G1 phase and induced the mitochondrial apoptosis pathway independent of p53. In the tumor-bearing mice, the injected EcN-BUT exhibited tumor-specific colonization and significantly reduced the tumor volume by 70%. Overall, this study opens a new avenue for BCT based on biobutyrate.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, Taiwan, 40402.
| | - Yan-Hong Hong
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan, 40724
| |
Collapse
|
7
|
Biocatalytic Conversion of Short-Chain Fatty Acids to Corresponding Alcohols in Escherichia coli. Processes (Basel) 2021. [DOI: 10.3390/pr9060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advanced biofuels possess superior characteristics to serve for gasoline substitutes. In this study, a whole cell biocatalysis system was employed for production of short-chain alcohols from corresponding fatty acids. To do so, Escherichia coli strain was equipped with a biocatalytic pathway consisting of endogenous atoDA and Clostridium acetobutylicum adhE2. The strain was further reprogrammed to improve its biocatalytic activity by direction the glycolytic flux to acetyl-CoA and recycling acetate. The production of 1-propanol and n-pentanol were exemplified with the engineered strain. By substrate (glucose and propionate) feeding, the strain enabled production of 5.4 g/L 1-propanol with productivity reaching 0.15 g/L/h. In addition, the strain with a heavy inoculum was implemented for the n-pentanol production from n-pentanoic acid. The production titer and productivity finally attained 4.3 g/L and 0.86 g/L/h, respectively. Overall, the result indicates that this developed system is useful and effective for biocatalytic production of short-chain alcohols.
Collapse
|
8
|
Chiang CJ, Ho YJ, Hu MC, Chao YP. Rewiring of glycerol metabolism in Escherichia coli for effective production of recombinant proteins. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:205. [PMID: 33317614 PMCID: PMC7737366 DOI: 10.1186/s13068-020-01848-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The economic viability of a protein-production process relies highly on the production titer and the price of raw materials. Crude glycerol coming from the production of biodiesel is a renewable and cost-effective resource. However, glycerol is inefficiently utilized by Escherichia coli. RESULTS This issue was addressed by rewiring glycerol metabolism for redistribution of the metabolic flux. Key steps in central metabolism involving the glycerol dissimilation pathway, the pentose phosphate pathway, and the tricarboxylic acid cycle were pinpointed and manipulated to provide precursor metabolites and energy. As a result, the engineered E. coli strain displayed a 9- and 30-fold increase in utilization of crude glycerol and production of the target protein, respectively. CONCLUSIONS The result indicates that the present method of metabolic engineering is useful and straightforward for efficient adjustment of the flux distribution in glycerol metabolism. The practical application of this methodology in biorefinery and the related field would be acknowledged.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yi-Jing Ho
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
| | - Mu-Chen Hu
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, 41354 Taiwan
| |
Collapse
|
9
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
10
|
Jawed K, Abdelaal AS, Koffas MAG, Yazdani SS. Improved Butanol Production Using FASII Pathway in E. coli. ACS Synth Biol 2020; 9:2390-2398. [PMID: 32813973 DOI: 10.1021/acssynbio.0c00154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
n-Butanol is often considered a potential substitute for gasoline due to its physicochemical properties being closely related to those of gasoline. In this study, we extend our earlier work to convert endogenously producing butyrate via the FASII pathway using thioesterase TesBT to its corresponding alcohol, i.e., butanol. We first assembled pathway genes, i.e., car encoding carboxylic acid reductase from Mycobacterium marinum, sfp encoding phosphopantetheinyl transferase from Bacillus subtilis, and adh2 encoding alcohol dehydrogenase from S. cerevisiae, responsible for bioconversion of butyrate to butanol in three different configurations (Operon, Pseudo-Operon, and Monocistronic) to achieve optimum expression of each gene and compared with the clostridial solventogenic pathway for in vivo conversion of butyrate to butanol under aerobic conditions. An E. coli strain harboring car, sfp, and adh2 in pseudo-operon configuration was able to convert butyrate to butanol with 100% bioconversion efficiency when supplemented with 1 g/L of butyrate. Further, co-cultivation of an upstream strain (butyrate-producing) with a downstream strain (butyrate to butanol converting) at different inoculation ratios was investigated, and an optimized ratio of 1:4 (upstream strain: downstream strain) was found to produce ∼2 g/L butanol under fed-batch fermentation. Further, a mono-cultivation approach was applied by transforming a plasmid harboring tesBT gene into the downstream strain. This approach produced 0.42 g/L in a test tube and ∼2.9 g/L butanol under fed-batch fermentation. This is the first report where both mono- and co-cultivation approaches were tested and compared for butanol production, and butanol titers achieved using both strategies are the highest reported values in recombinant E. coli utilizing FASII pathway.
Collapse
Affiliation(s)
- Kamran Jawed
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ali Samy Abdelaal
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
- Department of Genetics, Faculty of Agriculture, Damietta University, 34511 Damietta, Egypt
| | - Mattheos A. G. Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
| |
Collapse
|
11
|
Chiang CJ, Hu MC, Chao YP. A Strategy to Improve Production of Recombinant Proteins in Escherichia coli Based on a Glucose-Glycerol Mixture and Glutamate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8883-8889. [PMID: 32806130 DOI: 10.1021/acs.jafc.0c03671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enzymes have a wide range of applications in many sectors of the industry, and the market value has skyrocketed in recent years. Glucose and glycerol are two renewable carbon sources of importance. Therefore, it is appealing to produce recombinant enzymes with these carbon substrates on the basis of economic viability. In this study, glycerol metabolism and glucose metabolism in Escherichia coli (E. coli) were manipulated in a systematic way. In addition, glutamate (Glu) was used for replacement of yeast extract to reduce the cost and the quality-variation problem. A strategy was further developed to incorporate Glu into the central metabolism. The engineered E. coli strain finally enabled efficient co-utilization of glucose and glycerol and improved biomass and protein production by 4.3 and 8.2-folds, respectively. The result illustrates that this proposed approach is promising for effective production of recombinant proteins.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Mu-Chen Hu
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 40724, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
12
|
Jiang Y, Zheng T, Ye X, Xin F, Zhang W, Dong W, Ma J, Jiang M. Metabolic engineering of Escherichia coli for L-malate production anaerobically. Microb Cell Fact 2020; 19:165. [PMID: 32811486 PMCID: PMC7437165 DOI: 10.1186/s12934-020-01422-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background l-malate is one of the most important platform chemicals widely used in food, metal cleaning, textile finishing, pharmaceuticals, and synthesis of various fine chemicals. Recently, the development of biotechnological routes to produce l-malate from renewable resources has attracted significant attention. Results A potential l-malate producing strain E. coli BA040 was obtained by inactivating the genes of fumB, frdABCD, ldhA and pflB. After co-overexpression of mdh and pck, BA063 achieved 18 g/L glucose consumption, leading to an increase in l-malate titer and yield of 13.14 g/L and 0.73 g/g, respectively. Meantime, NADH/NAD+ ratio decreased to 0.72 with the total NAD(H) of 38.85 µmol/g DCW, and ATP concentration reached 715.79 nmol/g DCW. During fermentation in 5L fermentor with BA063, 41.50 g/L glucose was consumed within 67 h with the final l-malate concentration and yield of 28.50 g/L, 0.69 g/g when heterologous CO2 source was supplied. Conclusions The availability of NAD(H) was correlated positively with the glucose utilization rate and cellular metabolism capacities, and lower NADH/NAD+ ratio was beneficial for the accumulation of l-malate under anaerobic conditions. Enhanced ATP level could significantly enlarge the intracellular NAD(H) pool under anaerobic condition. Moreover, there might be an inflection point, that is, the increase of NAD(H) pool before the inflection point is followed by the improvement of metabolic performance, while the increase of NAD(H) pool after the inflection point has no significant impacts and NADH/NAD+ ratio would dominate the metabolic flux. This study is a typical case of anaerobic organic acid fermentation, and demonstrated that ATP level, NAD(H) pool and NADH/NAD+ ratio are three important regulatory parameters during the anaerobic production of l-malate.
Collapse
Affiliation(s)
- Youming Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Tianwen Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Xiaohan Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
13
|
de Arroyo Garcia L, Jones PR. In silico co-factor balance estimation using constraint-based modelling informs metabolic engineering in Escherichia coli. PLoS Comput Biol 2020; 16:e1008125. [PMID: 32776925 PMCID: PMC7440669 DOI: 10.1371/journal.pcbi.1008125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/20/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
In the growing field of metabolic engineering, where cells are treated as ‘factories’ that synthesize industrial compounds, it is essential to consider the ability of the cells’ native metabolism to accommodate the demands of synthetic pathways, as these pathways will alter the homeostasis of cellular energy and electron metabolism. From the breakdown of substrate, microorganisms activate and reduce key co-factors such as ATP and NAD(P)H, which subsequently need to be hydrolysed and oxidized, respectively, in order to restore cellular balance. A balanced supply and consumption of such co-factors, here termed co-factor balance, will influence biotechnological performance. To aid the strain selection and design process, we used stoichiometric modelling (FBA, pFBA, FVA and MOMA) and the Escherichia coli (E.coli) core stoichiometric model to investigate the network-wide effect of butanol and butanol precursor production pathways differing in energy and electron demand on product yield. An FBA-based co-factor balance assessment (CBA) algorithm was developed to track and categorise how ATP and NAD(P)H pools are affected in the presence of a new pathway. CBA was compared to the balance calculations proposed by Dugar et al. (Nature Biotechnol. 29 (12), 1074–1078). Predicted solutions were compromised by excessively underdetermined systems, displaying greater flexibility in the range of reaction fluxes than experimentally measured by 13C-metabolic flux analysis (MFA) and the appearance of unrealistic futile co-factor cycles. With the assumption that futile cycles are tightly regulated in reality, the FBA models were manually constrained in a step-wise manner. Solutions with minimal futile cycling diverted surplus energy and electrons towards biomass formation. As an alternative, the use of loopless FBA or constraining the models with measured flux ranges were tried but did not prevent futile co-factor cycles. The results highlight the need to account for co-factor imbalance and confirm that better-balanced pathways with minimal diversion of surplus towards biomass formation present the highest theoretical yield. The analysis also suggests that ATP and NAD(P)H balancing cannot be assessed in isolation from each other, or even from the balance of additional co-factors such as AMP and ADP. We conclude that, through revealing the source of co-factor imbalance CBA can facilitate pathway and host selection when designing new biocatalysts for implementation by metabolic engineering. The chemicals industry is a major contributor to greenhouse gas emissions and desperately requires more sustainable alternatives. Genetically engineered microorganisms can be used as ‘bio-factories’ to manufacture chemicals, replacing those currently sourced from fossil fuels or unsustainable tropical plant agriculture. However, due to the complexity of biology, the features that render one bio-factory design more efficient than others are difficult to identify. Computational modelling of such designs can enable the selection of optimally performing designs, but it remains challenging as biology is complex and not fully understood. Microorganisms require energy for their own growth and maintenance, but also to convert molecules into desired target products. The supply and consumption of such energy is through co-factors, and the balance of such co-factors influences the performance of the engineered bio-factories. This study developed a computer-aided approach for quantification of the co-factor balance of bio-factories. Using the chemical n-butanol as a case study, our study explores the impact of variant bio-factory designs with differing co-factor balance on the potential efficiency of biomanufacturing. We provide insights into the relative balance of different designs and provide a computational framework to select the best-performing designs.
Collapse
Affiliation(s)
| | - Patrik R. Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Song HS, Jeon JM, Bhatia SK, Choi TR, Lee SM, Park SL, Lee HS, Yoon JJ, Ahn J, Lee H, Brigham CJ, Choi KY, Yang YH. Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering. J Biotechnol 2020; 320:66-73. [DOI: 10.1016/j.jbiotec.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023]
|
15
|
Liang L, Liu R, Freed EF, Eckert CA. Synthetic Biology and Metabolic Engineering Employing Escherichia coli for C2-C6 Bioalcohol Production. Front Bioeng Biotechnol 2020; 8:710. [PMID: 32719784 PMCID: PMC7347752 DOI: 10.3389/fbioe.2020.00710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Biofuel production from renewable and sustainable resources is playing an increasingly important role within the fuel industry. Among biofuels, bioethanol has been most widely used as an additive for gasoline. Higher alcohols can be blended at a higher volume compared to ethanol and generate lower greenhouse gas (GHG) emissions without a need to change current fuel infrastructures. Thus, these fuels have the potential to replace fossil fuels in support of more environmentally friendly processes. This review summarizes the efforts to enhance bioalcohol production in engineered Escherichia coli over the last 5 years and analyzes the current challenges for increasing productivities for industrial applications.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Emily F. Freed
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
16
|
Engineered citrate synthase alters Acetate Accumulation in Escherichia coli. Metab Eng 2020; 61:171-180. [PMID: 32569710 DOI: 10.1016/j.ymben.2020.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/24/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Metabolic engineering is used to improve titers, yields and generation rates for biochemical products in host microbes such as Escherichia coli. A wide range of biochemicals are derived from the central carbon metabolite acetyl-CoA, and the largest native drain of acetyl-CoA in most microbes including E. coli is entry into the tricarboxylic acid (TCA) cycle via citrate synthase (coded by the gltA gene). Since the pathway to any biochemical derived from acetyl-CoA must ultimately compete with citrate synthase, a reduction in citrate synthase activity should facilitate the increased formation of products derived from acetyl-CoA. To test this hypothesis, we integrated into E. coli C ΔpoxB twenty-eight citrate synthase variants having specific point mutations that were anticipated to reduce citrate synthase activity. These variants were assessed in shake flasks for growth and the production of acetate, a model product derived from acetyl-CoA. Mutations in citrate synthase at residues W260, A267 and V361 resulted in the greatest acetate yields (approximately 0.24 g/g glucose) compared to the native citrate synthase (0.05 g/g). These variants were further examined in controlled batch and continuous processes. The results provide important insights on improving the production of compounds derived from acetyl-CoA.
Collapse
|
17
|
Ku JT, Chen AY, Lan EI. Metabolic Engineering Design Strategies for Increasing Acetyl-CoA Flux. Metabolites 2020; 10:metabo10040166. [PMID: 32340392 PMCID: PMC7240943 DOI: 10.3390/metabo10040166] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/18/2023] Open
Abstract
Acetyl-CoA is a key metabolite precursor for the biosynthesis of lipids, polyketides, isoprenoids, amino acids, and numerous other bioproducts which are used in various industries. Metabolic engineering efforts aim to increase carbon flux towards acetyl-CoA in order to achieve higher productivities of its downstream products. In this review, we summarize the strategies that have been implemented for increasing acetyl-CoA flux and concentration, and discuss their effects. Furthermore, recent works have developed synthetic acetyl-CoA biosynthesis routes that achieve higher stoichiometric yield of acetyl-CoA from glycolytic substrates.
Collapse
Affiliation(s)
- Jason T. Ku
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City 300, Taiwan; (J.T.K.); (A.Y.C.)
| | - Arvin Y. Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City 300, Taiwan; (J.T.K.); (A.Y.C.)
| | - Ethan I. Lan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City 300, Taiwan
- Correspondence:
| |
Collapse
|
18
|
Chen CH, Tseng IT, Lo SC, Yu ZR, Pang JJ, Chen YH, Huang CC, Li SY. Manipulating ATP supply improves in situ CO 2 recycling by reductive TCA cycle in engineered Escherichia coli. 3 Biotech 2020; 10:125. [PMID: 32140377 DOI: 10.1007/s13205-020-2116-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/02/2020] [Indexed: 11/25/2022] Open
Abstract
The reductive tricarboxylic acid (rTCA) cycle was reconstructed in Escherichia coli by introducing pGETS118KAFS, where kor (encodes α-ketoglutarate:ferredoxin oxidoreductase), acl (encodes ATP-dependent citrate lyase), frd (encodes fumarate reductase), and sdh (encodes succinate dehydrogenase) were tandemly conjugated by the ordered gene assembly in Bacillus subtilis (OGAB). E. coli MZLF (E. coli BL21(DE3) Δzwf, Δldh, Δfrd) was employed so that the C-2/C-1 [(ethanol + acetate)/(formate + CO2)] ratio can be used to investigate the effectiveness of the recombinant rTCA for in situ CO2 recycling. It has been shown that supplying ATP through the energy pump (the EP), where formate donates electron to nitrate to form ATP, elevates the C-2/C-1 ratio from 1.03 ± 0.00 to 1.49 ± 0.02. Similarly, when ATP production is increased by the introduction of the heterologous ethanol production pathway (pLOI295), the C-2/C-1 ratio further increased to 1.79 ± 0.02. In summary, the ATP supply is a rate-limiting step for in situ CO2 recycling by the recombinant rTCA cycle. The decrease in C-1 is significant, but the destination of those recycled C-1 is yet to be determined.
Collapse
Affiliation(s)
- Ching-Hsun Chen
- 1Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - I-Ting Tseng
- 1Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - Shou-Chen Lo
- 2Department of Life Sciences, National Chung Hsing University, Taichung, 402 Taiwan
| | - Zi-Rong Yu
- 1Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - Ju-Jiun Pang
- 1Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - Yu-Hsuan Chen
- 1Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - Chieh-Chen Huang
- 2Department of Life Sciences, National Chung Hsing University, Taichung, 402 Taiwan
- 3The Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402 Taiwan
| | - Si-Yu Li
- 1Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
- 3The Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402 Taiwan
| |
Collapse
|
19
|
Chen W, Chen R, Wang H, Li Y, Zhang Y, Li S. Tuning chromosomal gene expression in Escherichia coli by combining single-stranded oligonucleotides mediated recombination and kil counter selection system. J Biotechnol 2019; 307:63-68. [PMID: 31678458 DOI: 10.1016/j.jbiotec.2019.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/03/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
Extensively modulating gene expression to achieve optimal flux is a critical step in metabolic engineering. Gene expression is usually modulated at the transcriptional level by controlling the strength of a promoter. However, this type of modulation is often hampered by its inability to fully sample the complete continuum of transcriptional control. In Escherichia coli, this limitation can be solved by constructing promoters with a wide range of strengths. In this study, a highly efficient method was developed to modulate a particular chromosomal gene of E. coli at a wide range of expression levels. This was achieved by combining highly efficient single-stranded oligonucleotide-mediated recombination and a stringent counter selection system kil. Using this strategy, a chromosomal library, with a range from 0.3% to 388% relative to the wild lac promoter, was easily obtained. The strength of our chromosomal promoter library was approximately 5-60 times wider in range than those of libraries reported before.
Collapse
Affiliation(s)
- Wei Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Ruyi Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Wang
- School of Biological Medicine, Beijing City University, Beijing, 10084, China
| | - Yujuan Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yunyi Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shanhu Li
- Beijing Institute of Biotechnology, Beijing 100850, China.
| |
Collapse
|
20
|
The significance of aspartate on NAD(H) biosynthesis and ABE fermentation in Clostridium acetobutylicum ATCC 824. AMB Express 2019; 9:142. [PMID: 31506849 PMCID: PMC6737123 DOI: 10.1186/s13568-019-0874-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/05/2019] [Indexed: 01/25/2023] Open
Abstract
The co-factor NADH plays an important role in butanol biosynthesis. In this study, we found that aspartate could effectively improve the butanol production of Clostridium acetobutylicum ATCC 824. Further study showed that aspartate could be used as the precursor of NADH de novo synthesis in C. acetobutylicum ATCC 824. When 2 g/L aspartate was added, the transcription levels of essential genes (nadA, nadB and nadC) for NADH de novo synthesis were significantly higher than that of without aspartate addition. The levels of intracellular NAD+, NADH, total NAD(H) and the ratio of NADH/NAD+ were also significantly increased, which were 63.9 ± 8.0%, 85.0 ± %, 77.7 ± 8.0% and 12.7 ± 2.9% higher than those of without aspartate addition, respectively. Furthermore, the butanol production was improved by overexpressing the NADH de novo synthesis genes, and the fermentation performance could be further enhanced by strengthening the VB1 biosynthesis and NADH de novo synthesis pathway simultaneously. As a result, the butanol titer of the engineered strain 824(thiCGE–nadC) reached 13.96 ± 0.11 g/L, 7.2 ± 0.4%, 18.1 ± 0.1%, 34.1 ± 0.1% higher than that of 824(thiCGE), 824(nadC) and the wild type strain, respectively. This study has a reference value for the NADH related researches of other microbes, and the engineering strategy used in this study provides a new idea for construction of efficient fuel-producing strains.
Collapse
|
21
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
22
|
Li SY, Ng IS, Chen PT, Chiang CJ, Chao YP. Biorefining of protein waste for production of sustainable fuels and chemicals. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:256. [PMID: 30250508 PMCID: PMC6146663 DOI: 10.1186/s13068-018-1234-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
To mitigate the climate change caused by CO2 emission, the global incentive to the low-carbon alternatives as replacement of fossil fuel-derived products continuously expands the need for renewable feedstock. There will be accompanied by the generation of enormous protein waste as a result. The economical viability of the biorefinery platform can be realized once the surplus protein waste is recycled in a circular economy scenario. In this context, the present review focuses on the current development of biotechnology with the emphasis on biotransformation and metabolic engineering to refine protein-derived amino acids for production of fuels and chemicals. Its scope starts with the explosion of potential feedstock sources rich in protein waste. The availability of techniques is applied for purification and hydrolysis of various feedstock proteins to amino acids. Useful lessons are leaned from the microbial catabolism of amino acids and lay a foundation for the development of the protein-based biotechnology. At last, the future perspective of the biorefinery scheme based on protein waste is discussed associated with remarks on possible solutions to overcome the technical bottlenecks.
Collapse
Affiliation(s)
- Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Po Ting Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710 Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| |
Collapse
|
23
|
Effective production of n -butanol in Escherichia coli utilizing the glucose–glycerol mixture. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Saini M, Lin LJ, Chiang CJ, Chao YP. Synthetic Consortium of Escherichia coli for n-Butanol Production by Fermentation of the Glucose-Xylose Mixture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10040-10047. [PMID: 29076337 DOI: 10.1021/acs.jafc.7b04275] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The microbial production of n-butanol using glucose and xylose, the major components of plant biomass, can provide a sustainable and renewable fuel as crude oil replacement. However, Escherichia coli prefers glucose to xylose as programmed by carbohydrate catabolite repression (CCR). In this study, a synthetic consortium consisting of two strains was developed by transforming the CCR-insensitive strain into a glucose-selective strain and a xylose-selective strain. Furthermore, the dual culture was reshaped by distribution of the synthetic pathway of n-butanol into two strains. Consequently, the co-culture system enabled effective co-utilization of both sugars and production of 5.2 g/L n-butanol at 30 h. The result leads to the conversion yield and productivity accounting for 63% of the theoretical yield and 0.17 g L-1 h-1, respectively. Overall, the technology platform as proposed is useful for production of other value-added chemicals, which require complicated pathways for their synthesis by microbial fermentation of a sugar mixture.
Collapse
Affiliation(s)
- Mukesh Saini
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
| | | | | | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
- Department of Medical Research, China Medical University Hospital , Taichung 40447, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 41354, Taiwan
| |
Collapse
|
25
|
Kim SK, Seong W, Han GH, Lee DH, Lee SG. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microb Cell Fact 2017; 16:188. [PMID: 29100516 PMCID: PMC5670510 DOI: 10.1186/s12934-017-0802-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Multiplex control of metabolic pathway genes is essential for maximizing product titers and conversion yields of fuels, chemicals, and pharmaceuticals in metabolic engineering. To achieve this goal, artificial transcriptional regulators, such as clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi), have been developed to specifically repress genes of interest. RESULTS In this study, we deployed a tunable CRISPRi system for multiplex repression of competing pathway genes and, thus, directed carbon flux toward production of molecules of interest in Escherichia coli. The tunable CRISPRi system with an array of sgRNAs successfully repressed four endogenous genes (pta, frdA, ldhA, and adhE) individually and in double, triple, or quadruple combination that are involved in the formation of byproducts (acetate, succinate, lactate, and ethanol) and the consumption of NADH in E. coli. Single-target CRISPRi effectively reduced the amount of each byproduct and, interestingly, pta repression also decreased ethanol production (41%), whereas ldhA repression increased ethanol production (197%). CRISPRi-mediated multiplex repression of competing pathway genes also resulted in simultaneous reductions of acetate, succinate, lactate, and ethanol production in E. coli. Among 15 conditions repressing byproduct-formation genes, we chose the quadruple-target CRISPRi condition to produce n-butanol in E. coli as a case study. When heterologous n-butanol-pathway enzymes were introduced into E. coli simultaneously repressing the expression of the pta, frdA, ldhA, and adhE genes via CRISPRi, n-butanol yield and productivity increased up to 5.4- and 3.2-fold, respectively. CONCLUSIONS We demonstrated the tunable CRISPRi system to be a robust platform for multiplex modulation of endogenous gene expression that can be used to enhance biosynthetic pathway productivity, with n-butanol as the test case. CRISPRi applications potentially enable the development of microbial "smart cell" factories capable of producing other industrially valuable products.
Collapse
Affiliation(s)
- Seong Keun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
| | - Wonjae Seong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Gui Hwan Han
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| |
Collapse
|
26
|
Wu YR, Mao A, Sun C, Shanmugam S, Li J, Zhong M, Hu Z. Catalytic hydrolysis of starch for biohydrogen production by using a newly identified amylase from a marine bacterium Catenovulum sp. X3. Int J Biol Macromol 2017. [PMID: 28647525 DOI: 10.1016/j.ijbiomac.2017.06.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An identified cold-adaptive, organic solvents-tolerant alkaline α-amylase (HP664) from Catenovulum sp. strain X3 was heterologously expressed and characterized in E. coli, and it was further applied to starch saccharification for biohydrogen production. The recombinant HP664 belongs to a member of glycoside hydrolase family 13 (GH13), with a molecular weight of 69.6kDa without signal peptides, and also shares a relatively low similarity (49%) to other reported amylases. Biochemical characterization demonstrated that the maximal enzymatic activity of HP664 was observed at 35°C and pH 9.0. Most metal ions inhibited its activity; however, low polar organic solvents (e.g., benzene and n-hexane) could enhance the activity by 35-50%. Additionally, HP664 also exhibited the catalytic capability on various polysaccharides, including potato starch, amylopectin, dextrin and agar. In order to increase the bioavailability of starch for H2 production, HP664 was utilized to elevate fermentable oligosaccharide level, and the results revealed that the maximal hydrolytic percentage of starch was up to 44% with 12h of hydrolysis using 5.63U of HP664. Biohydrogen fermentation of the starch hydrolysate by Clostridium sp. strain G1 yielded 297.7mL of H2 after 84h of fermentation, which is 3.73-fold higher than the control without enzymatic treatment of HP664.
Collapse
Affiliation(s)
- Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Aihua Mao
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Chongran Sun
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | | | - Jin Li
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Mingqi Zhong
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063 China.
| |
Collapse
|
27
|
Chin WC, Lin KH, Liu CC, Tsuge K, Huang CC. Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli. BMC Biotechnol 2017; 17:36. [PMID: 28399854 PMCID: PMC5387206 DOI: 10.1186/s12896-017-0356-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
Background N-Butanol has favorable characteristics for use as either an alternative fuel or platform chemical. Bio-based n-butanol production using microbes is an emerging technology that requires further development. Although bio-industrial microbes such as Escherichia coli have been engineered to produce n-butanol, reactive oxygen species (ROS)-mediated toxicity may limit productivity. Previously, we show that outer-membrane-targeted tilapia metallothionein (OmpC-TMT) is more effective as an ROS scavenger than human and mouse metallothioneins to reduce oxidative stress in the host cell. Results The host strain (BUT1-DE) containing the clostridial n-butanol pathway displayed a decreased growth rate and limited n-butanol productivity, likely due to ROS accumulation. The clostridial n-butanol pathway was co-engineered with inducible OmpC-TMT in E. coli (BUT3-DE) for simultaneous ROS removal, and its effect on n-butanol productivity was examined. The ROS scavenging ability of cells overexpressing OmpC-TMT was examined and showed an approximately twofold increase in capacity. The modified strain improved n-butanol productivity to 320 mg/L, whereas the control strain produced only 95.1 mg/L. Transcriptomic analysis revealed three major KEGG pathways that were significantly differentially expressed in the BUT3-DE strain compared with their expression in the BUT1-DE strain, including genes involved in oxidative phosphorylation, fructose and mannose metabolism and glycolysis/gluconeogenesis. Conclusions These results indicate that OmpC-TMT can increase n-butanol production by scavenging ROS. The transcriptomic analysis suggested that n-butanol causes quinone malfunction, resulting in oxidative-phosphorylation-related nuo operon downregulation, which would diminish the ability to convert NADH to NAD+ and generate proton motive force. However, fructose and mannose metabolism-related genes (fucA, srlE and srlA) were upregulated, and glycolysis/gluconeogenesis-related genes (pfkB, pgm) were downregulated, which further assisted in regulating NADH/NAD+ redox and preventing additional ATP depletion. These results indicated that more NADH and ATP were required in the n-butanol synthetic pathway. Our study demonstrates a potential approach to increase the robustness of microorganisms and the production of toxic chemicals through the ability to reduce oxidative stress. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0356-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Hsing Lin
- Center of Cold Chain Logistics Certification, College of Management, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan
| | - Chun-Chi Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kenji Tsuge
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
28
|
Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metab Eng 2017; 41:135-143. [PMID: 28400330 DOI: 10.1016/j.ymben.2017.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/23/2022]
Abstract
High titer 1-butanol production in Escherichia coli has previously been achieved by overexpression of a modified clostridial 1-butanol production pathway and subsequent deletion of native fermentation pathways. This strategy couples growth with production as 1-butanol pathway offers the only available terminal electron acceptors required for growth in anaerobic conditions. With further inclusion of other well-established metabolic engineering principles, a titer of 15g/L has been obtained. In achieving this titer, many currently existing strategies have been exhausted, and 1-butanol toxicity level has been surpassed. Therefore, continued engineering of the host strain for increased production requires implementation of alternative strategies that seek to identify non-obvious targets for improvement. In this study, a metabolomics-driven approach was used to reveal a CoA imbalance resulting from a pta deletion that caused undesirable accumulation of pyruvate, butanoate, and other CoA-derived compounds. Using metabolomics, the reduction of butanoyl-CoA to butanal catalyzed by alcohol dehydrogenase AdhE2 was determined as a rate-limiting step. Fine-tuning of this activity and subsequent release of free CoA restored the CoA balance that resulted in a titer of 18.3g/L upon improvement of total free CoA levels using cysteine supplementation. By enhancing AdhE2 activity, carbon flux was directed towards 1-butanol production and undesirable accumulation of pyruvate and butanoate was diminished. This study represents the initial report describing the improvement of 1-butanol production in E. coli by resolving CoA imbalance, which was based on metabolome analysis and rational metabolic engineering strategies.
Collapse
|
29
|
Heo MJ, Jung HM, Um J, Lee SW, Oh MK. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli. ACS Synth Biol 2017; 6:182-189. [PMID: 27700055 DOI: 10.1021/acssynbio.6b00134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically engineered E. coli, resulting in 0.82 g/L butanol production. To increase butanol production, carbon flux from acetyl-CoA to citric acid cycle should be redirected to acetoacetyl-CoA. For this purpose, the 5'-untranslated region sequence of gltA encoding citrate synthase was designed using an expression prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate that redistributing carbon flux using genome editing is an efficient engineering tool for metabolite overproduction.
Collapse
Affiliation(s)
- Min-Ji Heo
- Department of Chemical & Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul, 136-713, South Korea
| | - Hwi-Min Jung
- Department of Chemical & Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul, 136-713, South Korea
| | - Jaeyong Um
- Department of Chemical & Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul, 136-713, South Korea
| | - Sang-Woo Lee
- Department of Chemical & Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul, 136-713, South Korea
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul, 136-713, South Korea
| |
Collapse
|
30
|
Saini M, Wang ZW, Chiang CJ, Chao YP. Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:173. [PMID: 28680480 PMCID: PMC5496137 DOI: 10.1186/s13068-017-0857-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Crude glycerol in the waste stream of the biodiesel production process is an abundant and renewable resource. However, the glycerol-based industry is usually afflicted by the cost for refinement of crude glycerol. This issue can be addressed by developing a microbial process to convert crude glycerol to value-added chemicals. In this study, Escherichia coli was implemented for the production of n-butanol based on the reduced nature of glycerol. RESULTS The central metabolism of E. coli was rewired to improve the efficiency of glycerol metabolism and provide the reductive need for n-butanol in E. coli. This was carried out in several steps by (1) forcing the glycolytic flux through the oxidation pathway of pyruvate, (2) directing the gluconeogenic flux into the oxidative pentose phosphate pathway, (3) enhancing the anaerobic catabolism for glycerol, and (4) moderately suppressing the tricarboxylic acid cycle. Under the microaerobic condition, the engineered strain enabled the production of 6.9 g/L n-butanol from 20 g/L crude glycerol. The conversion yield and the productivity reach 87% of the theoretical yield and 0.18 g/L/h, respectively. CONCLUSIONS The approach by rational rewiring of metabolic pathways enables E. coli to synthesize n-butanol from glycerol in an efficient way. Our proposed strategies illustrate the feasibility of manipulating key metabolic nodes at the junction of the central catabolism. As a result, it renders the intracellular redox state adjustable for various purposes. Overall, the developed technology platform may be useful for the economic viability of the glycerol-related industry.
Collapse
Affiliation(s)
- Mukesh Saini
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
| | - Ze Win Wang
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
| | - Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| |
Collapse
|
31
|
Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
32
|
du Preez JC. Editorial: chemicals and bioproducts from biomass. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:233. [PMID: 27822306 PMCID: PMC5088674 DOI: 10.1186/s13068-016-0637-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 05/28/2023]
Affiliation(s)
- James C. du Preez
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| |
Collapse
|
33
|
Koppolu V, Vasigala VK. Role of Escherichia coli in Biofuel Production. Microbiol Insights 2016; 9:29-35. [PMID: 27441002 PMCID: PMC4946582 DOI: 10.4137/mbi.s10878] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
Abstract
Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions.
Collapse
Affiliation(s)
- Veerendra Koppolu
- Scientist, Department of Analytical Biotechnology, MedImmune/AstraZeneca, Gaithersburg, MD, USA.; Former affiliation: Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Veneela Kr Vasigala
- Rangaraya Medical College, NTR University of Health Sciences, Kakinada, AP, India
| |
Collapse
|
34
|
Wen RC, Shen CR. Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:267. [PMID: 28031744 PMCID: PMC5168855 DOI: 10.1186/s13068-016-0680-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/02/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND As a natural fermentation product secreted by Clostridium species, bio-based 1-butanol has attracted great attention for its potential as alternative fuel and chemical feedstock. Feasibility of microbial 1-butanol production has also been demonstrated in various recombinant hosts. RESULTS In this work, we constructed a self-regulated 1-butanol production system in Escherichia coli by borrowing its endogenous fermentation regulatory elements (FRE) to automatically drive the 1-butanol biosynthetic genes in response to its natural fermentation need. Four different cassette of 5' upstream transcription and translation regulatory regions controlling the expression of the major fermentative genes ldhA, frdABCD, adhE, and ackA were cloned individually to drive the 1-butanol pathway genes distributed among three plasmids, resulting in 64 combinations that were tested for 1-butanol production efficiency. Fermentation of 1-butanol was triggered by anaerobicity in all cases. In the growth-decoupled production screening, only combinations with formate dehydrogenase (Fdh) overexpressed under FRE adhE demonstrated higher titer of 1-butanol anaerobically. In vitro assay revealed that 1-butanol productivity was directly correlated with Fdh activity under such condition. Switching cells to oxygen-limiting condition prior to significant accumulation of biomass appeared to be crucial for the induction of enzyme synthesis and the efficiency of 1-butanol fermentation. With the selection pressure of anaerobic NADH balance, the engineered strain demonstrated stable production of 1-butanol anaerobically without the addition of inducer or antibiotics, reaching a titer of 10 g/L in 24 h and a yield of 0.25 g/g glucose under high-density fermentation. CONCLUSIONS Here, we successfully engineered a self-regulated 1-butanol fermentation system in E. coli based on the natural regulation of fermentation reactions. This work also demonstrated the effectiveness of selection pressure based on redox balance anaerobically. Results obtained from this study may help enhance the industrial relevance of 1-butanol synthesis using E. coli and solidifies the possibility of strain improvement by directed evolution.
Collapse
Affiliation(s)
- Rex C. Wen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Claire R. Shen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| |
Collapse
|