1
|
Le T, Anne-Archard D, Cameleyre X, Lombard E, To KA, Pham TA, Fillaudeau L. Rheological investigation of complex lignocellulosic suspensions during hydrolysis using pure and cocktail of enzymes. BIORESOURCE TECHNOLOGY 2025; 426:132333. [PMID: 40044055 DOI: 10.1016/j.biortech.2025.132333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Enzymatic hydrolysis of lignocellulosic materials at high dry matter content is of crucial interest in bioindustry, and namely for biorefinery. Physical limitations linked to high concentrations must be understood and surpassed. This study used online and in-situ measurements to examine the rheological properties of different cellulosic suspensions and its evolution during enzymatic hydrolysis. Semi-dilute conditions were used to introduce non-Newtonian rheological behaviors while limiting complexity. For all suspensions, the relationship between shear-thinning behavior versus substrate concentration was modeled. During enzymatic digestion using single and cocktails of cellulolytic activities, the evolution in shear-thinning properties was finely quantified. The viscosity-time relationship during hydrolysis was accurately described through first-order kinetics, and a unique, dimensionless representation was obtained. The critical concentrations indicating a shift from diluted to concentrated regime and the viscosity reduction kinetics that were identified should provide a strong foundation for defining an optimal substrate feed rate for fed-batch and continuous processes.
Collapse
Affiliation(s)
- Tuan Le
- TBI, Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse (CNRS UMR5504, INRAE UMR792, INSA), 31077 Toulouse, France; SCLS, School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam; FERMAT (FR3089, CNRS/INP Toulouse/INSA Toulouse/UT3 Paul Sabatier), 31432 Toulouse, France
| | - Dominique Anne-Archard
- IMFT, Institut de Mécanique des Fluides de Toulouse (UMR 5502 CNRS / Toulouse INP / UT3), 31400 Toulouse, France; FERMAT (FR3089, CNRS/INP Toulouse/INSA Toulouse/UT3 Paul Sabatier), 31432 Toulouse, France
| | - Xavier Cameleyre
- TBI, Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse (CNRS UMR5504, INRAE UMR792, INSA), 31077 Toulouse, France
| | - Eric Lombard
- TBI, Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse (CNRS UMR5504, INRAE UMR792, INSA), 31077 Toulouse, France
| | - Kim Anh To
- SCLS, School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Tuan Anh Pham
- SCLS, School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Luc Fillaudeau
- TBI, Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse (CNRS UMR5504, INRAE UMR792, INSA), 31077 Toulouse, France; FERMAT (FR3089, CNRS/INP Toulouse/INSA Toulouse/UT3 Paul Sabatier), 31432 Toulouse, France.
| |
Collapse
|
2
|
Wang S, Xu J, Xu S, Li Y, Sun Z, Li D, Ma Y, Qian J, Tan L, Liu T. Efficient enzymatic hydrolysis of sweet potato residue by fed-batch method to prepare high- concentration glucose. Bioprocess Biosyst Eng 2025; 48:829-839. [PMID: 40128374 DOI: 10.1007/s00449-025-03146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/03/2025] [Indexed: 03/26/2025]
Abstract
China is the largest producer and exporter of sweet potato in the world. Sweet potato residue (SPR) separated after starch extraction account for more than 10% of the total dry matter of sweet potatoes. However, large amounts of unutilized SPR can cause environmental pollution. SPR is rich in starch and cellulose, both of which can be converted into glucose, making it a good carbon source for microbial fermentation. Therefore, an efficient SPR enzymatic process needs to be developed. The technological conditions of high-solid enzymatic hydrolysis of SPR by fed-batch was investigated in detail. Cellulase, amylase, and pectinase had synergistic effects on SPR enzymatic digestion. The experiments were first conducted to optimize the total enzyme addition of 15 mg enzyme protein/g substrate. The experiments were designed using Design-Expert (10.0) to optimize the enzyme proportions to 42%, 31.8%, and 26.2% for cellulase, amylase, and pectinase, respectively. The fed-batch enzymatic hydrolysis of SPR was investigated. The feed time and amount were optimized. The results showed that the initial SPR enzymatic hydrolysis concentration was 14% (w/v), 9% (w/v) was added at 3 h, 6 h and 12 h, respectively and the final substrate concentration was 41% (w/v). After 24 h of enzymatic hydrolysis, the glucose concentration obtained was 194.57 g/L and the glucan conversion was 63.58%. The fed-batch enzymatic hydrolysis of SPR described in this study has great potential for the whole chain utilization of sweet potato and in the microbial fermentation industry as it is environmentally friendly, economical and efficient.
Collapse
Affiliation(s)
- Shaoyu Wang
- Department of Bioengineering, Qilu University of Technology, Jinan, 250353, China
| | - Jialong Xu
- Department of Bioengineering, Qilu University of Technology, Jinan, 250353, China
| | - Shuai Xu
- Department of Bioengineering, Qilu University of Technology, Jinan, 250353, China
| | - Yuxiang Li
- Department of Bioengineering, Qilu University of Technology, Jinan, 250353, China
| | - Zhongbo Sun
- Department of Bioengineering, Qilu University of Technology, Jinan, 250353, China
| | - Dahai Li
- Biology Institute of Shandong Academy of Sciences, Jinan, 250103, China
| | - Yaohong Ma
- Biology Institute of Shandong Academy of Sciences, Jinan, 250103, China
| | - Juanjuan Qian
- Shandong Lonct Enzymes Co., Ltd, Yishui, 276400, China
| | - Liping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Department of Bioengineering, Qilu University of Technology, Jinan, 250353, China
| | - Tongjun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
- Department of Bioengineering, Qilu University of Technology, Jinan, 250353, China.
| |
Collapse
|
3
|
Teleky BE, Martău GA, Simon E, Plosca MP, Odocheanu R, Ranga F, Vodnar DC. Harnessing agro-industrial waste: Enzyme-driven biosynthesis in Itaconic acid production. Int J Biol Macromol 2025; 306:141437. [PMID: 39999715 DOI: 10.1016/j.ijbiomac.2025.141437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Itaconic acid (IA) is a highly soluble and stable bio-based chemical with diverse industrial applications, particularly in sustainable material production. Despite the growing demand for bio-based IA, efficient and sustainable production methods remain a challenge, particularly in optimizing fungal fermentation and by-product utilization. This study explores the synergistic use of solid-state fermentation utilizing Aspergillus awamori for enzyme production and hydrolysis, combined with submerged fermentation to optimize IA bioproduction from wheat bran by-products. The optimal levels of enzyme production observed on the third day were closely related to moisture's vital role in synthesis dynamics, influencing glucose concentration and enzyme activities. The activities of glucoamylase, cellulase, and endoglucanase exceeded 50 U/g, 55 FPU/g, and 15 U/g, respectively. Subsequent IA bioproduction using A. terreus was optimized under various initial pH levels, with pH 4 and 5 demonstrating superior IA yields of 8.082 ± 0.19 g/L and 10.782 ± 0.98 g/L, respectively. Scaling up challenges highlight the need for a 30 % enzyme extract in wheat bran hydrolysis, with economic favorability and achieving a 52 % IA conversion efficiency from citric acid. This approach underscores sustainable IA production from agro-industrial by-products, aiding the circular economy and bio-based processes.
Collapse
Affiliation(s)
- Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Gheorghe-Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Elemer Simon
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Mădălina-P Plosca
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Răzvan Odocheanu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Floricuța Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Jofre FM, Prado CA, Shibukawa VP, Rodrigues BG, Sarangi PK, Chandel AK. Critical analysis of process parameters towards smart bioreactors development in biorefinery for biorenewables production. Int J Biol Macromol 2025; 305:140957. [PMID: 39947535 DOI: 10.1016/j.ijbiomac.2025.140957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
The development of sustainable biotechnological processes is important for advancements in production of renewable chemicals, biofuels, and materials. A significant challenge is handling high biomass total solids (TS) loading, which is significant to enhance the cost-effectiveness and efficiency of biorefineries. Further, advancements in biomass pretreatment methods, such as hydrodynamic cavitation, that are employed to disrupt the complex structure of biomass, facilitating enzymatic hydrolysis and improving overall process yields, have shown promising results. Efficient pretreatment, novel enzyme evolution and hydrolysis using high TS concentration coupled with process intensification approaches i.e. simultaneous saccharification and co-fermentation (SSCF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP) could be revolutionary in the biomass refineries. There are some key factors influencing reactor performance, such as biomass characteristics, mass transfer, enzyme characteristics, rheology, and heat transfer. These factors are critical in overcoming the challenges associated with high TS loading, including increased viscosity, microorganism selection and reduced mixing efficiency. This review highlights such critical factors when dealing with high biomass loading, by presenting strategies and reactor configurations to improve the scalability and economic viability of lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Fanny Machado Jofre
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil.
| | - Carina Aline Prado
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil
| | - Vinícius Pereira Shibukawa
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil
| | - Bruna Green Rodrigues
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur 795004, India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, 12602-810 Lorena, Brazil.
| |
Collapse
|
5
|
Fogarin HM, Murillo-Franco SL, Santos MCM, Silva DDV, Dussán KJ. Acid hydrolysis pretreatment for extraction of oligosaccharides derived from spent coffee grounds: valorization of a promising biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36417-0. [PMID: 40240662 DOI: 10.1007/s11356-025-36417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
The coffee industry generates approximately 6 million tons of waste annually, primarily spent coffee grounds (SCGs), whose disposal in landfills poses environmental risks. Therefore, new valorization strategies must be implemented to mitigate their environmental impact. In this sense, the objective of this study was to characterize SCGs and to optimize the dilute sulfuric acid pretreatment process for extracting oligosaccharides (OS). Optimal extraction conditions were determined using response surface methodology (RSM) with a Box-Behnken (BB) 33 design that included five central points for improved accuracy. The factors evaluated were temperature (140-190 °C), solid/liquid (S/L) ratio (1:40-1:4 g/mL), reaction time (20-120 min), and sulfuric acid concentration (0-2% v/v). Hemicellulose was identified as the predominant component, consisting mainly of mannose. OS extraction yields varied from 1.65 to 22.40 g per 100 g dry SCGs, depending on the process conditions. The quadratic model yielded an R2 value of 0.91128, indicating that the S/L ratio was the most influential factor, while reaction time had no significant effect. The optimized conditions-S/L ratio of 1:40 (g/mL), reaction time of 20 min, and H₂SO₄ concentration of 1.43% v/v at 168.57 °C-were experimentally validated and showed a margin of error of less than 9%. MALDI-TOF-MS analysis revealed oligosaccharide structures composed of hexose and pentose chains with up to eight sugar units. This study advances the understanding of OS extraction from SCGs via dilute acid pretreatment and provides valuable insight into waste valorization through process optimization and engineering approaches.
Collapse
Affiliation(s)
- Henrique Maziero Fogarin
- Department of Chemical Engineering, Institute of Chemistry, São Paulo State University (Unesp), Av. Prof. Francisco Degni, 55 - Jardim Quitandinha,, Araraquara, São Paulo, 14800 - 900, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Sarha Lucia Murillo-Franco
- Department of Chemical Engineering, Institute of Chemistry, São Paulo State University (Unesp), Av. Prof. Francisco Degni, 55 - Jardim Quitandinha,, Araraquara, São Paulo, 14800 - 900, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Matheus Costa Monteiro Santos
- Department of Chemical Engineering, Institute of Chemistry, São Paulo State University (Unesp), Av. Prof. Francisco Degni, 55 - Jardim Quitandinha,, Araraquara, São Paulo, 14800 - 900, Brazil
- Bioenergy Research Institute (IPBEN), São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Debora Danielle Virginio Silva
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Kelly Johana Dussán
- Department of Chemical Engineering, Institute of Chemistry, São Paulo State University (Unesp), Av. Prof. Francisco Degni, 55 - Jardim Quitandinha,, Araraquara, São Paulo, 14800 - 900, Brazil.
- Bioenergy Research Institute (IPBEN), São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
- Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil, and Derivatives (CEMPEQC), Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| |
Collapse
|
6
|
Wang J, Zhang R, Shao Y, Zhang C, You X, Yang Q, Xie F, Yang R, Luo H. Efficient pretreatment of Phragmites australis biomass using glutamic acid for bioethanol production by a hybrid hydrolysis and fermentation strategy. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03165-x. [PMID: 40221957 DOI: 10.1007/s00449-025-03165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Microbial fermentation of renewable lignocellulosic biomass to produce biofuels presents significant environmental advantages. The conversion of cellulose and hemicellulose into fermentable sugars provides essential carbon sources for microbial metabolism. However, the recalcitrance of biomass limits enzymatic accessibility. In this study, mild L-glutamic acid (GA) pretreatment was applied to Phragmites australis residues (reed straw) to fractionate lignin and polysaccharides for enhancing enzymatic hydrolysis. Pretreatment with 0.20 mol/L GA at 180 °C for 50 min (logRo = 4.1) achieved glucan recovery and xylan removal rates of 84.2% and 87.8%. Consequently, glucose and total sugar yields reached 75.5 and 71.2%, representing 5.35- and 5.18-fold increases compared to untreated reed. The 28.7 g fermentable sugars with a high glucose-to-xylose ratio (18.1 g/g) were obtained from 100 g reed. The hydrolysates were subsequently used as substrates for bioethanol production by Saccharomyces cerevisiae, which yielded 12.4-32.3 g/L ethanol via separate hydrolysis and fermentation (SHF). By analyzing bioethanol production of SHF and simultaneous saccharification and fermentation (SSF), an optimized hybrid hydrolysis and fermentation (HHF) strategy was developed. Under HHF process, 48.5 g/L of ethanol was achieved from 20 wt% solid loads. This study demonstrates an efficient approach to convert abundant lignocellulosic waste into fermentable sugars and biofuels.
Collapse
Affiliation(s)
- Jiabin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Rui Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yu Shao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Cheng Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xinyan You
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Qianyue Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
7
|
Nhim S, Baramee S, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Uke A, Ceballos RM, Kosugi A, Waeonukul R. Effective semi-fed-batch saccharification with high lignocellulose loading using co-culture of Clostridium thermocellum and Thermobrachium celere strain A9. Front Microbiol 2025; 15:1519060. [PMID: 39839112 PMCID: PMC11747163 DOI: 10.3389/fmicb.2024.1519060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Maximizing saccharification efficiency of lignocellulose and minimizing the production costs associated with enzyme requirements are crucial for sustainable biofuel production. This study presents a novel semi-fed-batch saccharification method that uses a co-culture of Clostridium thermocellum and Thermobrachium celere strain A9 to efficiently break down high solid-loading lignocellulosic biomass without the need for any external enzymes. This method optimizes saccharification efficiency and enhances glucose production from alkaline-treated rice straw, a representative lignocellulosic biomass. Initially, a co-culture of C. thermocellum and T. celere strain A9 was established with a treated rice straw loading of 150 g/l, supplemented with Tween 20, which enhanced enzymes stability and prevented unproductive binding to lignin, achieving a remarkable glucose concentration of up to 90.8 g/l. Subsequently, an additional 100 g/l of treated rice straw was introduced, resulting in a total glucose concentration of up to 140 g/l, representing 70.1% of the theoretical glucose yield from the 250 g/l treated rice straw load. In contrast, batch saccharification using an initial substrate concentration of 250 g/l of alkaline-treated rice straw without Tween 20 resulted in a glucose concentration of 55.5 g/l, with a theoretical glucose yield of only 27.7%. These results suggest that the semi-fed-batch saccharification method using co-cultivation of C. thermocellum and T. celere strain A9, supplemented with Tween 20 is an efficient microbial method for saccharifying high-concentration biomass. Moreover, this approach effectively manages high solids loading, optimizes efficiency, and reduces the need for external enzymes, thus lowering production costs and simplifying the process for industrial applications.
Collapse
Affiliation(s)
- Sreyneang Nhim
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Sirilak Baramee
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Chakrit Tachaapaikoon
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Patthra Pason
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Khanok Ratanakhanokchai
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Ayaka Uke
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Ruben Michael Ceballos
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Rattiya Waeonukul
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Tan X, Wen L, Li Y, Zhang Q, Tang S, Sheng Y, Lai C. Distinct effects of dilute acid prehydrolysate inhibitors on enzymatic hydrolysis and yeast fermentation. Bioprocess Biosyst Eng 2025; 48:133-145. [PMID: 39460764 DOI: 10.1007/s00449-024-03098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The effects of dilute acid prehydrolysate from poplar were investigated and compared in the enzymatic hydrolysis, fermentation, and simultaneous saccharification fermentation (SSF) in this study. The improvement of enzymatic hydrolysis and fermentation with resin adsorption and surfactant addition has also been represented. A total of 16 phenolic alcohols, aldehydes, acids and 3 furan derivatives in the prehydrolysates were identified and quantified by gas chromatography/mass spectrometry (GC/MS). The degree of inhibition from the phenolic compounds (26.55%) in prehydrolysate on the enzymatic hydrolysis was much higher than carbohydrates-derived inhibitors (0.52-4.64%). Around 40% degree of inhibition was eliminated in Avicel enzymatic hydrolysis when 75% of prehydrolysates phenolic compounds were removed by resin adsorption. This showed distinguishing inhibition degrees of various prehydrolysate phenolic compounds. Inhibition of prehydrolysate on enzymatic hydrolysis was more dosage-dependent, while their suppression on the fermentation showed a more complicated mode: fermentation could be terminated by the untreated prehydrolysate, while a small number of prehydrolysate inhibitors even improved the glucose consumption and ethanol production in the fermentation. Correlated with this distinct inhibition modes of prehydrolysate, the improvement of Tween 80 addition in SSF was around 7.10% for the final ethanol yield when the glucose accumulation was promoted by 76.6%.
Collapse
Affiliation(s)
- Xin Tan
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Li Wen
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yanbin Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Qin Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Song Tang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Yequan Sheng
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Chenhuan Lai
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
9
|
Yang W, Li J, Yao Z. High-solids saccharification of non-pretreated citrus peels through tailored cellulase. Int J Biol Macromol 2024; 282:136863. [PMID: 39454926 DOI: 10.1016/j.ijbiomac.2024.136863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Citrus peels, characterized by their low lignin and high sugar content, have been drawing increasing attention as a valuable lignocellulosic biomass with significant potential in biorefinery. Notably, in this study, the citrus waste was found to be enzymatically accessible without any pretreatment. Moreover, to promote the high-solids saccharification of the citrus peels, a tailored cellulase cocktail was formulated by response surface methodology (RSM), along with a fed-batch strategy aiming to obtain a high substrate loading. The study resulted in an optimized cellulase cocktail (7.08 U/g DM of β-glucosidase, 164.17 U/g DM of hemicellulase, 47.38 mg/g DM of sophorolipid, and 64.68 mg/g DM of Tween 80) and achieved solids loading of 22 % with a total sugar concentration of 123.84 g/L, corresponding to a yield of 93.12 % (65.28 % in batch operation). These findings provided essential validation for the efficient utilization of citrus waste, ensuring them promising potential as feedstock for sugar platforms.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Mgeni ST, Mero HR, Mtashobya LA, Emmanuel JK. The prospect of fruit wastes in bioethanol production: A review. Heliyon 2024; 10:e38776. [PMID: 39421386 PMCID: PMC11483485 DOI: 10.1016/j.heliyon.2024.e38776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Utilising agricultural byproducts specifically fruit wastes for bioethanol production offers a promising approach to sustainable energy production and waste mitigation. This approach focuses on assessing the biochemical composition of fruit wastes, particularly their sugar content, as a key aspect of bioethanol production. This study evaluates the potential of pineapple, mango, pawpaw and watermelon fruit wastes for bioethanol production, highlighting the substantial organic waste generated during fruit processing stages such as peeling and pulping. Various techniques, including enzymatic hydrolysis, fermentation, and distillation, are reviewed to optimise bioethanol yields while addressing challenges such as seasonal availability, substrate variability and process optimisation. Besides, the environmental benefits of bioethanol derived from fruit wastes, such as reduced environmental pollution, decreased reliance on fossil fuels, and promotion of sustainable agricultural practices, are emphasised. The study deployed a comprehensive literature review using keywords, specific research questions, and a search strategy that included academic databases, library catalogues, and Google Scholar. Search results were systematically screened and selected based on their relevance to the topic.
Collapse
Affiliation(s)
- Shedrack Thomas Mgeni
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Herieth Rhodes Mero
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Lewis Atugonza Mtashobya
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | | |
Collapse
|
11
|
Singh R, Jain R, Soni P, Santos-Villalobos SDL, Chattaraj S, Roy D, Mitra D, Gaur A. Graphing the Green route: Enzymatic hydrolysis in sustainable decomposition. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100281. [PMID: 39957782 PMCID: PMC11827080 DOI: 10.1016/j.crmicr.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
This graphical review article explores how sustainable decomposition contributes to environmental sustainability in waste management with a focus on enzymatic hydrolysis. Methods such as composting and anaerobic digestion efficiently break down organic waste and reduce landfill use and greenhouse gas emissions, while producing valuable resources such as compost and biogas. In particular, enzymatic hydrolysis offers advantages over chemical methods because it operates under mild conditions, targets specific substrates precisely, and yields purer products with fewer side reactions. Its renewable and biodegradable nature aligns with sustainability goals, making it suitable for waste decomposition, biorefining, and resource recovery. Enzymatic waste conversion reduces waste and pollution, conserves natural resources, and supports circular economy. Various ongoing studies have aimed to enhance the efficiency and environmental benefits of enzymatic hydrolysis, enabling innovative waste-to-value solutions that address environmental, economic, and social challenges. This article emphasizes the importance of its timely examination of enzymatic hydrolysis as a prominent method for sustainable waste decomposition, stressing its environmental, economic, and societal benefits. It distinguishes itself through its extensive analysis of chemical methods, its emphasis on the circular economy, and its delineation of future research directions and the need for interdisciplinary collaboration to advance this innovative technology.
Collapse
Affiliation(s)
- Rajat Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand India
| | - Rajul Jain
- Department of Zoology, Dayalbagh Educational Institute (DEI), Agra, 282005, New Delhi, India
| | - Priyanka Soni
- Department of Psychology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | | | - Sourav Chattaraj
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751 003, Odisha, India
| | - Deblina Roy
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal, 741252, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand India
| | - Ashish Gaur
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand India
| |
Collapse
|
12
|
Dong L, Gao Y, Liu C, Yu G, Asadollahi MA, Wang H, Li B. Co-production of high-concentration fermentable sugar and lignin-based bio-adhesive from corncob residue via an enhanced enzymatic hydrolysis. Int J Biol Macromol 2024; 276:133739. [PMID: 39002907 DOI: 10.1016/j.ijbiomac.2024.133739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Xylose plants (produce xylose from corncob through dilute acid treatment) generate a large amount of corncob residue (CCR), most of which are burned and lacked of valorization. Herein, to address this issue, CCR was directly used as starting material for high-solid loading enzymatic hydrolysis via a simple strategy by combining PFI homogenization (for sufficient mixing) with batch-feeding. A maximum glucose concentration of 187.1 g/L was achieved after the saccharification with a solid loading of 25 wt% and enzyme dosage of 10 FPU/g-CCR. Furthermore, the residue of enzymatic hydrolysis (REH) was directly used as a bio-adhesive for plywood production with both high dry (1.7 MPa) and wet (1.1 MPa) surface bonding strength (higher than the standard (0.7 MPa)), and the excellent adhesion was due to the interfacial crosslinking between the REH adhesive (containing lignin, free glucose, and nanosized fibers) and cell wall of woods. Compared with traditional reported adhesives, the REH bio-adhesive has advantages of formaldehyde-free, good moisture resistance, green process, relatively low cost and easy realization. This study presents a simple and effective strategy for better utilization of CCR, which also provides beneficial reference for the valorization of other kinds of lignocellulosic biomass.
Collapse
Affiliation(s)
- Lijing Dong
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China; CAS Key Laboratory of Biofuels, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yufa Gao
- CAS Key Laboratory of Biofuels, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chao Liu
- CAS Key Laboratory of Biofuels, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guang Yu
- CAS Key Laboratory of Biofuels, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Haisong Wang
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Bin Li
- CAS Key Laboratory of Biofuels, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
13
|
Zarina R, Mezule L. Enzymatic hydrolysis of waste streams originating from wastewater treatment plants. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:104. [PMID: 39026332 PMCID: PMC11264863 DOI: 10.1186/s13068-024-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Achieving climate neutrality is a goal that calls for action in all sectors. The requirements for improving waste management and reducing carbon emissions from the energy sector present an opportunity for wastewater treatment plants (WWTPs) to introduce sustainable waste treatment practices. A common biotechnological approach for waste valorization is the production of sugars from lignocellulosic waste biomass via biological hydrolysis. WWTPs produce waste streams such as sewage sludge and screenings which have not yet been fully explored as feedstocks for sugar production yet are promising because of their carbohydrate content and the lack of lignin structures. This study aims to explore the enzymatic hydrolysis of various waste streams originating from WWTPs by using a laboratory-made and a commercial cellulolytic enzyme cocktail for the production of sugars. Additionally, the impact of lipid and protein recovery from sewage sludge prior to the hydrolysis was assessed. RESULTS Treatment with a laboratory-made enzyme cocktail produced by Irpex lacteus (IL) produced 31.2 mg sugar per g dry wastewater screenings. A commercial enzyme formulation released 101 mg sugar per g dry screenings, corresponding to 90% degree of saccharification. There was an increase in sugar levels for all sewage substrates during the hydrolysis with IL enzyme. Lipid and protein recovery from primary and secondary sludge prior to the hydrolysis with IL enzyme was not advantageous in terms of sugar production. CONCLUSIONS The laboratory-made fungal IL enzyme showed its versatility and possible application beyond the typical lignocellulosic biomass. Wastewater screenings are well suited for valorization through sugar production by enzymatic hydrolysis. Saccharification of screenings represents a viable strategy to divert this waste stream from landfill and achieve the waste treatment and renewable energy targets set by the European Union. The investigation of lipid and protein recovery from sewage sludge showed the challenges of integrating resource recovery and saccharification processes.
Collapse
Affiliation(s)
- Ruta Zarina
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas Iela 6a, Riga, Latvia.
| | - Linda Mezule
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas Iela 6a, Riga, Latvia
| |
Collapse
|
14
|
Averheim A, Stagge S, Jönsson LJ, Larsson SH, Thyrel M. Separate hydrolysis and fermentation of softwood bark pretreated with 2-naphthol by steam explosion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:102. [PMID: 39020440 PMCID: PMC11253379 DOI: 10.1186/s13068-024-02552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND 2-Naphthol, a carbocation scavenger, is known to mitigate lignin condensation during the acidic processing of lignocellulosic biomass, which may benefit downstream processing of the resulting materials. Consequently, various raw materials have demonstrated improved enzymatic saccharification yields for substrates pretreated through autohydrolysis and dilute acid hydrolysis in the presence of 2-naphthol. However, 2-naphthol is toxic to ethanol-producing organisms, which may hinder its potential application. Little is known about the implications of 2-naphthol in combination with the pretreatment of softwood bark during continuous steam explosion in an industrially scalable system. RESULTS The 2-naphthol-pretreated softwood bark was examined through spectroscopic techniques and subjected to separate hydrolysis and fermentation along with a reference excluding the scavenger and a detoxified sample washed with ethanol. The extractions of the pretreated materials with water resulted in a lower aromatic content in the extracts and stronger FTIR signals, possibly related to guaiacyl lignin, in the nonextractable residue when 2-naphthol was used during pretreatment. In addition, cyclohexane/acetone (9:1) extraction revealed the presence of pristine 2-naphthol in the extracts and increased aromatic content of the nonextractable residue detectable by NMR for the scavenger-pretreated materials. Whole-slurry enzymatic saccharification at 12% solids loading revealed that elevated saccharification recoveries after 48 h could not be achieved with the help of the scavenger. Glucose concentrations of 16.9 (reference) and 15.8 g/l (2-naphthol) could be obtained after 48 h of hydrolysis. However, increased inhibition during fermentation of the scavenger-pretreated hydrolysate, indicated by yeast cell growth, was slight and could be entirely overcome by the detoxification stage. The ethanol yields from fermentable sugars after 24 h were 0.45 (reference), 0.45 (2-naphthol), and 0.49 g/g (2-naphthol, detoxified). CONCLUSION The carbocation scavenger 2-naphthol did not increase the saccharification yield of softwood bark pretreated in an industrially scalable system for continuous steam explosion. On the other hand, it was shown that the scavenger's inhibitory effects on fermenting microorganisms can be overcome by controlling the pretreatment conditions to avoid cross-inhibition or detoxifying the substrates through ethanol washing. This study underlines the need to jointly optimize all the main processing steps.
Collapse
Affiliation(s)
- Andreas Averheim
- Fiber Technology Center, Valmet AB, 851 94, Sundsvall, Sweden.
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| | - Stefan Stagge
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Sylvia H Larsson
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
15
|
Gugel I, Marchetti F, Costa S, Gugel I, Baldini E, Vertuani S, Manfredini S. 2G-lactic acid from olive oil supply chain waste: olive leaves upcycling via Lactobacillus casei fermentation. Appl Microbiol Biotechnol 2024; 108:379. [PMID: 38888798 PMCID: PMC11189319 DOI: 10.1007/s00253-024-13217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
The transition towards a sustainable model, particularly the circular economy, emphasizes the importance of redefining waste as a valuable resource, paving the way for innovative upcycling strategies. The olive oil industry, with its significant output of agricultural waste, offers a promising avenue for high-value biomass conversion into useful products through microbial processes. This study focuses on exploring new, high-value applications for olive leaves waste, utilizing a biotechnological approach with Lactobacillus casei for the production of second-generation lactic acid. Contrary to initial expectations, the inherent high polyphenol content and low fermentable glucose levels in olive leaves posed challenges for fermentation. Addressing this, an enzymatic hydrolysis step, following a preliminary extraction process, was implemented to increase glucose availability. Subsequent small-scale fermentation tests were conducted with and without nutrient supplements, identifying the medium that yielded the highest lactic acid production for scale-up. The scaled-up batch fermentation process achieved an enhanced conversion rate (83.58%) and specific productivity (0.26 g/L·h). This research confirms the feasibility of repurposing olive waste leaves for the production of lactic acid, contributing to the advancement of a greener economy through the valorization of agricultural waste. KEY POINTS: • Olive leaves slurry as it did not allow L. casei to ferment. • High concentrations of polyphenols inhibit fermentation of L. casei. • Enzymatic hydrolysis combined to organosolv extraction is the best pretreatment for lactic acid production starting from leaves and olive pruning waste.
Collapse
Affiliation(s)
- Irene Gugel
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Filippo Marchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Ilenia Gugel
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
16
|
Rakha A, Foucat L, Saulnier L, Bonnin E. Behavior of endo-xylanases on wheat milling products in relation with variable solid loading conditions. Carbohydr Polym 2024; 334:122029. [PMID: 38553229 DOI: 10.1016/j.carbpol.2024.122029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
To investigate the incubation conditions encountered by enzymes in cereal-based product transformation processes, this study aims to provide comprehensive information on the effect of low (18 %) to high (72 %) solid loading on the behavior of bacterial and fungal xylanases towards wheat grain fractions, i.e. white flour, ground whole grain and bran. Both enzymes are effective from 30 % water content. A water content of 50 % appears as the threshold for optimal arabinoxylan solubilisation. The specificity of enzymes was influenced by low hydration conditions, particularly in wheat bran, which contains arabinoxylan with diverse structures. Especially the bacterial xylanase became more tolerant to arabinose substitution as the water content decreased. Time Domain-NMR measurements revealed four water mobility domains in all the fractions. The water populations corresponding to 7.5 nm to 15 nm pores were found to be the most restrictive for enzyme activity. These results define the water content limits for the optimal xylanase action in cereal products.
Collapse
Affiliation(s)
- Allah Rakha
- INRAE, UR 1268 BIA, Biopolymers Interactions Assemblies, F-44316 Nantes, France.
| | - Loïc Foucat
- INRAE, UR 1268 BIA, Biopolymers Interactions Assemblies, F-44316 Nantes, France; INRAE, BIBS Facility, PROBE Infrastructure, F-44316 Nantes, France.
| | - Luc Saulnier
- INRAE, UR 1268 BIA, Biopolymers Interactions Assemblies, F-44316 Nantes, France.
| | - Estelle Bonnin
- INRAE, UR 1268 BIA, Biopolymers Interactions Assemblies, F-44316 Nantes, France.
| |
Collapse
|
17
|
Song J, Li J, Zhong J, Guo Z, Xu J, Chen X, Qiu M, Lin J, Han L, Zhang D. An oral gel suitable for swallowing: The effect of micronization on the gel properties and microstructure of κ-carrageenan. Int J Biol Macromol 2024; 271:132708. [PMID: 38815948 DOI: 10.1016/j.ijbiomac.2024.132708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
κ-Carrageenan (κ-Car) is an important material for preparing food gels and hydrogels. However, κ-Car gel has issues with high hardness and low water-holding capacity. Modification strategy of micronization is proposed for the first time to explore its influence on texture properties and gelling process of κ-Car gel, and to investigate the feasibility of κ-Car as a food matrix with low strength. κ-Car undergoing 60 min of micronization, the d(0.9) decreased by 79.33 %, SBET and Vtotal increased by 89.23 % and 95.27 %. The swelling rate and degree of gelling process increased significantly, and the microstructure changed from loose large pores to dense small pores resembling a "honeycomb". Importantly, the hardness of gel-60, Milk-60 and PNS-60 decreased by 72.52 %, 49.25 % and 81.37 %. In addition, WHC of gel-60, Milk-60 and PNS-60 was improved. IDDSI tests showed that κ-Car gels, milk gels and PNS gels can be categorized as level 6 (soft and bite-sized), except for PNS-60, which belongs to level 5 (crumbly and moist). Furthermore, the texture and bitter masking effect of milk gels and PNS gels were improved. In conclusion, this study demonstrated that micronization can be a novel approach to improve the gel properties of κ-Car, laying the groundwork for developing dysphagia foods.
Collapse
Affiliation(s)
- Jiao Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingping Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhiping Guo
- Sichuan HouDe Pharmaceutical Technology Co., Ltd., Chengdu 611730, PR China
| | - Jia Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xinglv Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou 611900, PR China.
| |
Collapse
|
18
|
Sun C, Zhang H, Madadi M, Ren H, Chen H, Zhuang X, Tan X, Sun F. Quantitative correlation analysis between particle liquefaction and saccharification through dynamic changes of slurry rheological behavior and particle characteristics during high-solid enzymatic hydrolysis of sugarcane bagasse. BIORESOURCE TECHNOLOGY 2024; 399:130518. [PMID: 38432544 DOI: 10.1016/j.biortech.2024.130518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
This study identified the intrinsic relationships among slurry rheology, particle characteristics, and lignocellulosic liquefaction/saccharification based on correlation analysis and principal component analysis during the hydrolysis of sugarcane bagasse pretreated by deep eutectic solvents (DES) and mechanical milling (MM). The DES-MM pretreated lignocellulosic slurry (20% solids) exhibited high apparent viscosity of 1.4 × 104 Pa·s and shear stress of 929.0 Pa under steady state. Glucose production had a negative linear correlation with slurry viscosity (R2, 0.69-0.97), whereas its correlation with yield stress (R2, 0.85-0.98) depended on the particle liquefaction rate. The availability of free water provided a major contribution to improving slurry rheology. However, the size reduction of submillimeter particles and the changes in particle hydrophilicity during liquefaction were not significantly correlated with rheological changes. Various interrelated particle characteristics and rheological changes were integrated into two simple principal variables to predict glucose production with a high R2 of 0.96.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meysam Madadi
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Chen
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinshu Zhuang
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xuesong Tan
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Moya EB, Syhler B, Dragone G, Mussatto SI. Tailoring a cellulolytic enzyme cocktail for efficient hydrolysis of mildly pretreated lignocellulosic biomass. Enzyme Microb Technol 2024; 175:110403. [PMID: 38341912 DOI: 10.1016/j.enzmictec.2024.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Commercially available cellulase cocktails frequently demonstrate high efficiency in hydrolyzing easily digestible pretreated biomass, which often lacks hemicellulose and/or lignin fractions. However, the challenge arises with enzymatic hydrolysis of mildly pretreated lignocellulosic biomasses, which contain cellulose, hemicellulose and lignin in high proportions. This study aimed to address this question by evaluating the supplementation of a commercial cellulolytic cocktail with accessory hemicellulases and two additives (H2O2 and Tween® 80). Statistical optimization methods were employed to enhance the release of glucose and xylose from mildly pretreated sugarcane bagasse. The optimized supplement composition resulted in the production of 304 and 124 mg g-1 DM of glucose and xylose, respectively, significantly increasing glucose release by 84% and xylose release by 94% compared to using only the cellulolytic cocktail. This enhancement might be attributed to a coordinated hemicellulases action degrading hemicellulose, creating more space for cellulase activity, potentially boosted by the presence of H2O2 and Tween® 80. However, the addition of different concentrations of H2O2 in combination with hemicellulase and Tween® 80 did not result a significant difference on sugar release, which could be attributed to the limited range of concentrations studied (5 to 65 µM). The results obtained in this study using the mix of three supplements were also compared to the addition of only hemicellulase and only Tween® 80 to the cellulolytic cocktail. A significant increase in glucose release of 39% and 41%, respectively, was observed when using the optimized combination. For xylose, the increase was 38% and 41%, respectively. This study underscores the substantial potential in optimizing enzyme cocktails for the hydrolysis of mildly pretreated lignocellulosic biomass by using enzymes and additive combinations tailored to the specific biomass composition.
Collapse
Affiliation(s)
- Eva Balaguer Moya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Berta Syhler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Giuliano Dragone
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
20
|
Zabed HM, Akter S, Yun J, Elshobary ME, Haldar SS, Zhao M, Chowdhury FI, Li J, Qi X. Tailoring whole slurry bioprocessing for sugary stovers to augment sugar production by integrating soluble and insoluble carbohydrates. JOURNAL OF CLEANER PRODUCTION 2024; 450:141844. [DOI: 10.1016/j.jclepro.2024.141844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
21
|
Angeltveit CF, Várnai A, Eijsink VGH, Horn SJ. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:39. [PMID: 38461298 PMCID: PMC10924376 DOI: 10.1186/s13068-024-02485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND The polysaccharides in lignocellulosic biomass hold potential for production of biofuels and biochemicals. However, achieving efficient conversion of this resource into fermentable sugars faces challenges, especially when operating at industrially relevant high solid loadings. While it is clear that combining classical hydrolytic enzymes and lytic polysaccharide monooxygenases (LPMOs) is necessary to achieve high saccharification yields, exactly how these enzymes synergize at high solid loadings remains unclear. RESULTS An LPMO-poor cellulase cocktail, Celluclast 1.5 L, was spiked with one or both of two fungal LPMOs from Thermothielavioides terrestris and Thermoascus aurantiacus, TtAA9E and TaAA9A, respectively, to assess their impact on cellulose saccharification efficiency at high dry matter loading, using Avicel and steam-exploded wheat straw as substrates. The results demonstrate that LPMOs can mitigate the reduction in saccharification efficiency associated with high dry matter contents. The positive effect of LPMO inclusion depends on the type of feedstock and the type of LPMO and increases with the increasing dry matter content and reaction time. Furthermore, our results show that chelating free copper, which may leak out of the active site of inactivated LPMOs during saccharification, with EDTA prevents side reactions with in situ generated H2O2 and the reductant (ascorbic acid). CONCLUSIONS This study shows that sustaining LPMO activity is vital for efficient cellulose solubilization at high substrate loadings. LPMO cleavage of cellulose at high dry matter loadings results in new chain ends and thus increased water accessibility leading to decrystallization of the substrate, all factors making the substrate more accessible to cellulase action. Additionally, this work highlights the importance of preventing LPMO inactivation and its potential detrimental impact on all enzymes in the reaction.
Collapse
Affiliation(s)
- Camilla F Angeltveit
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
22
|
Salmanizadeh H, Beheshti-Maal K, Nayeri H, Torabi LR. Optimization of xylanase production by Pichia kudriavzevii and Candida tropicalis isolated from the wood product workshop. Braz J Microbiol 2024; 55:155-168. [PMID: 37957443 PMCID: PMC11387571 DOI: 10.1007/s42770-023-01171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Enzymatic compounds can be found abundantly and provide numerous advantages in microbial organisms. Xylanases are used in various pharmaceutical, food, livestock, poultry, and paper industries. This study aimed to investigate xylanase-producing yeasts, xylose concentration curve and their enzymatic activity under various factors including carbon and nitrogen sources, temperature, and pH. Enzyme activity was evaluated under different conditions before, during, and after purification. The yeast strains were obtained from the wood product workshop and were subsequently cultivated on YPD (yeast extract peptone dextrose) medium. Additionally, the growth curve of the yeast and its molecular identification were conducted. The optimization and design process of xylan isolated from corn wood involved the use of Taguchi software to test different parameters like carbon and nitrogen sources, temperature, and pH, with the goal of determining the most optimal conditions for enzyme production. In addition, the Taguchi method was utilized to conduct a multifactorial optimization of xylanase enzyme activity. The isolated species were partially purified using ammonium sulfate precipitation and dialysis bag techniques. The results indicated that 3 species (8S, 18S, and 16W) after molecular identification based on 18S rRNA gene sequencing were identified as Candida tropicalis SBN-IAUF-1, Candida tropicalis SBN-IAUF-3, and Pichia kudriavzevii SBN-IAUF-2, respectively. The optimal parameters for wheat carbon source and peptone nitrogen source were found at 50 °C and pH 9.0 through single-factor optimization. By using the Taguchi approach, the best combination for highest activity was rice-derived carbon source and peptone nitrogen source at 50 °C and pH 6.0. The best conditions for xylanase enzyme production in single-factor optimization of wheat bran were 2135.6 U/mL, peptone 4475.25 U/mL, temperature 50 °C 1868 U/mL, and pH 9.0 2002.4 U/mL. Among the tested yeast, Candida tropicalis strain SBN-IAUF-1 to the access number MZ816946.1 in NCBI was found to be the best xylanase product. The highest ratio of enzyme production at the end of the delayed phase and the beginning of the logarithmic phase was concluded by comparing the growth ratio of 8S, 16W, and 18S yeasts with the level of enzymatic activity. This is the first report on the production of xylan polymer with a relative purity of 80% in Iran. The extracellular xylanases purified from the yeast species of C. tropicalis were introduced as a desirable biocatalyst due to their high enzymatic activity for the degradation of xylan polymers.
Collapse
Affiliation(s)
- Hoda Salmanizadeh
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Keivan Beheshti-Maal
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran.
| | - Hashem Nayeri
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Ladan Rahimzadeh Torabi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| |
Collapse
|
23
|
Song G, Sun C, Madadi M, Dou S, Yan J, Huan H, Aghbashlo M, Tabatabaei M, Sun F, Ashori A. Dual assistance of surfactants in glycerol organosolv pretreatment and enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. BIORESOURCE TECHNOLOGY 2024; 395:130358. [PMID: 38253243 DOI: 10.1016/j.biortech.2024.130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
This study investigated an innovative strategy of incorporating surfactants into alkaline-catalyzed glycerol pretreatment and enzymatic hydrolysis to improve lignocellulosic biomass (LCB) conversion efficiency. Results revealed that adding 40 mg/g PEG 4000 to the pretreatment at 195 °C obtained the highest glucose yield (84.6%). This yield was comparable to that achieved without surfactants at a higher temperature (240 °C), indicating a reduction of 18.8% in the required heat input. Subsequently, Triton X-100 addition during enzymatic hydrolysis of PEG 4000-assisted pretreated substrate increased glucose yields to 92.1% at 6 FPU/g enzyme loading. High-solid fed-batch semi-simultaneous saccharification and co-fermentation using this dual surfactant strategy gave 56.4 g/L ethanol and a positive net energy gain of 1.4 MJ/kg. Significantly, dual assistance with surfactants rendered 56.3% enzyme cost savings compared to controls without surfactants. Therefore, the proposed surfactant dual-assisted promising approach opens the gateway to economically viable enzyme-mediated LCB biorefinery.
Collapse
Affiliation(s)
- Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Shaohua Dou
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Junshu Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hailin Huan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
24
|
Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Crit Rev Biotechnol 2024; 44:218-235. [PMID: 36592989 DOI: 10.1080/07388551.2022.2151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
The pretreatment and the enzymatic saccharification are the key steps in the extraction of fermentable sugars for further valorization of lignocellulosic biomass (LCB) to biofuels and value-added products via biochemical and/or chemical conversion routes. Due to low density and high-water absorption capacity of LCB, the large volume of water is required for its processing. Integration of pretreatment, saccharification, and co-fermentation has succeeded and well-reported in the literature. However, there are only few reports on extraction of fermentable sugars from LCB with high biomass loading (>10% Total solids-TS) feasible to industrial reality. Furthermore, the development of enzymatic cocktails can overcome technology hurdles with high biomass loading. Hence, a better understanding of constraints involved in the development of technology with high biomass loading can result in an economical and efficient yield of fermentable sugars for the production of biofuels and bio-chemicals with viable titer, rate, and yield (TRY) at industrial scale. The present review aims to provide a critical assessment on the production of fermentable sugars from lignocelluloses with high solid biomass loading. The impact of inhibitors produced during both pretreatment and saccharification has been elucidated. Moreover, the limitations imposed by high solid loading on efficient mass transfer during saccharification process have been elaborated.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Poonam Singh
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, India
| | | | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, Brazil
| |
Collapse
|
25
|
Cui Y, Chen Y, Sun J, Zhu T, Pang H, Li C, Geng WC, Wu B. Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading. Nat Commun 2024; 15:1417. [PMID: 38360963 PMCID: PMC10869840 DOI: 10.1038/s41467-024-45662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Biotechnological plastic recycling has emerged as a suitable option for addressing the pollution crisis. A major breakthrough in the biodegradation of poly(ethylene terephthalate) (PET) is achieved by using a LCC variant, which permits 90% conversion at an industrial level. Despite the achievements, its applications have been hampered by the remaining 10% of nonbiodegradable PET. Herein, we address current challenges by employing a computational strategy to engineer a hydrolase from the bacterium HR29. The redesigned variant, TurboPETase, outperforms other well-known PET hydrolases. Nearly complete depolymerization is accomplished in 8 h at a solids loading of 200 g kg-1. Kinetic and structural analysis suggest that the improved performance may be attributed to a more flexible PET-binding groove that facilitates the targeting of more specific attack sites. Collectively, our results constitute a significant advance in understanding and engineering of industrially applicable polyester hydrolases, and provide guidance for further efforts on other polymer types.
Collapse
Affiliation(s)
- Yinglu Cui
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Yanchun Chen
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinyuan Sun
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Zhu
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Pang
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunli Li
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Chao Geng
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Chemistry, Nankai University, Tianjin, China
| | - Bian Wu
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
van Dyk J, Görgens JF, van Rensburg E. Enhanced ethanol production from paper sludge waste under high-solids conditions with industrial and cellulase-producing strains of Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2024; 394:130163. [PMID: 38070577 DOI: 10.1016/j.biortech.2023.130163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Reported ethanol titres from hydrolysis-fermentation of the degraded fibres in paper sludge (PS) waste, generally obtained under fed-batch submerged conditions, can be improved through fermentation processes at high solids loadings, as demonstrated in the present study with two industrial PS wastes at enzyme dosages appropriate for solids loadings up to 40% (w/w). The industrial yeast,Saccharomyces cerevisiaestrain Ethanol Red®, was compared to two genetically engineeredS. cerevisiaestrains, namely Cellusec® 1.0 and Cellusec® 2.0, capable of xylose utilisation, and xylose utilisation and cellulase production, respectively. High-solids batch fermentations were conducted in 3 L horizontal rotating reactors and ethanol titres of 100.8 and 73.3 g/L were obtained for virgin pulp and corrugated recycle PS, respectively, at 40% (w/w) solids loading using Ethanol Red®. Xylose utilisation by Cellusec® 1.0 improved ethanol titres by up to 10.3%, while exogenous cellulolytic enzyme requirements were reduced by up to 50% using cellulase-producing Cellusec® 2.0.
Collapse
Affiliation(s)
- Janke van Dyk
- Dept. of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Johann F Görgens
- Dept. of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Eugéne van Rensburg
- Dept. of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
27
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
28
|
Ordeñana Manso J, Nielsen MB, Balaguer Moya E, Sandri JP, Yamakawa CK, Mussatto SI. Intensification of corn fiber saccharification using a tailor made enzymatic cocktail. Enzyme Microb Technol 2024; 172:110347. [PMID: 37931383 DOI: 10.1016/j.enzmictec.2023.110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
The transition from an economic model based on resource extraction to a more sustainable and circular economy requires the development of innovative methods to unlock the potential of raw materials such as lignocellulosic biomasses. Corn fiber differs from more traditional lignocellulosic biomasses due to its high starch content, which provides additional carbohydrates for fermentation-based biomanufacturing processes. Due to its unique chemical composition, this study focused on the development of a tailor made enzymatic cocktail for corn fiber saccharification into monosaccharides. Three commercially available hydrolytic enzymes (Cellic® CTec2, Pentopan® Mono BG, and Termamyl® 300 L) were combined to hydrolyze the polysaccharide structure of the three main carbohydrate fractions of corn fiber (cellulose, hemicellulose and starch, respectively). Prior to saccharification, corn fiber was submitted to a mild hydrothermal pretreatment (30 min at 100 °C). Then, two experimental designs were used to render an enzymatic cocktail capable of providing efficient release of monosaccharides. Using 60 FPU/g DM of Cellic® CTec2 and 4.62 U/g DM of Termamyl® 300 L, without addition of Pentopan® Mono BG, resulted in the highest efficiencies for glucose and xylose release (66% and 30%, respectively). While higher enzyme dosages could enhance the saccharification efficiency, adding more enzymes would have a more pronounced effect on the overall process costs rather than in increasing the efficiency for monosaccharides release. The results revealed that the recalcitrance of corn fiber poses a problem for its full enzymatic degradation. This fact combined with the unique chemical composition of this material, justify the need for developing a tailor made enzymatic cocktail for its degradation. However, attention should also be given to the pretreatment step to reduce even more the recalcitrance of corn fiber and improve the performance of the tailored cocktail, as a consequence.
Collapse
Affiliation(s)
- Julen Ordeñana Manso
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Martin B Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Eva Balaguer Moya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Juliana P Sandri
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Celina K Yamakawa
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
29
|
Wang Y, Qiao H, Tao Y, Ma Z, Zheng Z, Ouyang J. Addressing two major limitations in high-solids enzymatic hydrolysis by an ordered polyethylene glycol pre-incubated strategy: Rheological properties and lignin adsorption for enzyme. BIORESOURCE TECHNOLOGY 2023; 390:129895. [PMID: 37863335 DOI: 10.1016/j.biortech.2023.129895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
High-solids enzymatic hydrolysis for biomass has currently received considerable interest. However, the solid effect during the process limits its economic feasibility. This work presented an ordered polyethylene glycol (PEG) pre-incubated strategy for enhancing the auxiliary effect of PEG in a high-solids enzymatic hydrolysis system. The substrate and enzyme were separately pre-incubated with PEG in this strategy. The ordered PEG pre-incubated strategies yielded a maximum glucose concentration of 166.6 g/L from 32 % (w/v) pretreated corncob with an enzymatic yield of 94.1 % by 72 h hydrolysis. Using this method, PEG not only lessened the lignin adsorption to cellulase but also altered particle rheological characteristics in the high-solids enzymatic hydrolysis system as a viscosity modifier. This study offered a new insight into the mechanism behind the PEG synergistic effect and would make it possible to achieve efficient high-solids loading hydrolysis in the commercial manufacture of cellulosic ethanol.
Collapse
Affiliation(s)
- Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hui Qiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Zhejiang Academy of Forestry, Hangzhou 310023, People's Republic of China
| | - Yuanming Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zewen Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
30
|
Zabed HM, Akter S, Dar MA, Tuly JA, Kumar Aswathi M, Yun J, Li J, Qi X. Enhanced fermentable sugar production in lignocellulosic biorefinery by exploring a novel corn stover and configuring high-solid pretreatment conditions. BIORESOURCE TECHNOLOGY 2023; 386:129498. [PMID: 37463614 DOI: 10.1016/j.biortech.2023.129498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
This study aimed to produce enhanced fermentable sugars from a novel stover system through the bioprocessing of its soluble sugars and insoluble carbohydrates. The pretreatment conditions were optimized for this high sugar-containing stover (HSS) to control inhibitor formation and obtain enhanced fermentable sugar concentrations. The optimum temperature, acid loading, and reaction time for the pretreatment were 155 °C, 0.5%, and 30 min, respectively, providing up to 97.15% sugar yield and 76.51 g/L total sugars at 10% solid-load. Sugar concentration further increased to 126.9 g/L at 20% solid-load, generating 3.89 g/L acetate, 0.92 g/L 5-hydroxymethyl furfural, 0.82 g/L furfural, and 3.75 g/L total phenolics as inhibitors. To determine the effects of soluble sugars in HSS on fermentable sugar yield and inhibitor formation, sugar-removed HSS was further studied under the optimum conditions. Although prior removal of sugars exhibited a reduction in inhibitor generation, it also decreased total fermentable sugar production to 115.45 g/L.
Collapse
Affiliation(s)
- Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Suely Akter
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mudasir A Dar
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jamila A Tuly
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mukesh Kumar Aswathi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Junhua Yun
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jia Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
31
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
32
|
Campos J, Almqvist H, Bao J, Wallberg O, Lidén G. Overcoming extended lag phase on optically pure lactic acid production from pretreated softwood solids. Front Bioeng Biotechnol 2023; 11:1248441. [PMID: 37744257 PMCID: PMC10513496 DOI: 10.3389/fbioe.2023.1248441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Optically pure lactic acid (LA) is needed in PLA (poly-lactic acid) production to build a crystalline structure with a higher melting point of the biopolymer than that of the racemic mixture. Lignocellulosic biomass can be used as raw material for LA production, in a non-food biorefinery concept. In the present study, genetically engineered P. acidilactici ZP26 was cultivated in a simultaneous saccharification and fermentation (SSF) process using steam pretreated softwood solids as a carbon source to produce optically pure D-LA. Given the low concentrations of identifiable inhibitory compounds from sugar and lignin degradation, the fermentation rate was expected to follow the rate of enzymatic hydrolysis. However, added pretreated solids (7% on weight (w/w) of water-insoluble solids [WIS]) significantly and immediately affected the process performance, which resulted in a long lag phase (more than 40 h) before the onset of the exponential phase of the fermentation. This unexpected delay was also observed without the addition of enzymes in the SSF and in a model fermentation with glucose and pretreated solids without added enzymes. Experiments showed that it was possible to overcome the extended lag phase in the presence of pretreated softwood solids by allowing the microorganism to initiate its exponential phase in synthetic medium, and subsequently adding the softwood solids and enzymatic blend to proceed to an SSF with D-LA production.
Collapse
Affiliation(s)
- Joana Campos
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | | | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ola Wallberg
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Zhu Z, Wu S, Qi B, Wang C, Luo J, Wan Y. High-solids enzymatic saccharification of starch-rich raw herbal biomass residues for producing high titers of glucose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86232-86243. [PMID: 37402046 DOI: 10.1007/s11356-023-28501-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
The bioresource utilization of herbal biomass residues (HBRs) has been receiving more attention. Herein, three different HBRs from Isatidis Radix (IR) and Sophorae Flavescentis Radix (SFR) and Ginseng Radix (GR) were subjected to batch and fed-batch enzymatic hydrolysis to produce high-concentration glucose. Compositional analysis showed the three HBRs had substantial starch content (26.36-63.29%) and relatively low cellulose contents (7.85-21.02%). Due to their high starch content, the combined action of cellulolytic and amylolytic enzymes resulted in greater release of glucose from the raw HBRs compared to using the individual enzyme alone. Batch enzymatic hydrolysis of 10% (w/v) raw HBRs with low loadings of cellulase (≤ 10 FPU/g substrate) and amylolytic enzymes (≤ 5.0 mg/g substrate) led to a high glucan conversion of ≥ 70%. The addition of PEG 6000 and Tween 20 did not contribute to glucose production. Furthermore, to achieve higher glucose concentrations, fed-batch enzymatic hydrolysis was conducted using a total solid loading of 30% (w/v). After 48-h of hydrolysis, glucose concentrations of 125 g/L and 92 g/L were obtained for IR and SFR residues, respectively. GR residue yielded an 83 g/L glucose concentration after 96 h of digestion. The high glucose concentrations produced from these raw HBRs indicate their potential as ideal substrate for a profitable biorefinery. Notably, the obvious advantage of using these HBRs is the elimination of the pretreatment step, which is typically required for agricultural and woody biomass in similar studies.
Collapse
Affiliation(s)
- Zhenzhou Zhu
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sirong Wu
- National R&D Center for Se-Rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Benkun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinhua Wan
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China
| |
Collapse
|
34
|
Song G, Madadi M, Sun C, Shao L, Tu M, Abdulkhani A, Zhou Q, Lu X, Hu J, Sun F. Surfactants facilitated glycerol organosolv pretreatment of lignocellulosic biomass by structural modification for co-production of fermentable sugars and highly reactive lignin. BIORESOURCE TECHNOLOGY 2023:129178. [PMID: 37270148 DOI: 10.1016/j.biortech.2023.129178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
This study reported that surfactants could facilitate the organosolv pretreatment of lignocellulosic biomass (LCB) to produce fermentable sugars and highly active lignin. Under the optimized conditions, the surfactant-assisted glycerol organosolv (saGO) pretreatment achieved 80.7% delignification with a retention of 93.4% cellulose and 83.0% hemicellulose. The saGO pretreated substrate exhibited an excellent enzymatic hydrolyzability, achieving 93% of glucose yield from the enzymatic hydrolysis at 48 h. Structural analysis showed that the saGO lignin contained rich β-O-4 bondings with less repolymerization and lower phenolic hydroxyl groups, thus forming highly reactive lignin fragments. The analysis evidenced that the surfactant graft the lignin by structural modification, which was responsible for the excellent substrate hydrolyzability. The co-production of fermentable sugars and organosolv lignin almost recovered a gross energy (87.2%) from LCB. Overall, the saGO pretreatment holds a lot of promise for launching a novel pathway towards lignocellulosic fractionation and lignin valorization.
Collapse
Affiliation(s)
- Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, China
| | - Ali Abdulkhani
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj 1417466191, China
| | - Qing Zhou
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
35
|
Moya EB, Syhler B, Manso JO, Dragone G, Mussatto SI. Enzymatic hydrolysis cocktail optimization for the intensification of sugar extraction from sugarcane bagasse. Int J Biol Macromol 2023:125051. [PMID: 37245744 DOI: 10.1016/j.ijbiomac.2023.125051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Lignocellulosic biomasses have a very important role as a raw material to produce biofuels and biochemicals. However, a sustainable, efficient, and economically competitive process for the release of sugars from such materials has still not been achieved. In this work, the optimization of the enzymatic hydrolysis cocktail was evaluated as an approach to maximize sugar extraction from mildly pretreated sugarcane bagasse. Different additives and enzymes, including hydrogen peroxide (H2O2), laccase, hemicellulase and the surfactants Tween 80 and PEG4000 were added to a cellulolytic cocktail with the aim of improving biomass hydrolysis. An increase of 39 % and 46 % of glucose and xylose concentrations, respectively, compared to the control (when only the cellulolytic cocktail (20 or 35 FPU g-1 dry mass), was obtained when H2O2 (0.24 mM) was added at the beginning of the hydrolysis. On the other hand, the addition of hemicellulase (81-162 μL g-1 DM) increased the production of glucose up to 38 % and xylose up to 50 %. The findings of this study reveal that it is possible to increase the extraction of sugars from mildly pretreated lignocellulosic biomass by using an appropriate enzymatic cocktail supplemented with additives. This opens up new opportunities for the development of a more sustainable, efficient, and economically competitive process for biomass fractionation.
Collapse
Affiliation(s)
- Eva Balaguer Moya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Berta Syhler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Julen Ordeñana Manso
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Giuliano Dragone
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
36
|
Intasit R, Cheirsilp B, Louhasakul Y, Thongchul N. Enhanced biovalorization of palm biomass wastes as biodiesel feedstocks through integrated solid-state and submerged fermentations by fungal co-cultures. BIORESOURCE TECHNOLOGY 2023; 380:129105. [PMID: 37121521 DOI: 10.1016/j.biortech.2023.129105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Palm empty fruit bunches (EFB) were valorized into fungal lipids by oleaginous fungus Aspergillus tubingensis TSIP9 under solid-state fermentation (SSF) and submerged fermentation (SmF). An integrated SSF-SmF process increased lipid production from 116.2 ± 0.1 mg/g-EFB under SSF and 60.1 ± 0.2 under SmF up to 124.9 ± 0.5 mg/g-EFB, possibly due to the combined benefits of dispersed mycelia forming during SSF and better mass transfer during SmF. As A. tubingensis lacks sufficient β-glucosidase, it was co-cultured with high β-glucosidase-producing Trichoderma reesei QM 9414. The co-cultures improved overall lipid yields likely due to synergistic interaction of the two fungi. After inoculum size was optimized and the co-cultures were performed in bioreactors, the lipid yield was increased up to 205.1 ± 1.1 mg/g-EFB. The fatty acid composition of fungal lipids indicated their potential use as biodiesel feedstocks. The fungal fermentation of EFB also provided cellulose pulp residues. These strategies could be practical options for low-cost biovalorization of biomass wastes.
Collapse
Affiliation(s)
- Rawitsara Intasit
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Yasmi Louhasakul
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand, Yala 95000, Thailand
| | - Nuttha Thongchul
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Institute Building 3, Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
37
|
Xu J, Li H, Alam MA, Muhammad G, Lv Y, Zhao A, Zhang S, Xiong W. Employing Cationic Kraft Lignin as Additive to Enhance Enzymatic Hydrolysis of Corn Stalk. Polymers (Basel) 2023; 15:polym15091991. [PMID: 37177139 PMCID: PMC10180774 DOI: 10.3390/polym15091991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
A water-soluble cationic kraft lignin (named JLQKL50), synthesized by combining quaternization and crosslinking reactions, was used as an additive to enhance the enzymatic hydrolysis of dilute-alkali-pretreated corn stalk. The chemical constitution of JLQKL50 was investigated by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR) and 13C NMR spectroscopy, and elemental analysis. The enzymatic hydrolysis efficiency of corn stalk at solid content of 10% (w/v) was significantly improved from 70.67% to 78.88% after 24 h when JLQKL50 was added at a concentration of 2 g/L. Meanwhile, the enzymatic hydrolysis efficiency after 72 h reached 91.11% with 10 FPU/g of cellulase and 97.92% with 15 FPU/g of cellulase. In addition, JLQKL50 was found capable of extending the pH and temperature ranges of enzymatic hydrolysis to maintain high efficiency (higher than 70%). The decrease in cellulase activity under vigorous stirring with the addition of JLQKL50 was 17.4%, which was much lower than that (29.7%) without JLQKL50. The addition of JLQKL50 reduced the nonproductive adsorption of cellulase on the lignin substrate and improved the longevity, dispersity, and stability of the cellulase by enabling electrostatic repulsion. Therefore, the enzymatic hydrolysis of the corn stalk was enhanced. This study paves the way for the design of sustainable lignin-based additives to boost the enzymatic hydrolysis of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
| | - Huihua Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Gul Muhammad
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
| |
Collapse
|
38
|
Succinic Production from Source-Separated Kitchen Biowaste in a Biorefinery Concept: Focusing on Alternative Carbon Dioxide Source for Fermentation Processes. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This study presents sustainable succinic acid production from the organic fraction of household kitchen wastes, i.e., the organic fraction of household kitchen waste (OFHKW), pretreated with enzymatic hydrolysis (100% cocktail dosage: 62.5% Cellic® CTec2, 31%% β-Glucanase and 6.5% Cellic ® HTec2, cellulase activity of 12.5 FPU/g-glucan). For fermentation, A. succinogenes was used, which consumes CO2 during the process. OFHKW at biomass loading > 20% (dry matter) resulted in a final concentration of fermentable sugars 81–85 g/L and can be treated as a promising feedstock for succinic production. Obtained results state that simultaneous addition of gaseous CO2 and MgCO3 (>20 g/dm3) resulted in the highest sugar conversion (79–81%) and succinic yields (74–75%). Additionally, CH4 content in biogas, used as a CO2 source, increased by 21–22% and reached 91–92% vol. Liquid fraction of source-separated kitchen biowaste and the residue after succinic fermentation were successfully converted into biogas. Results obtained in this study clearly document the possibility of integrated valuable compounds (succinic acid) and energy (biogas) production from the organic fraction of household kitchen wastes (OFHKW).
Collapse
|
39
|
Enzymatic Hydrolysis Strategies for Cellulosic Sugars Production to Obtain Bioethanol from Eucalyptus globulus Bark. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Cellulosic sugars production for the valorization of lignocellulosic biomass residues in an industrial site has economic benefits and is promising if integrated into a biorefinery. Enzymatic hydrolysis (EH) of pretreated Eucalyptus globulus bark, an industrial residue of low-economic value widely available in Portuguese pulp and paper mills, could be an excellent approach to attain resource circularity and pulp mill profitability. This work evaluated the potential for improving cellulosic sugars concentrations by operating with high solids loading and introducing the additives Triton X-100, PEG 4000 and Tween 80 using a commercial enzymatic consortium with a dosage of 25 FPU gcarbohydrates−1. Additives did not improve enzymatic hydrolysis performance, but the effect of increasing solids loading to 14% (w/v) in batch operation was accomplished. The fed-batch operation strategy was investigated and, when starting with 11% (w/v) solids loading, allowed the feeding of 3% (w/v) fresh feedstock sequentially at 2, 4 and 6 h, attaining 20% (w/v) total solids loading. After 24 h of operation, the concentration of cellulosic sugars reached 161 g L−1, corresponding to an EH conversion efficiency of 76%. Finally, the fermentability of the fed-batch hydrolysate using the Ethanol Red® strain was evaluated in a 5 L bioreactor scale. The present results demonstrate that Eucalyptus globulus bark, previously pretreated by kraft pulping, is a promising feedstock for cellulosic sugars production, allowing it to become the raw material for feeding a wide range of bioprocesses.
Collapse
|
40
|
Raza S, Ghasali E, Raza M, Chen C, Li B, Orooji Y, Lin H, Karaman C, Karimi Maleh H, Erk N. Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment. ENVIRONMENTAL RESEARCH 2023; 220:115135. [PMID: 36566962 DOI: 10.1016/j.envres.2022.115135] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The greatest environmental issue of the twenty-first century is climate change. Human-caused greenhouse gas emissions are increasing the frequency of extreme weather. Carbon dioxide (CO2) accounts for 80% of human greenhouse gas emissions. However, CO2 emissions and global temperature have risen steadily from pre-industrial times. Emissions data are crucial for most carbon emission policymaking and goal-setting. Sustainable and carbon-neutral sources must be used to create green energy and fossil-based alternatives to reduce our reliance on fossil fuels. Near-real-time monitoring of carbon emissions is a critical national concern and cutting-edge science. This review article provides an overview of the many carbon accounting systems that are now in use and are based on an annual time frame. The primary emphasis of the study is on the recently created carbon emission and eliminating sources and technology, as well as the current application trends for carbon neutrality. We also propose a framework for the most advanced naturally available carbon neutral accounting sources capable of being implemented on a large scale. Forming relevant data and procedures will help the "carbon neutrality" plan decision-making process. The formation of pertinent data and methodologies will give robust database support to the decision-making process for the "carbon neutrality" plan for the globe. In conclusion, this article offers some opinions, opportunities, challenges and future perspectives related to carbon neutrality and carbon emission monitoring and eliminating resources and technologies.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Muslim Raza
- Department of Chemistry Bacha Khan University, Charsada, Khyber Pakhtunkhwa, Pakistan; Department of Chemistry, University of Massachusetts Boston, MA, 02125, USA
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, AkdenizUniversity, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Hassan Karimi Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
41
|
Wang Y, Pääkkönen T, Miikki K, Maina NH, Nieminen K, Zitting A, Penttilä P, Tao H, Kontturi E. Degradation of cellulose polymorphs into glucose by HCl gas with simultaneous suppression of oxidative discoloration. Carbohydr Polym 2023; 302:120388. [PMID: 36604066 DOI: 10.1016/j.carbpol.2022.120388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
As cellulose is the main polysaccharide in biomass, its degradation into glucose is a major undertaking in research concerning biofuels and bio-based platform chemicals. Here, we show that pressurized HCl gas is able to efficiently hydrolyze fibers of different crystalline forms (polymorphs) of cellulose when the water content of the fibers is increased to 30-50 wt%. Simultaneously, the harmful formation of strongly chromophoric humins can be suppressed by a simple addition of chlorite into the reaction system. 50-70 % glucose yields were obtained from cellulose I and II polymorphs while >90 % monosaccharide conversion was acquired from cellulose IIIII after a mild post-hydrolysis step. Purification of the products is relatively unproblematic from a gas-solid mixture, and a gaseous catalyst is easier to recycle than the aqueous counterpart. The results lay down a basis for future practical solutions in cellulose hydrolysis where side reactions are controlled, conversion rates are efficient, and the recovery of products and reagents is effortless.
Collapse
Affiliation(s)
- Yingfeng Wang
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Timo Pääkkönen
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland.
| | - Kim Miikki
- School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Ndegwa H Maina
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Kaarlo Nieminen
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Aleksi Zitting
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland.
| |
Collapse
|
42
|
Srivastava RK, Nedungadi SV, Akhtar N, Sarangi PK, Subudhi S, Shadangi KP, Govarthanan M. Effective hydrolysis for waste plant biomass impacts sustainable fuel and reduced air pollution generation: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160260. [PMID: 36400296 DOI: 10.1016/j.scitotenv.2022.160260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Among various natural biowastes availability in the environment, agricultural residues showed great impacts. It is due to huge availability and cheap carbon source, creating big challenges for their utility and systematic reduction. Objective of this review is to address the waste biomass availability and huge quantities issues and also put effort to minimize this nutrient load via biotransforming into value-added products. Different wastes (organic/inorganic) generation with their negative issues are due to numbers of developmental and social activities, reported. Currently, various efforts are found for these wastes minimization via generation of different types of value-added products (biogas, bioH2, alcoholic fuel, organic acids and others products) and these wastes in municipal cities are also reported with production of advanced biofuels as promising outcomes. For hydrolysis of complex organic resources including lignocellulosic biomasses, physicochemical, structural or compositional changes are needed that aid in conversion into sugar and organic compounds such as biofuels. So, efficient and effective pretreatment processes selection (physical, biological, chemical or combined one) is critical to achieve these hydrolysis goals and resultant cellulose or hemicellulose components can be accessible by biological catalysis. These can achieve final hydrolysis and fermentative or monomer sugars. And later, synthesis of fuels or value-added products during microbial fermentation or biotransformation processes can be achieved. This review discusses pretreatment techniques for improved hydrolysis for fermentative sugar with emphasis on reduced quantities of toxic compounds (furfural compound) in hydrolyzed biomasses. Minimum deterioration fuel economy also reported with production of different bioproducts including biofuels. Additionally, impacts of toxic products and gasses emission are also discussed with their minimization.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India.
| | - Sruthy Vineed Nedungadi
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | - Nasim Akhtar
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | | | - Sanjukta Subudhi
- Advanced Biofuels program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110 003, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| |
Collapse
|
43
|
Zhang B, Liu X, Bao J. High solids loading pretreatment: The core of lignocellulose biorefinery as an industrial technology - An overview. BIORESOURCE TECHNOLOGY 2023; 369:128334. [PMID: 36403909 DOI: 10.1016/j.biortech.2022.128334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment is the first and most determinative, yet the least mature step of lignocellulose biorefinery chain. The current stagnation of biorefinery commercialization indicates the barriers of the existing pretreatment technologies are needed to be unlocked. This review focused on one of the core factors, the high lignocellulose solids loading in pretreatment. The high solids loading of pretreatment significantly reduces water input, energy requirement, toxic compound discharge, solid/liquid separation costs, and carbon dioxide emissions, improves the titers of sugars and biproducts to meet the industrial requirements. Meanwhile, lignocellulose feedstock after high solids loading pretreatment is compatible with the existing logistics system for densification, packaging, storage, and transportation. Both the technical-economic analysis and the cellulosic ethanol conversion performance suggest that the solids loading in the pretreatment step need to be further elevated towards an industrial technology and the effective solutions should be proposed to the technical barriers in high solids loading pretreatment operations.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
44
|
Xu C, Xiong Y, Zhang J, Li K, Zhong S, Huang S, Xie C, Gong W, Zhu Z, Zhou Y, Peng Y. Liquid hot water pretreatment combined with high-solids enzymatic hydrolysis and fed-batch fermentation for succinic acid sustainable processed from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2023; 369:128389. [PMID: 36435419 DOI: 10.1016/j.biortech.2022.128389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In order to sustainable process of bio-succinic acid (SA), response surface methodology (RSM) was applied to optimize liquid hot water pretreatment pretreatment of sugarcane bagasse (SCB), followed by high-solids enzymatic hydrolysis of pretreated residual that without washing, then the hydrolysates and partial pretreatment liquid were used as carbon sources for SA fermentation. Results showed that the highest sugars yield could be achieved at pretreatment conditions of temperature 186 °C, time 25 min and solid-to-liquid ratio 0.08; enzymatic digestion the pretreated residuals at 20 % (w/v) solid content via enzymes reconstruction and fed-batch strategy, the obtained sugars reached to 121 g/L; by controlling the nutrition and conditions of the fermentation process, most of the C5 and C6 sugars in the hydrolysate and pretreatment liquid were converted into SA with a conversion rate high to 280 mg/g SCB. This study can provide a novel clue for clean and efficient biorefining of chemicals.
Collapse
Affiliation(s)
- Chao Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; School of Food and Bioengineering, Changsha University of Science and Technology, Changsha 410005, China
| | - Yaru Xiong
- Hunan Provincial Center for Disease Control and prevention, Changsha 410005, China
| | - Jun Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning 530007, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yingjun Zhou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
45
|
Additives Enhancing Enzymatic Hydrolysis of Wheat Straw to Obtain Fermentable Sugar. Appl Biochem Biotechnol 2023; 195:1059-1071. [PMID: 36308636 DOI: 10.1007/s12010-022-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 01/24/2023]
Abstract
In order to explore the effect of additives on enzymatic hydrolysis of lignocellulose biomass, the effect of two different additives, Triton X-100 (TX-100) and Bovine serum albumin (BSA), enzyme dosages, and additive concentrations on enzymatic hydrolysis to obtain fermentable sugar using cellulose extracted from wheat straw (WS) as the substrate was investigated in this study. An enzymatic hydrolysis kinetic model was used to successfully describe the enzymatic hydrolysis in a heterogeneous system. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to determine the effect of extraction and enzymatic hydrolysis on the composition and structure of the samples. The results showed that the total reducing sugar concentration of the raw was 1.535 g/L at 120 h, but that of the extracted cellulose (EC) increased to 5.087 g/L at 120 h, indicating that EC from WS is more conducive to enzymatic hydrolysis compared with the raw. The total reducing sugar concentration with the addition of the TX-100 was 6.737 g/L at 120 h, which was greater than that with the addition of the BSA (5.728 g/L at 120 h), indicating that the addition of two additives improved the enzymatic hydrolysis efficiency, especially TX-100. The kinetic studies showed that the initial enzymatic hydrolysis reaction rate (Km) of the EC was more than four times greater than that of the raw. The Km of the EC added with TX-100 and BSA were increased by 29.50% and 22.89% compared with that of the EC without the addition of additive. The addition of additives is an effective method for enhancing enzymatic hydrolysis efficiency and fermentable sugar production from lignocellulosic biomass.
Collapse
|
46
|
Sun C, Meng X, Sun F, Zhang J, Tu M, Chang JS, Reungsang A, Xia A, Ragauskas AJ. Advances and perspectives on mass transfer and enzymatic hydrolysis in the enzyme-mediated lignocellulosic biorefinery: A review. Biotechnol Adv 2023; 62:108059. [PMID: 36402253 DOI: 10.1016/j.biotechadv.2022.108059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic hydrolysis is a critical process for the cellulase-mediated lignocellulosic biorefinery to produce sugar syrups that can be converted into a whole range of biofuels and biochemicals. Such a process operating at high-solid loadings (i.e., scarcely any free water or roughly ≥ 15% solids, w/w) is considered more economically feasible, as it can generate a high sugar concentration at low operation and capital costs. However, this approach remains restricted and incurs "high-solid effects", ultimately causing the lower hydrolysis yields with increasing solid loadings. The lack of available water leads to a highly viscous system with impaired mixing that exhibits strong transfer resistance and reaction limitation imposed on enzyme action. Evidently, high-solid enzymatic hydrolysis involves multi-scale mass transfer and multi-phase enzyme reaction, and thus requires a synergistic perspective of transfer and biotransformation to assess the interactions among water, biomass components, and cellulase enzymes. Porous particle characteristics of biomass and its interface properties determine the water form and distribution state surrounding the particles, which are summarized in this review aiming to identify the water-driven multi-scale/multi-phase bioprocesses. Further aided by the cognition of rheological behavior of biomass slurry, solute transfer theories, and enzyme kinetics, the coupling effects of flow-transfer-reaction are revealed under high-solid conditions. Based on the above basic features, this review lucidly explains the causes of high-solid hydrolysis hindrances, highlights the mismatched issues between transfer and reaction, and more importantly, presents the advanced strategies for transfer and reaction enhancements from the viewpoint of process optimization, reactor design, as well as enzyme/auxiliary additive customization.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee, Knoxville, TN 37996, USA; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
47
|
Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 2022; 27:molecules27248717. [PMID: 36557852 PMCID: PMC9785513 DOI: 10.3390/molecules27248717] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Regarding the limited resources for fossil fuels and increasing global energy demands, greenhouse gas emissions, and climate change, there is a need to find alternative energy sources that are sustainable, environmentally friendly, renewable, and economically viable. In the last several decades, interest in second-generation bioethanol production from non-food lignocellulosic biomass in the form of organic residues rapidly increased because of its abundance, renewability, and low cost. Bioethanol production fits into the strategy of a circular economy and zero waste plans, and using ethanol as an alternative fuel gives the world economy a chance to become independent of the petrochemical industry, providing energy security and environmental safety. However, the conversion of biomass into ethanol is a challenging and multi-stage process because of the variation in the biochemical composition of biomass and the recalcitrance of lignin, the aromatic component of lignocellulose. Therefore, the commercial production of cellulosic ethanol has not yet become well-received commercially, being hampered by high research and production costs, and substantial effort is needed to make it more widespread and profitable. This review summarises the state of the art in bioethanol production from lignocellulosic biomass, highlights the most challenging steps of the process, including pretreatment stages required to fragment biomass components and further enzymatic hydrolysis and fermentation, presents the most recent technological advances to overcome the challenges and high costs, and discusses future perspectives of second-generation biorefineries.
Collapse
|
48
|
Acetate-rich Cellulosic Hydrolysates and Their Bioconversion Using Yeasts. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Madadi M, Song G, Sun F, Sun C, Xia C, Zhang E, Karimi K, Tu M. Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis: Application, mechanism, and prospective. ENVIRONMENTAL RESEARCH 2022; 215:114291. [PMID: 36103929 DOI: 10.1016/j.envres.2022.114291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Fermentable sugar production from lignocellulosic biomass has received considerable attention and has been dramatic progress recently. However, due to low enzymatic hydrolysis (EH) yields and rates, a high dosage of the costly enzyme is required, which is a bottleneck for commercial applications. Over the last decades, various strategies have been developed to reduce cellulase enzyme costs. The progress of the non-catalytic additive proteins in mitigating inhibition in EH is discussed in detail in this review. The low efficiency of EH is mostly due to soluble lignin compounds, insoluble lignin, and harsh thermal and mechanical conditions of the EH process. Adding non-catalytic proteins into the EH is considered a simple and efficient approach to boost hydrolysis yield. This review discussed the multiple mechanical steps involved in the EH process. The effect of physicochemical properties of modified lignin on EH and its interaction with cellulase and cellulose are identified and discussed, which include hydrogen bonding, hydrophobic, electrostatic, and cation-π interactions, as well as physical barriers. Moreover, the effects of different conditions of EH that lead to cellulase deactivation by thermal and mechanical mechanisms are also explained. Finally, recent advances in the development, potential mechanisms, and economic feasibility of non-catalytic proteins on EH are evaluated and perspectives are presented.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, United States
| |
Collapse
|
50
|
Sánchez-Muñoz S, Balbino TR, de Oliveira F, Rocha TM, Barbosa FG, Vélez-Mercado MI, Marcelino PRF, Antunes FAF, Moraes EJC, dos Santos JC, da Silva SS. Surfactants, Biosurfactants, and Non-Catalytic Proteins as Key Molecules to Enhance Enzymatic Hydrolysis of Lignocellulosic Biomass. Molecules 2022; 27:8180. [PMID: 36500273 PMCID: PMC9739445 DOI: 10.3390/molecules27238180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Lignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules. However, operational challenges must be overcome before enzyme technology can be the main resource for obtaining second-generation sugars. The use of additives is shown to be a suitable strategy to improve the saccharification process. This review describes the mechanisms, roles, and effects of using additives, such as surfactants, biosurfactants, and non-catalytic proteins, separately and integrated into the enzymatic hydrolysis process of lignocellulosic biomass. In doing so, it provides a technical background in which operational biomass processing hurdles such as solids and enzymatic loadings, pretreatment burdens, and the unproductive adsorption phenomenon can be addressed.
Collapse
Affiliation(s)
- Salvador Sánchez-Muñoz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Thércia R. Balbino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Fernanda de Oliveira
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Thiago M. Rocha
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Fernanda G. Barbosa
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Martha I. Vélez-Mercado
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Paulo R. F. Marcelino
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Felipe A. F. Antunes
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Elisangela J. C. Moraes
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Julio C. dos Santos
- Biopolymers, Bioreactors, and Process Simulation Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| | - Silvio S. da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12.602.810., Brazil
| |
Collapse
|