1
|
Riggs KL, Haney D, Wiseman S. Safety of Credelio Quattro™ (lotilaner, moxidectin, praziquantel, and pyrantel chewable tablets) in dogs infected with adult heartworms (Dirofilaria immitis). Parasit Vectors 2025; 18:138. [PMID: 40229900 PMCID: PMC11995583 DOI: 10.1186/s13071-025-06732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Credelio Quattro (lotilaner, moxidectin, praziquantel, and pyrantel chewable tablets) is a novel endectocide for monthly oral administration in dogs. The safety of Credelio Quattro was investigated in dogs with pre-existing patent heartworm (Dirofilaria immitis) infections. Heartworm preventive products are tested in heartworm-positive dogs as rapid microfilarial and adult worm death can lead to serious clinical reactions, including death. METHODS This was a gender-stratified, randomized, placebo-controlled, blinded, parallel group design study. Prior to study, dogs were surgically implanted with 10 male and 10 female adult D. immitis worms (Georgia III isolate). After confirming a patent infection, dogs were randomized into three groups (placebo control, 1×, or 3× the maximum recommended labeled dose of Credelio Quattro) consisting of eight dogs each. Treatment was administered on three consecutive monthly occasions. The assessment of safety was based on body weight, physical examinations, clinical observations on the days of dosing, general health observations, microfilariae (MF) counts, and D. immitis antigen testing. On the last day of study, the heart, lungs, and pleural and peritoneal cavities were examined for adult D. immitis worms. RESULTS Credelio Quattro was well tolerated. Emesis occurred in the 3× group only. Diarrhea was observed in all groups at various times throughout the study. Owing to the timing of events relative to dosing, emesis and diarrhea were possibly related to treatment; however, all dogs recovered quickly and without treatment. No signs of avermectin toxicity or hypersensitivity reactions were observed in any dog. Compared with control, Credelio Quattro reduced the concentration of circulating MF on study day 1 by 38.8% for the 1× group and significantly reduced MF by 73.3% for the 3× group. MF reduction remained significant for both groups at all subsequent time points. CONCLUSIONS Credelio Quattro, when administered at 1× and 3× the maximum recommended label dose, was well tolerated following three consecutive monthly administrations to heartworm-positive dogs. Although Credelio Quattro caused a rapid reduction in microfilaria counts, no adverse effects related to microfilaria reduction were observed, and there was no effect on adult worms in this study.
Collapse
Affiliation(s)
- Kari L Riggs
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN, 46140, USA.
| | - Deanna Haney
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN, 46140, USA
| | - Scott Wiseman
- Elanco Animal Health, Form 2, Bartley Way, Bartley Wood Business Park, Hook, RG27 9XA, UK
| |
Collapse
|
2
|
Prullage J, Frost J, DiCosty U, Martin E, Dumont P, Yoon S, Süssenberger R. Preventive efficacy of six monthly doses of NexGard® PLUS or Simparica Trio® against a macrocyclic lactone-resistant isolate (JYD-34) of Dirofilaria immitis and of a single dose of NexGard PLUS against a susceptible isolate. Parasit Vectors 2024; 17:519. [PMID: 39695858 DOI: 10.1186/s13071-024-06603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Two studies were conducted assessing the efficacy of NexGard® PLUS (NP) in preventing heartworm disease. Study 1 evaluated the efficacy of six monthly doses of NP or Simparica Trio® (ST) against a macrocyclic lactone-resistant isolate of heartworm, Dirofilaria immitis, and study 2 evaluated the efficacy of a single dose of NP against a susceptible isolate. METHODS In two studies, dogs that were negative for heartworms by antigen test and modified Knott's test were used. In study 1, dogs were randomly allocated into three treatment groups (n = 6/group): negative control, NP per label instructions, and ST per label instructions. Dogs were inoculated with 50 third-stage D. immitis larvae (JYD-34 isolate) on day -30. NP and ST were administered orally on days 0, 30, 60, 90, 120, and 150. A necropsy was performed on day 180 for adult heartworm recovery. In study 2, dogs were randomly allocated into two treatment groups (n = 10/group): negative control and NP. Dogs were inoculated with 50 third-stage larvae (SC-20 isolate) on day -30. NP was administered orally once on day 0 to target the minimum moxidectin label dose. A necropsy was performed on day 120 for adult heartworm recovery. RESULTS For study 1, all control dogs had adult heartworms at necropsy (geometric mean, 39.7; range, 28-48). Two of the NP-treated dogs had one live worm, and one of the ST-treated dogs had one live worm. Both treated groups were significantly different from the control group with an efficacy of 99.5% for NP and 99.8% for ST (P < 0.0001). There was no significant difference (P = 0.8797) between the groups treated with NP and ST. For study 2, all control dogs had adult heartworms (geometric mean, 34.5; range 26-43). None of the dogs treated with NP had live adult worms (efficacy of 100%, P < 0.0001). CONCLUSIONS The results of study 1 demonstrated that NexGard® PLUS and Simparica Trio® administered at the label dose provided comparable efficacy against a macrocyclic lactone-resistant isolate of D. immitis. The results of study 2 demonstrated that NexGard® PLUS administered once near the minimum label dose was 100% effective against a susceptible isolate.
Collapse
Affiliation(s)
- Joseph Prullage
- Boehringer Ingelheim Animal Health, Missouri Research Center, 6498 Jade Rd., Fulton, MO, 65251, USA.
| | - Justin Frost
- Boehringer Ingelheim Animal Health, Georgia Research Center, 1730 Olympic Dr., Athens, GA, 30601, USA
| | - Utami DiCosty
- TRS Labs, Inc., 215 Paradise Boulevard, Athens, GA, 30607, USA
| | - Elizabeth Martin
- Boehringer Ingelheim Animal Health, Georgia Research Center, 1730 Olympic Dr., Athens, GA, 30601, USA
| | - Pascal Dumont
- Boehringer Ingelheim Animal Health, Georgia Research Center, 1730 Olympic Dr., Athens, GA, 30601, USA
| | - Stephen Yoon
- Boehringer Ingelheim Animal Health, Georgia Research Center, 1730 Olympic Dr., Athens, GA, 30601, USA
| | - Ricarda Süssenberger
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| |
Collapse
|
3
|
Power RI, Šlapeta J. Delayed canine heartworm (Dirofilaria immitis) microfilarial reduction following Advocate™ for dogs (imidacloprid, moxidectin) treatment. Vet J 2024; 307:106209. [PMID: 39098470 DOI: 10.1016/j.tvjl.2024.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Macrocyclic lactone (ML) anthelmintics are currently the only class of drugs available for canine heartworm prevention. Recent reports of Dirofilaria immitis infection occurring in dogs reportedly receiving 'rigorous' prevention in Queensland, Australia, coupled with the confirmation of ML-resistant isolates in the USA, has led to speculation about the potential emergence of ML-resistance in Australia. In this study, we describe two cases (Dog 1 and 2) of asymptomatic canine heartworm disease in Townsville, Australia, that were reportedly receiving 'rigorous' heartworm prevention according to the owners' claims. We aimed to deploy currently available tools to assess the phenotypic and genotypic ML-resistance status of these two dogs. For phenotypic testing, we performed an in-vivo 7-day microfilariae suppression test using a dose of spot-on moxidectin (Advocate™ for Dogs, 100 g/L imidacloprid + 25 g/L moxidectin). This formulation is marketed as Advantage Multi® for Dogs in the USA, which claims a D. immitis microfilaricidal effect. For genetic testing, an Illumina amplicon metabarcoding approach was used to target single nucleotide polymorphisms (SNPs) previously associated with ML-resistance in D. immitis from the USA. Dog 1 and Dog 2 demonstrated <10 % and <40 % reductions in circulating microfilariae seven days after moxidectin treatment, respectively. These phenotypes were not corroborated by genetic SNP testing, as both dogs were classified as susceptible across all examined markers. To streamline testing of D. immitis SNPs, we developed a rhAmp™ SNP qPCR approach for rapidly genotyping suspect cases of ML-resistant infections at the two major loci (L15709_A and L30575). These findings illustrate a phenomenon shown in some heartworm cases outside the USA, whereby infected dogs are failing to see marked reductions in microfilaraemia after ML treatment but possess an ML-susceptible genotype.
Collapse
Affiliation(s)
- Rosemonde Isabella Power
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia; Sydney Infectious Diseases Institute, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
4
|
Traversa D, Diakou A, Colombo M, Kumar S, Long T, Chaintoutis SC, Venco L, Betti Miller G, Prichard R. First case of macrocyclic lactone-resistant Dirofilaria immitis in Europe - Cause for concern. Int J Parasitol Drugs Drug Resist 2024; 25:100549. [PMID: 38795510 PMCID: PMC11153229 DOI: 10.1016/j.ijpddr.2024.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Heartworm disease caused by the nematode Dirofilaria immitis is one of the most important parasitoses of dogs. The treatment of the infection is long, complicated, risky and expensive. Conversely, prevention is easy, safe, and effective and it is achieved by the administration of macrocyclic lactones (MLs). In recent years, D. immitis strains resistant to MLs have been described in Southern USA, raising concerns for possible emergence, or spreading in other areas of the world. The present study describes the first case of ML-resistant D. immitis in a dog in Europe. The dog arrived in Rome, Italy, from USA in 2023. Less than 6 months after its arrival in Italy, the dog tested positive for D. immitis circulating antigen and microfilariae, despite it having received monthly the ML milbemycin oxime (plus an isoxazoline) after arrival. The microfilariae suppression test suggested a resistant strain. Microfilariae DNA was examined by droplet digital PCR-based duplex assays targeting four marker positions at single nucleotide polymorphisms (SNP1, SNP2, SNP3, SNP7) which differentiate resistant from susceptible isolates. The genetic analysis showed that microfilariae had a ML-resistant genotype at SNP1 and SNP7 positions, compatible with a resistant strain. It is unlikely that the dog acquired the infection after its arrival in Europe, while it is biologically and epidemiologically plausible that the dog was already infected when imported from USA to Europe. The present report highlights the realistic risk of ML-resistant D. immitis strains being imported and possibly transmitted in Europe and other areas of the world. Monitoring dogs travelling from one area to another, especially if they originate from regions where ML-resistance is well-documented, is imperative. Scientists, practitioners, and pet owners should be aware of the risk and remain vigilant against ML-resistance, in order to monitor and reduce the spreading of resistant D. immitis.
Collapse
Affiliation(s)
- Donato Traversa
- Department of Veterinary Medicine, University of Teramo, 64100, Teramo, Italy.
| | - Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Mariasole Colombo
- Department of Veterinary Medicine, University of Teramo, 64100, Teramo, Italy.
| | - Sohini Kumar
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada.
| | - Thavy Long
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada.
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627, Thessaloniki, Greece.
| | - Luigi Venco
- Ospedale Veterinario Città di Pavia, 27100, Pavia, Italy.
| | | | - Roger Prichard
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada.
| |
Collapse
|
5
|
Power RI, Doyle SR, Šlapeta J. Whole genome amplification and sequencing of individual Dirofilaria immitis microfilariae. Exp Parasitol 2024; 263-264:108806. [PMID: 39009178 DOI: 10.1016/j.exppara.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Dirofilaria immitis is a filarial parasitic nematode of veterinary significance. With the emergence of drug-resistant isolates in the USA, it is imperative to determine the likelihood of resistance occurring in other regions of the world. One approach is to conduct population genetic studies across an extensive geographical range, and to sequence the genomes of individual worms to understand genome-wide genetic variation associated with resistance. The immature life stages of D. immitis found in the host blood are more accessible and less invasive to sample compared to extracting adult stages from the host heart. To assess the use of immature life stages for population genetic analyses, we have performed whole genome amplification and whole-genome sequencing on nine (n = 9) individual D. immitis microfilaria samples isolated from dog blood. On average, less than 1% of mapped reads aligned to each D. immitis genome (nuclear, mitochondrial, and Wolbachia endosymbiont). For the dog genome, an average of over 99% of mapped reads aligned to the nuclear genome and less than 1% aligned to the mitochondrial genome. The average coverage for all D. immitis genomes and the dog nuclear genome was less than 1, while the dog mitochondrial genome had an average coverage of 2.87. The overwhelming proportion of sequencing reads mapping to the dog host genome can be attributed to residual dog blood cells in the microfilariae samples. These results demonstrate the challenges of conducting genome-wide studies on individual immature parasite life stages, particularly in the presence of extraneous host DNA.
Collapse
Affiliation(s)
- Rosemonde I Power
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| | - Stephen R Doyle
- Wellcome Sanger Institute, Cambridgeshire, CB10 1SA, United Kingdom
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia; Sydney Infectious Diseases Institute, The University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
6
|
Hampton N, Smith V, Brewer MT, Jesudoss Chelladurai JRJ. Strain-level variations of Dirofilaria immitis microfilariae in two biochemical assays. PLoS One 2024; 19:e0307261. [PMID: 39018313 PMCID: PMC11253964 DOI: 10.1371/journal.pone.0307261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The increase in reports of resistance to macrocyclic lactones in the canine heartworm, Dirofilaria immitis is alarming. While DNA based tests have been well-validated, they can be expensive. In a previous study, we showed that two biochemical tests adapted to a 96- well plate format and read in a spectrophotometer could detect differences among lab validated D. immitis isolates. The two tests- Resazurin reduction and Hoechst 33342 efflux-detect metabolism and P-glycoprotein activity respectively in microfilariae isolated from infected dog blood. METHODS Our objective was to optimize the two assays further by testing various assay parameters in D. immitis isolates not tested previously. We tested microfilarial seeding density, incubation time and the effect of in vitro treatment with ivermectin and doxycycline in five other D. immitis isolates-JYD-34, Big Head, Berkeley, Georgia III and LOL. All assays were performed in 3 technical replicates and 2-4 biological replicates. To understand the molecular basis of the assays, we also performed qPCR for selected drug metabolism and elimination associated genes of the ABC transporter and cytochrome P450 gene families. RESULTS Metabolism and ABC transporter activity as detected by these assays varied between strains. Anthelmintic status (resistant or susceptible) did not correlate with metabolism or P-gp efflux. Basal transcriptional variations were found between strains in ABC transporter and cytochrome P450 genes. CONCLUSIONS These assays provide a greater understanding of the biochemical variation among isolates of D. immitis, which can be exploited in the future to develop in vitro diagnostic tests capable of differentiating susceptible and resistant isolates.
Collapse
Affiliation(s)
- Naomi Hampton
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States of America
| | - Vicki Smith
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States of America
| | - Matthew T. Brewer
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, Iowa, United States of America
| | - Jeba R. J. Jesudoss Chelladurai
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States of America
| |
Collapse
|
7
|
Fisher PT, Keller K, Prichard RK. Investigating Dirofilaria immitis isolates infecting domestic canines and their susceptibility/resistance patterns to macrocyclic lactones in the northern region of the Mississippi Delta area (southeast Missouri). Vet Parasitol 2024; 329:110199. [PMID: 38781830 DOI: 10.1016/j.vetpar.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Previous reports of macrocyclic lactone (ML) resistance in Dirofilaria immitis, the parasitic nematode which causes heartworm disease, have mainly been from the southern Mississippi Delta region. Southeast Missouri (SEMO), forming the northern boundary of this region, has not previously been well studied. The area is an ideal propagation region for heartworm infection and possibly for the spread of ML resistance. To assess whether D. immitis isolates infecting domestic canines in SEMO exhibit evidence of resistance to MLs, domestic canines, presented to veterinary facilities testing positive for heartworms through antigen and microfilariae (MF) examination, were utilized in the study. Using a descriptive epidemiological cross-sectional study, from March 2021 through February 2022, blood sample collection from 96 canines living in SEMO testing positive for heartworms were analyzed. MiSeq technology was utilized to sequence specific genetic markers associated with susceptibility/resistance for MLs in D. immitis isolates. Genomic data revealed most D. immitis isolates had genotypic profiles consistent with resistance to MLs. Of the 96 samples tested, 91 (94.8%) had a resistant genotype, 4 (4.2%) had a mixed genotype, and 1 sample (1%) genotyped as susceptible. While detailed and reliable medical histories were not available for most canines, detailed medical history from 2 canines indicated evidence of phenotypic resistance that was consistent with their genotypes. However, in vivo preventive tests are needed to confirm a high frequency of phenotypic ML resistance in D. immitis from this region. Increasing resistance patterns to MLs indicate the approach to heartworm prevention/treatment protocol should be reconsidered. New measures may be required to stop heartworm disease.
Collapse
Affiliation(s)
- Peggy T Fisher
- University of Missouri-College of Veterinary Medicine, 1520 East Rollins, Columbia, MO 65211, USA.
| | - Kathy Keller
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X3V9, Canada
| | - Roger K Prichard
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X3V9, Canada
| |
Collapse
|
8
|
Mwacalimba K, Sheehy J, Adolph C, Savadelis M, Kryda K, Poulsen Nautrup B. A review of moxidectin vs. other macrocyclic lactones for prevention of heartworm disease in dogs with an appraisal of two commercial formulations. Front Vet Sci 2024; 11:1377718. [PMID: 38978634 PMCID: PMC11229481 DOI: 10.3389/fvets.2024.1377718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Macrocyclic lactones (MLs) are the only drug class currently licensed for heartworm disease prophylaxis. Macrocyclic lactones kill third- and fourth-stage larvae of Dirofilaria immitis, thus preventing the development of adult worms in dogs, which are responsible for heartworm disease, a potentially life-threatening condition. Despite considerable overlap in terms of endectocide spectrum, several important differences distinguish moxidectin from other MLs. Moxidectin has beneficial pharmacokinetic characteristics, such as a longer half-life and greater tissue distribution compared to ivermectin. Additionally, moxidectin has a greater margin of safety compared to ivermectin in dogs with ABCB1 (previously MDR1) gene-defect, which is commonly recognized in collies and other breeds. Multiple laboratory studies have shown that moxidectin is more effective than other commonly used heartworm preventives against resistant strains of D. immitis. This improved efficacy benefits individual dogs and helps reduce the risk of spreading resistant strains within the community. Despite the presence of proven resistant strains in the United States, non-compliance with preventive measures remains a major factor contributing to the diagnosis of heartworm disease in dogs. In retrospective analyses, the oral moxidectin combination product Simparica Trio® (sarolaner, moxidectin, and pyrantel) was associated with increased compliance, resulting in more time of protection compared to dogs receiving flea/tick and heartworm preventive products separately. Compliance with the extended-release moxidectin injectables ProHeart® 6 and ProHeart® 12 was higher than with monthly heartworm preventives, as they provide 6 months or a full year of protection with one single injection, respectively, and revenues remain in the veterinary clinics as injectable moxidectin cannot be sourced through online retailers.
Collapse
Affiliation(s)
| | - Jenifer Sheehy
- Veterinary Professional Services, Zoetis, Parsippany, NJ, United States
| | | | - Molly Savadelis
- Veterinary Medicine Research and Development, Zoetis, Kalamazoo, MI, United States
| | - Kristina Kryda
- Veterinary Medicine Research and Development, Zoetis, Kalamazoo, MI, United States
| | | |
Collapse
|
9
|
Kumar S, Che H, Chiummo R, Heuer L, Schneider C, Werr M, Guerino F, Papadopolous E, Diakou A, Mihalca AD, Traversa D, Di Cesare A, Long T, Prichard RK. Genotyping USA laboratory-maintained isolates and European clinical isolates of Dirofilaria immitis to assess macrocyclic lactone susceptibility or resistance at predictive SNP sites using droplet digital PCR. Vet Parasitol 2024; 328:110181. [PMID: 38582015 DOI: 10.1016/j.vetpar.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Dirofilaria immitis is a parasitic nematode that causes cardiovascular dirofilariosis ("heartworm disease") primarily in canids. The principal approach for mitigating heartworm infection involves the use of macrocyclic lactone (ML) for prophylaxis. Recent research has substantiated the emergence of D. immitis displaying resistance to MLs in the USA. Numerous factors, such as the mobility of companion animals and competent vectors could impact the spread of drug resistance. Genomic analysis has unveiled that isolates resistant to ML exhibit unique genetic profiles when compared to their wild-type (susceptible) counterparts. Out of the ten single nucleotide polymorphism (SNP) markers validated in clinical samples of D. immitis from the USA, four have demonstrated their effectiveness in distinguishing between isolates with varying ML efficacy phenotypes. This study explores the potential of these confirmed SNPs for conducting surveillance studies. Genotypic analysis using SNP markers emerges as a valuable tool for carrying out surveys and evaluating individual clinical isolates. Two USA laboratory-maintained isolates (Berkeley, WildCat) and twenty-five random European clinical samples of either adult worms or microfilariae (mf) pools isolated from domestic dogs, were tested by droplet digital PCR (ddPCR)-based duplex assay. This approach elucidates genetic evidence pertaining to the development of drug resistance and provides baseline data on resistance related genotypes in Europe. The data on these clinical samples suggests genotypes consistent with the continued efficacy of ML treatment regimens in Europe. In addition, this assay can be significant in discriminating cases of drug-resistance from those possibly due to non-compliance to the recommended preventive protocols.
Collapse
Affiliation(s)
- Sohini Kumar
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada.
| | - Hua Che
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| | - Rafael Chiummo
- MSD Animal Health, Zur Propstei, Schwabenheim 55270, Germany
| | - Lea Heuer
- MSD Animal Health, Zur Propstei, Schwabenheim 55270, Germany
| | | | - Margaret Werr
- MSD Animal Health, Zur Propstei, Schwabenheim 55270, Germany
| | - Frank Guerino
- Merck Animal Health, 126 E. Lincoln Avenue, Rahway, NJ 07065-0900, USA
| | - Elias Papadopolous
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anastasia Diakou
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania; Parasitology Consultancy Group, Corușu, Cluj 145B, Romania
| | - Donato Traversa
- Department of Veterinary Medicine, Località Piano d'Accio snc, Teramo 64100, Italy
| | - Angela Di Cesare
- Department of Veterinary Medicine, Località Piano d'Accio snc, Teramo 64100, Italy
| | - Thavy Long
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada.
| | - Roger K Prichard
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada.
| |
Collapse
|
10
|
Martin EM, Mitchell EB, Yoon S, McCall JW, Fankhauser B, Mansour A, McCall S, Pollmeier M. Efficacy of moxidectin, using various dose regimens, against JYD-34, a macrocyclic lactone resistant isolate of Dirofilaria immitis. Parasit Vectors 2024; 17:176. [PMID: 38575969 PMCID: PMC10996163 DOI: 10.1186/s13071-024-06149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Macrocyclic lactones (MLs) are the only class of drugs currently commercially available that are effective for preventing heartworm disease. The data presented in this article provide information on the efficacy of oral moxidectin against JYD-34, a known ML-resistant Dirofilaria immitis isolate, when dogs are treated under various dosing regimens. METHODS Fifty-two purpose-bred Beagle dogs were used in five laboratory studies. All dogs were inoculated with 50 D. immitis third-stage larvae (L3) (JYD-34 isolate) 30 days prior to the first treatment. Dogs were randomized to treatment (four to five animals in each group) with one, three, or five monthly doses of oral moxidectin ranging from 6 to 100 µg/kg body weight. In each study, control dogs were not treated. Five to 6 months after L3 inoculation, dogs were euthanized, and adult worms were counted to evaluate efficacy of the dosing regimens. RESULTS Adult heartworms were recovered from all control dogs, with an overall geometric mean of 29.7 worms (range 15.2 to 38.0, individual counts ranged from 8 to 51). Five monthly doses of 6 µg/kg provided 83.3% and 90.2%, efficacy, and the same number of monthly doses of 9 µg/kg demonstrated 98.8% and 94.1% efficacy. Three monthly doses of 30 and 50 µg/kg demonstrated 97.9% and 99.0% efficacy, respectively, while a single dose of 100 µg/kg demonstrated 91.1% efficacy. CONCLUSIONS Five monthly doses of 9 µg/kg provided similar or only marginally lower efficacy against JYD-34, a known ML-resistant isolate, compared to substantially higher doses administered for 3 months. This underscores the importance of duration of exposure to moxidectin when facing ML-resistant isolates. Repeated administration of lower doses of moxidectin are an alternative to higher doses in the prevention of heartworm disease associated with less susceptible or resistant isolates.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, Athens, GA, 30601, USA.
| | | | - Stephen Yoon
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, Athens, GA, 30601, USA
| | - John W McCall
- TRS Labs, Inc, 215 Paradise Blvd, Athens, GA, 30607, USA
| | - Becky Fankhauser
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, Athens, GA, 30601, USA
| | | | - Scott McCall
- TRS Labs, Inc, 215 Paradise Blvd, Athens, GA, 30607, USA
| | - Matthias Pollmeier
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216, Ingelheim Am Rhein, Germany
| |
Collapse
|
11
|
Gandasegui J, Power RI, Curry E, Lau DCW, O'Neill CM, Wolstenholme A, Prichard R, Šlapeta J, Doyle SR. Genome structure and population genomics of the canine heartworm Dirofilaria immitis. Int J Parasitol 2024; 54:89-98. [PMID: 37652224 DOI: 10.1016/j.ijpara.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
The heartworm, Dirofilaria immitis, is a filarial parasitic nematode responsible for significant morbidity and mortality in wild and domesticated canids. Resistance to macrocyclic lactone drug prevention represents a significant threat to parasite control and has prompted investigations to understand the genetic determinants of resistance. This study aimed to improve the genomic resources of D. immitis to enable a more precise understanding of how genetic variation is distributed within and between parasite populations worldwide, which will inform the likelihood and rate by which parasites, and in turn, resistant alleles, might spread. We have guided the scaffolding of a recently published genome assembly for D. immitis (ICBAS_JMDir_1.0) using the chromosomal-scale reference genomes of Brugia malayi and Onchocerca volvulus, resulting in an 89.5 Mb assembly composed of four autosomal- and one sex-linked chromosomal-scale scaffolds representing 99.7% of the genome. Publicly available and new whole-genome sequencing data from 32 D. immitis samples from Australia, Italy and the USA were assessed using principal component analysis, nucleotide diversity (Pi) and absolute genetic divergence (Dxy) to characterise the global genetic structure and measure within- and between-population diversity. These population genetic analyses revealed broad-scale genetic structure among globally diverse samples and differences in genetic diversity between populations; however, fine-scale subpopulation analysis was limited and biased by differences between sample types. Finally, we mapped single nucleotide polymorphisms previously associated with macrocyclic lactone resistance in the new genome assembly, revealing the physical linkage of high-priority variants on chromosome 3, and determined their frequency in the studied populations. This new chromosomal assembly for D. immitis now allows for a more precise investigation of selection on genome-wide genetic variation and will enhance our understanding of parasite transmission and the spread of genetic variants responsible for resistance to treatment.
Collapse
Affiliation(s)
- Javier Gandasegui
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, Spain.
| | - Rosemonde I Power
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Emily Curry
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, Canada.
| | - Daisy Ching-Wai Lau
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Connor M O'Neill
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Adrian Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Roger Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, Canada.
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia.
| | - Stephen R Doyle
- Wellcome Sanger Institute, Cambridgeshire CB10 1SA, United Kingdom.
| |
Collapse
|
12
|
Lau DCW, Power RI, Šlapeta J. Exploring multiplex qPCR as a diagnostic tool for detecting microfilarial DNA in dogs infected with Dirofilaria immitis: A comparative analysis with the modified Knott's test. Vet Parasitol 2024; 325:110097. [PMID: 38104431 DOI: 10.1016/j.vetpar.2023.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Current recommendations to diagnose cardiopulmonary dirofilariosis in dogs caused by Dirofilaria immitis involves tandem antigen and circulating microfilariae tests. The modified Knott's test is an important tool in heartworm diagnosis, allowing identification of circulating microfilariae. However, the subjective nature of the modified Knott's test affects its accuracy and diagnostic laboratories usually do not provide a quantitative outcome. Quantitative enumeration of microfilariae enables clinicians to track treatment progress and acts as a proxy for detecting emerging macrocyclic lactone resistance. There is a need for better diagnostic tools suitable for routine use to efficiently and accurately quantify the presence of D. immitis microfilaremia. The aim of this study was to determine whether the quantitative modified Knott's test can be substituted by multiplex quantitative polymerase chain reaction (qPCR) targeting D. immitis and associated Wolbachia endosymbiont DNA in canine blood samples. To do this, genomic DNA samples (n = 161) from Australian dogs, collected as part of a previous 2021 study, were assessed in a TaqMan qPCR targeting DNA of D. immitis, Wolbachia sp. and Canis lupus familiaris. Of the 161 genomic DNA samples, eight were considered positive for D. immitis microfilariae. The qPCR assay demonstrated good efficiency (E = 90 to 110%, R2 > 0.94). Considering the performance and efficient use of bench time, this TaqMan qPCR assay is a suitable alternative to the modified Knott's test for quantitative enumeration of microfilariae (Cohen's kappa coefficient [κ]: κ = 1 using D. immitis qPCR marker, κ = 0.93 using Wolbachia qPCR marker). The qPCR data demonstrated a comparable result to that of the quantitative modified Knott's test in a 2022 survey of D. immitis in Australian dogs (n = 23) before and after macrocyclic lactone (ML) administration. Improving the detection and diagnosis of canine heartworm infections will assist veterinarians in better managing and controlling disease outcomes and will be valuable for tracking the spread of ML resistance in Australia.
Collapse
Affiliation(s)
- Daisy Ching-Wai Lau
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Rosemonde Isabella Power
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales 2006, Australia; The University of Sydney Institute for Infectious Diseases, New South Wales 2006, Australia.
| |
Collapse
|
13
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
14
|
Kumar S, Prichard RK, Long T. Droplet digital PCR as a tool to detect resistant isolates of Dirofilaria immitis. Int J Parasitol Drugs Drug Resist 2023; 23:10-18. [PMID: 37540993 PMCID: PMC10407818 DOI: 10.1016/j.ijpddr.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023]
Abstract
Prevention of canine heartworm disease, caused by Dirofilaria immitis, relies on macrocyclic lactones for which drug resistance is now a concern. Although genetic polymorphisms have been associated with resistance in D. immitis populations, the mechanism is still not well understood. The lack of reliable in vitro assays to detect resistance is a limitation for confirming resistance. Ten single nucleotide polymorphisms (SNPs) were previously clinically validated in D. immitis resistant isolates, using the MiSeq platform. This technique although useful for research studies is expensive and does not facilitate rapid detection of these markers in small numbers of clinical samples. We developed a droplet digital PCR protocol for detecting SNPs correlating with ML resistance. Specific primers and hydrolysis probes encompassing the wildtype and mutant alleles were designed to amplify the SNP targets from genomic DNA of different D. immitis isolates. Allele frequencies were determined and the suitability of the ddPCR assay was assessed and compared with MiSeq data. The ddPCR assay accurately detected and quantified alternate nucleotides in two isolates of reference, the ML-susceptible Missouri (MO) and ML-resistant JYD-34, at the previously identified SNP positions. The presence of the SNPs was also determined in additional isolates with known or putative susceptible or resistant phenotypes. We observed SNP1 and SNP2 are more predictive markers and appear suitable for rapid detection and monitoring of drug resistance. Our results suggested that ddPCR could be employed to distinguish infection due to actual genetic resistance from infection with susceptible parasites and also for rapid detection of isolates not only with ML susceptible and resistant genotypes but also mixed genotypes that correspond to heterogeneous isolates containing a mixed population of ML susceptible and resistant parasites. DdPCR may be a useful tool for conducting surveys, or assessments of individual isolates, for genetic evidence of resistance or developing resistance.
Collapse
Affiliation(s)
- Sohini Kumar
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X3V9, QC, Canada
| | - Roger K Prichard
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X3V9, QC, Canada
| | - Thavy Long
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X3V9, QC, Canada.
| |
Collapse
|
15
|
Nielsen MK, Kaplan RM, Abbas G, Jabbar A. Biological implications of long-term anthelmintic treatment: what else besides resistance are we selecting for? Trends Parasitol 2023; 39:945-953. [PMID: 37633759 DOI: 10.1016/j.pt.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Long-term intensive use of anthelmintics for parasite control of livestock, companion animals, and humans has resulted in widespread anthelmintic resistance, a problem of great socioeconomic significance. But anthelmintic therapy may also select for other biological traits, which could have implications for anthelmintic performance. Here, we highlight recent examples of changing parasite dynamics following anthelmintic administration, which do not fit the definition of anthelmintic resistance. We also consider other possible examples in which anthelmintic resistance has clearly established, but where coselection for other biological traits may have also occurred. We offer suggestions for collecting more information and gaining a better understanding of these phenomena. Finally, we propose research questions that require further investigation and make suggestions to help address these knowledge gaps.
Collapse
Affiliation(s)
- Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Ray M Kaplan
- School of Veterinary Medicine, St George's University, Grenada, West Indies
| | - Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Abdul Jabbar
- Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
16
|
Evans CC, Normile D, Gamble S, Guerino F, Dzimianski MT, Moorhead AR. Treatment of dogs with Bravecto ® (fluralaner) reduces mosquito survival and fecundity. Parasit Vectors 2023; 16:147. [PMID: 37106394 PMCID: PMC10142166 DOI: 10.1186/s13071-023-05682-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/21/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Mosquitoes serve as the vector of canine heartworm (Dirofilaria immitis), which represents a significant and persistent threat to canine health. A reduction in the longevity and/or reproductive success of mosquitoes that take a blood meal from fluralaner-treated dogs may consequently reduce the local transmission of heartworm and prevent new infections. A novel secondary effect of an oral formulation of the ectoparasiticide fluralaner (Bravecto®) against a laboratory strain of the mosquito Aedes aegypti, a potential major vector of canine heartworm, was investigated in this study. METHODS Six dogs were administered a single dose of fluralaner orally in the form of Bravecto® Chews (at the labeled fluralaner dose of 25 mg/kg body weight), while six control dogs received no treatment. Mosquitoes were fed on blood that was collected from each dog prior to treatment and weekly for 15 weeks post-treatment to assess the continued effects of fluralaner as its serum level decreased. Mosquito fitness was assessed by three parameters: rate of successful blood-feeding, survival, and egg laying. RESULTS Successful blood-feeding rate was similar between control and treatment groups. In the fluralaner treatment, mosquito survival was significantly reduced within the first 24 h after blood-feeding, for the first 12 weeks post-treatment of the dogs (efficacy range = 33.2-73.3%). Survival of mosquitoes up until a potentially heartworm-infective timepoint (14 days post-blood-feeding) was significantly reduced in the fluralaner-treated group at several timepoints (1, 2, 5, 11, 12, 13, 14, and 15 weeks post-treatment; efficacy range = 49.4-91.4%), but was less consistently reduced at the other timepoints. Egg laying by mosquitoes was almost completely suppressed for the first 13 weeks following treatment of the dogs with fluralaner (treatment efficacy ≥ 99.8%). CONCLUSIONS Mosquitoes fed blood from fluralaner-treated dogs experienced a significant reduction in survival and fecundity. These findings support the potential for a reduction in heartworm transmission directly by lethal effects on the vector and indirectly through a reduction of the local vector population when mosquitoes are exposed to animals treated with fluralaner.
Collapse
Affiliation(s)
- Christopher Charles Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | | | | | | | - Michael T Dzimianski
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Andrew Riddell Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
17
|
Curry E, Prichard R, Lespine A. Genetic polymorphism, constitutive expression and tissue localization of Dirofilaria immitis P-glycoprotein 11: a putative marker of macrocyclic lactone resistance. Parasit Vectors 2022; 15:482. [PMID: 36544229 PMCID: PMC9773537 DOI: 10.1186/s13071-022-05571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dirofilaria immitis causes dirofilariosis, a potentially fatal condition in canids. Dirofilaria infections can be prevented with a macrocyclic lactone (ML) prophylactic regimen. However, some D. immitis isolates have become resistant to MLs. Genetic changes on the P-glycoprotein 11 gene, encoding an ABCB transporter, have been linked to the ML-resistant phenotypes and have been proposed as markers of drug resistance. However, nothing is known about the expression and the localization of this transporter in D. immitis, despite its strong link to ML-resistant phenotypes. METHODS We examined the clinically validated D. immitis P-glycoprotein 11 (DimPgp-11) single nucleotide polymorphism (SNP) via MiSeq analysis in three ML-susceptible isolates (Missouri, MP3 and Yazoo) and two ML-resistant isolates (JYD-34 and Metairie), and correlated the data with previously published MiSeq results of USA laboratory-maintained D. immitis isolates. The level of the expression of the DimPgp-11 messenger RNA transcript was analyzed by droplet digital PCR (ddPCR) and compared in the USA laboratory-maintained isolates, namely the ML-susceptible Missouri and Berkeley isolates, the putative ML-susceptible Georgia III and Big Head isolates and the ML-resistant isolate JYD-34. The immunolocalization of DimPgp-11 was visualized in the microfilaria (mf) life stage of the Missouri isolate using confocal microscopy. RESULTS The results confirmed that the SNP found on DimPgp-11 is differentially expressed in the USA laboratory-maintained isolates. The ML-susceptible isolates had an alternate allele frequency of between 0% and 15%, while it ranged between 17% and 56% in the ML-resistant isolates. The constitutive expression of DimPgp-11 was similar in the Berkeley, Georgia III and Big Head isolates, while it was significantly decreased in the ML-resistant JYD-34 isolate (P < 0.05), when compared to the ML-susceptible Missouri isolate. The DimPgp-11 protein was distinctly localized within the excretory-secretory (ES) duct, pore cells and the excretory cell and, more faintly, along the mf body wall. CONCLUSION Our data confirm that genetic polymorphism of DimPgp-11 is associated with ML resistance in USA laboratory-maintained D. imminits isolates. A link between DimPgp-11 and ML resistance in D. immitis is further supported by the lower protein expression in the ML-resistant JYD-34 isolate when compared with the ML-susceptible Missouri isolate. Interestingly, DimPgp-11 is strategically located surrounding the ES pore where it could play an active role in ML efflux.
Collapse
Affiliation(s)
- Emily Curry
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Montreal, QC Canada
| | - Roger Prichard
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Montreal, QC Canada
| | - Anne Lespine
- grid.508721.9INTHERES, INRAE, ENVT, Université de Toulouse, 31027 Toulouse Cedex 3, France
| |
Collapse
|
18
|
Power RI, Šlapeta J. Exploration of the sensitivity to macrocyclic lactones in the canine heartworm (Dirofilaria immitis) in Australia using phenotypic and genotypic approaches. Int J Parasitol Drugs Drug Resist 2022; 20:145-158. [PMID: 36417831 PMCID: PMC9772245 DOI: 10.1016/j.ijpddr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Canine heartworm disease is a potentially deadly cardiopulmonary disease caused by the mosquito-borne filarial nematode Dirofilaria immitis. In Australia, the administration of macrocyclic lactone (ML) drugs has successfully reduced the prevalence of D. immitis infection. However, the recent re-emergence of D. immitis in dogs in Queensland, Australia and the identification of ML-resistant isolates in the USA poses an important question of whether ML-resistance has emerged in this parasite in Australia. The aim of this study was to utilise phenotypic and genotypic approaches to examine the sensitivity to ML drugs in D. immitis in Australia. To do this, we surveyed 45 dogs from Queensland and New South Wales across 3 years (2019-2022) for the presence of D. immitis infection using an antigen test, quantitative Modified Knott's test, and qPCR targeting both D. immitis and the D. immitis symbiont Wolbachia. A phenotype observed by utilising sequential quantification of microfilariae for 23/45 dogs was coupled with genetic testing of filtered microfilariae for SNPs previously associated with ML-resistance in isolates from the USA. Sixteen (16/45) dogs tested positive for D. immitis infection despite reportedly receiving 'rigorous' heartworm prevention for 12 months prior to the study, according to the owners' assessment. The phenotype and genotypic assays in this study did not unequivocally demonstrate the presence of ML-resistant D. immitis in Australia. Although the failure of 16 dogs to reduce microfilaremia by >90% after ML treatment was considered a suspect phenotype of ML-resistance, no genotypic evidence was discovered using the genetic SNP analysis. The traditional quantitative Modified Knott's test can be substituted by qPCR targeting D. immitis or associated Wolbachia endosymbiont DNA for a more rapid measurement of microfilariae levels. More definitive phenotypic evidence of resistance is critically needed before the usefulness of SNPs for the detection of ML-resistance in Australia can be properly assessed.
Collapse
Affiliation(s)
- Rosemonde Isabella Power
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales, 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales, 2006, Australia,The University of Sydney Institute for Infectious Diseases, New South Wales, 2006, Australia,Corresponding author. Sydney School of Veterinary Science, Faculty of Science, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
19
|
Dirofilaria immitis: Genotyping Randomly Selected European Clinical Samples and USA Laboratory Isolates with Molecular Markers Associated with Macrocyclic Lactone Susceptibility and Resistance. Pathogens 2022; 11:pathogens11080934. [PMID: 36015054 PMCID: PMC9415351 DOI: 10.3390/pathogens11080934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Dirofilaria immitis is a parasitic nematode and causes dirofilariosis, a potentially fatal pulmonary infection which primarily infects canids. Dirofilariosis infections are controlled via prophylactic macrocyclic lactone (ML) regimens. Recent evidence has confirmed the development of ML-resistant isolates in the USA, which are genetically distinct from wildtype populations. Single nucleotide polymorphisms (SNP) associated with ML-resistant phenotypes were clinically validated in USA populations. In this study, 3 USA laboratory-maintained isolates (Berkeley, Georgia II, and WildCat) and 11 randomly selected European clinical samples from 7 hosts were analyzed. The samples tested were fresh microfilaria (mf) in blood or adult worms preserved in ethanol. The samples underwent MiSeq sequencing of the top 9 SNP associated with ML resistance. The results provide the first genotypic analysis of the three USA laboratory-maintained isolates and any European samples. The European clinical samples show no genomic evidence of ML resistance based on the 9 SNP. The early adoption of genotyping of clinical D. immitis samples could provide an early indication of the potential development of ML resistance and aid to distinguish clinical cases of heartworm infection due to ML resistance from those due to a lack compliance with the recommended treatments, as has been seen in North America.
Collapse
|
20
|
Savadelis MD, McTier TL, Kryda K, Maeder SJ, Woods DJ. Moxidectin: heartworm disease prevention in dogs in the face of emerging macrocyclic lactone resistance. Parasit Vectors 2022; 15:82. [PMID: 35277180 PMCID: PMC8915515 DOI: 10.1186/s13071-021-05104-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/18/2021] [Indexed: 12/04/2022] Open
Abstract
Heartworm (Dirofilaria immitis) disease continues to increase and spread, remaining one of the most important and pathogenic parasitic diseases of dogs, despite the regular use of macrocyclic lactones (MLs) in preventive products. Dogs harboring strains of D. immitis resistant to MLs, the only drug class available for heartworm prevention in the United States, have been documented and proven. As no new products are available utilizing a novel drug class for the prevention of this disease, the only options for combating ML resistance include increasing the dose and/or changing the dosage regime of current MLs, or by optimizing the formulations of MLs currently available. Moxidectin provides a unique opportunity for optimization of the dose and formulation, which may provide improved efficacy against ML-resistant strains. Currently there are oral, topical, and injectable moxidectin products approved for heartworm prevention in the USA. Two new products (ProHeart® 12 and Simparica Trio®), available in many countries around the world including the USA, take advantage of the unique attributes of moxidectin for providing robust heartworm prevention against the strains of heartworm to which most dogs in the USA will likely be exposed. Both products have demonstrated 100% preventive efficacy in laboratory studies against recently collected field strains of heartworm, and also in large field studies, where the majority of dogs were living in the southern USA in areas where ML resistance has been confirmed to occur, therefore under elevated heartworm challenge. Based on the data summarized here, these products offer important advances in heartworm prevention and provide additional options for veterinarians and pet owners to protect their dogs from developing heartworm disease.
Collapse
|
21
|
Macrocyclic lactone resistance in Dirofilaria immitis: risks for prevention of heartworm disease. Int J Parasitol 2021; 51:1121-1132. [PMID: 34717929 DOI: 10.1016/j.ijpara.2021.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022]
Abstract
Heartworm disease, caused by Dirofilaria immitis, can be lethal in dogs and cats. It is transmitted by mosquitoes, and occurs in many parts of the world. Prevention relies on macrocyclic lactones. Macrocyclic lactones used are ivermectin, selamectin, abamectin, eprinomectin, milbemycin oxime and moxidectin, administered at 30-day intervals during the transmission season. Some moxidectin formulations are long-acting injectables. In the USA, preventives are recommended throughout the year. Loss of efficacy of macrocyclic lactone preventives was reported in 2005 and proof of resistance in the USA was published a decade later. Understanding factors which promote resistance is important to maintain control. Factors important for resistance development are discussed. Better, inexpensive tests to confirm resistance are needed. Infection in animals under chemoprophylaxis per se does not imply resistance because lack of compliance in preventive use could be the reason. In vivo confirmation of resistance is expensive, slow and ethically questionable. A microfilariae suppression test can be a surrogate test, but requires a high dose of a macrocyclic lactone and repeated blood microfilaria counts 2-4 weeks later. DNA single nucleotide polymorphism markers have been successfully used. However, the specific genetic changes which cause resistance are unknown. Surveys to map and follow the extent of resistance are needed. Long acting mosquito repellants and insecticides can play a useful role. High dose rate formulations of moxidectin, coupled with mosquito biting mitigation may reduce transmission of resistant genotypes. Doxycycline, daily for 28 days, as anti-Wolbachia treatment, can reduce transmission and remove adult parasites. However, new classes of heartworm preventives are needed. While any preventive strategy must be highly effective, registration requirements for 100% efficacy may hinder development of useful new classes of preventives. Continued reliance on macrocyclic lactone preventives, when they do not work against resistant genotypes, will spread resistance, and allow for more disease.
Collapse
|
22
|
Concern for Dirofilaria immitis and Macrocyclic Lactone Loss of Efficacy: Current Situation in the USA and Europe, and Future Scenarios. Pathogens 2021; 10:pathogens10101323. [PMID: 34684273 PMCID: PMC8541013 DOI: 10.3390/pathogens10101323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Dirofilaria immitis infection is one of the most severe parasitic diseases in dogs. Prevention is achieved by the administration of drugs containing macrocyclic lactones (MLs). These products are very safe and highly effective, targeting the third and fourth larval stages (L3, L4) of the parasite. Until 2011, claims of the ineffectiveness of MLs, reported as “loss of efficacy” (LOE), were generally attributed to owners’ non-compliance, or other reasons associated with inadequate preventative coverage. There was solid argumentation that a resistance problem is not likely to occur because of (i) the great extent of refugia, (ii) the complexity of resistance development to MLs, and (iii) the possible large number of genes involved in resistance selection. Nevertheless, today, it is unequivocally proven that ML-resistant D. immitis strains exist, at least in the Lower Mississippi region, USA. Accordingly, tools have been developed to evaluate and confirm the susceptibility status of D. immitis strains. A simple, in-clinic, microfilariae suppression test, 14-28 days after ML administration, and a “decision tree” (algorithm), including compliance and preventatives’ purchase history, and testing gaps, may be applied for assessing any resistant nature of the parasite. On the molecular level, specific SNPs may be used as markers of ML resistance, offering a basis for the validation of clinically suspected resistant strains. In Europe, no LOE/resistance claims have been reported so far, and the existing conditions (stray dogs, rich wildlife, majority of owned dogs not on preventive ML treatment) do not favor selection pressure on the parasites. Considering the genetic basis of resistance and the epizootiological characteristics of D. immitis, ML resistance neither establishes easily nor spreads quickly, a fact confirmed by the current known dispersion of the problem, which is limited. Nevertheless, ML resistance may propagate from an initial geographical point, via animal and vector mobility, to other regions, while it can also emerge as an independent evolutionary process in a new area. For these reasons, and considering the current chemoprophylaxis recommendations and increasing use of ML endectoparasiticides as a potential selection pressure, it is important to remain vigilant for the timely detection of any ML LOE/resistance, in all continents where D. immitis is enzootic.
Collapse
|
23
|
Noack S, Harrington J, Carithers DS, Kaminsky R, Selzer PM. Heartworm disease - Overview, intervention, and industry perspective. Int J Parasitol Drugs Drug Resist 2021; 16:65-89. [PMID: 34030109 PMCID: PMC8163879 DOI: 10.1016/j.ijpddr.2021.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Dirofilaria immitis, also known as heartworm, is a major parasitic threat for dogs and cats around the world. Because of its impact on the health and welfare of companion animals, heartworm disease is of huge veterinary and economic importance especially in North America, Europe, Asia and Australia. Within the animal health market many different heartworm preventive products are available, all of which contain active components of the same drug class, the macrocyclic lactones. In addition to compliance issues, such as under-dosing or irregular treatment intervals, the occurrence of drug-resistant heartworms within the populations in the Mississippi River areas adds to the failure of preventive treatments. The objective of this review is to provide an overview of the disease, summarize the current disease control measures and highlight potential new avenues and best practices for treatment and prevention.
Collapse
Affiliation(s)
- Sandra Noack
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| | - John Harrington
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30601, Athens, GA, USA
| | - Douglas S Carithers
- Boehringer Ingelheim Animal Health, 3239 Satellite Blvd, 30096, Duluth, GA, USA
| | - Ronald Kaminsky
- paraC Consulting, Altenstein 13, 79685, Häg-Ehrsberg, Germany
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
24
|
Zinser EW, McTier TL, Kernell NS, Woods DJ. Cryogenic preservation of Dirofilaria immitis microfilariae, reactivation and completion of the life-cycle in the mosquito and vertebrate hosts. Parasit Vectors 2021; 14:367. [PMID: 34271978 PMCID: PMC8283926 DOI: 10.1186/s13071-021-04839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cryopreservation of filarial nematodes has been studied for nearly 70 years. Largely, these studies examined the effectiveness of cryopreservation methods by using the post-thaw survival of microfilariae (mf) and the development to third-stage larvae (L3s) following inoculation into a competent insect vector. Only one study reported complete reestablishment of a filarial nematode (Brugia malayi) life-cycle in a competent vertebrate host from cryopreserved stock. Expanding on this previous research, a cryopreservation method was developed to cryopreserve the mf of the dog heartworm, Dirofilaria immitis. METHODS A combination of cryoprotectants, dimethyl sulfoxide (DMSO) and polyvinyl pyrolidone (PVP) at 6% and 4 mM, respectively, provided acceptable post-thaw survival of mf that developed into L3s in Aedes aegypti. L3s developed from cryopreserved and freshly collected mf in mosquitoes were inoculated into ferrets and dogs and were assessed after a sufficient duration post-inoculation for development into adult heartworms. RESULTS Fewer adult heartworms derived from cryopreserved stocks of mf were recovered from ferrets compared to adult heartworms derived from freshly collected mf, and the former were smaller by weight and length. The onset of patency (circulating mf) occurred at similar post-inoculation time points and at similar mf densities in dogs infected with L3s sourced from cryopreserved stocks or freshly collected mf. Adults derived from cryopreserved mf have survived and produced viable mf for more than 3 years in dogs. Approximately 60% of inoculated L3s were recovered as adults from dogs at 2 and 3.5 years post-inoculation. CONCLUSIONS The results from these direct comparisons demonstrate that cryopreserved mf can develop into L3s in vector mosquitoes and that these L3s are infective to both dogs and ferrets, where they undergo normal development into adult worms. These worms are able to mate and produce viable mf and complete the heartworm lifecycle in dog.
Collapse
Affiliation(s)
- Erich W Zinser
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA.
| | - Tom L McTier
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Nicole S Kernell
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Debra J Woods
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| |
Collapse
|
25
|
Young LM, Wiseman S, Crawley E, Wallace K, Snyder DE. Field study to investigate the effectiveness and safety of a novel orally administered combination drug product containing milbemycin oxime and lotilaner (Credelio ® Plus) for the prevention of heartworm disease (Dirofilaria immitis) in client-owned dogs in the USA. Parasit Vectors 2021; 14:284. [PMID: 34044864 PMCID: PMC8161898 DOI: 10.1186/s13071-021-04767-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dirofilaria immitis, a globally distributed filarial parasite of dogs, is known to cause serious or fatal cardiopulmonary disease. Client-owned dogs were enrolled in a clinical field study in the USA to evaluate the clinical effectiveness and field safety of an orally administered combination investigational product (IP) containing milbemycin oxime and lotilaner (Credelio® Plus) as compared to a control product (CP) for the prevention of heartworm disease when administered monthly for 11 consecutive months. METHODS In this 11-month field study, 319 dogs ≥ 8 weeks old confirmed to be heartworm-negative were enrolled from eight geographically distinct US veterinary clinics, including sites in the southern USA and Mississippi River Valley. The dogs were treated with either the IP combination product at 0.75-1.53 mg/kg milbemycin oxime and 20-41.5 mg/kg lotilaner (n = 159) or the CP (Sentinel® Flavor Tabs®; milbemycin oxime/lufenuron) at the label-recommended dose rate (n = 158.) On day 330, effectiveness was evaluated in each dog using antigen and microfilarial (modified Knott's) testing to assess the establishment of any patent adult heartworm infections. RESULTS All dogs treated with the IP combination product and the CP tested negative (100% prevention) for heartworm infection on day 330. The IP combination product tablets containing milbemycin oxime and lotilaner were well tolerated based on the safety assessments in all treated dogs. CONCLUSIONS This multi-site clinical study using client-owned dogs demonstrated that monthly use of flavored, chewable tablets containing a combination of milbemycin oxime and lotilaner administered orally under end use conditions is safe for dogs. None of the enrolled dogs developed heartworm infections. Eleven consecutive monthly treatments of the IP provided 100% prevention of heartworm disease caused by D. immitis.
Collapse
Affiliation(s)
- Lisa M Young
- Elanco Animal Health Research and Development, 2500 Innovation Way, Greenfield, IN, 46140, USA
| | - Scott Wiseman
- Elanco Animal Health, Form 2, Bartley Way, Bartley Wood Business Park, Hook, RG27 9XA, Hants, UK
| | - Elizabeth Crawley
- Elanco Animal Health Research and Development, 2500 Innovation Way, Greenfield, IN, 46140, USA
| | - Kim Wallace
- Elanco Animal Health Research and Development, 2500 Innovation Way, Greenfield, IN, 46140, USA
| | - Daniel E Snyder
- Daniel E. Snyder, DVM PhD. Consulting, LLC, Indianapolis, IN, 46229, USA.
| |
Collapse
|
26
|
Ta-Tang TH, Luz SLB, Crainey JL, Rubio JM. An Overview of the Management of Mansonellosis. Res Rep Trop Med 2021; 12:93-105. [PMID: 34079424 PMCID: PMC8163967 DOI: 10.2147/rrtm.s274684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/30/2021] [Indexed: 02/02/2023] Open
Abstract
Mansonellosis is caused by three filarial parasite species from the genus Mansonella that commonly produce chronic human microfilaraemias: M. ozzardi, M. perstans and M. streptocerca. The disease is widespread in Africa, the Caribbean and South and Central America, and although it is typically asymptomatic it has been associated with mild pathologies including leg-chills, joint-pains, headaches, fevers, and corneal lesions. No robust mansonellosis disease burden estimates have yet been made and the impact the disease has on blood bank stocks and the monitoring of other filarial diseases is not thought to be of sufficient public health importance to justify dedicated disease management interventions. Mansonellosis´s Ceratopogonidae and Simuliidae vectors are not targeted by other control programmes and because of their small size and out-door biting habits are unlikely to be affected by interventions targeting other disease vectors like mosquitoes. The ivermectin and mebendazole-based mass drug administration (iMDA and mMDA) treatment regimens deployed by the WHO´s Elimination of Neglected Tropical Diseases (ESPEN) programme and its forerunners have, however, likely impacted significantly on the mansonellosis disease burden, principally by reducing the transmission of M. streptocerca in Africa. The increasingly popular plan of using iMDA to control malaria could also affect M. ozzardi parasite prevalence and transmission in Latin America in the future. However, a potentially far greater mansonellosis disease burden impact is likely to come from short-course curative anti-Wolbachia therapeutics, which are presently being developed for onchocerciasis and lymphatic filariasis treatment. Even if the WHO´s ESPEN programme does not choose to deploy these drugs in MDA interventions, they have the potential to dramatically increase the financial and logistical feasibility of effective mansonellosis management. There is, thus, now a fresh and urgent need to better characterise the disease burden and eco-epidemiology of mansonellosis so that effective management programmes can be designed, advocated for and implemented.
Collapse
Affiliation(s)
- Thuy-Huong Ta-Tang
- Malaria and NTDs Laboratory, National Centre of Tropical Medicine, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio L B Luz
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas State, Brazil
| | - James L Crainey
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas State, Brazil
| | - José M Rubio
- Malaria & Emerging Parasitic Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
McTier TL, Holzmer S, Kryda K, Mahabir S, McCall JW, Trombley J, Maeder SJ. Comparative preventive efficacy of ProHeart ® 12, Heartgard ® Plus and Interceptor ® Plus against a macrocyclic lactone-resistant strain (JYD-34) of heartworm (Dirofilaria immitis) in dogs. Parasit Vectors 2021; 14:226. [PMID: 33902689 PMCID: PMC8074443 DOI: 10.1186/s13071-021-04708-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
Background The current studies compared ProHeart® 12, Heartgard® Plus and Interceptor® Plus for preventive efficacy against JYD-34, a macrocyclic lactone (ML)-resistant strain of Dirofilaria immitis in dogs. Methods In two studies, each using 24 adult beagles, dogs were allocated to four treatment groups (n = 6): placebo-treated control; ProHeart 12 as per label (0.5 mg/kg moxidectin); Heartgard Plus (HGP) as per label (minimum 6 µg/kg ivermectin); and Interceptor Plus (INP) as per label (minimum 0.5 mg/kg milbemycin oxime). In both studies, ProHeart 12 was administered as a single subcutaneous dose on day 0, and HGP and INP were administered orally on days 0, 30, 60, 90, 120 and 150. In Studies 1 and 2, dogs were inoculated with 50 third-stage heartworm larvae (JYD-34 strain) on days −30 and 165, respectively. In Study 2, treatment for both HGP and INP was continued on days 180, 210, 240, 270, 300 and 330. Adult heartworm recoveries were performed on day 185 in Study 1 and on day 360 in Study 2. Results In Studies 1 and 2, all placebo-treated dogs developed adult heartworm infections (geometric mean, 29.9 and 34.9 worms/dog, respectively). A single dose of ProHeart 12 was 100% effective in preventing the development of adult JYD-34 heartworms when treatment was initiated 30 days after heartworm inoculation, while six consecutive monthly doses of HGP and INP were only 10.5% and 14.6% effective, respectively. The mean worm count for the ProHeart 12-treated group was significantly lower (P < 0.0001) than that for the placebo control, HGP- and INP-treated groups. In Study 2, the dogs treated with ProHeart 12 had an efficacy of 98.3%. All dogs treated with HGP and INP for 12 consecutive months had adult heartworms with efficacies of 37.7% and 34.9%, respectively. The mean worm count for the ProHeart 12-treated dogs was significantly lower (P < 0.0001) than those for the control group, HGP- and INP-treated groups. Conclusions A single administration of ProHeart 12 was 98–100% effective in preventing the development of the ML-resistant JYD-34 heartworm strain and was significantly better than multiple consecutive monthly doses of either Heartgard Plus or Interceptor Plus in both studies. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Tom L McTier
- Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA.
| | - Susan Holzmer
- Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Kristina Kryda
- Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Sean Mahabir
- Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | | | - Jami Trombley
- Northern Biomedical Research Inc, 1210 Pontaluna Road, Spring Lake, MI, USA
| | - Steven J Maeder
- Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| |
Collapse
|
28
|
Whole-genome reference of Dirofilaria immitis from Australia to determine single nucleotide polymorphisms associated with macrocyclic lactone resistance in the USA. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100007. [PMID: 35284873 PMCID: PMC8906102 DOI: 10.1016/j.crpvbd.2021.100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 11/20/2022]
Abstract
For the past 30 years, chemoprophylaxis with macrocyclic lactone (ML) anthelmintics has been the primary strategy for canine heartworm (Dirofilaria immitis) control in both the USA and Australia. ML-resistant D. immitis isolates have been confirmed to exist in the USA and studies have shown that 42 single nucleotide polymorphisms (SNPs) are associated with phenotypic ML-resistance. Currently, ML-resistance has not been reported in any Australian clinical cases of canine heartworm. The aim of the study is to determine whether the 42 SNPs associated with resistance to MLs in the isolates from the USA are present in adult heartworms from a clinical case in Australia. Five adult D. immitis obtained from a dog at post-mortem (Sydney, Australia) were sequenced using the Illumina sequencing technology. The genomic analyses revealed 6 out of the 42 SNPs associated with ML-resistance to be present in our samples, 3 out of the 6 SNPs identified were nonsynonymous SNPs but not in candidate genes for ML-resistance. ML-susceptibility profile was mixed using the 42-SNP and 10-SNP models, but the 5-SNP, 3-SNP and 2-SNP models demonstrated ML susceptibility for all five individuals. In this study, the first whole-genome reference of D. immitis from Australia establishes a new baseline for comparative studies and will be valuable for tracking ML-resistance emergence. Dirofilaria immitis from Sydney, Australia, sequenced using the Illumina NGS technology. New baseline for comparative studies for tracking ML-resistance emergence in Australia. Mixed ML-susceptibility profile using the 42-SNP and 10-SNP models. 5-SNP, 3-SNP and 2-SNP models demonstrated ML susceptibility.
Collapse
|
29
|
Neff E, Evans CC, Jimenez Castro PD, Kaplan RM, Dharmarajan G. Drug Resistance in Filarial Parasites Does Not Affect Mosquito Vectorial Capacity. Pathogens 2020; 10:2. [PMID: 33375024 PMCID: PMC7822010 DOI: 10.3390/pathogens10010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Parasite drug resistance presents a major obstacle to controlling and eliminating vector-borne diseases affecting humans and animals. While vector-borne disease dynamics are affected by factors related to parasite, vertebrate host and vector, research on drug resistance in filarial parasites has primarily focused on the parasite and vertebrate host, rather than the mosquito. However, we expect that the physiological costs associated with drug resistance would reduce the fitness of drug-resistant vs. drug-susceptible parasites in the mosquito wherein parasites are not exposed to drugs. Here we test this hypothesis using four isolates of the dog heartworm (Dirofilaria immitis)-two drug susceptible and two drug resistant-and two vectors-the yellow fever mosquito (Aedes aegypti) and the Asian tiger mosquito (Ae. albopictus)-as our model system. Our data indicated that while vector species had a significant effect on vectorial capacity, there was no significant difference in the vectorial capacity of mosquitoes infected with drug-resistant vs. drug-susceptible parasites. Consequently, contrary to expectations, our data indicate that drug resistance in D. immitis does not appear to reduce the transmission efficiency of these parasites, and thus the spread of drug-resistant parasites in the vertebrate population is unlikely to be mitigated by reduced fitness in the mosquito vector.
Collapse
Affiliation(s)
- Erik Neff
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA
| | - Christopher C. Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (C.C.E.); (P.D.J.C.); (R.M.K.)
| | - Pablo D. Jimenez Castro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (C.C.E.); (P.D.J.C.); (R.M.K.)
- Grupo de Parasitología Veterinaria, Universidad Nacional de Colombia, Bogotá 11001000, Colombia
| | - Ray M. Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (C.C.E.); (P.D.J.C.); (R.M.K.)
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA
| |
Collapse
|
30
|
Verma S, Kulke D, McCall JW, Martin RJ, Robertson AP. Recording drug responses from adult Dirofilaria immitis pharyngeal and somatic muscle cells. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 15:1-8. [PMID: 33348209 PMCID: PMC7753077 DOI: 10.1016/j.ijpddr.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Despite being considered one of the most pathogenic helminth infections of companion animals, members of macrocyclic lactone class are the only drugs available for the prevention of heartworm disease caused by Dirofilaria immitis. Alarmingly, heartworm prevention is at risk; several studies confirm the existence of macrocyclic lactone resistance in D. immitis populations across the United States. To safeguard the long term prevention and control of this disease, the identification and development of novel anthelmintics is urgently needed. To identify novel, resistance-breaking drugs, it is highly desirable to: Unfortunately, none of the three above statements can be answered sufficiently for D. immitis and most of our hypotheses derive from surrogate species and/or in vitro studies. Therefore, the present study aims to improve our fundamental understanding of the neuromuscular system of the canine heartworm by establishing new methods allowing the investigation of body wall and pharyngeal muscle responses and their modulation by anthelmintics. We found that the pharynx of adult D. immitis responds to both ivermectin and moxidectin with EC50s in the low micromolar range. We also demonstrate that the somatic muscle cells have robust responses to 30 μM acetylcholine, levamisole, pyrantel and nicotine. This is important preliminary data, demonstrating the feasibility of electrophysiological studies in this important parasite.
Collapse
Affiliation(s)
- S Verma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - D Kulke
- Drug Discovery and External Innovation, Bayer Animal Health GmbH, 51373, Leverkusen, Germany.
| | | | - R J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - A P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
31
|
Shang Kuan TC, Prichard RK. Developmental regulation of Dirofilaria immitis microfilariae and evaluation of ecdysone signaling pathway transcript level using droplet digital PCR. Parasit Vectors 2020; 13:614. [PMID: 33298156 PMCID: PMC7724712 DOI: 10.1186/s13071-020-04480-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Current measures for the prevention of dirofilariasis, caused by the dog heartworm, Dirofilaria immitis, rely on macrocyclic lactones, but evidence of drug-resistant isolates has called for alternative approaches to disease intervention. As microfilariae are known to be in a state of developmental arrest in their mammalian host and then undergo two molts once inside the arthropod, the aim of this study was to look at the developmental regulation of D. immitis microfilariae that occurs in their arthropod host using in vitro approaches and to investigate the role of the ecdysone signaling system in this development regulation. METHODS Dirofilaria immitis microfilariae extracted from dog blood were incubated under various culture conditions to identify those most suitable for in vitro culture and development of the microfilariae, and to determine the effects of fetal bovine serum (FBS), mosquito cells, and ecdysteroid on the development of the microfilariae. Transcript levels of the ecdysone signaling pathway components were measured with droplet digital PCR (ddPCR). RESULTS In vitro conditions that best promote early development of D. immitis microfilariae to the "late sausage stage" have been identified, although shedding of the cuticle was not observed. FBS had inhibitory effects on the development and motility of the microfilariae, but media conditioned with Anopheles gambiae cells were favorable to microfilarial growth. The transcript level study using ddPCR also showed that ecdysone signaling system components were upregulated in developing microfilariae and that 20-hydroxyecdysone increased the proportion of larvae developing to the sausage and late sausage stages in vitro. CONCLUSIONS The arthropod host environment provides cues required for the rapid development of D. immitis microfilariae, and the ecdysone signaling system may play an important role in filarial nematode developmental transitions. This study contributes to a better understanding of the developmental process of D. immitis microfilariae.
Collapse
Affiliation(s)
- Tsai-Chi Shang Kuan
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Montreal, H9X3V9, Canada.
| | - Roger K Prichard
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Montreal, H9X3V9, Canada.
| |
Collapse
|
32
|
Kotze AC, Gilleard JS, Doyle SR, Prichard RK. Challenges and opportunities for the adoption of molecular diagnostics for anthelmintic resistance. Int J Parasitol Drugs Drug Resist 2020; 14:264-273. [PMID: 33307336 PMCID: PMC7726450 DOI: 10.1016/j.ijpddr.2020.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Anthelmintic resistance is a significant threat to livestock production systems worldwide and is emerging as an important issue in companion animal parasite management. It is also an emerging concern for the control of human soil-transmitted helminths and filaria. An important aspect of managing anthelmintic resistance is the ability to utilise diagnostic tests to detect its emergence at an early stage. In host-parasite systems where resistance is already widespread, diagnostics have a potentially important role in determining those drugs that remain the most effective. The development of molecular diagnostics for anthelmintic resistance is one focus of the Consortium for Anthelmintic Resistance and Susceptibility (CARS) group. The present paper reflects discussions of this issue that occurred at the most recent meeting of the group in Wisconsin, USA, in July 2019. We compare molecular resistance diagnostics with in vivo and in vitro phenotypic methods, and highlight the advantages and disadvantages of each. We assess whether our knowledge on the identity of molecular markers for resistance towards the different drug classes is sufficient to provide some expectation that molecular tests for field use may be available in the short-to-medium term. We describe some practical aspects of such tests and how our current capabilities compare to the requirements of an 'ideal' test. Finally, we describe examples of drug class/parasite species interactions that provide the best opportunity for commercial use of molecular tests in the near future. We argue that while such prototype tests may not satisfy the requirements of an 'ideal' test, their potential to provide significant advances over currently-used phenotypic methods warrants their development as field diagnostics.
Collapse
Affiliation(s)
- Andrew C. Kotze
- CSIRO Agriculture and Food, St. Lucia, Brisbane, 4072, QLD, Australia,Corresponding author. , CSIRO Agriculture and Food, St. Lucia, Brisbane, 4072, QLD, Australia.
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Stephen R. Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
33
|
Long-read RNA sequencing of human and animal filarial parasites improves gene models and discovers operons. PLoS Negl Trop Dis 2020; 14:e0008869. [PMID: 33196647 PMCID: PMC7704054 DOI: 10.1371/journal.pntd.0008869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/30/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Filarial parasitic nematodes (Filarioidea) cause substantial disease burden to humans and animals around the world. Recently there has been a coordinated global effort to generate, annotate, and curate genomic data from nematode species of medical and veterinary importance. This has resulted in two chromosome-level assemblies (Brugia malayi and Onchocerca volvulus) and 11 additional draft genomes from Filarioidea. These reference assemblies facilitate comparative genomics to explore basic helminth biology and prioritize new drug and vaccine targets. While the continual improvement of genome contiguity and completeness advances these goals, experimental functional annotation of genes is often hindered by poor gene models. Short-read RNA sequencing data and expressed sequence tags, in cooperation with ab initio prediction algorithms, are employed for gene prediction, but these can result in missing clade-specific genes, fragmented models, imperfect mapping of gene ends, and lack of isoform resolution. Long-read RNA sequencing can overcome these drawbacks and greatly improve gene model quality. Here, we present Iso-Seq data for B. malayi and Dirofilaria immitis, etiological agents of lymphatic filariasis and canine heartworm disease, respectively. These data cover approximately half of the known coding genomes and substantially improve gene models by extending untranslated regions, cataloging novel splice junctions from novel isoforms, and correcting mispredicted junctions. Furthermore, we validated computationally predicted operons, manually curated new operons, and merged fragmented gene models. We carried out analyses of poly(A) tails in both species, leading to the identification of non-canonical poly(A) signals. Finally, we prioritized and assessed known and putative anthelmintic targets, correcting or validating gene models for molecular cloning and target-based anthelmintic screening efforts. Overall, these data significantly improve the catalog of gene models for two important parasites, and they demonstrate how long-read RNA sequencing should be prioritized for ongoing improvement of parasitic nematode genome assemblies. Filarial parasitic nematodes are vector-borne parasites that infect humans and animals. Brugia malayi and Dirofilaria immitis are transmitted by mosquitoes and cause human lymphatic filariasis and canine heartworm disease, respectively. Recent years have seen a dramatic increase in genomic and transcriptomic data sets and the concomitant increase in innovative strategies for drug target identification, validation, and screening. However, while the completeness of genome assemblies of filarial parasitic nematodes has seen steady improvements, the reliability of gene models has not kept pace, hindering cloning efforts. Long-read RNA sequencing technologies are uniquely able to improve gene models, but have not been widely used for the causative agents of neglected tropical diseases. Here, we report the improvement of gene models in both B. malayi and D. immitis by long-read RNA sequencing. We identified novel operons, deprecated false positive operons, identified dozens of novel genes, and described the parameters of polyadenylation. We also focused on putative anthelmintic targets, identifying novel isoforms and correcting gene models. These data substantially increase the trustworthiness of gene models in these two species and demonstrate how long-read sequencing approaches should be prioritized in the continued improvement of genome assemblies and their gene annotations.
Collapse
|
34
|
Shin PT, Baptista RDP, O'Neill CM, Wallis C, Reaves BJ, Wolstenholme AJ. Comparative sequences of the Wolbachia genomes of drug-sensitive and resistant isolates of Dirofilaria immitis. Vet Parasitol 2020; 286:109225. [PMID: 32937243 DOI: 10.1016/j.vetpar.2020.109225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 11/25/2022]
Abstract
The recent identification of isolates of D. immitis with confirmed resistance to the macrocyclic lactone preventatives presents an opportunity for comparative genomic studies using these isolates, and examining the genetic diversity within and between them. We studied the genomes of Wolbachia endosymbionts of five isolates of D. immitis maintained at the University of Georgia. Missouri and Georgia-2 are maintained as drug susceptible isolates, and JYD-27, Yazoo-2013 and Metairie-2014 are resistant to the macrocyclic lactone preventatives. We used whole genome amplification followed by Illumina-based sequencing from 8 to 12 individual microfilariae from each of the five isolates, obtaining a depth of coverage of approximately 40-75 fold for each. The Illumina sequences were used to create new genome assemblies for all the Wolbachia isolates studied. Comparisons of the Wolbachia sequences revealed more than 3000 sequence variations in each isolate. We identified 67 loci specific in resistant isolates but not in susceptible isolates, including 18 genes affected.Phylogenetic analysis suggested that the endosymbionts of the drug-susceptible isolates are more closely related to each other than to those from any of the resistant parasites. This level of variation in the Wolbachia endosymbionts of D. immitis isolates suggests a potential for selection for resistance against drugs targeting them.
Collapse
Affiliation(s)
- Pei-Tsz Shin
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Rodrigo de Paula Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Connor M O'Neill
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Connor Wallis
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Barbara J Reaves
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
35
|
Jesudoss Chelladurai JRJ, Martin KA, Chinchilla-Vargas K, Jimenez Castro PD, Kaplan RM, Brewer MT. Laboratory assays reveal diverse phenotypes among microfilariae of Dirofilaria immitis isolates with known macrocyclic lactone susceptibility status. PLoS One 2020; 15:e0237150. [PMID: 32760111 PMCID: PMC7410292 DOI: 10.1371/journal.pone.0237150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
Prevention of canine heartworm disease caused by Dirofilaria immitis relies on chemoprophylaxis with macrocyclic lactone anthelmintics. Alarmingly, there are increased reports of D. immitis isolates with resistance to macrocyclic lactones and the ability to break through prophylaxis. Yet, there is not a well-established laboratory assay that can utilize biochemical phenotypes of microfilariae to predict drug resistance status. In this study we evaluated laboratory assays measuring cell permeability, metabolism, and P-glycoprotein-mediated efflux. Our assays revealed that trypan blue, propidium iodide staining, and resazurin metabolism could detect differences among D. immitis isolates but none of these approaches could accurately predict drug susceptibility status for all resistant isolates tested. P-glycoprotein assays suggested that the repertoire of P-gp expression is likely to vary among isolates, and investigation of pharmacological differences among different P-gp genes is warranted. Further research is needed to investigate and optimize laboratory assays for D. immitis microfilariae, and caution should be applied when adapting cell death assays to drug screening studies for nematode parasites.
Collapse
Affiliation(s)
- Jeba R. J. Jesudoss Chelladurai
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
| | - Katy A. Martin
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
| | - Krystal Chinchilla-Vargas
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
| | - Pablo D. Jimenez Castro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Grupo de Parasitologia Veterinaria, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ray M. Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Matthew T. Brewer
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Shirozu T, Soga A, Fukumoto S. Identification and validation of a commercial cryopreservation medium for the practical preservation of Dirofilaria immitis microfilaria. Parasit Vectors 2020; 13:383. [PMID: 32727546 PMCID: PMC7391585 DOI: 10.1186/s13071-020-04257-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dirofilaria immitis is a parasitic nematode transmitted by mosquitoes and the cause of heartworm disease in dogs and dirofilariasis in humans and other mammals. The parasite is endemic worldwide. Vector stage research requires a reliable supply of D. immitis microfilariae (mf). It is believed that cryopreserved mf would retain viability and provide a powerful tool for vector stage research. However, reports on cryopreservation of D. immitis mf are limited. Therefore, this study aimed to validate commercial cryopreservation media to establish a practical, convenient and reproducible storage procedure for D. immitis mf. METHODS Six different commercially available cryopreservation media were compared with the traditional polyvinylpyrrolidone-dimethyl sulfoxide (PVP-DMSO) preservation solution. In vitro viability of purified D. immitis mf and mf-infected total blood was analyzed using a motility assay and propidium iodide staining. In vivo infectivity of Aedes aegypti mosquitoes with cryopreserved mf was assessed using a mosquito survival test and quantifying the number of third-stage larvae (L3) after 13 days post-infection. RESULTS Purified mf cryopreserved in CultureSure showed the best viability when compared to mf cryopreserved in the remaining five commercially available media and PVP-DMSO. Viability of mf in mf-infected total blood cryopreserved in CultureSure varied with the ratio of infected blood to CultureSure. Optimum results were obtained with 200 µl mf-infected blood:800 µl CultureSure. CultureSure was also the optimum medium for cryopreserving mf prior to infectivity of A. aegypti. The number of L3 was approximately the same for CultureSure cryopreserved mf (3× concentrated solution) and non-cryopreserved fresh mf. CONCLUSIONS CultureSure is an optimal commercial cryopreservation solution for the storage of D. immitis purified mf, mf-infected total blood, and mf used for in vivo mosquito experiments. Furthermore, this study describes an easy preservation method for clinical D. immitis-infected blood samples facilitating vector stage studies, as well as the study of macrocyclic lactone resistance in heartworms and the education of veterinarians.
Collapse
Affiliation(s)
- Takahiro Shirozu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
37
|
Long T, Alberich M, André F, Menez C, Prichard RK, Lespine A. The development of the dog heartworm is highly sensitive to sterols which activate the orthologue of the nuclear receptor DAF-12. Sci Rep 2020; 10:11207. [PMID: 32641726 PMCID: PMC7343802 DOI: 10.1038/s41598-020-67466-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
Prevention therapy against Dirofilaria immitis in companion animals is currently threatened by the emergence of isolates resistant to macrocyclic lactone anthelmintics. Understanding the control over developmental processes in D. immitis is important for elucidating new approaches to heartworm control. The nuclear receptor DAF-12 plays a role in the entry and exit of dauer stage in Caenorhabditis elegans and in the development of free-living infective third-stage larvae (iL3) of some Clade IV and V parasitic nematodes. We identified a DAF-12 ortholog in the clade III nematode D. immitis and found that it exhibited a much higher affinity for dafachronic acids than described with other nematode DAF-12 investigated so far. We also modelled the DimDAF-12 structure and characterized the residues involved with DA binding. Moreover, we showed that cholesterol derivatives impacted the molting process from the iL3 to the fourth-stage larvae. Since D. immitis is unable to synthesize cholesterol and only completes its development upon host infection, we hypothesize that host environment contributes to its further molting inside the host vertebrate. Our discovery contributes to a better understanding of the developmental checkpoints of D. immitis and offers new perspectives for the development of novel therapies against filarial infections.
Collapse
Affiliation(s)
- Thavy Long
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France.
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, H9X3V9, QC, Canada.
| | - Mélanie Alberich
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France
| | - François André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Cécile Menez
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France
| | - Roger K Prichard
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, H9X3V9, QC, Canada
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France.
| |
Collapse
|
38
|
Sanchez J, Dharmarajan G, George MM, Pulaski C, Wolstenholme AJ, Gilleard JS, Kaplan RM. Using population genetics to examine relationships of Dirofilaria immitis based on both macrocyclic lactone-resistance status and geography. Vet Parasitol 2020; 283:109125. [PMID: 32535487 DOI: 10.1016/j.vetpar.2020.109125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/24/2020] [Accepted: 04/25/2020] [Indexed: 12/18/2022]
Abstract
Prevention of infection with canine heartworm (Dirofilaria immitis) is based on the compliant administration of macrocyclic lactone (ML) drugs. Resistance to ML drugs is well documented in D. immitis; however, there remains a paucity of information on the spatial distribution and prevalence of resistant isolates. This project aims to improve understanding of ML-resistance by using a population genetic approach. We developed a large panel of microsatellite loci and identified 12 novel highly polymorphic markers. These 12, and five previously published markers were used to screen pools of microfilariae from 16 confirmed drug-susceptible, 25 confirmed drug-resistant, and from 10 suspected drug-resistant field isolates. In isolates where microfilarial suppression testing indicated resistance, Spatial Principal Component Analysis (sPCoA), Neighbor Joining Trees and Bayesian clustering all revealed high genetic similarity between pre- and post-treatment samples. Somewhat surprisingly, the Neighbor Joining tree and sPCoA generated using pairwise Nei's distances did not reveal clustering for resistant isolates, nor did it reveal state-level geographic clustering from samples collected in Georgia, Louisiana or Mississippi. In contrast, Discriminant Analysis of Principle Components was able to discriminate between susceptible, suspected-resistant and resistant samples. However, no resistance-associated markers were detected, and this clustering was driven by the combined effects of multiple alleles across multiple loci. Additionally, we measured unexpectedly large genetic distances between different passages of laboratory strains that originated from the same source infection. This finding strongly suggests that the genetic makeup of laboratory isolates can change substantially with each passage, likely due to genetic bottlenecking. Taken together, these data suggest greater than expected genetic variability in the resistant isolates, and in D. immitis overall. Our results also suggest that microsatellite genotyping lacks the sensitivity to detect a specific genetic signature for resistance. Future investigations using genomic analyses will be required to elucidate the genetic relationships of ML-resistant isolates.
Collapse
Affiliation(s)
- Julie Sanchez
- University of Georgia College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, United States
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Melissa M George
- University of Georgia College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, United States
| | - Cassan Pulaski
- University of Georgia College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, United States
| | - Adrian J Wolstenholme
- University of Georgia College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, United States
| | - John S Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Ray M Kaplan
- University of Georgia College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, United States.
| |
Collapse
|
39
|
Turner JD, Marriott AE, Hong D, O' Neill P, Ward SA, Taylor MJ. Novel anti-Wolbachia drugs, a new approach in the treatment and prevention of veterinary filariasis? Vet Parasitol 2020; 279:109057. [PMID: 32126342 DOI: 10.1016/j.vetpar.2020.109057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/09/2023]
Abstract
Filarial nematodes are tissue-dwelling parasitic worms that can cause a range of disfiguring pathologies in humans and potentially lethal infections of companion animals. The bacterial endosymbiont, Wolbachia, is present within most human and veterinary filarial pathogens, including the causative agent of heartworm disease, Dirofilaria immitis. Doxycycline-mediated drug targeting of Wolbachia leads to sterility, clearance of microfilariae and gradual death of adult filariae. This mode of action is attractive in the treatment of filariasis because it avoids severe host inflammatory adverse reactions invoked by rapid-killing anthelmintic agents. However, doxycycline needs to be taken for four weeks to exert curative activity. In this review, we discuss the evidence that Wolbachia drug targeting is efficacious in blocking filarial larval development as well as in the treatment of chronic filarial disease. We present the current portfolio of next-generation anti-Wolbachia candidates discovered through phenotypic screening of chemical libraries and validated in a range of in vitro and in vivo filarial infection models. Several novel chemotypes have been identified with selected narrow-spectrum anti-Wolbachia specificity and superior time-to-kill kinetics compared with doxycycline. We discuss the opportunities of developing these novel anti-Wolbachia agents as either cures, adjunct therapies or new preventatives for the treatment of veterinary filariasis.
Collapse
Affiliation(s)
- Joseph D Turner
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Amy E Marriott
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Hong
- Department of Chemistry, University of Liverpool, UK
| | - Paul O' Neill
- Department of Chemistry, University of Liverpool, UK
| | - Steve A Ward
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mark J Taylor
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
40
|
McTier TL, Six RH, Pullins A, Chapin S, Kryda K, Mahabir SP, Woods DJ, Maeder SJ. Preventive efficacy of oral moxidectin at various doses and dosage regimens against macrocyclic lactone-resistant heartworm (Dirofilaria immitis) strains in dogs. Parasit Vectors 2019; 12:444. [PMID: 31506088 PMCID: PMC6737633 DOI: 10.1186/s13071-019-3685-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/23/2019] [Indexed: 11/14/2022] Open
Abstract
Background Moxidectin has previously shown limited efficacy (≤ 44.4%) against confirmed macrocyclic lactone (ML)-resistant Dirofilaria immitis strains at 3 µg/kg after single and multiple oral dosages. Three studies were conducted to evaluate higher oral moxidectin doses for efficacy against confirmed ML-resistant D. immitis strains. Methods Dogs were inoculated with 50 D. immitis L3 and randomly allocated to treatments. Study 1: 6 groups of dogs (n = 8) were inoculated with JYD-34 (Day − 30) and treated as follows: T01, negative control; T02–T05, moxidectin at 3, 6, 12 or 24 µg/kg, respectively, on Day 0 only; T06, moxidectin at 3 µg/kg on Days 0, 30 and 60. Study 2: 10 groups of dogs (n = 5) were inoculated (Day − 30) with either JYD-34 (T01, T03–05) or ZoeLA (T02, T06–T10) and treated as follows: T01 and T02, negative controls; T03–T05, moxidectin at 24, 40 or 60 µg/kg, respectively, on Days 0, 28 and 56; T06 and T09, moxidectin at 3 or 60 µg/kg on Day 0 only; T07, T08 and T10, moxidectin at 24, 40 or 60 µg/kg, respectively, on Days 0, 28 and 56. Study 3: 5 groups of dogs (n = 5) were inoculated with ZoeMO (Day − 28) and treated as follows: T01, negative control; T02, moxidectin at 3 µg/kg moxidectin on Day 0 only; T03–T05, moxidectin at 24, 40 or 60 µg/kg, respectively, on Days 0, 28 and 56. All dogs were necropsied for adult heartworm recovery ~ 4–5 months post-inoculation. Results All moxidectin-treated dogs showed significantly lower worm counts than controls. The efficacy of moxidectin administered once at 3 µg/kg was 19% (JYD-34), 44.4% (ZoeLA) and 82.1% (ZoeMO). Increasing both the dose and the number of dosages of moxidectin improved efficacy, with 100% protection obtained using three dosages of moxidectin at either 40 µg/kg (JYD-34, ZoeMO) or 60 µg/kg (ZoeLA). Three dosages of 24 µg/kg were also highly effective, providing ≥ 98.8% efficacy for all three strains. Conclusions Increasing both the dose and number of consecutive monthly dosages of moxidectin improved the efficacy against ML-resistant heartworms. Based on these data and other technical considerations, the 24 µg/kg dose was considered the optimal dose for further commercial development.
Collapse
Affiliation(s)
- Tom L McTier
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA.
| | - Robert H Six
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Aleah Pullins
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Sara Chapin
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Kristina Kryda
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Sean P Mahabir
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Debra J Woods
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Steven J Maeder
- Zoetis, Veterinary Medicine Research and Development, 333 Portage St, Kalamazoo, MI, 49007, USA
| |
Collapse
|
41
|
Kryda K, Six RH, Walsh KF, Holzmer SJ, Chapin S, Mahabir SP, Myers M, Inskeep T, Rugg J, Cundiff B, Pullins A, Ulrich M, McCall JW, McTier TL, Maeder SJ. Laboratory and field studies to investigate the efficacy of a novel, orally administered combination product containing moxidectin, sarolaner and pyrantel for the prevention of heartworm disease (Dirofilaria immitis) in dogs. Parasit Vectors 2019; 12:445. [PMID: 31506094 PMCID: PMC6737634 DOI: 10.1186/s13071-019-3702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dirofilaria immitis is a filarial parasite of dogs that can cause serious or fatal cardiopulmonary disease. Three studies were conducted to evaluate the efficacy and safety of monthly treatment with moxidectin in a chewable tablet product in combination with sarolaner and pyrantel to prevent heartworm disease in dogs after experimental challenge and in a clinical field study in the USA. METHODS In two laboratory studies, dogs (8 per group) that had been inoculated 30 days prior with 50 third-stage D. immitis larvae were randomized to treatment on Day 0 with placebo or combination product, at the minimum dose of 24 µg/kg moxidectin, 2 mg/kg sarolaner and 5 mg/kg pyrantel (as pamoate salt). Study 2 also included groups treated with tablets containing moxidectin-alone (24 µg/kg) or sarolaner-alone (2 mg/kg). Efficacy was evaluated ~ 5 months after inoculation by adult heartworm counts at necropsy. In the field study, 410 dogs ≥ 8 weeks-old from 23 USA veterinary clinics were treated for 11 months with either combination product at 24-48 µg/kg moxidectin, 2-4 mg/kg sarolaner and 5-10 mg/kg pyrantel (n = 272) or Heartgard® Plus (ivermectin/pyrantel) at the label recommended dose rate (n = 138). Efficacy was evaluated on Day 330 using antigen and microfilaria testing to assess adult heartworm infection. RESULTS In the laboratory studies, there were no heartworms recovered from any dog treated with the combination product or moxidectin alone and all dogs treated with placebo or sarolaner-alone were infected with 20-44 adult heartworms. In the field study, all dogs treated with the combination product tested negative for heartworm infection on Day 330, whereas two dogs treated with Heartgard® Plus tested positive. The Heartgard® Plus-treated dogs that tested heartworm positive were from the lower Mississippi River Valley region, where heartworm resistance has been confirmed to occur. The combination product was well tolerated in all studies. CONCLUSIONS In laboratory studies, no heartworms were recovered from dogs treated with a single dose of the novel combination product containing moxidectin, sarolaner and pyrantel. Additionally, in the field study no dog tested positive for adult heartworm infection when dosed with the combination product monthly for 11 months, while two dogs treated with Heartgard® Plus tested positive.
Collapse
Affiliation(s)
- Kristina Kryda
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Robert H. Six
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Kelly F. Walsh
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Susan J. Holzmer
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Sara Chapin
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Sean P. Mahabir
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Melanie Myers
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Tammy Inskeep
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Jady Rugg
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Blair Cundiff
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Aleah Pullins
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Michael Ulrich
- Cheri-Hill Kennel and Supply Inc., 17190 Polk Road, Stanwood, MI 49346 USA
| | | | - Tom L. McTier
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| | - Steven J. Maeder
- Veterinary Medicine Research and Development, Zoetis, Inc., 333 Portage St, Kalamazoo, MI 49007 USA
| |
Collapse
|
42
|
Self SW, Pulaski CN, McMahan CS, Brown DA, Yabsley MJ, Gettings JR. Regional and local temporal trends in the prevalence of canine heartworm infection in the contiguous United States: 2012-2018. Parasit Vectors 2019; 12:380. [PMID: 31362754 PMCID: PMC6668072 DOI: 10.1186/s13071-019-3633-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/22/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Canine heartworm disease is a potentially fatal disease for which treatment is financially burdensome for many pet owners. Prevention is strongly advocated by the veterinary community along with routine testing for infection during annual wellness examinations. Despite the availability of efficacious chemoprophylaxis, recent reports have suggested that the incidence of heartworm disease in domestic dogs is increasing. RESULTS Using data from tests for heartworm infection in the USA from January 2012 through September 2018, a Bayesian spatio-temporal binomial regression model was used to estimate the regional and local temporal trends of heartworm infection prevalence. The area with the largest increase in regional prevalence was found in the Lower Mississippi River Valley. Regional prevalence increased throughout the southeastern states and northward into Illinois and Indiana. Local (county-level) prevalence varied across the USA, with increasing prevalence occurring along most of the Atlantic coast, central United States, and western states. Clusters of decreasing prevalence were present along the Mississippi Alluvial Plain (a historically endemic area), Oklahoma and Kansas, and Florida. CONCLUSIONS Canine heartworm infection prevalence is increasing in much of the USA, both regionally and locally, despite veterinarian recommendations on prevention and testing. Additional steps should be taken to protect dogs, cats and ferrets. Further work is needed to identify the driving factors of the locally decreasing prevalence present along the Mississippi Alluvial plain, Florida, and other areas.
Collapse
Affiliation(s)
- Stella W. Self
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Cassan N. Pulaski
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Christopher S. McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - D. Andrew Brown
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 USA
| | - Jenna R. Gettings
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
43
|
McTier TL, Kryda K, Wachowski M, Mahabir S, Ramsey D, Rugg D, Mazaleski M, Therrien C, Adams E, Wolff T, Bowman DD. ProHeart® 12, a moxidectin extended-release injectable formulation for prevention of heartworm (Dirofilaria immitis) disease in dogs in the USA for 12 months. Parasit Vectors 2019; 12:369. [PMID: 31349867 PMCID: PMC6660952 DOI: 10.1186/s13071-019-3632-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The efficacy of an extended-release injectable moxidectin (0.5 mg/kg) suspension (ProHeart® 12) (PH 12) in preventing the development of Dirofilaria immitis in dogs for 12 months was investigated in laboratory and field studies in the USA. METHODS In each of two laboratory studies, 20 dogs ≥ 12 months of age were randomly allocated to receive a subcutaneous injection of saline or PH 12 on Day 0 and were then inoculated with 50 D. immitis third-stage larvae (L3) on Day 365. All dogs were necropsied ~ 5 months post-inoculation for adult worm counts. The field efficacy study included dogs ≥ 10 months of age from 19 veterinary clinics in the USA treated with either 20 monthly doses of Heartgard® Plus (HG Plus) (296 dogs) or two doses of PH 12 (297 dogs) on Days 0 and 365. Efficacy was determined on Days 365, 480 and 605 using adult HW antigen and microfilaria testing to assess adult HW infection. RESULTS PH 12 was 100% effective in preventing HW disease in all three of these studies. In the laboratory studies, no PH 12-treated dogs had any adult HWs, whereas all control dogs in both studies had adult HWs [geometric mean, 30.2 (range, 22-37) for Study 1 and 32.6 (22-44) for Study 2]. In the field study, all dogs treated with PH 12 tested negative for adult HW infection on all test days (Days, 365, 480 and 605), whereas four dogs receiving HG Plus (positive control) tested positive for HWs during the study (three dogs on Day 365 and one dog on Day 480). All four dogs treated with HG Plus that subsequently tested positive for HWs during the field study were from the lower Mississippi River Valley region, where HW resistance to macrocyclic lactone preventives has been confirmed to occur. PH 12 was significantly better than HG Plus in preventing heartworm disease in the field study (P = 0.0367). PH 12 was well-tolerated in both laboratory and field studies. CONCLUSIONS A single dose of ProHeart® 12 was 100% effective in preventing heartworm disease in dogs for a full year in both laboratory and field studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eric Adams
- Northern Biomedical Research, Spring Lake, MI USA
| | | | | |
Collapse
|
44
|
Prichard RK, Geary TG. Perspectives on the utility of moxidectin for the control of parasitic nematodes in the face of developing anthelmintic resistance. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:69-83. [PMID: 31229910 PMCID: PMC6593148 DOI: 10.1016/j.ijpddr.2019.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Macrocyclic lactone (ML) anthelmintics are the most important class of anthelmintics because of our high dependence on them for the control of nematode parasites and some ectoparasites in livestock, companion animals and in humans. However, resistance to MLs is of increasing concern. Resistance is commonplace throughout the world in nematode parasites of small ruminants and is of increasing concern in horses, cattle, dogs and other animals. It is suspected in Onchocerca volvulus in humans. In most animals, resistance first arose to the avermectins, such as ivermectin (IVM), and subsequently to moxidectin (MOX). Usually when parasite populations are ML-resistant, MOX is more effective than avermectins. MOX may have higher intrinsic potency against some parasites, especially filarial nematodes, than the avermectins. However, it clearly has a significantly different pharmacokinetic profile. It is highly distributed to lipid tissues, less likely to be removed by ABC efflux transporters, is poorly metabolized and has a long half-life. This results in effective concentrations persisting for longer in target hosts. It also has a high safety index. Limited data suggest that anthelmintic resistance may be overcome, at least temporarily, if a high concentration can be maintained at the site of the parasites for a prolonged period of time. Because of the properties of MOX, there are reasonable prospects that strains of parasites that are resistant to avermectins at currently recommended doses will be controlled by MOX if it can be administered at sufficiently high doses and in formulations that enhance its persistence in the host. This review examines the properties of MOX that support this contention and compares them with the properties of other MLs. The case for using MOX to better control ML-resistant parasites is summarised and some outstanding research questions are presented.
Collapse
Affiliation(s)
- Roger K Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada, H9X3V9.
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada, H9X3V9.
| |
Collapse
|
45
|
Hodgkinson JE, Kaplan RM, Kenyon F, Morgan ER, Park AW, Paterson S, Babayan SA, Beesley NJ, Britton C, Chaudhry U, Doyle SR, Ezenwa VO, Fenton A, Howell SB, Laing R, Mable BK, Matthews L, McIntyre J, Milne CE, Morrison TA, Prentice JC, Sargison ND, Williams DJL, Wolstenholme AJ, Devaney E. Refugia and anthelmintic resistance: Concepts and challenges. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:51-57. [PMID: 31125837 PMCID: PMC6531808 DOI: 10.1016/j.ijpddr.2019.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Anthelmintic resistance is a threat to global food security. In order to alleviate the selection pressure for resistance and maintain drug efficacy, management strategies increasingly aim to preserve a proportion of the parasite population in 'refugia', unexposed to treatment. While persuasive in its logic, and widely advocated as best practice, evidence for the ability of refugia-based approaches to slow the development of drug resistance in parasitic helminths is currently limited. Moreover, the conditions needed for refugia to work, or how transferable those are between parasite-host systems, are not known. This review, born of an international workshop, seeks to deconstruct the concept of refugia and examine its assumptions and applicability in different situations. We conclude that factors potentially important to refugia, such as the fitness cost of drug resistance, the degree of mixing between parasite sub-populations selected through treatment or not, and the impact of parasite life-history, genetics and environment on the population dynamics of resistance, vary widely between systems. The success of attempts to generate refugia to limit anthelmintic drug resistance are therefore likely to be highly dependent on the system in hand. Additional research is needed on the concept of refugia and the underlying principles for its application across systems, as well as empirical studies within systems that prove and optimise its usefulness.
Collapse
Affiliation(s)
- Jane E Hodgkinson
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Ray M Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Fiona Kenyon
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Eric R Morgan
- School of Biological Sciences, Queen's University Belfast, Chlorine Gardens, Belfast, BT9 5BL, UK
| | - Andrew W Park
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA; Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, UK
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Nicola J Beesley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, EH25 9RG, UK
| | - Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Vanessa O Ezenwa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA; Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, UK
| | - Sue B Howell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Louise Matthews
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Jennifer McIntyre
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Catherine E Milne
- SRUC, Peter Wilson Building, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Thomas A Morrison
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Jamie C Prentice
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Neil D Sargison
- Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, EH25 9RG, UK
| | - Diana J L Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
46
|
Bakowski MA, Shiroodi RK, Liu R, Olejniczak J, Yang B, Gagaring K, Guo H, White PM, Chappell L, Debec A, Landmann F, Dubben B, Lenz F, Struever D, Ehrens A, Frohberger SJ, Sjoberg H, Pionnier N, Murphy E, Archer J, Steven A, Chunda VC, Fombad FF, Chounna PW, Njouendou AJ, Metuge HM, Ndzeshang BL, Gandjui NV, Akumtoh DN, Kwenti TDB, Woods AK, Joseph SB, Hull MV, Xiong W, Kuhen KL, Taylor MJ, Wanji S, Turner JD, Hübner MP, Hoerauf A, Chatterjee AK, Roland J, Tremblay MS, Schultz PG, Sullivan W, Chu XJ, Petrassi HM, McNamara CW. Discovery of short-course antiwolbachial quinazolines for elimination of filarial worm infections. Sci Transl Med 2019; 11:11/491/eaav3523. [DOI: 10.1126/scitranslmed.aav3523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targetsWolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination ofWolbachiain the in vivoLitomosoides sigmodontisfilarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantifyWolbachiaelimination inBrugia pahangifilarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed inL. sigmodontis,Brugia malayi, andOnchocerca ochengiin vivo preclinical models of filarial disease and in vitro selectivity againstLoa loa(a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.
Collapse
|
47
|
Berrafato T, Coates R, Reaves BJ, Kulke D, Wolstenholme AJ. Macrocyclic lactone anthelmintic-induced leukocyte binding to Dirofilaria immitis microfilariae: Influence of the drug resistance status of the parasite. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:45-50. [PMID: 31054498 PMCID: PMC6500911 DOI: 10.1016/j.ijpddr.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
The macrocyclic lactone anthelmintics are the only class of drug currently used to prevent heartworm disease. Their extremely high potency in vivo is not mirrored by their activity against Dirofilaria immitis larvae in vitro, leading to suggestions that they may require host immune functions to kill the parasites. We have previously shown that ivermectin stimulates the binding of canine peripheral blood mononuclear cells (PBMCs) and polymorphonuclear leukocytes (PMNs) to D. immitis microfilariae (Mf). We have now extended these studies to moxidectin and examined the ability of both drugs to stimulate canine PBMC and PMN attachment to Mf from multiple strains of D. immitis, including two that are proven to be resistant to ivermectin in vivo. Both ivermectin and moxidectin significantly increased the percentage of drug-susceptible parasites with cells attached at very low concentrations (<10 nM), but much higher concentrations of ivermectin (>100 nM) were required to increase the percentage of the two resistant strains, Yazoo-2013 and Metairie-2014, with cells attached. Moxidectin increased the percentage of the two resistant strains with cells attached at lower concentrations (<10 nM) than did ivermectin. The attachment of the PBMCs and PMNs did not result in any parasite killing in vitro. These data support the biological relevance of the drug-stimulated attachment of canine leukocytes to D. immitis Mf and suggest that this phenomenon is related to the drug resistance status of the parasites. Ivermectin promotes attachment of PMN and PBMC to D. immitis microfilariae in vitro. Moxidectin has a similar effect. Higher ivermectin concentrations are needed if Mf of ML-resistant strains are used. Moxidectin is more effective at promoting cell attachment to resistant Mf. Neither PMN nor PBMC attachment does not result in parasite death in vitro.
Collapse
Affiliation(s)
- Tessa Berrafato
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Ruby Coates
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Barbara J Reaves
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Daniel Kulke
- Bayer Animal Health GmbH, 51373, Leverkusen, Germany.
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
48
|
Ballesteros C, Pulaski CN, Bourguinat C, Keller K, Prichard RK, Geary TG. Clinical validation of molecular markers of macrocyclic lactone resistance in Dirofilaria immitis. Int J Parasitol Drugs Drug Resist 2018; 8:596-606. [PMID: 30031685 PMCID: PMC6288007 DOI: 10.1016/j.ijpddr.2018.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Prophylaxis with macrocyclic lactone (ML) endectocides is the primary strategy for heartworm control. Recent evidence has confirmed that ML-resistant Dirofilaria immitis isolates have evolved. Comparison of genomes of ML-resistant isolates show they are genetically distinct from wild-type populations. Previously, we identified single nucleotide polymorphisms (SNPs) that are correlated with phenotypic ML resistance. Since reliable in vitro assays are not available to detect ML resistance in L3 or microfilarial stages, the failure to reduce microfilaraemia in infected dogs treated with an ML has been proposed as a surrogate clinical assay for this purpose. The goal of our study was to validate the genotype-phenotype correlation between SNPs associated with ML resistance and failure to reduce microfilaraemia following ML treatment and to identify a minimal number of SNPs that could be used to confirm ML resistance. In this study, 29 participating veterinary clinics received a total of 148 kits containing supplies for blood collection, dosing and prepaid shipping. Patients recruited after a diagnosis of heartworm infection were treated with a single standard dose of Advantage Multi® and a blood sample taken pre- and approximately 2-4 weeks post-treatment. Each sample was processed by performing a modified Knott's Test followed by isolation of microfilariae, genomic DNA extraction and MiSeq sequencing of regions encompassing 10 SNP sites highly correlated with ML resistance. We observed significant correlation of SNP loci frequencies with the ML microfilaricidal response phenotype. Although all predictive SNP combination models performed well, a 2-SNP model was superior to other models tested. The predictive ability of these markers for ML-resistant heartworms should be further evaluated in clinical and epidemiological contexts.
Collapse
Affiliation(s)
- Cristina Ballesteros
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada.
| | - Cassan N Pulaski
- School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Catherine Bourguinat
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada
| | - Kathy Keller
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada
| | - Roger K Prichard
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada.
| | - Timothy G Geary
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, H9X 3V9, QC, Canada.
| |
Collapse
|
49
|
Figueiredo LA, Rebouças TF, Ferreira SR, Rodrigues-Luiz GF, Miranda RC, Araujo RN, Fujiwara RT. Dominance of P-glycoprotein 12 in phenotypic resistance conversion against ivermectin in Caenorhabditis elegans. PLoS One 2018; 13:e0192995. [PMID: 29474375 PMCID: PMC5825046 DOI: 10.1371/journal.pone.0192995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/03/2018] [Indexed: 12/16/2022] Open
Abstract
While diseases caused by nematodes remains a considerable drawback for the livestock, agriculture and public health, anthelmintics drug resistance has been observed over the past years and is a major concern for parasite control. Ivermectin, initially considered as a highly potent drug, currently presents a reduced anti-helminthic efficacy, which is influenced by expression of several ATP-binding cassette transporters (ABC), among them the P-glycoproteins (Pgps). Here we present some evidences of Pgps dominance during Ivermectin resistance/susceptibility using Pgps double silencing in C. elegans and the phylogenetic relationship of Pgps among nematodes, which strengthen the use of this model for study of drug resistance in nematodes. Firstly, we evaluated the quantitative gene expression of 12 out the 15 known Pgps from resistant and WT strains of C. elegans, we demonstrated the upregulation of Pgps 12 and 13 and downregulation of all remaining Pgps in ivermectin resistant strain. By using an RNAi loss-of-function approach we observed that Pgp 12 gene silencing reverts the resistance phenotype to ivermectin, while Pgp 4 gene silencing does not alter the resistance phenotype but induces a resistance in wild type strain. Interestingly, the dual silencing of Pgp 12 and Pgp 4 expression demonstrates the dominance of phenotype promoted by Pgp 12 silencing. Finally, in silico analysis reveals a close relationship between Pgps from C. elegans and several nematodes parasites. Taken together, our results indicate that Pgp 12 is crucial for the resistance to ivermectin and thus a good candidate for further studies aiming to develop specific inhibitors to this transporter, allowing the continuous use of ivermectin to control the burden on animal and human health inflicted by nematode parasites globally.
Collapse
Affiliation(s)
- Luiza Almeida Figueiredo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thais Fuscaldi Rebouças
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sebastião Rodrigo Ferreira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Flavia Rodrigues-Luiz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
50
|
Drake J, Wiseman S. Increasing incidence of Dirofilaria immitis in dogs in USA with focus on the southeast region 2013-2016. Parasit Vectors 2018; 11:39. [PMID: 29343304 PMCID: PMC5773159 DOI: 10.1186/s13071-018-2631-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023] Open
Abstract
Background A recent American Heartworm Society (AHS) survey on the incidence of adult heartworm infections in dogs in the United States of America showed a 21.7% increase in the average cases per veterinary clinic from 2013 to 2016. The analysis reported here was performed to see if heartworm testing results available via the Companion Animal Parasite Council (CAPC) aligned with the AHS survey and whether changes in heartworm preventive dispensing accounts for the increased incidence. The resistance of Dirofilaria immitis to macrocyclic lactones (MLs) has been previously reported. Methods An analysis of 7–9 million heartworm antigen tests reported annually to the Companion Animal Parasite Council (CAPC) from 2013 to 2016 was conducted and compared to the 2016 AHS survey. A state-by-state analysis across the southeastern USA was also performed. National heartworm preventive dispensing data were obtained from Vetstreet LLC and analyzed. All oral, topical and injectable heartworm preventives were included in this analysis, with injectable moxidectin counting as six doses. Results Positive antigen tests increased by 15.28% from 2013 to 2016, similar to the 21.7% increase reported by the AHS survey. Incidence in the southeastern USA increased by17.9% while the rest of USA incidence increased by 11.4%. State-by-state analysis across the southeastern USA revealed an increased positive test frequency greater than 10% in 9 of 12 states evaluated. During this time, the overall proportion of dogs receiving heartworm prophylaxis remained relatively unchanged. Approximately 2/3 of the dogs in the USA received no heartworm prevention each year. Conclusion These CAPC data show the rate of positive heartworm tests increasing significantly (P < 0.0001) in the USA from 2013 to 2016, with a higher rate of increase in the southeastern USA than nationally. Only 1/3 of dogs in the USA were dispensed one or more doses of heartworm prevention annually by veterinarians, averaging 8.6 monthly doses/year. Veterinarians and pet owners should work together to follow CAPC and AHS guidelines to protect dogs from infection with D. immitis. Lack of preventive use and the emergence of heartworm resistance to MLs could both be impacting the increased rate of positive heartworm tests in dogs.
Collapse
Affiliation(s)
- Jason Drake
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN, 46140, USA.
| | | |
Collapse
|