1
|
Tabbabi A, Mizushima D, Yamamoto DS, Zhioua E, Kato H. Comparative analysis of the microbiota of sand fly vectors of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in southeast Tunisia; ecotype shapes the bacterial community structure. PLoS Negl Trop Dis 2024; 18:e0012458. [PMID: 39236074 PMCID: PMC11407667 DOI: 10.1371/journal.pntd.0012458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Phlebotomine sand flies are vectors of the protozoan parasite Leishmania spp. Although the intestinal microbiota is involved in a wide range of biological and physiological processes and has the potential to alter vector competence, little is known about the impact of host species and environment on the gut microbiome. To address this issue, a comparative analysis of the microbiota of sand fly vector populations of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in Tunisia was performed. Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing were used to characterize and compare the overall bacterial and fungal composition of field-collected sand flies: Phlebotomus papatasi, Ph. perniciosus, Ph. riouxi, and Ph. sergenti. Thirty-eight bacterial genera belonging to five phyla were identified in 117 female specimens. The similarities and differences between the microbiome data from different samples collected from three collections were determined using principal coordinate analysis (PCoA). Substantial variations in the bacterial composition were found between geographically distinct populations of the same sand fly species, but not between different species at the same location, suggesting that the microbiota content was structured according to environmental factors rather than host species. These findings suggest that host phylogeny may play a minor role in determining the insect gut microbiota, and its potential to affect the transmission of the Leishmania parasite appear to be very low. These results highlight the need for further studies to decode sand fly Leishmania-microbiota interactions, as even the same bacterial species, such as Enterococcus faecalis, can exert completely opposite effects when confronted with different pathogens within various host insects and vice versa.
Collapse
Affiliation(s)
- Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Elyes Zhioua
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Maleki-Ravasan N, Ghafari SM, Najafzadeh N, Karimian F, Darzi F, Davoudian R, Farshbaf Pourabad R, Parvizi P. Characterization of bacteria expectorated during forced salivation of the Phlebotomus papatasi: A neglected component of sand fly infectious inoculums. PLoS Negl Trop Dis 2024; 18:e0012165. [PMID: 38771858 PMCID: PMC11108182 DOI: 10.1371/journal.pntd.0012165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 05/23/2024] Open
Abstract
The infectious inoculum of a sand fly, apart from its metacyclic promastigotes, is composed of factors derived from both the parasite and the vector. Vector-derived factors, including salivary proteins and the gut microbiota, are essential for the establishment and enhancement of infection. However, the type and the number of bacteria egested during salivation is unclear. In the present study, sand flies of Phlebotomus papatasi were gathered from three locations in hyperendemic focus of zoonotic cutaneous leishmaniasis (ZCL) in Isfahan Province, Iran. By using the forced salivation assay and targeting the 16S rRNA barcode gene, egested bacteria were characterized in 99 (44%) out of 224 sand flies. Culture-dependent and culture-independent methods identified the members of Enterobacter cloacae and Spiroplasma species as dominant taxa, respectively. Ten top genera of Spiroplasma, Ralstonia, Acinetobacter, Reyranella, Undibacterium, Bryobacter, Corynebacterium, Cutibacterium, Psychrobacter, and Wolbachia constituted >80% of the saliva microbiome. Phylogenetic analysis displayed the presence of only one bacterial species for the Spiroplasma, Ralstonia, Reyranella, Bryobacter and Wolbachia, two distinct species for Cutibacterium, three for Undibacterium and Psychrobacter, 16 for Acinetobacter, and 27 for Corynebacterium, in the saliva. The abundance of microbes in P. papatasi saliva was determined by incorporating the data on the read counts and the copy number of 16S rRNA gene, about 9,000 bacterial cells, per sand fly. Both microbiological and metagenomic data indicate that bacteria are constant companions of Leishmania, from the intestine of the vector to the vertebrate host. This is the first forced salivation experiment in a sand fly, addressing key questions on infectious bite and competent vectors.
Collapse
Affiliation(s)
| | | | | | - Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Darzi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Parviz Parvizi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Ghassemi M, Akhavan AA, Zahraei-Ramezani A, Yakhchali B, Zarean MR, Jafari R, Oshaghi MA. Assessing Survival of Transgenic Bacteria, Serratia AS1 and Enterobacter cloacae, in Sugar Bait, White Saxaul Plant ( Haloxylon persicum) and Rodent Barrow's Soil, A Contained-Field Study for Paratransgenesis Approach. J Arthropod Borne Dis 2024; 18:12-27. [PMID: 39005545 PMCID: PMC11239369 DOI: 10.18502/jad.v18i1.15668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 07/16/2024] Open
Abstract
Background The viability and persistence of engineered bacterium candidates in field conditions is one of the considerable challenges in the paratransgenesis approach to fighting vector-borne diseases. Methods In this study two engineered bacterium candidates to produce paratransgenic sand flies, Serratia AS1 and Enterobacter cloacae expressing m-Cherry fluorescent were applied on the leaves of the white saxaul plant (Haloxylon persicum), sugar bait, and rodent burrow soil and their persistent time was tested in desert condition, Matin Abad County, Isfahan, August 2022. A PBS suspension of 109 cells/ml was used for sugar bait, spraying on plant leaves (∼10 cm2) and 10 cm2 of rodent burrow soil. Sand fly samples were taken daily and were plated on LB Agar and the fluorescent cells were counted after 24 hours. Results Time course in general caused a decrease in the number of bacteria for both strains. The two strains were persistent in sugar bait and on plant leaves for four days and on soil for two days. Although there were slight differences between the number of the bacteria in sugar baits, which was not significant (P< 0.05). The number of E. cloacae surviving on plant and in soil were significantly (P< 0.0001 and P= 0.046) higher than Serratia AS1. Conclusion This study shows that plants or sugar bait are useful routes for delivery of the transformed bacteria for the paratransgenesis approach, although, the bacteria ought to be sprayed on plants or sugar baits should be replaced with new ones in four days intervals.
Collapse
Affiliation(s)
- Marzieh Ghassemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Zahraei-Ramezani
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Yakhchali
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Reza Zarean
- Esfahan Health Research Station, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Esfahan Health Research Station, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Azarm A, Koosha M, Dalimi A, Zahraie-Ramazani A, Akhavan AA, Saeidi Z, Mohebali M, Azam K, Vatandoost H, Oshaghi MA. Association Between Wolbachia Infection and Susceptibility to Deltamethrin Insecticide in Phlebotomus papatasi (Diptera: Psychodidae), the Main Vector of Zoonotic Cutaneous Leishmaniasis. Vector Borne Zoonotic Dis 2024; 24:159-165. [PMID: 38016137 DOI: 10.1089/vbz.2023.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Background: Phlebotomus papatasi (Diptera: Psychodidae) is the main vector of zoonotic cutaneous leishmaniasis. Wolbachia is a symbiotic alphaproteobacteria of arthropods that can be involved in susceptibility or resistance. This study aimed to investigate the relationship between Wolbachia and Deltamethrin susceptibility/resistance in Ph. papatasi. Deltamethrin filter papers (0.00002%) were used to test sand fly field collected from southern Iran. After the test, PCR amplification of the Wolbachia surface protein gene (wsp) was used to measure Wolbachia infection rate in the killed, surviving, and control groups. Result: The rates of infection by Wolbachia strain (wPap, super group A) differed between killed (susceptible) and surviving (resistant) Ph. papatasi specimens. The rate of Wolbachia infection in susceptible individuals was more than twice (2.3) (39% vs. 17%) in resistant individuals with the same genetic background. This difference was highly significant (p < 0.001), indicating a positive association between Wolbachia infection and susceptibility to Deltamethrin. In addition, the results showed that Deltamethrin can act as a PCR inhibitor during detection of Wolbachia in Ph. papatasi. Conclusion: Results of this study show that Wolbachia is associated with Deltamethrin susceptibility level in Ph. papatasi. Also, as Deltamethrin has been identified as a PCR inhibitor, great care must be taken in interpreting Wolbachia infection status in infected populations. The results of this study may provide information for a better understanding of the host-symbiont relationship, as well as application of host symbiosis in pest management.
Collapse
Affiliation(s)
- Amrollah Azarm
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Medical Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Zahraie-Ramazani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Saeidi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology and School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Azam
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Vaselek S, Sarac BE, Uzunkaya AD, Yilmaz A, Karaaslan C, Alten B. Identification of Ochrobactrum as a bacteria with transstadial transmission and potential for application in paratransgenic control of leishmaniasis. Parasitol Res 2024; 123:82. [PMID: 38175278 DOI: 10.1007/s00436-023-08087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Leishmaniasis is a zoonotic vector-borne disease with worldwide distribution. All current approaches in leishmaniasis control or development of vaccines/cures showed only limited success. Recently, paratransgenesis has been marked as a promising strategy for leishmaniasis control. Thus, the investigations of the gut microbial content of sand flies have gained popularity. Gut microbial composition of the laboratory colony of Phlebotomus papatasi was investigated via microbial culturomics approach which refers to the combination of multiple culture conditions and different selective and/or enriched culture mediums, followed by 16S rDNA sequencing. Investigations were conducted on three offspring generations, with six samplings of immature stages (four larval samplings, one pre-pupa, one pupa) and samplings of adults before and after blood feeding. The aim was to determine if microbiome changes during the sand fly development and to identify bacteria with transstadial potential. The presence of 8 bacterial taxa (Bacillus sp., Terribacillus sp., Staphylococcus sp., Alcaligenes sp., Microbacterium sp., Leucobacter sp., Ochrobactrum sp. and Enterobacter sp.), 2 fungi (Fusarium sp. and Acremonium sp.) and 1 yeast (Candida sp.) were recorded. Gram-positive bacteria were more diverse, but gram-negative bacteria were more abundant. All taxa were recorded among immature stage samples, while only one bacterium was detected in adults. Microbial diversity among larval samples was stable, with a steady decrease in pre-pupa and pupa, resulting in the survival of only Ochrobactrum sp. in adults. Abundance of microbes was higher when larvae were actively feeding, with a gradual decrease after larvae stopped feeding and commenced pupation. Ochrobactrum sp. is the bacteria with transstadial potential, worthy of future in-depth analysis for the application in paratransgenic approach for the control of Leishmania sp.
Collapse
Affiliation(s)
- Slavica Vaselek
- Hacettepe University, Faculty of Science, Department of Biology, Ecology Section, Ankara, Türkiye.
| | - Basak Ezgi Sarac
- Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Türkiye
| | - Ali Doruk Uzunkaya
- Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Türkiye
| | - Ayda Yilmaz
- Hacettepe University, Faculty of Science, Department of Biology, Ecology Section, Ankara, Türkiye
| | - Cagatay Karaaslan
- Hacettepe University, Faculty of Science, Department of Biology, Molecular Biology Section, Ankara, Türkiye
| | - Bulent Alten
- Hacettepe University, Faculty of Science, Department of Biology, Ecology Section, Ankara, Türkiye
| |
Collapse
|
6
|
Sakda P, Xiang X, Song Z, Wu Y, Zhou L. Impact of Season on Intestinal Bacterial Communities and Pathogenic Diversity in Two Captive Duck Species. Animals (Basel) 2023; 13:3879. [PMID: 38136916 PMCID: PMC10740475 DOI: 10.3390/ani13243879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Vertebrates and their gut bacteria interact in complex and mutually beneficial ways. The intestinal microbial composition is influenced by several external influences. In addition to food, the abiotic elements of the environment, such as temperature, humidity, and seasonal fluctuation are also important determinants. Fecal samples were collected from two captive duck species, Baikal teal (Sibirionetta formosa) and common teal (Anas crecca) across four seasons (summer, autumn, winter, and spring). These ducks were consistently fed the same diet throughout the entire experiment. High throughput sequencing (Illumina Mi-seq) was employed to analyze the V4-V5 region of the 16sRNA gene. The dominant phyla in all seasons were Proteobacteria and Firmicutes. Interestingly, the alpha diversity was higher in winter for both species. The NMDS, PCoA, and ANOSIM analysis showed the distinct clustering of bacterial composition between different seasons, while no significant differences were discovered between duck species within the same season. In addition, LefSe analysis demonstrated specific biomarkers in different seasons, with the highest number revealed in winter. The co-occurrence network analysis also showed that during winter, the network illustrated a more intricate structure with the greatest number of nodes and edges. However, this study identified ten potentially pathogenic bacterial species, which showed significantly enhanced diversity and abundance throughout the summer. Overall, our results revealed that season mainly regulated the intestinal bacterial community composition and pathogenic bacteria of captive ducks under the instant diet. This study provides an important new understanding of the seasonal variations in captive wild ducks' intestinal bacterial community structure. The information available here may be essential data for preventing and controlling infections caused by pathogenic bacteria in captive waterbirds.
Collapse
Affiliation(s)
- Patthanan Sakda
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Zhongqiao Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
| | - Yuannuo Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Lizhi Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (P.S.); (Z.S.); (Y.W.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| |
Collapse
|
7
|
Azarm A, Vatandoost H, Koosha M, Ahmad Akhavan A, Mohebali M, Saeidi Z, Dehghan A, Ali Oshaghi M. Susceptibility of Phlebotomus papatasi (Diptera: Psychodidae) against DDT and Deltamethrin in an Endemic Focus of Zoonotic Cutaneous Leishmaniasis in Iran. J Arthropod Borne Dis 2023; 17:333-343. [PMID: 38868678 PMCID: PMC11164618 DOI: 10.18502/jad.v17i4.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/14/2024] Open
Abstract
Background Phlebotomus papatasi (Diptera: Psychodidae) is the main vector of zoonotic cutaneous leishmaniasis (ZCL) in Iran. The nonstandard use of pesticides against pests, particularly in agriculture, indirectly has caused the development of resistance and, consequently, the threat of control measures in ZCL endemic areas. Up to 2023, several reports of resistance in Ph. papatasi have been declared in the Old World. The purpose of this study was to measure the lethal time (LT50 and LT90) of Ph. papatasi sand flies in the ZCL endemic center of Esfahan to DDT and deltamethrin insecticides. Methods Sand flies were collected in Borkhar and were tested using WHO adult mosquito test kit against DDT 4% and deltamethrin 0.0002%. The sand fly's survival was recorded during exposure time in 225, 450|, 900, 1800, and 3600-seconds' intervals for DDT and Deltamethrin and they were allowed to recover for 24 hours. Then LT50 and LT90 were analyzed using probit software. Phlebotomus papatasi were identified using morphological keys and other sand flies' species were excluded from the analysis. Results The insecticide against female Ph. papatasi revealed hundred percent mortality when exposed to DDT 4% and deltamethrin 0.0002%. The LT50 and LT90 were 19.32 and 22.74 minutes for DDT 4% and 39.92 and 51.33 minutes for deltamethrin 0.0002% respectively. Conclusion Results of this study revealed that Ph. papatasi is still susceptible to DDT and deltamethrin. This data provides valuable knowledge to implement effective control strategies against ZCL main vector and help to manage insecticide resistance in the region.
Collapse
Affiliation(s)
- Amrollah Azarm
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Koosha
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Saeidi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Awat Dehghan
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ghassemi M, Akhavan AA, Zahraei-Ramazani A, Yakhchali B, Arandian MH, Jafari R, Akhlaghi M, Shirani-Bidabadi L, Azam K, Koosha M, Oshaghi MA. Rodents as vehicle for delivery of transgenic bacteria to make paratransgenic sand fly vectors of cutaneous leishmaniasis in field condition. Sci Rep 2023; 13:14912. [PMID: 37689736 PMCID: PMC10492802 DOI: 10.1038/s41598-023-41526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023] Open
Abstract
Vector-borne diseases, among them leishmaniasis, cause more than 700,000 deaths annually. The lack of an effective vaccination and the increasing resistance of sand flies to insecticides require the urgent development of innovative approaches to contain the disease. The use of engineered bacteria that express anti-parasite molecules (paratransgenesis) shows much promise. However, a challenge for implementation of this strategy is to devise means to introduce modified bacteria into sand flies in the field. In this study, we use rodent food bait as a delivery strategy to introduce two mCherry-fluorescent bacteria, Serratia AS1 and Enterobacter cloacae, into adult sand flies in field settings. Bacteria-infected food was provided to Rhombomys opimus rodents. These bacteria transiently pass through the rodent alimentary tract and are delivered to larval habitats with the rodent feces. The feces are ingested by sand fly larvae and, in the case of Serratia AS1, are trans-stadially transmitted to adults. This is the first report of targeting delivery of Serratia AS1 in a paratransgenic system to control transmission of leishmaniasis under field condition. This novel strategy shows promise for delivering transgenic bacteria to Leishmania vectors in the field.
Collapse
Affiliation(s)
- Marzieh Ghassemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Amir Ahmad Akhavan
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Alireza Zahraei-Ramazani
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Yakhchali
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Islamic Republic of Iran
| | - Mohammad Hossein Arandian
- Isfahan Health Research Station, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Jafari
- Isfahan Health Research Station, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Maryam Akhlaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Leila Shirani-Bidabadi
- Department of Vector Biology and Control, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Kamal Azam
- Department of Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mona Koosha
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Ali Oshaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
9
|
Pirmohammadi M, Talaei-Hassanloui R, Moosa-Kazemi SH, Rassi Y, Rahimi S, Fatemi M, Ghassemi M, Hossein Arandian M, Jafari R, Golzan SR, Akhavan AA, Vatandoost H. Evaluation of the Entomopathogenic Fungus Beauveria bassiana on Different Stages of Phlebotomus papatasi (Diptera: Psychodidae), Vector of Zoonotic Cutaneous Leishmaniasis in Iran. J Arthropod Borne Dis 2023; 17:257-271. [PMID: 38860196 PMCID: PMC11162544 DOI: 10.18502/jad.v17i3.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 06/12/2024] Open
Abstract
Background Zoonotic cutaneous leishmaniasis is a major public health problem in Iran with the main vector of Phlebotomus papatasi. The use of entomopathogenic fungi for biological control of the vector is a potential substitute for the current methods which are being used. The purpose of the current study was to assess the virulence of two local isolates of Beauveria bassiana (OZ2 and TV) against Ph. papatasi. Methods To perform the bioassay test, fungal suspensions were applied for every stage of the sand fly life cycle. The mortality rate, longevity, and number of eggs laid were determined. Also, the probability of fungal survival on the surface of rodent's body was assessed. Results The longevity of infected adult sand flies with both isolates of B. bassiana was significantly lower (P< 0.05) in comparison to the negative control. The estimated Lethal concentration 50 (LC50) values for adult female and male sand flies treated with OZ2 isolate were 1.4×106 and 2.2×107 conidia/ml, respectively, while they were 6.8×106 and 2.3×108 conidia/ml for TV isolate, respectively. Both isolates of B. bassiana exhibited nonsignificant mortality rates in sand fly larvae and pupae and fecundity rate (P> 0.05). According to our findings for both isolates, the fungus continued to spread throughout the surface of the rodent's body for 144 hours after spraying. Conclusion The current study demonstrated that both isolates of B. bassiana have considerable biological control capacity against adult sand flies.
Collapse
Affiliation(s)
- Masoumeh Pirmohammadi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Talaei-Hassanloui
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Hassan Moosa-Kazemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yavar Rassi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Rahimi
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahboubeh Fatemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghassemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Arandian
- Esfahan Health Research Station, School of Public Health, Tehran University of Medical Sciences, Esfahan, Iran
| | - Reza Jafari
- Esfahan Health Research Station, School of Public Health, Tehran University of Medical Sciences, Esfahan, Iran
| | - Seyedeh Reyhaneh Golzan
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Amir Ahmad Akhavan
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute of Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Veysi A, Kababian M, Khalifeh Gholi M, Godini K, Vatandoost H, Saghafipour A. Comparing the Bacterial Flora of Insectary and Filed Strains of Supella longipalpa (Blattaria: Ectobiidae) and Their Antibiotic Resistant Pattern in Qom Province, Central Iran. J Arthropod Borne Dis 2023; 17:197-205. [PMID: 38860199 PMCID: PMC11162543 DOI: 10.18502/jad.v17i3.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/08/2023] [Indexed: 06/12/2024] Open
Abstract
Background Cockroaches play a role in the mechanical transmission of microbial pathogens. This study was designed to determine the isolated bacteria and their susceptibility to conventional antibiotics from brown-banded cockroach, Supella longipalpa, in Qom province, central Iran. Methods In this cross-sectional study, brown-banded cockroaches were bred in an insectary and caught from hospitals of Qom. The samples were taken from the surface and alimentary canal and then cultured on microbial culture media; next, grown specimens were identified using differential culture media. Finally, after performing diagnostic tests and identifying the bacteria species, their susceptibility to various antibiotics was evaluated. Results A total of 120 adult cockroaches from the insectary and hospitals were included in the study. Ten bacterial genera were found; nine were Gram-negative and one was Gram-positive. The genus Klebsiella, Enterobacter, Staphylococcus, Citrobacter and Hafnia were isolated only from the hospital strain. On the other hand, Pseudomonas and Escherichia from both groups and other species such as Salmonella, Proteus and Shigella were isolated only from laboratory strains. The highest antibiotic resistance among Gram-positive cocci and Gram-negative bacilli were 100.0% and 98.1% for ampicillin and Ceftazidime, respectively. Conclusion The results of this study showed that various pathogenic bacteria harbored by brown-banded cockroaches. Moreover, it was found that most of these bacteria belong to the Enterobacteriaceae family, which can be pathogenic and thus threaten human health.
Collapse
Affiliation(s)
- Arshad Veysi
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Majid Kababian
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khalifeh Gholi
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Kazem Godini
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hassan Vatandoost
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abedin Saghafipour
- Department of Public Health, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
11
|
Martinez V, Matabang MA, Miller D, Aggarwal R, LaFortune A. First case report on Empedobacter falsenii bacteremia. IDCases 2023; 33:e01814. [PMID: 37645528 PMCID: PMC10461116 DOI: 10.1016/j.idcr.2023.e01814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 08/31/2023] Open
Abstract
Empedobacter falsenii, formerly known as Wautersiella falsenii, was first described in 2006. It is a non-motile, non-fermenting, gram-negative rod, which grows aerobically. A handful of case reports have described its isolation from respiratory, urinary and abscess samples. Besides clinical specimens, it has also been isolated from metalworking fluids and aerosols, carpet surfaces and polluted soils. However, to our knowledge, this is the first case report that describes bacteremia from Empedobacter falsenii. We present a 56-year-old male with liver cirrhosis, congestive heart failure and substance abuse disorder, who was admitted in a community hospital in the Bronx, New York for bacteremia of the said organism. This bacterium may serve as a reservoir for resistance genes, such as ERB, tetX and aadS, posing dangers to immunocompromised or hospitalized patients, highlighting the need to study this organism further.
Collapse
Affiliation(s)
- Vince Martinez
- Department of Medicine, Lincoln Medical Center, The Bronx, New York, United States
| | | | - Dwayvania Miller
- Department of Medicine, Lincoln Medical Center, The Bronx, New York, United States
| | - Richa Aggarwal
- Department of Medicine, Lincoln Medical Center, The Bronx, New York, United States
| | - Alexander LaFortune
- Department of Medicine, Lincoln Medical Center, The Bronx, New York, United States
| |
Collapse
|
12
|
Chamankar B, Maleki-Ravasan N, Karami M, Forouzan E, Karimian F, Naeimi S, Choobdar N. The structure and diversity of microbial communities in Paederus fuscipes (Coleoptera: Staphylinidae): from ecological paradigm to pathobiome. MICROBIOME 2023; 11:11. [PMID: 36670494 PMCID: PMC9862579 DOI: 10.1186/s40168-022-01456-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Paederus fuscipes is medically the most famous rove beetle, which causes dermatitis or conjunctivitis in humans, as well as gastrointestinal toxicosis in livestock, via releasing toxic hemolymph containing pederin. Pedrin biosynthesis genes have been identified in uncultured Pseudomonas-like endosymbionts that are speculated to be acquired through a horizontal transfer. However, the composition of the P. fuscipes microbial community, especially of the gut and genital microbiome, remains unclear. This study was aimed to characterize the structure and diversity of P. fuscipes-associated bacterial communities in terms of gender, organ, and location using the Illumina HiSeq platform in the southern littorals of Caspian Sea. RESULTS The OTUs identified from P. fuscipes specimens were collapsed into 40 phyla, 112 classes, 249 orders, 365 families, 576 genera, and 106 species. The most abundant families were Pseudomonadaceae, Spiroplasmataceae, Weeksellaceae, Enterococcaceae, and Rhizobiaceae, respectively. Thirty top genera made up > 94% of the P. fuscipes microbiome, with predominating Pseudomonas, followed by the Spiroplasma, Apibacter, Enterococcus, Dysgonomonas, Sebaldella, Ruminococcus, and Wolbachia. Interesting dissimilarities were also discovered within and between the beetle microbiomes in terms of genders and organs. Analyses showed that Spiroplasma / Apibacter as well as Pseudomonas / Pseudomonas were the most abundant in the genitals / intestines of male and female beetles, respectively. Bacterial richness did not display any significant difference in the three provinces but was higher in male beetles than in females and more in the genitals than intestines. CONCLUSIONS The present study identified Pseudomonas-like endobacterium as a common symbiont of P. fuscipes beetles; this bacterium begins its journey from gut and genitalia of females to reach the male rove beetles. Additionally, male and female rove beetles were characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes. Evidence of the extension of P. fuscipes microbiome from the environmental paradigm to the pathobiome was also presented herein. A comprehensive survey of P. fuscipes microbiome components may eventually lead to ecological insights into the production and utilization of defensive compound of pederin and also the management of linear dermatitis with the use of available antibiotics against bacterial pathogens released by the beetles. Video Abstract.
Collapse
Affiliation(s)
- Bahar Chamankar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- Departments of Zoology Biosystematics, Payame Noor University, East Tehran Centre, Tehran, Iran
| | | | - Mohsen Karami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Sabah Naeimi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nayyereh Choobdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Amni F, Maleki-Ravasan N, Nateghi-Rostami M, Hadighi R, Karimian F, Meamar AR, Badirzadeh A, Parvizi P. Co-infection of Phlebotomus papatasi (Diptera: Psychodidae) gut bacteria with Leishmania major exacerbates the pathological responses of BALB/c mice. Front Cell Infect Microbiol 2023; 13:1115542. [PMID: 36779192 PMCID: PMC9909354 DOI: 10.3389/fcimb.2023.1115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Clinical features and severity of the leishmaniasis is extremely intricate and depend on several factors, especially sand fly-derived products. Bacteria in the sand fly's gut are a perpetual companion of Leishmania parasites. However, consequences of the concomitance of these bacteria and Leishmania parasite outside the midgut environment have not been investigated in the infection process. Herein, a needle infection model was designed to mimic transmission by sand flies, to examine differences in the onset and progression of L. major infection initiated by inoculation with "low" or "high" doses of Enterobacter cloacae and Bacillus subtilis bacteria. The results showed an alteration in the local expression of pro- and anti-inflammatory cytokines in mice receiving different inoculations of bacteria. Simultaneous injection of two bacteria with Leishmania parasites in the low-dose group caused greater thickness of ear pinna and enhanced tissue chronic inflammatory cells, as well as resulted in multifold increase in the expression of IL-4 and IL-1β and a decrease in the iNOS expression, without changing the L. major burden. Despite advances in scientific breakthroughs, scant survey has investigated the interaction between micro and macro levels of organization of leishmaniasis that ranges from the cellular to macro ecosystem levels, giving rise to the spread and persistence of the disease in a region. Our findings provide new insight into using the potential of the vector-derived microbiota in modulating the vertebrate immune system for the benefit of the host or recommend the use of appropriate antibiotics along with antileishmanial medicines.
Collapse
Affiliation(s)
- Fariba Amni
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Naseh Maleki-Ravasan, ; Mahmoud Nateghi-Rostami, ; Ramtin Hadighi, ; Parviz Parvizi,
| | - Mahmoud Nateghi-Rostami
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Naseh Maleki-Ravasan, ; Mahmoud Nateghi-Rostami, ; Ramtin Hadighi, ; Parviz Parvizi,
| | - Ramtin Hadighi
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Naseh Maleki-Ravasan, ; Mahmoud Nateghi-Rostami, ; Ramtin Hadighi, ; Parviz Parvizi,
| | - Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Reza Meamar
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parviz Parvizi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Naseh Maleki-Ravasan, ; Mahmoud Nateghi-Rostami, ; Ramtin Hadighi, ; Parviz Parvizi,
| |
Collapse
|
14
|
Arellano AA, Sommer AJ, Coon KL. Beyond canonical models: why a broader understanding of Diptera-microbiota interactions is essential for vector-borne disease control. Evol Ecol 2022; 37:165-188. [PMID: 37153630 PMCID: PMC10162596 DOI: 10.1007/s10682-022-10197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vector-borne diseases constitute a major global public health threat. The most significant arthropod disease vectors are predominantly comprised of members of the insect order Diptera (true flies), which have long been the focus of research into host-pathogen dynamics. Recent studies have revealed the underappreciated diversity and function of dipteran-associated gut microbial communities, with important implications for dipteran physiology, ecology, and pathogen transmission. However, the effective parameterization of these aspects into epidemiological models will require a comprehensive study of microbe-dipteran interactions across vectors and related species. Here, we synthesize recent research into microbial communities associated with major families of dipteran vectors and highlight the importance of development and expansion of experimentally tractable models across Diptera towards understanding the functional roles of the gut microbiota in modulating disease transmission. We then posit why further study of these and other dipteran insects is not only essential to a comprehensive understanding of how to integrate vector-microbiota interactions into existing epidemiological frameworks, but our understanding of the ecology and evolution of animal-microbe symbiosis more broadly.
Collapse
Affiliation(s)
- Aldo A. Arellano
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew J. Sommer
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
15
|
Karimian F, Koosha M, Choubdar N, Oshaghi MA. Comparative analysis of the gut microbiota of sand fly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity. PLoS Negl Trop Dis 2022; 16:e0010609. [PMID: 35853080 PMCID: PMC9337680 DOI: 10.1371/journal.pntd.0010609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/29/2022] [Accepted: 06/26/2022] [Indexed: 11/19/2022] Open
Abstract
The development of Leishmania parasites within sand fly vectors occurs entirely in the insect gut lumen, in the presence of symbiotic and commensal bacteria. The impacts of host species and environment on the gut microbiome are currently poorly understood. We employed MiSeq sequencing of the V3-16S rRNA gene amplicons to characterize and compare the gut microbiota of field-collected populations of Phlebotomus kandelakii, P. perfiliewi, P. alexandri, and P. major, the primary or secondary vectors of zoonotic visceral leishmaniasis (ZVL) in three distinct regions of Iran where ZVL is endemic. In total, 160,550 quality-filtered reads of the V3 region yielded a total of 72 operational taxonomic units (OTUs), belonging to 23 phyla, 47 classes, 91 orders, 131 families, and 335 genera. More than 50% of the bacteria identified were Proteobacteria, followed by Firmicutes (22%), Deinococcus-Thermus (9%), Actinobacteria (6%), and Bacteroidetes (5%). The core microbiome was dominated by eight genera: Acinetobacter, Streptococcus, Enterococcus, Staphylococcus, Bacillus, Propionibacterium, Kocuria, and Corynebacterium. Wolbachia were found in P. alexandri and P. perfiliewi, while Asaia sp. was reported in P. perfiliewi. Substantial variations in the gut bacterial composition were found between geographically distinct populations of the same sand fly species, as well as between different species at the same location, suggesting that sand fly gut microbiota is shaped by both the host species and geographical location. Phlebotomus kandelakii and P. perfiliewi in the northwest, and P. alexandri in the south, the major ZVL vectors, harbor the highest bacterial diversity, suggesting a possible relationship between microbiome diversity and the capacity for parasite transmission. In addition, large numbers of gram-positive human or animal pathogens were found, suggesting that sand fly vectors of ZVL could pose a potential additional threat to livestock and humans in the region studied. The presence of Bacillus subtilis, Enterobacter cloacae, and Asaia sp suggests that these bacteria could be promising candidates for a paratransgenesis approach to the fight against Leishmaniasis. Leishmania infantum, a parasitic protozoan causing fatal visceral leishmaniasis, is transmitted to humans by several sand fly vectors. In this study, the microbiota within the midguts of Phlebotomus kandelakii, P. perfiliewi, P. major and P. alexandri was analyzed by 16S ribosomal DNA (rDNA) Miseq sequencing, revealing highly diverse community composition and abundance, from three diverse ecological and geographical regions of Iran. It appears that the gut microbiota is highly dynamic and controlled by multiple factors, including sand fly host and environment. Proteobacteria were the principal bacterial phylum isolated. High numbers of gram-positive human or animal pathogens were also found, suggesting that sand fly vectors of ZVL could pose a potential threat to livestock and human in the region. Furthermore, there was a positive correlation between vector capacity and bacterial diversities, where the weakest ZVL vector had the lowest diversity, whereas other, more efficient, vectors had higher diversity. This study showed that Bacillus subtilis, Asaia sp. and Enterobacter cloacae are possible candidates for a paratransgenic approach to reduce Leishmania transmission.
Collapse
Affiliation(s)
- Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
16
|
Shirani-Bidabadi L, Oshaghi MA, Enayati AA, Akhavan AA, Zahraei-Ramazani AR, Yaghoobi-Ershadi MR, Rassi Y, Aghaei-Afshar A, Koosha M, Arandian MH, Ghanei M, Ghassemi M, Vatandoost H. Molecular and Biochemical Detection of Insecticide Resistance in the Leishmania Vector, Phlebotomus papatasi (Diptera: Psychodidae) to Dichlorodiphenyltrichloroethane and Pyrethroids, in Central Iran. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1347-1354. [PMID: 35595289 DOI: 10.1093/jme/tjac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to explore resistance markers and possible biochemical resistance mechanisms in the Phlebotomine sand fly Phlebotomus papatasi in Esfahan Province, central Iran. Homogenous resistant strains of sand flies were obtained by exposing P. papatasi collected from Esfahan to a single diagnostic dose of DDT. The adults from the colony were tested with papers impregnated with four pyrethroid insecticides: Permethrin 0.75%, Deltamethrin 0.05%, Cyfluthrin 0.15%, and Lambdacyhalothrin 0.05% to determine levels of cross-resistance. To discover the presence of mutations, a 440 base pair fragment of the voltage gated sodium channel (VGSC) gene was amplified and sequenced in both directions for the susceptible and resistant colonies. We also assayed the amount of four enzymes that play a key role in insecticide detoxification in the resistant colonies. A resistance ratio (RR) of 2.52 folds was achieved during the selection of resistant strains. Sequence analysis revealed no knockdown resistance (kdr) mutations in the VGSC gene. Enzyme activity ratio of the resistant candidate and susceptible colonies were calculated for α-esterases (3.78), β-esterases (3.72), mixed function oxidases (MFO) (3.21), and glutathione-S-transferases (GST) (1.59). No cross-resistance to the four pyrethroids insecticides was observed in the DDT resistant colony. The absence of kdr mutations in the VGSC gene suggests that alterations in esterase and MFO enzymes are responsible for the resistant of P. papatasi to DDT in central Iran. This information could have significant predictive utility in managing insecticide resistant in this Leishmania vector.
Collapse
Affiliation(s)
- Leila Shirani-Bidabadi
- Department of Vector Biology and Control, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Ahmad Akhavan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Zahraei-Ramazani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yavar Rassi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abass Aghaei-Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Arandian
- Esfahan Health Research Station, National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghanei
- Esfahan Health Research Station, National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghassemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Nerb B, Dudziak D, Gessner A, Feuerer M, Ritter U. Have We Ignored Vector-Associated Microbiota While Characterizing the Function of Langerhans Cells in Experimental Cutaneous Leishmaniasis? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.874081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
19
|
Maaroufi R, Dziri O, Hadjadj L, Diene SM, Rolain JM, Chouchani C. Detection by Whole-Genome Sequencing of a Novel Metallo-β-Lactamase Produced by Wautersiella falsenii Causing Urinary Tract Infection in Tunisia. Pol J Microbiol 2022; 71:73-81. [PMID: 35635163 PMCID: PMC9152918 DOI: 10.33073/pjm-2022-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Wautersiella falsenii is a rarely non-fermenting Gram-negative bacterium and belongs to the Flavobacteriaceae family. This nosocomial pathogen can cause several human infections, especially among immunocompromised patients. Here, we describe the whole genome sequence of a clinical W. falsenii strain isolated from a urine sample of a 35-year-old woman with a urinary tract infection in Tunisia. We investigated its phenotype and genotype. After bacterial identification by the MALDI-TOF method, the whole-genome sequencing of this strain was performed. This isolate was not susceptible to various antibiotics, including β-lactams, aminoglycosides, and quinolones. However, it remains susceptible to imipenem (MIC = 0.25 mg/l), ertapenem (MIC = 0.75 mg/l), and meropenem (MIC = 0.19 mg/l). Interestingly, the E-TEST® (MP/MPI) showed a reduced MIC of meropenem +/− EDTA (0.064 μg/ml). Besides, the color change from yellow to red in the β CARBA test only after 24 hours of incubation can be interpreted in two ways. On the one hand, as a likely low expression of the gene encoding metallo-β-lactamase. On the other hand, and more likely, it may be a false-positive result because, according to the test manufacturer's recommendations, the test should be read after 30 minutes. Perhaps, therefore, this gene is not expressed in the tested strain. Moreover, the whole-genome sequence analysis demonstrated the presence of a novel chromosomally located subclass B1 metallo-β-lactamase EBR-like enzyme, sharing 94.92% amino acid identity with a previously described carbapenemase produced by Empedobacter brevis, EBR-1. The results also showed the detection of other antibiotic resistance genes and the absence of plasmids. So far, this study is the first report on the detection of W. falsenii in Tunisia. These findings prove that W. falsenii could be a potential reservoir of antibiotic resistance genes, e.g., β-lactamases. Collaborative efforts and effective hygiene measures should be established to prevent the emergence of this species in our health care settings.
Collapse
Affiliation(s)
- Raouaa Maaroufi
- Aix-Marseille Université MEPHI, AP-HM, IRD, IHU Méditerranée Infection , Marseille , France
- Laboratoire des Microorganismes et Biomolécules Actives , Faculté des Sciences de Tunis , Université Tunis El-Manar , Tunis , Tunisie
- Laboratoire de Recherche Sciences et Technologies de l’Environnement , Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria , Hammam-Lif Université de Carthage , Tunisie
| | - Olfa Dziri
- Laboratoire des Microorganismes et Biomolécules Actives , Faculté des Sciences de Tunis , Université Tunis El-Manar , Tunis , Tunisie
- Laboratoire de Recherche Sciences et Technologies de l’Environnement , Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria , Hammam-Lif Université de Carthage , Tunisie
- Unité de Service en Commun pour la Recherche « Plateforme Génomique », Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Hammam-Lif , Université de Carthage , Tunisie
| | - Linda Hadjadj
- Aix-Marseille Université MEPHI, AP-HM, IRD, IHU Méditerranée Infection , Marseille , France
| | - Seydina M. Diene
- Aix-Marseille Université MEPHI, AP-HM, IRD, IHU Méditerranée Infection , Marseille , France
| | - Jean-Marc Rolain
- Aix-Marseille Université MEPHI, AP-HM, IRD, IHU Méditerranée Infection , Marseille , France
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives , Faculté des Sciences de Tunis , Université Tunis El-Manar , Tunis , Tunisie
- Laboratoire de Recherche Sciences et Technologies de l’Environnement , Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria , Hammam-Lif Université de Carthage , Tunisie
- Unité de Service en Commun pour la Recherche « Plateforme Génomique », Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Hammam-Lif , Université de Carthage , Tunisie
| |
Collapse
|
20
|
Dehghan H, Mosa-Kazemi SH, Yakhchali B, Maleki-Ravasan N, Vatandoost H, Oshaghi MA. Evaluation of anti-malaria potency of wild and genetically modified Enterobacter cloacae expressing effector proteins in Anopheles stephensi. Parasit Vectors 2022; 15:63. [PMID: 35183231 PMCID: PMC8858508 DOI: 10.1186/s13071-022-05183-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Malaria is one of the most lethal infectious diseases in tropical and subtropical areas of the world. Paratransgenesis using symbiotic bacteria offers a sustainable and environmentally friendly strategy to combat this disease. In the study reported here, we evaluated the disruption of malaria transmission in the Anopheles stephensi-Plasmodium berghei assemblage using the wild-type (WT) and three modified strains of the insect gut bacterium, Enterobacter cloacae. METHODS The assay was carried out using the E. cloacae dissolvens WT and three engineered strains (expressing green fluorescent protein-defensin (GFP-D), scorpine-HasA (S-HasA) and HasA only, respectively). Cotton wool soaked in a solution of 5% (wt/vol) fructose + red dye (1/50 ml) laced with one of the bacterial strains (1 × 109cells/ml) was placed overnight in cages containing female An. stephensi mosquitoes (age: 3-5 days). Each group of sugar-fed mosquitoes was then starved for 4-6 h, following which time they were allowed to blood-feed on P. berghei-infected mice for 20 min in the dark at 17-20 °C. The blood-fed mosquitoes were kept at 19 ± 1 °C and 80 ± 5% relative humidity, and parasite infection was measured by midgut dissection and oocyst counting 10 days post-infection (dpi). RESULTS Exposure to both WT and genetically modified E. cloacae dissolvens strains significantly (P < 0.0001) disrupted P. berghei development in the midgut of An. stephensi, in comparison with the control group. The mean parasite inhibition of E. cloacaeWT, E. cloacaeHasA, E. cloacaeS-HasA and E. cloacaeGFP-D was measured as 72, 86, 92.5 and 92.8 respectively. CONCLUSIONS The WT and modified strains of E. cloacae have the potential to abolish oocyst development by providing a physical barrier or through the excretion of intrinsic effector molecules. These findings reinforce the case for the use of either WT or genetically modified strains of E. cloacae bacteria as a powerful tool to combat malaria.
Collapse
Affiliation(s)
- Hossein Dehghan
- Department of Public Health, School of Public Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Seyed Hassan Mosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Yakhchali
- Department Industrial and of Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Kykalová B, Tichá L, Volf P, Loza Telleria E. Phlebotomus papatasi Antimicrobial Peptides in Larvae and Females and a Gut-Specific Defensin Upregulated by Leishmania major Infection. Microorganisms 2021; 9:microorganisms9112307. [PMID: 34835433 PMCID: PMC8625375 DOI: 10.3390/microorganisms9112307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Phlebotomus papatasi is the vector of Leishmania major, causing cutaneous leishmaniasis in the Old World. We investigated whether P. papatasi immunity genes were expressed toward L. major, commensal gut microbes, or a combination of both. We focused on sand fly transcription factors dorsal and relish and antimicrobial peptides (AMPs) attacin and defensin and assessed their relative gene expression by qPCR. Sand fly larvae were fed food with different bacterial loads. Relish and AMPs gene expressions were higher in L3 and early L4 larval instars, while bacteria 16S rRNA increased in late L4 larval instar, all fed rich-microbe food compared to the control group fed autoclaved food. Sand fly females were treated with an antibiotic cocktail to deplete gut bacteria and were experimentally infected by Leishmania. Compared to non-infected females, dorsal and defensin were upregulated at early and late infection stages, respectively. An earlier increase of defensin was observed in infected females when bacteria recolonized the gut after the removal of antibiotics. Interestingly, this defensin gene expression occurred specifically in midguts but not in other tissues of females and larvae. A gut-specific defensin gene upregulated by L. major infection, in combination with gut-bacteria, is a promising molecular target for parasite control strategies.
Collapse
|
22
|
Anti-leishmanial compounds from microbial metabolites: a promising source. Appl Microbiol Biotechnol 2021; 105:8227-8240. [PMID: 34625819 DOI: 10.1007/s00253-021-11610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Leishmania is a complex disease caused by the protozoan parasites and transmitted by female phlebotomine sandfly. The disease affects some of the poorest people on earth with an estimated 700,000 to 1 million new cases annually. The current treatment for leishmaniasis is toxic, long, and limited, in view of the high resistance rate presented by the parasite, necessitating new perspectives for treatment. The discovery of new compounds with different targets can be a hope to make the treatment more efficient. Microbial metabolites and their structural analogues with enormous scaffold diversity and structural complexity have historically played a key role in drug discovery. We found thirty-nine research articles published between 1999 and 2021 in the scientific database (PubMed, Science Direct) describing microbes and their metabolites with activity against leishmanial parasites which is the focus of this review. KEY POINTS: • Leishmania affects the poorest regions of the globe • Current treatments for leishmaniasis are toxic and of limited efficacy • Microbial metabolites are potential sources of antileishmania drugs.
Collapse
|
23
|
Mališová L, Španělová P, Sedláček I, Pajer P, Musílek M, Puchálková B, Jakubů V, Žemličková H, Šafránková R. The first case of Planococcus glaciei found in blood, a report from the Czech Republic. Folia Microbiol (Praha) 2021; 67:121-127. [PMID: 34590203 DOI: 10.1007/s12223-021-00919-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
The isolation of Planococcus glaciei (designed strain CNCTC 7660) from blood of a patient with appendicitis is reported. Species P. glaciei (type strain CGMCC 1.6846 T) was for the first time identified as an environmental bacterium acquired from a glacier in China in 2009. To reveal the identity of the isolate CNCTC 7660, the 16S rDNA sequencing and the whole genome sequencing (Illumina MiSeq, Oxford Nanopore) were performed. The level of 16S rDNA gene sequencing similarity between CNCTC 7660 and CGMCC 1.6846 T was 99.55%. Phylogenetic analysis and average nucleotide analysis (ANI) based on the whole genome sequencing confirmed that the isolate CNCTC 7660 and CGMCC1.6846 T had ANI value above the taxonomic threshold for belonging to the same species (95%). The G + C content of CNCTC 7660 DNA was 46.8% (mol/mol). Except for the growth temperature, strains CGMCC1.6846 T and CNCTC 7660 were distinguished also biochemically. Due to the lack of information about the pathogenicity of P. glaciei, the possibility that it exerts pathogenicity in persons is suggested. But for understanding the nature of this species, further cases are needed.
Collapse
Affiliation(s)
- Lucia Mališová
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
- Department of Microbiology, 3Rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady and National Institute of Public Health, Prague, Czech Republic
| | - Petra Španělová
- Czech National Collection of Type Cultures, National Institute of Public Health, Prague, Czech Republic.
| | - Ivo Sedláček
- Department of Experimental Biology, Faculty of Science, Czech Collection of Microorganisms, Masaryk University, Brno, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Martin Musílek
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Prague, Czech Republic
| | - Blanka Puchálková
- Department of Clinical Microbiology, Karlovy Vary Regional Hospital, Hradec Kralove, Czech Republic
| | - Vladislav Jakubů
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
- Department of Microbiology, 3Rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady and National Institute of Public Health, Prague, Czech Republic
- Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Helena Žemličková
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
- Department of Microbiology, 3Rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady and National Institute of Public Health, Prague, Czech Republic
- Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic
| | - Renáta Šafránková
- Czech National Collection of Type Cultures, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
24
|
Native Wolbachia influence bacterial composition in the major vector mosquito Aedes aegypti. Arch Microbiol 2021; 203:5225-5240. [PMID: 34351459 DOI: 10.1007/s00203-021-02506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
Bacterial species that inhabit mosquito microbiota play an essential role in determining vector competence. In addition to critical factors such as host genotype, feeding habit and geography, intracellular endosymbiont Wolbachia pipientis modulates microbial composition considerably. In the present study, we assessed the midgut bacterial diversity of Aedes aegypti mosquitoes that is either naturally carrying Wolbachia (wAegB+) or antibiotic cured (wAegB-) through a culture-independent approach. Towards this, 16S rRNA gene libraries were constructed from midgut bacterial DNA of laboratory-reared larvae and adult female mosquitoes fed with sugar or blood. Among them 33 genera comprising 65 distinct species were identified, where > 75% of bacterial taxa were commonly shared by both groups (wAegB+ and wAegB-), implying a subtle shift in the bacterial composition influenced by Wolbachia. Though the change was mostly restricted to minimally represented species, predominant taxa were observed unaltered except for certain genera. While Serratia sp. was abundant in Wolbachia carrying mosquitoes, Pseudomonas sp. and Acinetobacter sp. were predominant in Wolbachia free mosquitoes. This result demonstrates the influence of Wolbachia that could modulate the colonization of certain resident bacterial taxa through competitive interactions. Overall, this study shed more light on the impact of wAegB in altering the gut microbiota of Ae. aegypti mosquito, which might challenge host fitness and vector competence.
Collapse
|
25
|
Dehghankar M, Maleki-Ravasan N, Tahghighi A, Karimian F, Karami M. Bioactivities of rose-scented geranium nanoemulsions against the larvae of Anopheles stephensi and their gut bacteria. PLoS One 2021; 16:e0246470. [PMID: 33556110 PMCID: PMC7870081 DOI: 10.1371/journal.pone.0246470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
Anopheles stephensi with three different biotypes is a major vector of malaria in Asia. It breeds in a wide range of habitats. Therefore, safer and more sustainable methods are needed to control its immature stages rather than chemical pesticides. The larvicidal and antibacterial properties of the Pelargonium roseum essential oil (PREO) formulations were investigated against mysorensis and intermediate forms of An. stephensi in laboratory conditions. A series of nanoemulsions containing different amounts of PREO, equivalent to the calculated LC50 values for each An. stephensi form, and various quantities of surfactants and co-surfactants were developed. The physical and morphological properties of the most lethal formulations were also determined. PREO and its major components, i.e. citronellol (21.34%), L-menthone (6.41%), linalool (4.214%), and geraniol (2.19%), showed potent larvicidal activity against the studied mosquitoes. The LC50/90 values for mysorensis and intermediate forms were computed as 11.44/42.42 ppm and 12.55/47.69 ppm, respectively. The F48/F44 nanoformulations with 94% and 88% lethality for the mysorensis and intermediate forms were designated as optimized formulations. The droplet size, polydispersity index, and zeta-potential for F48/F44 were determined as 172.8/90.95 nm, 0.123/0.183, and -1.08/-2.08 mV, respectively. These results were also confirmed by TEM analysis. Prepared formulations displayed antibacterial activity against larval gut bacteria in the following order of decreasing inhibitory: LC90, optimized nanoemulsions, and LC50. PREO-based formulations were more effective against mysorensis than intermediate. Compared to the crude PREO, the overall larvicidal activity of all nanoformulations boosted by 20% and the optimized formulations by 50%. The sensitivity of insect gut bacteria may be a crucial factor in determining the outcome of the effect of toxins on target insects. The formulations designed in the present study may be a good option as a potent and selective larvicide for An. stephensi.
Collapse
Affiliation(s)
- Maryam Dehghankar
- Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Azar Tahghighi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Laboratory of Medicinal Chemistry, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohsen Karami
- Department of Parasitology and Mycology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
26
|
Khanzadeh F, Khaghaninia S, Maleki-Ravasan N, Koosha M, Oshaghi MA. Molecular detection of Dirofilaria spp. and host blood-meal identification in the Simulium turgaicum complex (Diptera: Simuliidae) in the Aras River Basin, northwestern Iran. Parasit Vectors 2020; 13:548. [PMID: 33148310 PMCID: PMC7641795 DOI: 10.1186/s13071-020-04432-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Blackflies (Diptera: Simuliidae) are known as effective vectors of human and animal pathogens, worldwide. We have already indicated that some individuals in the Simulium turgaicum complex are annoying pests of humans and livestock in the Aras River Basin, Iran. However, there is no evidence of host preference and their possible vectorial role in the region. This study was conducted to capture the S. turgaicum (s.l.), to identify their host blood-meals, and to examine their potential involvement in the circulation of zoonotic microfilariae in the study areas. Methods Adult blackflies of the S. turgaicum complex were bimonthly trapped with insect net in four ecotopes (humans/animals outdoors, irrigation canals, lands along the river, as well as rice and alfalfa farms) of ten villages (Gholibaiglou, Gungormaz, Hamrahlou, Hasanlou, Khetay, Khomarlou, Larijan, Mohammad Salehlou, Parvizkhanlou and Qarloujeh) of the Aras River Basin. A highly sensitive and specific nested PCR assay was used for detection of filarial nematodes in S. turgaicum (s.l.), using nuclear 18S rDNA-ITS1 markers. The sources of blood meals of engorged specimens were determined using multiplex and conventional cytb PCR assays. Results A total of 2754 females of S. turgaicum (s.l.) were collected. The DNA of filarial parasites was detected in 6 (0.62%) of 960 randomly examined individuals. Sequence analysis of 420 base pairs of 18S rDNA-ITS1 genes identified Dirofilaria spp. including 5 D. immitis and 1 D. repens. Importantly, all filarial positive specimens have been captured from humans and animals outdoors. Cytb-PCR assays showed that in all ecotypes studied, members of the S. turgaicum complex had preferably fed on humans, dogs, bovids, and birds, respectively. Conclusions To the best of our knowledge, this is the first report of D. immitis/D. repens detection in blackflies. Results showed that S. turgaicum (s.l.) was the most abundant (97%) and anthropophilic (45%) blackfly in all studied ecotypes/villages and that DNA of Dirofilaria spp. was detected in the flies taken from six villages. Dirofilariasis is a common zoonosis between humans and carnivores, with mosquitoes (Culicidae) as the principal vectors. Further investigations are needed to demonstrate that blackflies are actual vectors of Dirofilaria in the studied region.![]()
Collapse
Affiliation(s)
- Fariba Khanzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tehran, Iran
| | - Samad Khaghaninia
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran. .,Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
27
|
Campolina TB, Villegas LEM, Monteiro CC, Pimenta PFP, Secundino NFC. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLoS Negl Trop Dis 2020; 14:e0008666. [PMID: 33052941 PMCID: PMC7556539 DOI: 10.1371/journal.pntd.0008666] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
The microbial consortium associated with sandflies has gained relevance, with its composition shifting throughout distinct developmental stages, being strongly influenced by the surroundings and food sources. The bacterial components of the microbiota can interfere with Leishmania development inside the sandfly vector. Microbiota diversity and host-microbiota-pathogen interactions regarding New World sandfly species have yet to be thoroughly studied, particularly in Lutzomyia longipalpis, the primary vector of visceral leishmaniasis in Brazil.The native microbiota of different developmental stages and physiological conditions of Lu. longipalpis (Lapinha Cave), was described by culturing and 16s rRNA gene sequencing. The 16s rRNA sequencing of culture-dependent revealed 13 distinct bacterial genera (Bacillus, Enterococcus, Erwinia, Enterobacter, Escherichia, Klebsiella, Lysinibacillus, Pseudocitrobacter, Providencia, Pseudomonas, Serratia, Staphylococcus and Solibacillus). The in vitro and in vivo effects of each one of the 13 native bacteria from the Lu. longipalpis were analyzed by co-cultivation with promastigotes of L.i. chagasi, L. major, L. amazonensis, and L. braziliensis. After 24 h of co-cultivation, a growth reduction observed in all parasite species. When the parasites were co-cultivated with Lysinibacillus, all parasites of L. infantum chagasi and L. amazonensis died within 24 hours. In the in vivo co-infection of L.chagasi, L. major and L. amazonensis with the genera Lysinibacillus, Pseudocitrobacter and Serratia it was possible to observe a significant difference between the groups co-infected with the bacterial genera and the control group.These findings suggest that symbiont bacteria (Lysinibacillus, Serratia, and Pseudocitrobacter) are potential candidates for paratransgenic or biological control. Further studies are needed to identify the nature of the effector molecules involved in reducing the vector competence for Leishmania. According to the World Health Organization Leishmaniasis is the second parasitic disease that kills the most in the world; the first is malaria. Despite this, knowledge about the Leishmania parasite and its interaction with vertebrate hosts concerning the transmitting insect is still relatively fewer and fragmented. Studies on insects microbiota have great importance to obtain basic information. How a vector responds to the presence of different microorganisms and how they interact with various pathogens and may lead to the development of new strategies or tools that can be used to prevent or hinder the transmission of the protozoan by the vector insect. Considering the knowledge about the intestinal microbiota of sandflies, we aim to study the effect of bacterial isolates on Lu. longipalpis infection by different species of Leishmania, and it believed that these bacteria might influence the development of Leishmania, preventing, and hindering transmission, contributing to Leishmaniasis control strategies.
Collapse
|
28
|
Estrada LG, Ortega E, Vivero RJ, Bejarano EE, Cadena H. Development of Lutzomyia evansi immature stages in peridomiciliary environment in a leishmaniasis urban focus in the Colombian Caribbean. Acta Trop 2020; 208:105523. [PMID: 32407790 DOI: 10.1016/j.actatropica.2020.105523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
Abstract
In the Caribbean region of Colombia, Lutzomyia evansi is recognized as the vector for Leishmania infantum and Leishmania braziliensis. Identifying breeding sites and surveying abundance of immature phlebotomine sand flies in urban foci of leishmaniasis are useful tool to design new vector control strategies. The objective of this study was to describe the natural breeding sites of Lu. evansi in peridomiciliary vegetation in a peri-urban area of the Colombian Caribbean region. Between 2013 and 2015, 466 microhabitats were sampled, collecting 621 kg of soil samples. The explored microhabitats were bases and tree holes, fallen trees, animal caves, leaf litter, domestic animal shelters, and the inside of dwellings. The immature phlebotomines were recovered by direct search under the stereoscope and incubation of soil samples. In total, 103 microhabitats, associated with 17 arboreal species, were identified as natural breeding sites. Of 422 immature sandflies detected, 98.6% were found in soils at the base of the trees. Eight species of the genus Lutzomyia were identified, of which Lu. evansi (52.6%) was the most abundant, followed by Lu. rangeliana, Lu. cayennensis cayennensis, Lu. atroclavata, Lu. micropyga, Lu. trinidadensis, Lu. dubitans and Lu. gomezi. The arboreal species Cordia alba was the most used by phlebotomines for the development of their immature stages. From 63 natural breeding sites identified 268 immatures were recovered including 176 Lu. evansi. The accumulated precipitation showed correlation (R2 = 0.643, p = 0.013) with the abundance of developmental stages, which increased in September and October. The natural breeding sites of Lu. evansi exhibited a local pattern of occurrence dependent on rainfall. The physicochemical analysis of the soil samples showed that the natural sites for C. alba were categorized as fertile loam soils. This is the first systematic study that estimates the temporal variation of immature sand flies in peridomiciliary vegetation in a peri-urban focus of leishmaniasis in Colombia.
Collapse
Affiliation(s)
- Luis Gregorio Estrada
- Investigaciones Biomédicas, Universidad de Sucre, Sincelejo - Colombia, Carrera 14 Number 16A - 32, Sincelejo Postal Code 700003, Colombia.
| | - Edgar Ortega
- Investigaciones Biomédicas, Universidad de Sucre, Sincelejo - Colombia, Carrera 14 Number 16A - 32, Sincelejo Postal Code 700003, Colombia
| | - Rafael José Vivero
- Programa de Estudio y Control de Enfermedades Tropicales - PECET, Universidad de Antioquia, Medellín - Colombia, Carrera 53 Number 61 - 30, Laboratory 632, Medellín Postal Code 050003, Colombia
| | - Eduar Elías Bejarano
- Investigaciones Biomédicas, Universidad de Sucre, Sincelejo - Colombia, Carrera 14 Number 16A - 32, Sincelejo Postal Code 700003, Colombia
| | - Horacio Cadena
- Programa de Estudio y Control de Enfermedades Tropicales - PECET, Universidad de Antioquia, Medellín - Colombia, Carrera 53 Number 61 - 30, Laboratory 632, Medellín Postal Code 050003, Colombia
| |
Collapse
|
29
|
Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies. Pathogens 2020; 9:pathogens9060428. [PMID: 32485988 PMCID: PMC7350354 DOI: 10.3390/pathogens9060428] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Phlebotomine sandflies are vectors of the humans' and mammals' parasite Leishmania spp. Although the role of gut microbiome in the biological cycle of insects is acknowledged, we still know little about the factors modulating the composition of the gut microbiota of sandflies. We tested whether host species impose a strong structural effect on the gut microbiota of Phlebotomus spp. Sandflies were collected from the island of Leros, Greece, and classified to P. papatasi, P. neglectus, P. tobbi, and P. similis, all being negative to Leishmania spp. The prokaryotic gut microbiota was determined via 16S rRNA gene amplicon sequencing. Phlebotomus species supported distinct microbial communities (p < 0.001). P. papatasi microbiota was the most distinct over-dominated by three Spiroplasma, Wolbachia and Paenibacillus operational taxonomic units (OTUs), while another Wolbachia OTU prevailed in P. neglectus. Conversely, the microbiota of P. tobbi and P. similis was composed of several less dominant OTUs. Archaea showed low presence with the dominant OTUs belonging to methanogenic Euryarcheota, ammonia-oxidizing Thaumarcheota, and Nanoarchaeota. We provide first insights into the composition of the bacterial and archaeal community of Phlebotomus sandflies and showed that, in the absence of Leishmania, host genotype is the major modulator of Phlebotomus sandfly gut microbiota.
Collapse
|
30
|
Maleki-Ravasan N, Ahmadi N, Soroushzadeh Z, Raz AA, Zakeri S, Dinparast Djadid N. New Insights Into Culturable and Unculturable Bacteria Across the Life History of Medicinal Maggots Lucilia sericata (Meigen) (Diptera: Calliphoridae). Front Microbiol 2020; 11:505. [PMID: 32322242 PMCID: PMC7156559 DOI: 10.3389/fmicb.2020.00505] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Because of the nutritional ecology of dung- and carrion-feeding, bacteria are the integral part of Lucilia sericata life cycle. Nevertheless, the disinfected larvae of the blowfly are applied to treat human chronic wounds in a biosurgery named maggot debridement therapy (MDT). To realize the effects of location/diet on the gut bacteria, to infer the role of bacteria in the blowfly ecology plus in the MDT process, and to disclose bacteria circulating horizontally in and vertically between generations, bacterial communities associated with L. sericata specimens from various sources were investigated using culture-based and culture-independent methods. In total, 265 bacteria, including 20 families, 28 genera, and 40 species, were identified in many sources of the L. sericata. Culture-dependent method identified a number of 144 bacterial isolates, including 21 species, in flies reared in an insectary; specimens were collected from the field, and third-instar larvae retrieved from chronic wounds of patients. Metagenetic approach exposed the occurrences of 121 operational taxonomic units comprising of 32 bacterial species from immature and adult stages of L. sericata. Gammaproteobacteria was distinguished as the dominant class of bacteria by both methods. Bacteria came into the life cycle of L. sericata over the foods and transovarially infected eggs. Enterococcus faecalis, Myroides phaeus, Proteus species, Providencia vermicola, and Serratia marcescens were exchanged among individuals via transstadial transmission. Factors, including diets, feeding status, identification tool, gut compartment, and life stage, governed the bacteria species. Herein, we reemphasized that L. sericata is thoroughly connected to the bacteria both in numerous gut compartments and in different life stages. Among all, transstadially transmitted bacteria are underlined, indicating the lack of antagonistic effect of the larval excretions/secretions on these resident bacteria. While the culture-dependent method generated useful data on the viable aerobic gut bacteria, metagenomic method enabled us to identify bacteria directly from the tissues without any need for cultivation and to facilitate the identification of anaerobic and unculturable bacteria. These findings are planned to pave the way for further research to determine the role of each bacterial species/strain in the insect ecology, as well as in antimicrobial, antibiofilm, anti-inflammatory, and wound healing activities.
Collapse
Affiliation(s)
- Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nahid Ahmadi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Soroushzadeh
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
31
|
Maleki‐Ravasan N, Akhavan N, Raz A, Jafari M, Zakeri S, Dinparast Djadid N. Co-occurrence of pederin-producing and Wolbachia endobacteria in Paederus fuscipes Curtis, 1840 (Coleoptera: Staphilinidae) and its evolutionary consequences. Microbiologyopen 2019; 8:e00777. [PMID: 30560551 PMCID: PMC6612549 DOI: 10.1002/mbo3.777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/24/2023] Open
Abstract
The dual occurrence of Pseudomonas-like and Wolbachia endobacteria has not been investigated in the Pederus beetles yet. We investigated pederin-producing bacteria (PPB) infection in Paederus fuscipes specimens from the southern margins of the Caspian Sea by designed genus-specific (OprF) and species-specific (16S rRNA) primers. Wolbachia infection was studied through a nested-PCR assay of Wolbachia surface protein (wsp) gene. Of the 125 analyzed beetles, 42 females (82.35%) and 15 males (20.27%) were positive to PPB infection; this is the first study reporting male P. fuscipes infection to PPB. Wolbachia infection was found in 45 female (88.23%) and 50 male (67.57%) analyzed beetles. Surprisingly, a number of 36 females (70.59%) and 13 males (17.57%) were found to be infected with both PPB and Wolbachia endosymbionts. In general, population infection rates to PPB and Wolbachia were determined to be 45.6% and 76%, respectively. The infection rates of female beetles to PPB and PPB-Wolbachia were significantly higher than males. In Paederus species, only female beetles shelter PPB and the discovery of this bacterium in adult males may reflect their cannibalistic behavior on the contaminated stages. Phylogenetic analysis showed that the sequences of OprF gene were unique among Pseudomonas spp.; however, sequences of 16S rRNA gene were related to the PPB of Pederus species. The co-occurrence and random distribution of these endobacteria may imply putative tripartite interactions among PPB, Wolbachia, and Paederus. In order to elucidate these possible tripartite interactions, further studies are required even at gender level.
Collapse
Affiliation(s)
- Naseh Maleki‐Ravasan
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
| | - Niloofar Akhavan
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences BranchIslamic Azad UniversityTehranIran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
| | - Mahmood Jafari
- Department of Geology, Faculty of SciencesTarbiat Modares UniversityTehranIran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC)Pasteur Institute of IranTehranIran
| |
Collapse
|
32
|
Koosha M, Vatandoost H, Karimian F, Choubdar N, Oshaghi MA. Delivery of a Genetically Marked Serratia AS1 to Medically Important Arthropods for Use in RNAi and Paratransgenic Control Strategies. MICROBIAL ECOLOGY 2019; 78:185-194. [PMID: 30460544 DOI: 10.1007/s00248-018-1289-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Understanding how arthropod vectors acquire their bacteria is essential for implementation of paratransgenic and RNAi strategies using genetically modified bacteria to control vector-borne diseases. In this study, a genetically marked Serratia AS1 strain expressing the mCherry fluorescent protein (mCherry-Serratia) was used to test various acquisition routes in six arthropod vectors including Anopheles stephensi, Culex pipiens, Cx. quinquefaciatus, Cx. theileri, Phlebotomus papatasi, and Hyalomma dromedarii. Depending on the species, the bacteria were delivered to (i) mosquito larval breeding water, (ii) host skin, (iii) sugar bait, and (iv) males (paratransgenic). The arthropods were screened for the bacteria in their guts or other tissues. All the hematophagous arthropods were able to take the bacteria from the skin of their hosts while taking blood meal. The mosquitoes were able to take up the bacteria from the water at larval stages and to transfer them transstadially to adults and finally to transfer them to the water they laid eggs in. The mosquitoes were also able to acquire the bacteria from male sperm. The level of bacterial acquisition was influenced by blood feeding time and strategies (pool or vessel feeding), dipping in water and resting time of newly emerged adult mosquitoes, and the disseminated tissue/organ. Transstadial, vertical, and venereal bacterial acquisition would increase the sustainability of the modified bacteria in vector populations and decrease the need for supplementary release experiments whereas release of paratransgenic males that do not bite has fewer ethical issues. Furthermore, this study is required to determine if the modified bacteria can be introduced to arthropods in the same routes in nature.
Collapse
Affiliation(s)
- Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran.
| |
Collapse
|
33
|
Karimian F, Vatandoost H, Rassi Y, Maleki-Ravasan N, Mohebali M, Shirazi MH, Koosha M, Choubdar N, Oshaghi MA. Aerobic midgut microbiota of sand fly vectors of zoonotic visceral leishmaniasis from northern Iran, a step toward finding potential paratransgenic candidates. Parasit Vectors 2019; 12:10. [PMID: 30616668 PMCID: PMC6322272 DOI: 10.1186/s13071-018-3273-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background Leishmaniasis is caused by Leishmania parasites and is transmitted to humans through the bite of infected sand flies. Development of Leishmania to infective metacyclic promastigotes occurs within the sand fly gut where the gut microbiota influences development of the parasite. Paratransgenesis is a new control method in which symbiotic bacteria are isolated, transformed and reintroduced into the gut through their diet to express anti-parasitic molecules. In the present study, the midgut microbiota of three sand fly species from a steppe and a mountainous region of northern Iran, where zoonotic visceral leishmaniasis (ZVL) is endemic, was investigated. Methods Briefly, adult female sand flies was collected during summer 2015 and, after dissection, the bacterial composition of the guts were analyzed using a culture-dependent method. Bacterial DNA from purified colonies was extracted to amplify the 16S rRNA gene which was then sequenced. Results Three ZVL sand fly vectors including Phlebotomus major, P. kandelakii and P. halepensis were found in the highlighted regions. In total, 39 distinct aerobic bacterial species were found in the sand fly midguts. The sand fly microbiota was dominated by Proteobacteria (56.4%) and Firmicutes (43.6%). Bacterial richness was significantly higher in the steppe region than in the mountainous region (32 vs 7 species). Phlebotomus kandelakii, the most important ZVL vector in the study area, had the highest bacterial richness among the three species. Bacillus subtilis and Pantoea agglomerans were isolated from the guts of the sand flies; these are already used for the paratransgenesis of sand flies and mosquitoes, respectively. Conclusions The existence of B. subtilis and P. agglomerans in the ZVL vectors and other sand fly species studied so far suggests that these two bacterial species are potential candidates for paratransgenic approach to prevent ZVL transmission. Further research needs to test the possible relationship between the gut microbiome richness and the vector competence of the ZVL vectors.
Collapse
Affiliation(s)
- Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yavar Rassi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Shirazi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
34
|
DEHGHAN H, OSHAGHI MA, MOSA-KAZEMI SH, ABAI MR, RAFIE F, NATEGHPOUR M, MOHAMMADZADEH H, FARIVAR L, MOHAMMADI BAVANI M. Experimental Study on Plasmodium berghei, Anopheles Stephensi, and BALB/c Mouse System: Implications for Malaria Transmission Blocking Assays. IRANIAN JOURNAL OF PARASITOLOGY 2018; 13:549-559. [PMID: 30697308 PMCID: PMC6348208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/16/2018] [Indexed: 10/25/2022]
Abstract
BACKGROUND Plasmodium berghei is a rodent malaria parasite and has been very valuable means in the progress of our understanding of the essential molecular and cellular biology of the malaria parasites. Availability of hosts such as mice and vectors such as Anopheles stephensi has made this parasite a suitable system to study the parasite-host and vector-parasite relationships. METHODS This study was performed at Medical Entomology and Parasitology laboratories of the School of Public Health, Tehran University of Medical Sciences, Iran in 2016. The investigation was carried out to describe life cycle and parameters influencing maintenance of the parasite within the mice or the mosquito. RESULTS Results have revealed details and addressed some parameters and points influence maintenance of various life stages of the parasite including merozoites, macrogametocytes, ookinetes, oocysts and sporozoites in the laboratory model P. berghei-A. stephensi-BALB/c mouse. Injection of fresh infected blood results in higher gametocytemia in the animals. The more injected parasites result in earlier and higher parasitemia and exfelagellation centers in the mice blood. However, the highest number of infected mosquitoes and oocysts formation were observed when the parasitemia and exflagellation centers per microscopic field were 9% and 3.6 in the infected mice respectively. The infected mosquitoes should be maintained on 8% (w/v) fructose, 0.05% (w/v) PABA at 20±1 °C and 50%-80% relative humidity. CONCLUSION This study helps to understand the biology of vertebrate-parasite and mosquito-malaria interactions that may aid in the development of a new generation of drug/vaccine and vector-based measures for malaria control.
Collapse
Affiliation(s)
- Hossein DEHGHAN
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali OSHAGHI
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan MOSA-KAZEMI
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza ABAI
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh RAFIE
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi NATEGHPOUR
- Dept. of Parasitology and Medical Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib MOHAMMADZADEH
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Dept. of Medical Parasitology and Mycology, School of Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila FARIVAR
- Dept. of Parasitology and Medical Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mulood MOHAMMADI BAVANI
- Dept. of Medical Entomology, School of Health, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
35
|
Amelia TSM, Amirul AAA, Saidin J, Bhubalan K. Identification of Cultivable Bacteria from Tropical Marine Sponges and Their Biotechnological Potentials. Trop Life Sci Res 2018; 29:187-199. [PMID: 30112149 PMCID: PMC6072720 DOI: 10.21315/tlsr2018.29.2.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Marine sponges are acknowledged as bacterial hotspots in the oceanic biome. Aquatic bacteria are being investigated comprehensively for bioactive complexes and secondary metabolites. Cultivable bacteria associated with different species of sea sponges in South China Sea waters adjacent to Bidong Island, Terengganu were identified. Molecular identification was accomplished using 16S rRNA gene cloning and sequencing. Fourteen bacterial species were identified and their phylogenetic relationships were analysed by constructing a neighbour-joining tree with Molecular Evolutionary Genetics Analysis 6. The identified species encompassed four bacterial classes that were Firmicutes, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria known to have been associated with sponges. The potential biotechnological applications of the identified bacteria were compared and reviewed based on relevant past studies. The biotechnological functions of the 14 cultivable isolates have been previously reported, hence reinforcing that bacteria associated with sponges are an abundant resource of scientifically essential compounds. Resilience of psychrotolerant bacteria, Psychrobacter celer, in warm tropical waters holds notable prospects for future research.
Collapse
Affiliation(s)
- Tan Suet May Amelia
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation, 11700 Gelugor, Pulau Pinang, Malaysia
- Centre of Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Jasnizat Saidin
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Kesaven Bhubalan
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation, 11700 Gelugor, Pulau Pinang, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
36
|
Abstract
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
Collapse
|
37
|
Karimian F, Vatandoost H, Rassi Y, Maleki-Ravasan N, Choubdar N, Koosha M, Arzamani K, Moradi-Asl E, Veysi A, Alipour H, Shirani M, Oshaghi MA. wsp-based analysis of Wolbachia strains associated with Phlebotomus papatasi and P. sergenti (Diptera: Psychodidae) main cutaneous leishmaniasis vectors, introduction of a new subgroup wSerg. Pathog Glob Health 2018; 112:152-160. [PMID: 29745300 PMCID: PMC6056827 DOI: 10.1080/20477724.2018.1471438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sand flies of Phlebotomus papatasi and P. sergenti are the main vectors of cutaneous leishmanisis (CL) in the old world. We aimed to screen Iranian P. papatasi and P. sergenti for their natural infections with Wolbachia and to determine their phylogenetic association with other species. Wolbachia surface protein (wsp) gene was PCR amplified from DNA extracted from Phlebotomus species, sequenced, and were analysed in combination with wsp sequences related to Phelebtominae and other insects. All Wolbachia-infecting Iranian sand flies of P. papatasi and P. sergenti were classified in the Supergroup A., Wolbachia isolated from P. sergenti were clustered in a new subgroup within Supergroup A so-called wSreg. The Wolbachia strains identified from the P. papatasi clustered mainly in the subgroup wPap and partly in wSerg. Multiple Wholbachia infection within a single population of P.papatasi warrants investigation on existence and intensity of cytoplasmic incompatibility between the wPap and wSerg subgroups.
Collapse
Affiliation(s)
- Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yavar Rassi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kourosh Arzamani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Eslam Moradi-Asl
- Department of Public Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arshad Veysi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Shiraz University Of Medical Sciences, Shiraz, Iran
| | - Manouchehr Shirani
- Mamasani Health Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Lopez-Ordonez T, Flores-López CA, Montejo-Lopez R, Cruz-Hernandez A, Conners EE. Cultivable Bacterial Diversity in the Gut of the Chagas Disease Vector Triatoma dimidiata: Identification of Possible Bacterial Candidates for a Paratransgenesis Approach. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2017.00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Dehghan H, Oshaghi MA, Moosa-Kazemi SH, Yakhchali B, Vatandoost H, Maleki-Ravasan N, Rassi Y, Mohammadzadeh H, Abai MR, Mohtarami F. Dynamics of Transgenic Enterobacter cloacae Expressing Green Fluorescent Protein Defensin (GFP-D) in Anopheles stephensi Under Laboratory Condition. J Arthropod Borne Dis 2017; 11:515-532. [PMID: 29367928 PMCID: PMC5775158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/23/2017] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Enterobacter cloacae bacterium is a known symbiont of the most Anopheles gut microflora and nominated as a good candidate for paratransgenic control of malaria. However, the population dynamics of this bacterium within An. stephensi and its introduction methods to the mosquitoes have not yet been explored. METHODS Enterobacter cloacae subsp. dissolvens expressing green fluorescent protein and defensin (GFP-D) was used to study transstadial transmission and the course of time, larval habitat, sugar, and blood meal on dynamics of the bacterium in the mosquito life stages in the laboratory condition. The bacterial quantities were measured by plating samples and counting GFP expressing colonies on the Tet-BHI agar medium. RESULTS The E. cloacae population remained stable in sugar bait at least for eleven days whereas it was lowered in the insectary larval habitat where the bacteria inadequately recycled. The bacterium was weakly transmitted transstadially from larval to adult stage. The bacterial populations increased smoothly and then dramatically in the guts of An. stephensi following sugar and blood meal respectively followed by a gradual reduction over the time. CONCLUSION Enterobacter cloacae was highly stable in sugar bait and increased tremendously in the gut of female adult An. stephensi within 24h post blood meal. Sugar bait stations can be used for introduction of the transgenic bacteria in a paratransgenic approach. It is recommended to evaluate the attraction of sugar bait in combination with attractive kairomones as well as its stability and survival rate in the semi-field or field conditions.
Collapse
Affiliation(s)
- Hossein Dehghan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Authors: Dr Mohammad Ali Oshaghi, E-mail: , Dr Seyed Hassan Moosa-Kazemi,
| | - Seyed Hassan Moosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Authors: Dr Mohammad Ali Oshaghi, E-mail: , Dr Seyed Hassan Moosa-Kazemi,
| | - Bagher Yakhchali
- Department Industrial and of Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yavar Rassi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Mohammadzadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Abai
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohtarami
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Bacterial diversity of wild-caught Lutzomyia longipalpis (a vector of zoonotic visceral leishmaniasis in Brazil) under distinct physiological conditions by metagenomics analysis. Parasit Vectors 2017; 10:627. [PMID: 29284535 PMCID: PMC5747039 DOI: 10.1186/s13071-017-2593-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The leishmaniases are a group of diseases caused by protozoans of the genus Leishmania, which are transmitted by the bite of phlebotomine sand flies. In the New World, Lutzomyia longipalpis is the most important vector of visceral leishmaniasis and is a proven vector for Leishmania infantum chagasi in Brazil. During development within the vector, Leishmania can interact with a variety of microorganisms such as fungi and bacteria. The presence of bacteria in the midgut of sand flies can influence the development and survival of the parasite. RESULTS The bacteria-targeted metagenomic analysis revealed different community compositions between the distinct physiological stages of those tested. The amplicon-oriented metagenomic profiling revealed 64 bacterial genera and 46 families. By crossing the taxa indices from each experimental condition a core composed of 6 genera was identified (Enterobacter, Serratia, Stenotrophomonas, Enhydrobacter, Pseudomonas and Chryseobacterium). CONCLUSIONS The observed dynamic nature of the bacterial community expands the knowledge pertaining to the tripartite host-microbiota-pathogen interactions. Further studies addressing how laboratory and field collected communities differ are critical to successfully develop control strategies based on bacterial symbionts and paratransgenesis, as already tested in other arthropod vectors.
Collapse
|
41
|
Midgut Bacterial Diversity of Wild Populations of Phlebotomus (P.) papatasi, the Vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Turkey. Sci Rep 2017; 7:14812. [PMID: 29093481 PMCID: PMC5665960 DOI: 10.1038/s41598-017-13948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 11/09/2022] Open
Abstract
Phlebotomine sand flies are hematophagous insects that harbor bacterial, viral and parasitic agents like Bartonella sp., Phleboviruses and Leishmania spp., respectively. There are few reports on bacterial microbiota of Phlebotomus (P.) papatasi but no data available for natural populations of Turkey, where leishmaniasis is endemic. Therefore, we aimed to investigate the midgut bacterial flora of different populations of P. papatasi. Sand flies were collected from different towns (Karaburun, Urla, Ayvacik and Başçayır) located in the western part of Turkey. Laboratory reared P. papatasi were included in the study as an insectarium population. After sterile washing steps, sand flies were dissected and guts were separated. Three pools, (males, unfed females and blood-fed females) were generated for each population. Prokaryotic 16 S rRNA gene was amplified and DGGE was performed. Fourteen different organisms belonging to two Phylum (Proteobactericea and Furmicutes) were identified according to sequence results in the studied pools. The presence of Wolbachia sp. was shown for the first time in the wild-caught sand fly populations of Turkey. This is the first report of gut bacterial flora of wild-caught P. papatasi collected in an endemic area for leishmaniasis in Turkey. Microbiome profiling of wild-caught sand flies will be of great help in the investigating of possible vector control candidates for paratransgenic control approach.
Collapse
|
42
|
Park JM, You YH, Park JH, Kim HH, Ghim SY, Back CG. Cutaneous Microflora from Geographically Isolated Groups of Bradysia agrestis, an Insect Vector of Diverse Plant Pathogens. MYCOBIOLOGY 2017; 45:160-171. [PMID: 29138620 PMCID: PMC5673511 DOI: 10.5941/myco.2017.45.3.160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Larvae of Bradysia agrestis, an insect vector that transports plant pathogens, were sampled from geographically isolated regions in Korea to identify their cutaneous fungal and bacterial flora. Sampled areas were chosen within the distribution range of B. agrestis; each site was more than 91 km apart to ensure geographical segregation. We isolated 76 microbial (fungi and bacteria) strains (site 1, 29; site 2, 29; site 3, 18 strains) that were identified on the basis of morphological differences. Species identification was molecularly confirmed by determination of universal fungal internal transcribed spacer and bacterial 16S rRNA gene sequences in comparison to sequences in the EzTaxon database and the NCBI GenBank database, and their phylogenetic relationships were determined. The fungal isolates belonged to 2 phyla, 5 classes, and 7 genera; bacterial species belonged to 23 genera and 32 species. Microbial diversity differed significantly among the geographical groups with respect to Margalef's richness (3.9, 3.6, and 4.5), Menhinick's index (2.65, 2.46, and 3.30), Simpson's index (0.06, 0.12, and 0.01), and Shannon's index (2.50, 2.17, and 2.58). Although the microbial genera distribution or diversity values clearly varied among geographical groups, common genera were identified in all groups, including the fungal genus Cladosporium, and the bacterial genera Bacillus and Rhodococcus. According to classic principles of co-evolutionary relationship, these genera might have a closer association with their host insect vector B. agrestis than other genera identified. Some cutaneous bacterial genera (e.g., Pseudomonas) displaying weak interdependency with insect vectors may be hazardous to agricultural environments via mechanical transmission via B. agrestis. This study provides comprehensive information regarding the cutaneous microflora of B. agrestis, which can help in the control of such pests for crop management.
Collapse
Affiliation(s)
- Jong Myong Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute for Microorganisms, Kyungpook National University, Daegu 41566, Korea
| | - Young-Hyun You
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Jong-Han Park
- Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyeong-Hwan Kim
- Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sa-Youl Ghim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute for Microorganisms, Kyungpook National University, Daegu 41566, Korea
| | - Chang-Gi Back
- Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
43
|
Park JM, You YH, Back CG, Kim HH, Ghim SY, Park JH. Fungal load in Bradysia agrestis, a phytopathogen-transmitting insect vector. Symbiosis 2017. [DOI: 10.1007/s13199-017-0494-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Fraihi W, Fares W, Perrin P, Dorkeld F, Sereno D, Barhoumi W, Sbissi I, Cherni S, Chelbi I, Durvasula R, Ramalho-Ortigao M, Gtari M, Zhioua E. An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin. PLoS Negl Trop Dis 2017; 11:e0005484. [PMID: 28355207 PMCID: PMC5386300 DOI: 10.1371/journal.pntd.0005484] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/10/2017] [Accepted: 03/11/2017] [Indexed: 11/25/2022] Open
Abstract
Background The Leishmania developmental life cycle within its sand fly vector occurs exclusively in the lumen of the insect’s digestive tract in the presence of symbiotic bacteria. The composition of the gut microbiota and the factors that influence its composition are currently poorly understood. A set of factors, including the host and its environment, may influence this composition. It has been demonstrated that the insect gut microbiota influences the development of several human pathogens, such as Plasmodium falciparum. For sand flies and Leishmania, understanding the interactions between the parasite and the microbial environment of the vector midgut can provide new tools to control Leishmania transmission. Methodology/Principal findings The midguts of female Phlebotomus perniciosus from laboratory colonies or from the field were collected during the months of July, September and October 2011 and dissected. The midguts were analyzed by culture-dependent and culture-independent methods. A total of 441 and 115 cultivable isolates were assigned to 30 and 11 phylotypes from field-collected and colonized P. perniciosus, respectively. Analysis of monthly variations in microbiota composition shows a species diversity decline in October, which is to the end of the Leishmania infantum transmission period. In parallel, a compilation and a meta-analysis of all available data concerning the microbiota of two Psychodidae genera, namely Phlebotomus and Lutzomyia, was performed and compared to P. perniciosus, data obtained herein. This integrated analysis did not reveal any substantial divergences between Old and New world sand flies with regards to the midgut bacterial phyla and genera diversity. But clearly, most bacterial species (>76%) are sparsely distributed between Phlebotominae species. Conclusion/Significance Our results pinpoint the need for a more exhaustive understanding of the bacterial richness and abundance at the species level in Phlebotominae sand flies in order to capture the role of midgut bacteria during Leishmania development and transmission. The occurrence of Bacillus subtilis in P. perniciosus and at least two other sand fly species studied so far suggests that this bacterial species is a potential candidate for paratransgenic or biolological approaches for the control of sand fly populations in order to prevent Leishmania transmission. The use of conventional microbiological methods gave us the opportunity to investigate the richness of symbiotic bacteria that inhabit the gut of P. perniciosus during its main period of activity. Our results were subsequently analyzed in the framework of what has been done on sand flies microbiota in order to validate our results and to address the question of the definition of the core bacterial microbiota of sand flies. A meta-analysis on the respective gut microbiota of Old and New World sand flies shows that the majority of bacterial species is observed only in one host whereas less than 8% are shared by more than two hosts. Our results pinpoint the need for a more exhaustive understanding of the microbiota composition and dynamic in phlebotominae, with the aim to implement new biological approaches for the control of sand fly populations in order to prevent Leishmania transmission.
Collapse
Affiliation(s)
- Wael Fraihi
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
- Laboratory of Microorganisms and Active Biomolecules, University of Tunis-El Manar, Faculty of Sciences, Tunis, Tunisia
| | - Wasfi Fares
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Pascale Perrin
- MIVEGEC/Université de Montpellier CNRS/UMR 5244/IRD 224 - Centre IRD, Montpellier, France
| | - Franck Dorkeld
- INRA - UMR 1062 CBGP (INRA, IRD, CIRAD), Montpellier SupAgro, Montferrier-Sur-Lez, France
| | - Denis Sereno
- MIVEGEC/Université de Montpellier CNRS/UMR 5244/IRD 224 - Centre IRD, Montpellier, France
- UMR177, Centre IRD de Montpellier, Montpellier, France
- * E-mail: (EZ); (DS)
| | - Walid Barhoumi
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Imed Sbissi
- Laboratory of Microorganisms and Active Biomolecules, University of Tunis-El Manar, Faculty of Sciences, Tunis, Tunisia
| | - Saifedine Cherni
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Ifhem Chelbi
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Ravi Durvasula
- Division of Infectious Diseases, Center for Global Health, Department of Internal Medicine, UNM School of Medicine Albuquerque, New Mexico, United States of America
| | - Marcelo Ramalho-Ortigao
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Maher Gtari
- Laboratory of Microorganisms and Active Biomolecules, University of Tunis-El Manar, Faculty of Sciences, Tunis, Tunisia
| | - Elyes Zhioua
- Laboratory of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
- * E-mail: (EZ); (DS)
| |
Collapse
|
45
|
Maleki-Ravasan N, Bahrami A, Vatandoost H, Shayeghi M, Koosha M, Oshaghi MA. Molecular Characterization and Phylogenetic Congruence of Hydropsyche sciligra (Tricoptera: Hydropsychidae) Using Mitochondrial and Nuclear Markers. J Arthropod Borne Dis 2017; 11:60-77. [PMID: 29026853 PMCID: PMC5629307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 11/18/2015] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Caddisflies have significant roles in freshwater ecosystems. Morphological identification is the major impediment in accurate species identification of Hydropsychids. Mitochondrial and nuclear markers are suitable for molecular systematics of these group of arthropods. METHODS Trichopteran specimens of Lavasan District in northeastern Tehran, Iran were collected in 2012, and described using the morphological and molecular characters of mitochondrial cytochrome c oxidase subunit I (mt-COI) and three expansion fragments of large subunit (LSU) nuclear ribosomal DNA (28S rDNA) D1, D2, and D3. The resemblance of the specimen sequences was obtained by conducting BLAST searches against the GenBank database and by using simple maximum likelihood clustering using COI, D1, D2, D3, and combination of D1-D2-D3 sequence data sets. RESULTS Based on morphological traits the specimens were resembled to Hydropsyche sciligra however there were no its counterpart sequences in the GenBank. Due to lack of unique group of data set for each gene fragment, the specimens were associated with different taxa on molecular phylograms. The sequence contents of the COI, D1, D2, D3, and D1-D3 regions clustered H. sciligra with H. brevis, H. angustipennis, H. occidentalis, H. hedini, H. grahami, and H. longifurca/H. naumanni, respectively. CONCLUSION Phylogenies obtained from combination of D1-D3 showed the highest bootstrap values for most of clades suggesting that long LSU-rDNA potentially is more useful for understanding phylogenetic relationships of caddisflies. A large-scale molecular and zoogeographic study on trichopteran species is suggested to revise and to develop the current knowledge of the caddisfly fauna and distributions in the country.
Collapse
Affiliation(s)
- Naseh Maleki-Ravasan
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Abbas Bahrami
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Alborz University of Medical Sciences, Alborz Province, Karaj, Iran
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Shayeghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Li K, Chen H, Jiang J, Li X, Xu J, Ma Y. Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China. Sci Rep 2016; 6:36406. [PMID: 27819272 PMCID: PMC5098245 DOI: 10.1038/srep36406] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Sand fly Phlebotomus chinensis is a primary vector of transmission of visceral leishmaniasis in China. The sand flies have adapted to various ecological niches in distinct ecosystems. Characterization of the microbial structure and function will greatly facilitate the understanding of the sand fly ecology, which would provide critical information for developing intervention strategy for sand fly control. In this study we compared the bacterial composition between two populations of Ph. chinensis from Henan and Sichuan, China. The phylotypes were taxonomically assigned to 29 genera of 19 families in 9 classes of 5 phyla. The core bacteria include Pseudomonas and enterobacteria, both are shared in the sand flies in the two regions. Interestingly, the endosymbionts Wolbachia and Rickettsia were detected only in Henan, while the Rickettsiella and Diplorickettsia only in Sichuan. The intracellular bacteria Rickettsia, Rickettsiella and Diplorickettsia were reported for the first time in sand flies. The influence of sex and feeding status on the microbial structure was also detected in the two populations. The findings suggest that the ecological diversity of sand fly in Sichuan and Henan may contribute to shaping the structure of associated microbiota. The structural classification paves the way to function characterization of the sand fly associated microbiome.
Collapse
Affiliation(s)
- Kaili Li
- Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Huiying Chen
- Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Jinjin Jiang
- Biology Department, Molecular Biology Program, New Mexico State University, Las Cruces NM 88003, USA
| | - Xiangyu Li
- Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| | - Jiannong Xu
- Biology Department, Molecular Biology Program, New Mexico State University, Las Cruces NM 88003, USA
| | - Yajun Ma
- Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
47
|
Karami M, Moosa-Kazemi SH, Oshaghi MA, Vatandoost H, Sedaghat MM, Rajabnia R, Hosseini M, Maleki-Ravasan N, Yahyapour Y, Ferdosi-Shahandashti E. Wolbachia Endobacteria in Natural Populations of Culex pipiens of Iran and Its Phylogenetic Congruence. J Arthropod Borne Dis 2016; 10:347-63. [PMID: 27308293 PMCID: PMC4906741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/03/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Wolbachia are common intracellular bacteria that infect different groups of arthropods including mosquitoes. These bacteria modify host biology and may induce feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI). Recently Wolbachia is being nominated as a bio-agent and paratransgenic candidate to control mosquito borne diseases. METHODS Here we report the results of a survey for presence, frequency, and phylogenetic congruence of these endosymbiont bacteria in Culex pipiens populations in Northern, Central, and Southern parts of Iran using nested-PCR amplification of wsp gene. RESULTS Wolbachia DNA were found in 227 (87.3%) out of 260 wild-caught mosquitoes. The rate of infection in adult females ranged from 61.5% to 100%, while in males were from 80% to 100%. The Blast search and phylogenetic analysis of the wsp gene sequence revealed that the Wolbachia strain from Iranian Cx. pipiens was identical to the Wolbachia strains of supergroup B previously reported in members of the Cx. pipiens complex. They had also identical sequence homology with the Wolbachia strains from a group of distinct arthropods including lepidopteran, wasps, flies, damselfly, thrips, and mites from remote geographical areas of the world. CONCLUSION It is suggested that Wolbachia strains horizontally transfer between unrelated host organisms over evolutionary time. Also results of this study indicates that Wolbachia infections were highly prevalent infecting all Cx. pipiens populations throughout the country, however further study needs to define Wolbachia inter-population reproductive incompatibility pattern and its usefulness as a bio-agent control measure.
Collapse
Affiliation(s)
- Mohsen Karami
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Moosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramazan Rajabnia
- Infectious Diseases & Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yousef Yahyapour
- Infectious Diseases & Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Department of Advanced Technologies in Medicine (SATiM), Medical Biotechnology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Monteiro CC, Villegas LEM, Campolina TB, Pires ACMA, Miranda JC, Pimenta PFP, Secundino NFC. Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing. Parasit Vectors 2016; 9:480. [PMID: 27581188 PMCID: PMC5007851 DOI: 10.1186/s13071-016-1767-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Parasites of the genus Leishmania cause a broad spectrum of diseases, collectively known as leishmaniasis, in humans worldwide. American cutaneous leishmaniasis is a neglected disease transmitted by sand fly vectors including Lutzomyia intermedia, a proven vector. The female sand fly can acquire or deliver Leishmania spp. parasites while feeding on a blood meal, which is required for nutrition, egg development and survival. The microbiota composition and abundance varies by food source, life stages and physiological conditions. The sand fly microbiota can affect parasite life-cycle in the vector. METHODS We performed a metagenomic analysis for microbiota composition and abundance in Lu. intermedia, from an endemic area in Brazil. The adult insects were collected using CDC light traps, morphologically identified, carefully sterilized, dissected under a microscope and the females separated into groups according to their physiological condition: (i) absence of blood meal (unfed = UN); (ii) presence of blood meal (blood-fed = BF); and (iii) presence of developed ovaries (gravid = GR). Then, they were processed for metagenomics with Illumina Hiseq Sequencing in order to be sequence analyzed and to obtain the taxonomic profiles of the microbiota. RESULTS Bacterial metagenomic analysis revealed differences in microbiota composition based upon the distinct physiological stages of the adult insect. Sequence identification revealed two phyla (Proteobacteria and Actinobacteria), 11 families and 15 genera; 87 % of the bacteria were Gram-negative, while only one family and two genera were identified as Gram-positive. The genera Ochrobactrum, Bradyrhizobium and Pseudomonas were found across all of the groups. CONCLUSIONS The metagenomic analysis revealed that the microbiota of the Lu. intermedia female sand flies are distinct under specific physiological conditions and consist of 15 bacterial genera. The Ochrobactrum, Bradyrhizobium and Pseudomonas were the common genera. Our results detailing the constituents of Lu. intermedia native microbiota contribute to the knowledge regarding the bacterial community in an important sand fly vector and allow for further studies to better understand how the microbiota interacts with vectors of human parasites and to develop tools for biological control.
Collapse
Affiliation(s)
- Carolina Cunha Monteiro
- Laboratory of Medical Entomology, René Rachou Research Centre (FIOCRUZ-MG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Thais Bonifácio Campolina
- Laboratory of Medical Entomology, René Rachou Research Centre (FIOCRUZ-MG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Jose Carlos Miranda
- Centro de Pesquisas Gonçalo Moniz (CPqGM)-Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | | | | |
Collapse
|
49
|
Hosseini-Vasoukolaei N, Idali F, Khamesipour A, Yaghoobi-Ershadi MR, Kamhawi S, Valenzuela JG, Edalatkhah H, Arandian MH, Mirhendi H, Emami S, Jafari R, Saeidi Z, Jeddi-Tehrani M, Akhavan AA. Differential expression profiles of the salivary proteins SP15 and SP44 from Phlebotomus papatasi. Parasit Vectors 2016; 9:357. [PMID: 27342811 PMCID: PMC4919860 DOI: 10.1186/s13071-016-1633-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background Sand fly saliva has been shown to help parasite establishment and to induce immune responses in vertebrate hosts. In the current study, we investigated the pattern of expression of two Phlebotomus papatasi salivary transcripts in specific physiological and seasonal conditions at a hyperendemic area of zoonotic cutaneous leishmaniasis (ZCL) in Iran. Methods Sand flies were collected during 2012–2013, and grouped according to physiological stages such as unfed, fed, semi-gravid, gravid, parous, nulliparous, infected or non-infected with Leishmania major and also based on the season in which they were collected. Quantitative Real-Time PCR was applied for assessment of the expression of two relevant salivary transcripts, PpSP15 and PpSP44, associated to protection from and exacerbation of ZCL, respectively. Results The expression of PpSP15 and PpSP44 transcripts was significantly up-regulated (1.74 and 1.4 folds, respectively) in blood fed compared to unfed flies. Among four groups of fed, unfed, semi-gravid and gravid flies, the lowest levels of PpSP15 and PpSP44 expression were observed in gravid flies. Additionally, the expression levels of both PpSP15 and PpSP44 transcripts in P. papatasi collected during summer were significantly up-regulated (3.7 and 4.4 folds, respectively) compared to spring collections. In addition, the PpSP15 transcript exhibited a significant up-regulation (P < 0.05) in non-infected flies compared to those infected with L. major. Conclusions This study contributes to our knowledge of the differential expression of salivary genes among different groups within a P. papatasi population under natural field conditions. Cutaneous and visceral leishmaniasis are of public health importance in many parts of Iran and neighbouring countries where P. papatasi is the proven and dominant sand fly vector for ZCL, the most prevalent and endemic form of the disease in Iran. Therefore, the current study could be helpful in understanding the influence of salivary genes on Leishmania transmission by phlebotomine sand flies. Our findings demonstrate the differential expression of salivary transcripts under various physiological conditions potentially influencing the sand fly capacity for parasite transmission as well as the outcome of disease. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1633-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nasibeh Hosseini-Vasoukolaei
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Entomology and Vector Control, Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farah Idali
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD, 20852, USA
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Arandian
- Esfahan Health Research Station, National Institute of Health Research, Tehran University of Medical Sciences, Esfahan, Iran
| | - Hossein Mirhendi
- Department of Medical Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Emami
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Reza Jafari
- Esfahan Health Research Station, National Institute of Health Research, Tehran University of Medical Sciences, Esfahan, Iran
| | - Zahra Saeidi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Amir Ahmad Akhavan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
You YH, Park JM, Yi PH, Back CG, Park MJ, Han KS, Yoon JB, Kim HH, Park JH. Microflora of phytopathogen-transferring Bradysia agrestis: a step toward finding ideal candidates for paratransgenesis. Symbiosis 2016. [DOI: 10.1007/s13199-016-0412-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|