1
|
Kanté Tagueu S, Mbida Mbida JA, Mamia Grace F, Kamga Ndéfo RM, Atangana Bita G, Atiokeng Tatang RJ, Acho A, Njiokou F, Simo G. Diversity of trypanosomes in tsetse fly caught in two "silent" sleeping sickness foci of Bafia and the Manoka Island in Cameroon. Parasitol Int 2025; 104:102970. [PMID: 39303851 DOI: 10.1016/j.parint.2024.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Surveillance of "silent" human African Trypanosomiasis (HAT) foci is important for the achievement of the World Health Organization (WHO) goal of interrupting the transmission of this disease by 2030. It is in this context that this study was carried out to determine the trypanosome species circulating in the "silent" HAT foci of Bafia and the Manoka island in Cameroon. METHODS In the Bafia and Manoka HAT foci, georeferenced pyramidal traps were used to trap tsetse flies. After DNA extraction from each whole fly, molecular tools were used to detect different trypanosome species as well as the origin of tsetse fly blood meals. Geographical information system was used to map the trypanosome infections and entomological data and to localize areas at high risk for trypanosome transmission. RESULTS For this study, 1683 tsetse flies were caught and the relative apparent densities was 2.96: 0.03 in the Bafia HAT focus and 5.23 in the Manoka island. For the molecular identification of trypanosomes, 708 non-teneral tsetse flies (8 from Bafia and 700 from Manoka) were randomly selected. The overall trypanosome infection rate was 7.34 % with no infection in the Bafia HAT focus. Among the analysed flies, 4.57 % had trypanosomes of the subgenus Trypanozoon while 4.1 % and 1.13 % had respectively T. congolense and T. vivax. The most common mixed infections were the combination of trypanosomes of the subgenus Trypanozoon and T. congolense. Of the 708 tsetse flies analysed, 134 (18.93 %) tsetse flies were found with residual blood meals, 94 % and 6 % were respectively from humans and dogs. The trapping sites of Plateau, Sandje and Hospital appeared as the areas where contact with tsetse flies is most common. CONCLUSION This study revealed a discrepancy in the abundance tsetse flies as well as the trypanosome infection rates in tsetse of the two "silent" HAT foci of Cameroon. The detection of different trypanosome species in tsetse from the Manoka Island highlights their transmission. The high percentage of human blood meals in tsetse flies indicates an important contact between tsetse flies and human; emphasizing the risk of trypanosome transmission to human in this island.
Collapse
Affiliation(s)
- Sartrien Kanté Tagueu
- Faculty of Science and Technology, Evangelical University Institute of Cameroon, PO Box. 127, Bandjoun, Cameroon; Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67 Dschang, Cameroon; Centre for Research in Infectious Diseases (CRID), Yaoundé, PO Box: 13591, Cameroon.
| | - Jean Arthur Mbida Mbida
- Laboratory of Animal Biology, Department of Animal Biology, Faculty of Science, University of Douala PO Box 24 157, Douala, Cameroon.
| | - Florentine Mamia Grace
- Laboratory of Animal Biology, Department of Animal Biology, Faculty of Science, University of Douala PO Box 24 157, Douala, Cameroon.
| | - Rolin Mitterran Kamga Ndéfo
- Faculty of Science and Technology, Evangelical University Institute of Cameroon, PO Box. 127, Bandjoun, Cameroon.
| | - Gael Atangana Bita
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | - Rostand Joël Atiokeng Tatang
- Research Unit of Applied Biology and Ecology, Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.
| | | | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | - Gustave Simo
- Faculty of Science and Technology, Evangelical University Institute of Cameroon, PO Box. 127, Bandjoun, Cameroon.
| |
Collapse
|
2
|
Tariq M, Badshah F, Khan MS, Ibáñez-Arancibia E, Ríos-Escalante PRDL, Khan NU, Naeem S, Manzoor A, Tahir R, Mubashir M, Ilyas M, Manzoor GA, Said MB. Prevalence of trypanosomiasis caused by Trypanosoma evansi (Kinetoplastea, Trypanosomatidae) in domestic ruminants from Southern Punjab, Pakistan. Vet World 2024; 17:1955-1965. [PMID: 39507786 PMCID: PMC11536726 DOI: 10.14202/vetworld.2024.1955-1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Trypanosomiasis, a parasitic infection caused by various Trypanosoma species, poses a significant threat to global livestock, affecting both human health and economic sectors. This study aimed to estimate the prevalence of Trypanosoma evansi in Southern Punjab, Pakistan, focusing on key ruminant species, including camels, cattle, buffaloes, goats, and sheep. Materials and Methods A total of 240 blood samples, comprising 48 samples from each animal species (camel, cattle, buffaloes, goat, and sheep) were collected from three districts in Southern Punjab. The collected samples were subjected to thin smear microscopy, DNA extraction, and polymerase chain reaction (PCR) amplification. The molecular characterization was conducted using the TBR primer set, which targeted repeated satellite DNA regions and the cytochrome oxidase II gene of T. evansi. Results About 22.08% (53/240) of overall samples were positive for trypanosomiasis, with prevalence rates being 23.75% (19/80), 21.25% (17/80), and 21.75% (17/80) for districts Muzaffargarh, Lodhran, and Bahawalpur, respectively. 5.83% (14/240) of samples tested for T. evansi using PCR were positive in the districts of Muzaffargarh 7.50% (6/80), Lodhran 5.00% (4/80), and Bahawalpur 5.00% (4/80). Among the animals tested, camels had the highest positivity rate. The microscopic examination confirmed infection rates of 45.83% (22/48) for camels, 18.75% (9/48) for cattle, 8.33% (4/48) for buffaloes, 18.75% (9/48) for goats, and 18.75% (9/48) for sheep (p < 0.001). PCR results did not reveal substantial differences (p < 0.05) in prevalence: camels 12.50% (6/48), cattle 6.25% (3/48), buffaloes 0% (0/48), goats 8.33% (4/48), sheep 2.08% (1/48); while distinct disparities were detected district-wise: Muzaffargarh 23.75% (19/80), Lodhran 21.25% (17/80), and Bahawalpur 21.25% (17/80). The PCR results for these districts were insignificantly different: 7.50% (6/80), 5% (4/80), and 5% (4/80). The microscopic infection rate in camels from Bahawalpur was 56.30% (9/16). The microscopic analysis in Buffaloes reported a 6.30% (1/16) infection rate, but PCR results indicated no infections (0%) in any district. A significant difference (p < 0.001) in identifying Trypanosoma species was found between positively and negatively tested animals in both microscopic and PCR methods. Conclusion This study emphasizes the necessity of regularly using PCR-based screening for its superior sensitivity and specificity over traditional microscopy. The varying occurrence of trypanosomiasis among districts reflects the intricate nature of this diseases epidemiology in the region. Reducing economic losses from trypanosomiasis in Southern Punjab, Pakistan, requires targeted interventions, such as vector control measures and farmer education.
Collapse
Affiliation(s)
- Muhammad Tariq
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Farhad Badshah
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Eliana Ibáñez-Arancibia
- Ph.D. Program in Sciences mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco, Chile
- Laboratory of Engineering, Biotechnology and Applied Biochemistry, Department of Chemical Engineering, Faculty of Engineering and Science, La Frontera University, Temuco, Chile
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Patricio R. De los Ríos-Escalante
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
- Nucleus of Environmental Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Naimat Ullah Khan
- Collage of Veterinary Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sadaf Naeem
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Azka Manzoor
- Collage of Veterinary and Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Mubashir
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Ilyas
- Department of Animal Nutrition, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Ghulam Ali Manzoor
- Directorate of Agriculture Research Transfer Technology, Mastung, Balochistan
| | - Mourad Ben Said
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
3
|
Mulat G, Maru M, Tarekegn ZS, Dejene H. A systematic review and meta-analysis on prevalence of bovine trypanosomosis in East Africa. Parasite Epidemiol Control 2024; 26:e00371. [PMID: 39184304 PMCID: PMC11341968 DOI: 10.1016/j.parepi.2024.e00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Bovine trypanosomosis is an incapacitating and lethal ailment brought about by protozoan parasites of the genus Trypanosoma. The disease leads to losses in livestock and agricultural productivity, resulting in significant socio-economic repercussions. In East Africa, trypanosomosis has been endemic for an extensive period due to ecological factors and vector biology that facilitate the persistent circulation of trypanosomes. This investigation outlines the occurrence of bovine trypanosomosis in East Africa through a meta-analysis. A thorough search was conducted on PubMed, Google Scholar, Scopus, Web of Science and AJOL. Suitable studies were chosen using inclusion and exclusion criteria. The prevalence was estimated through a random effect model. Publication bias and the variation in prevalence estimates due to heterogeneity were also evaluated. The analysis was performed on 115 studies that contained relevant prevalence data. The collective estimate of bovine trypanosomosis prevalence across the studies stood at 12% (95% CI: 11, 13), ranging from 1% (95% CI: 0, 2) to 51% (95% CI: 45, 58). The subgroup analysis by country revealed considerable disparities in prevalence. The highest estimated prevalence was 24% (95% CI: 18, 30) in Somalia, whereas the lowest prevalence was observed in Ethiopia at 10% (95% CI: 9, 11). A significant level of heterogeneity was noted in most pooled estimates, even after conducting subgroup analysis. The visual examination of the funnel plot and the Egger's regression asymmetry coefficient (b = -5.13, 95% CI: -7.49, -2.76, p = 0.00) and Begg's plot (p = 0.00) indicate the presence of publication bias. In conclusion, bovine trypanosomosis is a pervasive and noteworthy malady affecting livestock. The findings of this investigation imply a high prevalence of bovine trypanosomosis in the majority of the countries under scrutiny. Despite the well-known hindrance that livestock trypanosomosis poses to livestock production in Africa, little attention has been devoted to the trypanosomosis situation, particularly in East African nations.
Collapse
Affiliation(s)
- Getie Mulat
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Moges Maru
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Zewdu Seyoum Tarekegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Haileyesus Dejene
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| |
Collapse
|
4
|
Okello I, Nzalawahe J, Mafie E, Eastwood G. Seasonal variation in tsetse fly apparent density and Trypanosoma spp. infection rate and occurrence of drug-resistant trypanosomes in Lambwe, Kenya. Parasitol Res 2023; 123:46. [PMID: 38095710 DOI: 10.1007/s00436-023-08081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Tsetse flies are major arthropod vectors of trypanosomes that cause debilitating African animal trypanosomiasis. The emergence of drug-resistant trypanosomes is a common problem in sub-Saharan Africa. This study aimed to identify tsetse flies' seasonal variation in apparent densities and their infection rates and the occurrence of drug-resistant trypanosomes. Tsetse flies were collected from Lambwe, Kenya, during May and September 2021. Genomic DNA was extracted from them, and the ITS1 gene was amplified to detect Trypanosoma infection with subsequent species determination. Transporter genes DMT, E6M6, TbAT/P2, and TcoAde2 were targeted to detect polymorphisms associated with drug-resistance, using sequencing and comparison to drug-sensitive trypanosome species referenced in Genbank. A total of 498 tsetse flies and 29 non-tsetse flies were collected. The apparent density of flies was higher in wet season 6.2 fly per trap per density (FTD) than in the dry season 2.3 FTD (P = 0.001), with n = 386 and n = 141 flies caught in each season, respectively. Male tsetse flies (n = 311) were more numerous than females (n = 187) (P = 0.001). Non-tsetse flies included Tabanids and Stomoxys spp. Overall, Trypanosoma infection rate in tsetse was 5% (25/498) whereby Trypanosoma vivax was 4% (11/25), Trypanosoma congolense 36% (9/25), and Trypanosoma brucei 20% (5/25) (P = 0.186 for the distribution of the species), with infections being higher in females (P = 0.019) and during the wet season (P < 0.001). Numerous polymorphisms and insertions associated with drug resistance were detected in DMT and E6M6 genes in two T. congolense isolates while some isolates lacked these genes. T. brucei lacked TbAT/P2 genes. TcoAde2 sequences in three T. congolense isolates were related to those observed in trypanosomes from cattle blood in our previous study, supporting tsetse fly involvement in transmission in the region. We report Trypanosoma associated with trypanocidal drug-resistance in tsetse flies from Lambwe, Kenya. Female tsetse flies harbored more Trypanosoma infections than males. Tsetse transmission of trypanosomes is common in Lambwe. Risk of trypanosome infection would seem higher in the wet season, when tsetse flies and Trypanosoma infections are more prevalent than during the dry season. More efforts to control animal trypanosome vectors in the region are needed, with particular focus on wet seasons.
Collapse
Affiliation(s)
- Ivy Okello
- Department of Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. Box 3019, Morogoro, Tanzania.
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa, SACIDS Foundation for One Health, P.O. Box 3297, Morogoro, Tanzania.
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Jahashi Nzalawahe
- Department of Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. Box 3019, Morogoro, Tanzania
| | - Eliakunda Mafie
- Department of Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. Box 3019, Morogoro, Tanzania
| | - Gillian Eastwood
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Global Change Center at Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens (CeZAP), Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
Gwakisa P, George J, Sindato C, Ngonyoka A, Nnko H, Assenga J, Kimera S, Nessele MO. Pillars for successful operationalization of one health as an ecosystem approach: experience from a human-animal interface in the Maasai steppe in Tanzania. ONE HEALTH OUTLOOK 2023; 5:11. [PMID: 37649116 PMCID: PMC10469404 DOI: 10.1186/s42522-023-00087-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/03/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Solving complex public health challenges requires integrated approaches to health, such as One Health. A key element of the One Health approach is the interrelationship between human, animal and environmental health and the associated multistakeholder collaboration across many cultural, disciplinary, institutional and sectoral boundaries. Here we describe a pragmatic approach for One Health operationalisation basing on our long-term engagement with communities faced with health challenges in a human-livestock-wildlife interface in the Maasai steppe in northern Tanzania. METHODS Using a qualitative study design we performed an outcome mapping to document insights on results integration from our previous project. Data were collected through participatory community meetings, in-depth interviews and field observations. Field notes were coded and analysed using inductive thematic analysis. RESULTS We found that effective implementation of One Health interventions in complex ecosystems works best by understanding local conditions and their context and by working closely with the local people and relevant disciplinary players as one complex adaptive system. Community engagement, systems analysis, transdisciplinarity as well as political commitment played critical roles in successful operationalization of One Health. We have further emphasized that project ownership is as important to the local community as it is to the researchers. When used in combination, these elements (community engagement, systems analysis, transdisciplinarity) provide essential pillars for co-creation and maintaining collective action to set a common vision across disciplines, serving as inputs for a metrics-based toolbox for One Health operationalisation. CONCLUSION Considering the novelty and complexity of One Health operationalisation, there is need also to develop scorecard-based guidance for assessment of One Health programs at local and national level. This paper proposes a framework for the optimization of an ecosystems-based One Health approach for prevention and control of Vector-Borne Diseases implemented at the local, sub-national or national level.
Collapse
Affiliation(s)
- Paul Gwakisa
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Box 3019, Morogoro, Tanzania
| | - Janeth George
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Box 3019, Morogoro, Tanzania.
| | - Calvin Sindato
- National Institute for Medical Research, Tabora, Tanzania
| | | | | | | | - Sharadhuli Kimera
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Box 3019, Morogoro, Tanzania
| | - Moses Ole Nessele
- Food and Agriculture Organization of the United Nations (FAO), Country Office, Dodoma, United Republic of Tanzania
| |
Collapse
|
6
|
Peacock L, Kay C, Collett C, Bailey M, Gibson W. Development of the livestock pathogen Trypanosoma (Nannomonas) simiae in the tsetse fly with description of putative sexual stages from the proboscis. Parasit Vectors 2023; 16:231. [PMID: 37434196 DOI: 10.1186/s13071-023-05847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Tsetse-transmitted African animal trypanosomiasis is recognised as an important disease of ruminant livestock in sub-Saharan Africa, but also affects domestic pigs, with Trypanosoma simiae notable as a virulent suid pathogen that can rapidly cause death. Trypanosoma simiae is widespread in tsetse-infested regions, but its biology has been little studied compared to T. brucei and T. congolense. METHODS Trypanosoma simiae procyclics were cultured in vitro and transfected using protocols developed for T. brucei. Genetically modified lines, as well as wild-type trypanosomes, were transmitted through tsetse flies, Glossina pallidipes, to study T. simiae development in the tsetse midgut, proventriculus and proboscis. The development of proventricular trypanosomes was also studied in vitro. Image and mensural data were collected and analysed. RESULTS A PFR1::YFP line successfully completed development in tsetse, but a YFP::HOP1 line failed to progress beyond midgut infection. Analysis of image and mensural data confirmed that the vector developmental cycles of T. simiae and T. congolense are closely similar, but we also found putative sexual stages in T. simiae, as judged by morphological similarity to these stages in T. brucei. Putative meiotic dividers were abundant among T. simiae trypanosomes in the proboscis, characterised by a large posterior nucleus and two anterior kinetoplasts. Putative gametes and other meiotic intermediates were also identified by characteristic morphology. In vitro development of proventricular forms of T. simiae followed the pattern previously observed for T. congolense: long proventricular trypanosomes rapidly attached to the substrate and shortened markedly before commencing cell division. CONCLUSIONS To date, T. brucei is the only tsetse-transmitted trypanosome with experimentally proven capability to undergo sexual reproduction, which occurs in the fly salivary glands. By analogy, sexual stages of T. simiae or T. congolense are predicted to occur in the proboscis, where the corresponding portion of the developmental cycle takes place. While no such stages have been observed in T. congolense, for T. simiae putative sexual stages were abundant in the tsetse proboscis. Although our initial attempt to demonstrate expression of a YFP-tagged, meiosis-specific protein was unsuccessful, the future application of transgenic approaches will facilitate the identification of meiotic stages and hybrids in T. simiae.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Chris Kay
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Clare Collett
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Pathogen Immunology Group, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
7
|
Gebeyehu S, Degneh E. Parasitological investigation of bovine Trypanosomosis, vector distribution and tsetse flies infection rate study, Dabo Hana District, Buno Bedelle Zone, Southwest Ethiopia. Vet Parasitol Reg Stud Reports 2023; 41:100867. [PMID: 37208073 DOI: 10.1016/j.vprsr.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
A cross-sectional study was conducted to explore the prevalence of Trypanosome infections in cattle and within the tsetse flies from December 2020 to May 2021 in Dabo Hana district, Buno Bedelle Zone, Southwest Ethiopia. A total of 415 blood samples were examined utilizing Buffy coat and Giemsa-stained thin blood smear techniques. Vector distribution and tsetse fly infection rate were studied by deploying 60 traps in four purposively chosen villages of the district. The prevalence of Trypanosomes was 10.6% and 6.5% in cattle and in tsetse flies, respectively. Trypanosoma congolense (59.1%) in cattle and T. vivax (62.5%) in tsetse flies, were the foremost common species distinguished in the area. A significant difference (P ≤ 0.05) was observed in the prevalence of bovine Trypanosomosis between body condition scores of cattle. However, differences were not significant between coat color, sex, and age categories (P > 0.05). The mean PCV values of Trypanosome-infected cattle (22.6 ± 0.6) were significantly (P < 0.05) lower than those of non-infected cattle (25.6 ± 0.3). Out of 1441 flies caught, 1242 (86.2%) were Glossina, 113 (7.84%) were Stomoxys, and 86 (5.97%) were Tabanus. Of 1242 Glossina, 85% were G. tachinoides and the remaining 15% were G. m. sub-morsitans. This finding revealed that, three Trypanosoma species are circulating in cattle as well as in tsetse flies. It is recommended that, sustainable and integrated tsetse and Trypanosomosis control practices should be implemented to foster live stock health and agricultural development in the district. Other sensitive methods should be employed to determine the true picture of infection in the area.
Collapse
Affiliation(s)
- Surra Gebeyehu
- Wollega University, School of Veterinary Medicine, Nekemte, Ethiopia
| | - Efrem Degneh
- Wollega University, School of Veterinary Medicine, Nekemte, Ethiopia.
| |
Collapse
|
8
|
Hong Y, Suganuma K, Ohari Y, Kayano M, Nakazaki K, Fukumoto S, Kawazu SI, Inoue N. Seasonal Variation and Factors Affecting Trypanosoma theileri Infection in Wild Sika Deer (Ezo Sika Deer Cervus nippon yesoensis) in Eastern Hokkaido. Animals (Basel) 2023; 13:ani13101707. [PMID: 37238137 DOI: 10.3390/ani13101707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Trypanosoma (Megatrypanum) spp. are isolated from domestic and wild ruminants, including deer, worldwide. The prevalence of trypanosomes in mammals is influenced by a number of factors such as host age and vector abundance. However, the seasonal variation of and factors affecting trypanosome infection in the wild deer population remain elusive. In this study, we analyzed the seasonal variation in trypanosome prevalence and the factors that affect Trypanosoma theileri Laveran, 1902, infection in wild sika deer (Ezo sika deer) Cervus nippon yesoensis (Heude, 1884) in Eastern Hokkaido through a two-year survey. Seasonal variation in the prevalence of trypanosome infection in the deer population ranged from 0 to 41% as per hematocrit concentration and 17 to 89% as per PCR results. In general, the prevalence of T. theileri by PCR in 2020 was higher than that in 2019. Moreover, the prevalence was significantly higher in the aged population than among the younger population. These findings may explain why individual conditions and sampling season were associated with trypanosome prevalence. This is the first study to investigate the seasonal variation in and risk factors affecting trypanosome infection in wild deer.
Collapse
Affiliation(s)
- Yujon Hong
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Yuma Ohari
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Kita 20 Jyo Nishi 10, Sapporo 001-0020, Hokkaido, Japan
| | - Mitsunori Kayano
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Kenji Nakazaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
9
|
Okello I, Mafie E, Nzalawahe J, Eastwood G, Mboera LEG, Hakizimana JN, Ogola K. Trypanosoma Congolense Resistant to Trypanocidal Drugs Homidium and Diminazene and their Molecular Characterization in Lambwe, Kenya. Acta Parasitol 2023; 68:130-144. [PMID: 36441294 DOI: 10.1007/s11686-022-00640-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE African animal trypanosomiasis (AAT) is a disease affecting livestock in sub-Saharan Africa. The use of trypanocidal agents is common practice to control AAT. This study aimed to identify drug-resistant Trypanosoma congolense in Lambwe, Kenya, and assess if molecular test backed with mice tests is reliable in detecting drug sensitivity. METHODS Blood samples were collected from cattle, in Lambwe, subjected to buffy coat extraction and Trypanosoma spp. detected under a microscope. Field and archived isolates were subjected to molecular characterization. Species-specific T. congolense and TcoAde2 genes were amplified using PCR to detect polymorphisms. Phylogenetic analysis were performed. Four T. congolense isolates were evaluated individually in 24 test mice per isolate. Test mice were then grouped (n=6) per treatement with diminazene, homidium, isometamidium, and controls. Mice were subsequently assessed for packed cell volume (PCV) and relapses using microscopy. RESULTS Of 454 samples, microscopy detected 11 T. congolense spp, eight had TcoAde2 gene, six showed polymorphisms in molecular assay. Phylogenetic analysis grouped isolates into five. Two archived isolates were homidium resistant, one was also diminazene resistant in mice. Two additional isolates were sensitive to all the drugs. Interestingly, one sensitive isolate lacked polymorphisms, while the second lacked TcoAde2, indicating the gene is not involved in drug sensitivity. Decline in PCV was pronounced in relapsed isolates. CONCLUSION T. congolense associated with homidium and diminazene resistance exist in Lambwe. The impact can be their spread and AAT increase. Polymorphisms are present in Lambwe strains. TcoAde2 is unlikely involved in drug sensitivity. Molecular combined with mice tests is reliable drug sensitivity test and can be applied to other genes. Decline in PCV in infected-treated host could suggest drug resistance.
Collapse
Affiliation(s)
- Ivy Okello
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, SACIDS Foundation for One Health, P.O. Box 3297, Morogoro, Tanzania. .,Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. BOX 3019, Morogoro, Tanzania.
| | - Eliakunda Mafie
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. BOX 3019, Morogoro, Tanzania
| | - Jahashi Nzalawahe
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. BOX 3019, Morogoro, Tanzania
| | - Gillian Eastwood
- Department of Entomology, College of Agriculture & Life Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA
| | - Leonard E G Mboera
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, SACIDS Foundation for One Health, P.O. Box 3297, Morogoro, Tanzania
| | - Jean Nepomuscene Hakizimana
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, SACIDS Foundation for One Health, P.O. Box 3297, Morogoro, Tanzania.,Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. BOX 3019, Morogoro, Tanzania
| | - Kennedy Ogola
- Pharmacology & Molecular Laboratory, Agricultural & Livestock Research Organization, Biotechnology Research Institute, P. O. Box 362, Kikuyu, Kenya
| |
Collapse
|
10
|
Kallu SA, Ndebe J, Qiu Y, Nakao R, Simuunza MC. Prevalence and Association of Trypanosomes and Sodalis glossinidius in Tsetse Flies from the Kafue National Park in Zambia. Trop Med Infect Dis 2023; 8:tropicalmed8020080. [PMID: 36828496 PMCID: PMC9960957 DOI: 10.3390/tropicalmed8020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023] Open
Abstract
Tsetse flies are obligate hematophagous vectors of animal and human African trypanosomosis. They cyclically transmit pathogenic Trypanosoma species. The endosymbiont Sodalis glossinidius is suggested to play a role in facilitating the susceptibility of tsetse flies to trypanosome infections. Therefore, this study was aimed at determining the prevalence of S. glossinidius and trypanosomes circulating in tsetse flies and checking whether an association exists between trypanosomes and Sodalis infections in tsetse flies from Kafue National Park in Zambia. A total of 326 tsetse flies were sampled from the Chunga and Ngoma areas of the national park. After DNA extraction was conducted, the presence of S. glossinidius and trypanosome DNA was checked using PCR. The Chi-square test was carried out to determine whether there was an association between the presence of S. glossinidius and trypanosome infections. Out of the total tsetse flies collected, the prevalence of S. glossinidius and trypanosomes was 21.8% and 19.3%, respectively. The prevalence of S. glossinidius was 22.2% in Glossina morsitans and 19.6% in Glossina pallidipes. In relation to sampling sites, the prevalence of S. glossinidius was 26.0% in Chunga and 21.0% in Ngoma. DNA of trypanosomes was detected in 18.9% of G. morsitans and 21.4% of G. pallidipes. The prevalence of trypanosomes was 21.7% and 6.0% for Ngoma and Chunga, respectively. The prevalences of trypanosome species detected in this study were 6.4%, 4.6%, 4.0%, 3.7%, 3.1%, and 2.5% for T. vivax, T. simiae, T. congolense, T. godfreyi, T. simiae Tsavo, and T. b. brucei, respectively. Out of 63 trypanosome infected tsetse flies, 47.6% of the flies also carried S. glossinidius, and the remaining flies were devoid of S. glossinidius. A statistically significant association was found between S. glossinidius and trypanosomes (p < 0.001) infections in tsetse flies. Our findings indicated that presence of S. glossinidius increases the susceptibility of tsetse flies to trypanosome infections and S. glossinidius could be a potential candidate for symbiont-mediated vector control in these tsetse species.
Collapse
Affiliation(s)
- Simegnew Adugna Kallu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- College of Veterinary Medicine, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia
- Correspondence: ; Tel.: +251-913786532
| | - Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Yongjin Qiu
- Department of Virology-I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, N18 W9, Kitaku, Sapporo 060-0818, Japan
| | - Martin C. Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
| |
Collapse
|
11
|
Ekloh W, Sunter JD, Gwira TM. African trypanosome infection patterns in cattle in a farm setting in Southern Ghana. Acta Trop 2023; 237:106721. [DOI: 10.1016/j.actatropica.2022.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
12
|
Efrem D, Kassa T, Kebede N, Worku T. Seasonal prevalence of bovine trypanosomosis and trypanosome species distribution in Jimma Horo district, Oromia regional state, Western Ethiopia. Parasite Epidemiol Control 2022; 20:e00280. [PMID: 36545242 PMCID: PMC9761842 DOI: 10.1016/j.parepi.2022.e00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/04/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
A study was conducted to determine the prevalence of bovine trypanosomosis in rainy (June 2019) and dry (February 2020) seasons in Jimma Horoo district, Kellem Wollega Zone, Oromia Regional State, Ethiopia. A total of 720 blood samples were examined using buffy coat and thin blood smear techniques. The packed cell volume (PCV) of each animal was determined. The overall bovine trypanosomosis prevalence was 4.3% (χ2 = 1.25, P = 0.26). The prevalence was 5% (95% CI = 4.1-8.3) and 3.3% (95% CI = 2.7-6.3) in the dry and rainy reasons, respectively (P > 0.05). Trypanosoma congolense, T. vivax and T. b. brucei were detected in (60%), (33.3%) and (6.7%) of infected cattle, respectively. The highest trypanosome prevalence was observed in Burka Gudina (7.6%), and the lowest in Melka Nega village (2.1%). There were significant variations between trypanosome prevalence in relation to body condition scores (χ2 = 23.16; P = 0.0.00) of examined cattle. No significant difference (P > 0.05) was observed between seasons, age, and sex categories of cattle. The PCV values of trypanosome infected (22.94%) was significantly lower than non-infected cattle (26.47%) (χ2 = 19.60; (P < 0.05). The prevalence of bovine trypanosomosis in Jimma Horo district was low and it can be controlled by treatment of infected cattle using sanative pairs of trypanocidal drugs with additional application of deltamethrin pour-on in the dry season. Further, in view of poor sensitivity of buffy coat technique used the use of molecular techniques should be encouraged.
Collapse
Affiliation(s)
- Degneh Efrem
- School of Veterinary Medicine, Wollega University, Nekemte, Ethiopia,Corresponding author.
| | - Tesfu Kassa
- Aklilu Lemma, Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nigatu Kebede
- Aklilu Lemma, Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfaye Worku
- School of Veterinary Medicine, Wollega University, Nekemte, Ethiopia
| |
Collapse
|
13
|
Boundenga L, Mombo IM, Augustin MO, Barthélémy N, Nzassi PM, Moukodoum ND, Rougeron V, Prugnolle F. Molecular Identification of Trypanosome Diversity in Domestic Animals Reveals the Presence of Trypanosoma brucei gambiense in Historical Foci of Human African Trypanosomiasis in Gabon. Pathogens 2022; 11:pathogens11090992. [PMID: 36145424 PMCID: PMC9502807 DOI: 10.3390/pathogens11090992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is an infectious disease caused by protozoan parasites belonging to the Trypanosoma genus. In sub-Saharan Africa, there is a significant threat as many people are at risk of infection. Despite this, HAT is classified as a neglected tropical disease. Over the last few years, several studies have reported the existence of a wide diversity of trypanosome species circulating in African animals. Thus, domestic and wild animals could be reservoirs of potentially dangerous trypanosomes for human populations. However, very little is known about the role of domestic animals in maintaining the transmission cycle of human trypanosomes in central Africa, especially in Gabon, where serious cases of infection are recorded each year, sometimes leading to hospitalization or death of patients. Komo-Mondah, located within Estuaries (Gabonese province), stays the most active HAT disease focus in Gabon, with a mean of 20 cases per year. In this study, we evaluated the diversity and prevalence of trypanosomes circulating in domestic animals using the Polymerase Chain Reaction (PCR) technique. We found that 19.34% (53/274) of the domestic animals we studied were infected with trypanosomes. The infection rates varied among taxa, with 23.21% (13/56) of dogs, 16.10% (19/118) of goats, and 21.00% (21/100) of sheep infected. In addition, we have observed a global mixed rate of infections of 20.75% (11/53) among infected individuals. Molecular analyses revealed that at least six Trypanosome species circulate in domestic animals in Gabon (T. congolense, T. simiae, T. simiae Tsavo, T. theileri, T. vivax, T. brucei (including T. brucei brucei, and T. brucei gambiense)). In conclusion, our study showed that domestic animals constitute important potential reservoirs for trypanosome parasites, including T. brucei gambiense, which is responsible for HAT.
Collapse
Affiliation(s)
- Larson Boundenga
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
- Department of Anthropology, Durham University, South Road, Durham DH1 3LE, UK
- Correspondence: ; Tel.: +241-62521281
| | - Illich Manfred Mombo
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
| | | | - Ngoubangoye Barthélémy
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
- Department of Anthropology, Durham University, South Road, Durham DH1 3LE, UK
| | - Patrice Makouloutou Nzassi
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
- Department of Animal Biology and Ecology, Tropical Ecology Research Institute (IRET-CENAREST), Libreville BP 13354, Gabon
| | - Nancy D. Moukodoum
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
| | - Virginie Rougeron
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George 6529, South Africa
| | - Franck Prugnolle
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George 6529, South Africa
| |
Collapse
|
14
|
Prevalence and Associated Risk Factors of African Animal Trypanosomiasis in Cattle in Lambwe, Kenya. J Parasitol Res 2022; 2022:5984376. [PMID: 35872666 PMCID: PMC9303511 DOI: 10.1155/2022/5984376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background African animal trypanosomiasis (AAT) affects livestock productivity in sub-Saharan Africa. This study aimed to determine cattle AAT's prevalence and associated risk factors in Lambwe Valley, Kenya. Methods In a cross-sectional survey, livestock owners were recruited from four villages of Lambwe in Homa Bay, Kenya. Blood samples were collected from the jugular veins of cattle, and buffy coat smears were examined under a microscope. Parasites were further detected using polymerase chain reaction (PCR). Using a semistructured questionnaire, livestock owners were interviewed on their knowledge of AAT and control practices. Chi-square and multilevel models were used for the analysis. Results The overall prevalence was 15.63% (71/454). Trypanosoma vivax 10.31% and T. congolense Savannah 6.01% were the common species and subspecies. A total of 61 livestock keepers were involved in the study. Of these, 91.80% (56/61) knew AAT, and 90.16% (55/61) could describe the symptoms well and knew tsetse fly bite as transmission mode. Self-treatment (54.09%; 33/61) was common, with up to 50.00% of the farmers using drugs frequently. Isometamidium (72.13%; 44/61) and diminazene (54.09%; 33/61) were drugs frequently used. Although 16.39% (10/61) of the farmers claimed to use chemoprophylactic treatment, 6/10 did not use the right drugs. Animals (92.1%; 58/63) with clinical signs had positive infections. Villages closer to the national park recorded a higher prevalence. Infections were higher in cattle owned by those self-treating (27.23%; 58/213), those using drug treatment without vector control (27.62%; 50/181), those using single-drug therapy, and those practicing communal grazing (20.00%; 59/295). Clinical signs strongly associate with positive infections under multilevel modeling. Conclusion Cattle trypanosomiasis is prevalent in the Lambwe region of Kenya. This is influenced by inappropriate control practices, communal grazing, and the proximity of farms to the national park. In addition, clinical signs of the disease have a strong association with infections.
Collapse
|
15
|
Okello I, Mafie E, Eastwood G, Nzalawahe J, Mboera LEG. African Animal Trypanosomiasis: A Systematic Review on Prevalence, Risk Factors and Drug Resistance in Sub-Saharan Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1099-1143. [PMID: 35579072 DOI: 10.1093/jme/tjac018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 06/15/2023]
Abstract
African animal trypanosomiasis (AAT) a parasitic disease of livestock in sub-Saharan Africa causing tremendous loses. Sub-Saharan continental estimation of mean prevalence in both large and small domestic animals, risk factors, tsetse and non-tsetse prevalence and drug resistance is lacking. A review and meta-analysis was done to better comprehend changes in AAT prevalence and drug resistance. Publish/Perish software was used to search and extract peer-reviewed articles in Google scholar, PubMed and CrossRef. In addition, ResearchGate and African Journals Online (AJOL) were used. Screening and selection of articles from 2000-2021 was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles 304 were retrieved; on domestic animals 192, tsetse and non-tsetse vectors 44, risk factors 49 and trypanocidal drug resistance 30. Prevalence varied by, host animals in different countries, diagnostic methods and species of Trypanosoma. Cattle had the highest prevalence with Ethiopia and Nigeria leading, T. congolense (11.80-13.40%) and T. vivax (10.50-18.80%) being detected most. This was followed by camels and pigs. Common diagnostic method used was buffy coat microscopy. However; polymerase chain reaction (PCR), CATT and ELISA had higher detection rates. G. pallidipes caused most infections in Eastern regions while G. palpalis followed by G. mortisans in Western Africa. Eastern Africa reported more non-tsetse biting flies with Stomoxys leading. Common risk factors were, body conditions, breed type, age, sex and seasons. Ethiopia and Nigeria had the highest trypanocidal resistance 30.00-35.00% and highest AAT prevalence. Isometamidium and diminazene showed more resistance with T. congolense being most resistant species 11.00-83.00%.
Collapse
Affiliation(s)
- Ivy Okello
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Eliakunda Mafie
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Gillian Eastwood
- Virginia Polytechnic Institute & State University, College of Agriculture & Life Sciences, Blacksburg, VA, USA
| | - Jahashi Nzalawahe
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
| |
Collapse
|
16
|
Mwaki DM, Kidambasi KO, Kinyua J, Ogila K, Kigen C, Getange D, Villinger J, Masiga DK, Carrington M, Bargul JL. Molecular detection of novel Anaplasma sp . and zoonotic hemopathogens in livestock and their hematophagous biting keds (genus Hippobosca) from Laisamis, northern Kenya. OPEN RESEARCH AFRICA 2022; 5:23. [PMID: 37396343 PMCID: PMC10314185 DOI: 10.12688/openresafrica.13404.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 07/04/2023]
Abstract
Background: Livestock are key sources of livelihood among pastoral communities. Livestock productivity is chiefly constrained by pests and diseases. Due to inadequate disease surveillance in northern Kenya, little is known about pathogens circulating within livestock and the role of livestock-associated biting keds (genus Hippobosca) in disease transmission. We aimed to identify the prevalence of selected hemopathogens in livestock and their associated blood-feeding keds. Methods: We randomly collected 389 blood samples from goats (245), sheep (108), and donkeys (36), as well as 235 keds from both goats and sheep (116), donkeys (11), and dogs (108) in Laisamis, Marsabit County, northern Kenya. We screened all samples for selected hemopathogens by high-resolution melting (HRM) analysis and sequencing of PCR products amplified using primers specific to the genera: Anaplasma, Trypanosoma, Clostridium, Ehrlichia, Brucella, Theileria, and Babesia. Results: In goats, we detected Anaplasma ovis (84.5%), a novel Anaplasma sp. (11.8%), Trypanosoma vivax (7.3%), Ehrlichia canis (66.1%), and Theileria ovis (0.8%). We also detected A. ovis (93.5%), E. canis (22.2%), and T. ovis (38.9%) in sheep. In donkeys, we detected ' Candidatus Anaplasma camelii' (11.1%), T. vivax (22.2%), E. canis (25%), and Theileria equi (13.9%). In addition, keds carried the following pathogens; goat/sheep keds - T. vivax (29.3%) , Trypanosoma evansi (0.86%), Trypanosoma godfreyi (0.86%), and E. canis (51.7%); donkey keds - T. vivax (18.2%) and E. canis (63.6%); and dog keds - T. vivax (15.7%), T. evansi (0.9%), Trypanosoma simiae (0.9%) , E. canis (76%), Clostridium perfringens (46.3%), Bartonella schoenbuchensis (76%), and Brucella abortus (5.6%). Conclusions: We found that livestock and their associated ectoparasitic biting keds carry a number of infectious hemopathogens, including the zoonotic B. abortus. Dog keds harbored the most pathogens, suggesting dogs, which closely interact with livestock and humans, as key reservoirs of diseases in Laisamis. These findings can guide policy makers in disease control.
Collapse
Affiliation(s)
- Daniel M. Mwaki
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. Box 62000-00200, Kenya
| | - Kevin O. Kidambasi
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Johnson Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
| | - Kenneth Ogila
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. Box 62000-00200, Kenya
| | - Collins Kigen
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Dennis Getange
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
| | - Jandouwe Villinger
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Daniel K. Masiga
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Joel L. Bargul
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
| |
Collapse
|
17
|
Gashururu S. R, Maingi N, Githigia SM, Gasana MN, Odhiambo PO, Getange DO, Habimana R, Cecchi G, Zhao W, Gashumba J, Bargul JL, Masiga DK. Occurrence, diversity and distribution of Trypanosoma infections in cattle around the Akagera National Park, Rwanda. PLoS Negl Trop Dis 2021; 15:e0009929. [PMID: 34910728 PMCID: PMC8726506 DOI: 10.1371/journal.pntd.0009929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/04/2022] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND African Trypanosomiases threaten the life of both humans and animals. Trypanosomes are transmitted by tsetse and other biting flies. In Rwanda, the African Animal Trypanosomiasis (AAT) endemic area is mainly around the tsetse-infested Akagera National Park (NP). The study aimed to identify Trypanosoma species circulating in cattle, their genetic diversity and distribution around the Akagera NP. METHODOLOGY A cross-sectional study was carried out in four districts, where 1,037 cattle blood samples were collected. The presence of trypanosomes was determined by microscopy, immunological rapid test VerY Diag and PCR coupled with High-Resolution Melt (HRM) analysis. A parametric test (ANOVA) was used to compare the mean Packed cell Volume (PCV) and trypanosomes occurrence. The Cohen Kappa test was used to compare the level of agreement between the diagnostic methods. FINDINGS The overall prevalence of trypanosome infections was 5.6%, 7.1% and 18.7% by thin smear, Buffy coat technique and PCR/HRM respectively. Microscopy showed a low sensitivity while a low specificity was shown by the rapid test (VerY Diag). Trypanosoma (T.) congolense was found at a prevalence of 10.7%, T. vivax 5.2%, T. brucei brucei 2% and T. evansi 0.7% by PCR/HRM. This is the first report of T.evansi in cattle in Rwanda. The non-pathogenic T. theileri was also detected. Lower trypanosome infections were observed in Ankole x Friesian breeds than indigenous Ankole. No human-infective T. brucei rhodesiense was detected. There was no significant difference between the mean PCV of infected and non-infected animals (p>0.162). CONCLUSIONS Our study sheds light on the species of animal infective trypanosomes around the Akagera NP, including both pathogenic and non-pathogenic trypanosomes. The PCV estimation is not always an indication of trypanosome infection and the mechanical transmission should not be overlooked. The study confirms that the area around the Akagera NP is affected by AAT, and should, therefore, be targeted by the control activities. AAT impact assessment on cattle production and information on the use of trypanocides are needed to help policymakers prioritise target areas and optimize intervention strategies. Ultimately, these studies will allow Rwanda to advance in the Progressive Control Pathway (PCP) to reduce or eliminate the burden of AAT.
Collapse
Affiliation(s)
- Richard Gashururu S.
- School of Veterinary Medicine, University of Rwanda, Nyagatare, Rwanda
- Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Ndichu Maingi
- Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | | | | | - Peter O. Odhiambo
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dennis O. Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Richard Habimana
- School of Veterinary Medicine, University of Rwanda, Nyagatare, Rwanda
- Rwanda Food and Drugs Authority, Kigali, Rwanda
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Rome, Italy
| | - Weining Zhao
- Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Rome, Italy
| | | | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
18
|
Kalayou S, Okal MN, Odhiambo PO, Mathenge K, Gamba DO, Kariuki E, McOdimba F, Masiga D. Prevalence of Trypanosome Species in Cattle Near Ruma National Park, Lambwe Valley, Kenya: An Update From the Historical Focus for African Trypanosomosis. Front Vet Sci 2021; 8:750169. [PMID: 34796227 PMCID: PMC8594777 DOI: 10.3389/fvets.2021.750169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The effective control of diseases in areas shared with wildlife depends on the validity of the epidemiologic parameters that guide interventions. Epidemiologic data on animal trypanosomosis in Lambwe valley are decades old, and the recent suspected outbreaks of the disease in the valley necessitate the urgent bridging of this data gap. This cross-sectional study estimated the prevalence of bovine trypanosomosis, identified risk factors, and investigated the occurrence of species with zoonotic potential in Lambwe valley. The area is ~324 km2, of which 120 km2 is the Ruma National Park. Blood was sampled from the jugular and marginal ear veins of 952 zebu cattle between December 2018 and February 2019 and tested for trypanosomes using the Buffy Coat Technique (BCT) and PCR-High-Resolution Melting (HRM) analysis of the 18S RNA locus. Risk factors for the disease were determined using logistic regression. The overall trypanosome prevalence was 11.0% by BCT [95% confidence interval (CI): 9.0–13.0] and 27.9% by PCR-HRM (95% CI: 25.1–30.8). With PCR-HRM as a reference, four species of trypanosomes were detected at prevalences of 12.7% for T. congolense savannah (95% CI: 10.6–14.8), 7.7% for T. brucei brucei (CI: 6.0–9.4), 8.7% for T. vivax (CI: 6.9–10.5), and 1.3% for T. theileri (CI: 0.6–2.0). About 2.4% of cattle had mixed infections (CI: 1.4–3.41). No human-infective trypanosomes were found. Infections clustered across villages but were not associated with animal age, sex, herd size, and distance from the park. Approximately 85% of infections occurred within 2 km of the park. These findings add to evidence that previous interventions eliminated human trypanosomosis but not bovine trypanosomosis. Risk-tailored intervention within 2 km of Ruma Park, especially in the north and south ends, coupled with stringent screening with molecular tools, could significantly reduce bovine trypanosomosis.
Collapse
Affiliation(s)
- Shewit Kalayou
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | | | - Kawira Mathenge
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - Edward Kariuki
- Veterinary and Capture Service Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Francis McOdimba
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.,Department of Biological Sciences, Faculty of Science, Egerton University, Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
19
|
Pley C, Evans M, Lowe R, Montgomery H, Yacoub S. Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks. Lancet Planet Health 2021; 5:e739-e745. [PMID: 34627478 DOI: 10.1016/s2542-5196(21)00141-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Vector-borne diseases are particularly sensitive to changes in weather and climate. Timely warnings from surveillance systems can help to detect and control outbreaks of infectious disease, facilitate effective management of finite resources, and contribute to knowledge generation, response planning, and resource prioritisation in the long term, which can mitigate future outbreaks. Technological and digital innovations have enabled the incorporation of climatic data into surveillance systems, enhancing their capacity to predict trends in outbreak prevalence and location. Advance notice of the risk of an outbreak empowers decision makers and communities to scale up prevention and preparedness interventions and redirect resources for outbreak responses. In this Viewpoint, we outline important considerations in the advent of new technologies in disease surveillance, including the sustainability of innovation in the long term and the fundamental obligation to ensure that the communities that are affected by the disease are involved in the design of the technology and directly benefit from its application.
Collapse
Affiliation(s)
- Caitlin Pley
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Megan Evans
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK.
| | - Rachel Lowe
- Centre on Climate Change and Planetary Health and Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Hugh Montgomery
- Centre for Human Health and Performance, University College London, London, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Prevalence of Trypanosoma congolense and Trypanosoma vivax in Lira District, Uganda. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7284042. [PMID: 34222483 PMCID: PMC8219416 DOI: 10.1155/2021/7284042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/24/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022]
Abstract
Trypanosomes are the causative agents of animal African trypanosomiasis (AAT) and human African trypanosomiasis (HAT), the former affecting domestic animals prevalent in Sub-Saharan Africa. The main species causing AAT in cattle are T. congolense, T. vivax, and T. b. brucei. Northern Uganda has been politically unstable with no form of vector control in place. The return of displaced inhabitants led to the restocking of cattle from AAT endemic areas. It was thus important to estimate the burden of trypanosomiasis in the region. This study was designed to compare the prevalence of animal African trypanosomes in cattle in Lira District using microscopy and polymerase chain reaction amplification (PCR) methods. In this cross-sectional study, a total of 254 cattle from the three villages of Acanakwo A, Barropok, and Acungkena in Lira District, Uganda, were selected by simple random sampling technique and screened for trypanosomiasis using microscopy and PCR methods. The prevalence of trypanosomiasis according to microscopic results was 5/254 (2.0%) as compared to 11/254 (4.3%) trypanosomiasis prevalence according to PCR analysis. The prevalence of trypanosomiasis infection in the animal studied is 11/254 (4.3%). Trypanosoma congolense was the most dominant trypanosome species with a proportion of 9/11 (81.8%), followed by T. vivax 1/11 (9.1%) and mixed infection of T. congolense/T. vivax1/11 (9.1%). Barropok village had the highest prevalence of trypanosomiasis with 6/11 (54.5%). There is a statistically significant relationship (OR = 6.041; 95% CI: 1.634-22.331; p < 0.05) between abnormal PCV and trypanosome infection. Polymerase reaction amplification was the most reliable diagnostic method due to its high sensitivity and specificity as compared to the conventional microscopic method. Polymerase reaction amplification appears to have adequate accuracy to substitute the use of a microscope where facilities allow. This study, therefore, underscores the urgent need for local surveillance schemes more especially at the grassroots in Uganda to provide data for reference guideline development needed for the control of trypanosomiasis in Uganda.
Collapse
|
21
|
Campbell Z, Coleman P, Guest A, Kushwaha P, Ramuthivheli T, Osebe T, Perry B, Salt J. Prioritizing smallholder animal health needs in East Africa, West Africa, and South Asia using three approaches: Literature review, expert workshops, and practitioner surveys. Prev Vet Med 2021; 189:105279. [PMID: 33581421 PMCID: PMC8024747 DOI: 10.1016/j.prevetmed.2021.105279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Managing the health needs of livestock contributes to reducing poverty and improving the livelihoods of smallholder and pastoralist livestock keepers globally. Animal health practitioners, producers, policymakers, and researchers all must prioritize how to mobilize limited resources. This study employed three approaches to prioritize animal health needs in East and West Africa and South Asia to identify diseases and syndromes that impact livestock keepers. The approaches were a) systematic literature review, b) a series of expert workshops, and c) a practitioner survey of veterinarians and para-veterinary professionals. The top constraints that emerged from all three approaches include endo/ ectoparasites, foot and mouth disease, brucellosis, peste des petits ruminants, Newcastle disease, and avian influenza. Expert workshops additionally identified contagious caprine pleuropneumonia, contagious bovine pleuropneumonia, mastitis, and reproductive disorders as constraints not emphasized in the literature review. Practitioner survey results additionally identified nutrition as a constraint for smallholder dairy and pastoralist small ruminant production. Experts attending the workshops agreed most constraints can be managed using existing veterinary technologies and best husbandry practices, which supports a shift away from focusing on individual diseases and new technologies towards addressing systemic challenges that limit access to veterinary services and inputs. Few research studies focused on incidence/ prevalence of disease and impact, suggesting better incorporation of socio-economic impact measures in future research would better represent the interests of livestock keepers.
Collapse
Affiliation(s)
- Zoë Campbell
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, 00100, Kenya.
| | - Paul Coleman
- H20 Venture Partners, 33-35 George Street, Oxford, OX1 2AY, United Kingdom
| | - Andrea Guest
- H20 Venture Partners, 33-35 George Street, Oxford, OX1 2AY, United Kingdom
| | - Peetambar Kushwaha
- GALVmed Asia Office, Unit 118 & 120 B, Splendor Forum, Plot No 3, Jasola District Centre, Jasola, New Delhi, 110025, India
| | - Thembinkosi Ramuthivheli
- GALVmed Africa Office, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Tom Osebe
- GALVmed Africa Office, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Brian Perry
- Nuffield College of Clinical Medicine, University of Oxford, United Kingdom; College of Medicine and Veterinary Medicine, University of Edinburgh, Arthurstone House, Meigle, Blairgowrie, PH12 8QW, Scotland, United Kingdom
| | - Jeremy Salt
- GALVmed UK Office, Doherty Building, Pentlands Science Park, Bush Loan, Penicuik Edinburgh, EH26 0PZ, Scotland, United Kingdom
| |
Collapse
|
22
|
Fetene E, Leta S, Regassa F, Büscher P. Global distribution, host range and prevalence of Trypanosoma vivax: a systematic review and meta-analysis. Parasit Vectors 2021; 14:80. [PMID: 33494807 PMCID: PMC7830052 DOI: 10.1186/s13071-021-04584-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosomosis caused by Trypanosoma vivax is one of the diseases threatening the health and productivity of livestock in Africa and Latin America. Trypanosoma vivax is mainly transmitted by tsetse flies; however, the parasite has also acquired the ability to be transmitted mechanically by hematophagous dipterans. Understanding its distribution, host range and prevalence is a key step in local and global efforts to control the disease. METHODS The study was conducted according to the methodological recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. A systematic literature search was conducted on three search engines, namely PubMed, Scopus and CAB Direct, to identify all publications reporting natural infection of T. vivax across the world. All the three search engines were screened using the search term Trypanosoma vivax without time and language restrictions. Publications on T. vivax that met our inclusion criteria were considered for systematic review and meta-analysis. RESULT The study provides a global database of T. vivax, consisting of 899 records from 245 peer-reviewed articles in 41 countries. A total of 232, 6277 tests were performed on 97 different mammalian hosts, including a wide range of wild animals. Natural infections of T. vivax were recorded in 39 different African and Latin American countries and 47 mammalian host species. All the 245 articles were included into the qualitative analysis, while information from 186 cross-sectional studies was used in the quantitative analysis mainly to estimate the pooled prevalence. Pooled prevalence estimates of T. vivax in domestic buffalo, cattle, dog, dromedary camel, equine, pig, small ruminant and wild animals were 30.6%, 6.4%, 2.6%, 8.4%, 3.7%, 5.5%, 3.8% and 12.9%, respectively. Stratified according to the diagnostic method, the highest pooled prevalences were found with serological techniques in domesticated buffalo (57.6%) followed by equine (50.0%) and wild animals (49.3%). CONCLUSION The study provides a comprehensive dataset on the geographical distribution and host range of T. vivax and demonstrates the potential of this parasite to invade other countries out of Africa and Latin America.
Collapse
Affiliation(s)
- Eyerusalem Fetene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.,FDRE Ministry of Agriculture, P.O.Box 62347/3735, Addia Ababa, Ethiopia
| | - Philippe Büscher
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, 2000, Antwerp, Belgium
| |
Collapse
|
23
|
Degneh E, Kassa T, Kebede N, Desta T. Bovine trypanosomosis: Prevalence and vector distribution in Sadi Chanka district, Kellem Wollega zone, Oromia regional state, Ethiopia. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 23:100535. [PMID: 33678388 DOI: 10.1016/j.vprsr.2021.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/15/2022]
Abstract
Bovine trypanosomosis remains an important livestock disease constraint, which is threatening livestock health and production, despite ongoing tsetse and trypanosomosis control efforts in Sadi Chanka district, Kellem Wollega zone, Oromia regional state, Ethiopia. A cross-sectional study was conducted in May 2018, to determine the prevalence of bovine trypanosomosis and distribution of the vectors of disease in Sadi Chanka district, Western Ethiopia. A total of 370 blood samples were collected from randomly selected local Horro and Abigar cattle breeds covering five villages of the district. The collected samples were examined using buffy coat microscopy and Giemsa-stained thin blood smear techniques. In this study, 12.4% (95% CI: 12.3-12.4) of the animals were found to be infected with trypanosomes. The study showed that 69.6% of trypanosome infections were caused by T. congolense followed by 26.1% T. vivax and 4.3% mixed T. congolense and T. vivax. In the present study, the association of bovine trypanosomosis was assessed in releation to body condition scores, sex, and age of cattle, and a significant association (P < 0.05) was observed between body condition scores. However, significant differences were not observed between sex and age categories (P > 0.05). The Mean Packed Cell Volume (PCV) of infected (21.6%) and non-infected (24.5%) groups of cattle had significant variation (P < 0.05). In an entomological survey, a total of 616 flies were trapped, of which 280 (45.5%) were Glossina and the remaining 336 (54.5%) were Stomoxys, Tabanus, and Haematopota. The apparent density of Glossina, Stomoxys, Tabanus, and Haematopota was 3.5, 3.1, 0.7 and 0.4 fly per trap per day, respectively. This study generated basic scientific data on the epidemiology of bovine trypanosomosis and its vectors in Sadi Chanka district, which can be used in planning the control of bovine trypanosomosis in the area.
Collapse
Affiliation(s)
- Efrem Degneh
- School of Veterinary Medicine, Wollega University, Nekemte, Ethiopia.
| | - Tesfu Kassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nigatu Kebede
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tekalegn Desta
- National Institute for Control and Eradication of Tsetse Flies and Trypanosomosis, Ministry of Agriculture, Addis Ababa, Ethiopia
| |
Collapse
|
24
|
Tsetse blood-meal sources, endosymbionts and trypanosome-associations in the Maasai Mara National Reserve, a wildlife-human-livestock interface. PLoS Negl Trop Dis 2021; 15:e0008267. [PMID: 33406097 PMCID: PMC7822626 DOI: 10.1371/journal.pntd.0008267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/22/2021] [Accepted: 11/22/2020] [Indexed: 01/06/2023] Open
Abstract
African trypanosomiasis (AT) is a neglected disease of both humans and animals caused by Trypanosoma parasites, which are transmitted by obligate hematophagous tsetse flies (Glossina spp.). Knowledge on tsetse fly vertebrate hosts and the influence of tsetse endosymbionts on trypanosome presence, especially in wildlife-human-livestock interfaces, is limited. We identified tsetse species, their blood-meal sources, and correlations between endosymbionts and trypanosome presence in tsetse flies from the trypanosome-endemic Maasai Mara National Reserve (MMNR) in Kenya. Among 1167 tsetse flies (1136 Glossina pallidipes, 31 Glossina swynnertoni) collected from 10 sampling sites, 28 (2.4%) were positive by PCR for trypanosome DNA, most (17/28) being of Trypanosoma vivax species. Blood-meal analyses based on high-resolution melting analysis of vertebrate cytochrome c oxidase 1 and cytochrome b gene PCR products (n = 354) identified humans as the most common vertebrate host (37%), followed by hippopotamus (29.1%), African buffalo (26.3%), elephant (3.39%), and giraffe (0.84%). Flies positive for trypanosome DNA had fed on hippopotamus and buffalo. Tsetse flies were more likely to be positive for trypanosomes if they had the Sodalis glossinidius endosymbiont (P = 0.0002). These findings point to complex interactions of tsetse flies with trypanosomes, endosymbionts, and diverse vertebrate hosts in wildlife ecosystems such as in the MMNR, which should be considered in control programs. These interactions may contribute to the maintenance of tsetse populations and/or persistent circulation of African trypanosomes. Although the African buffalo is a key reservoir of AT, the higher proportion of hippopotamus blood-meals in flies with trypanosome DNA indicates that other wildlife species may be important in AT transmission. No trypanosomes associated with human disease were identified, but the high proportion of human blood-meals identified are indicative of human African trypanosomiasis risk. Our results add to existing data suggesting that Sodalis endosymbionts are associated with increased trypanosome presence in tsetse flies.
Collapse
|
25
|
Hassan-Kadle AA, Ibrahim AM, Nyingilili HS, Yusuf AA, Vieira RFC. Parasitological and molecular detection of Trypanosoma spp. in cattle, goats and sheep in Somalia. Parasitology 2020; 147:1786-1791. [PMID: 32951618 PMCID: PMC10317749 DOI: 10.1017/s003118202000178x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
Abstract
African animal trypanosomiasis (AAT) affects the livestock of 12.3 million Somalis and constrains their development and wellbeing. There is missing data on AAT in the country after the civil war of the 1990s. Therefore, this study has aimed to assess the prevalence of Trypanosoma spp. in 614 blood samples from cattle (n = 202), goats (n = 206) and sheep (n = 206) in Afgoye and Jowhar districts, Somalia using parasitological and molecular methods. Twenty-one out of 614 (3.4%; 95% CI: 2.1-5.2%) and 101/614 (16.4%; 95% CI: 13.6-19.6%) ruminants were positive for Trypanosoma spp. by buffy coat technique (BCT) and internal transcribed spacer 1 (ITS1)-polymerase chain reaction (PCR), respectively. Using ITS1-PCR, the highest prevalence was observed in cattle (23.8%; 95% CI: 18.4-30.1%) followed by goats (17.5%; 95% CI: 12.9-23.3%) and sheep (8.3%; 95% CI: 5.1-12.9%). A total of 74/101 (73.3%; 95% CI: 63.5-81.6%) ruminants were shown coinfection with at least two Trypanosome species. The four T. brucei-positive samples have tested negative for T. b. rhodesiense, by the human-serum-resistance-associated-PCR. Trypanosoma evansi, T. godfreyi, T. vivax, T. brucei, T. simiae and T. congolense were the Trypanosoma species found in this study. This is the first study on the molecular detection of Trypanosoma sp. in ruminants in Somalia. Further investigations and control measures are needed to manage Trypanosomiasis spreading in the country. Studies should also focus on the detection of T. b. rhodesiense in the country.
Collapse
Affiliation(s)
- Ahmed A. Hassan-Kadle
- Abrar Research and Training Centre, Abrar University, Mogadishu, Somalia
- Vector-Borne Diseases Laboratory, Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Abdalla M. Ibrahim
- Abrar Research and Training Centre, Abrar University, Mogadishu, Somalia
| | | | - Abdulkarim A. Yusuf
- Abrar Research and Training Centre, Abrar University, Mogadishu, Somalia
- Vector-Borne Diseases Laboratory, Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Rafael F. C. Vieira
- Vector-Borne Diseases Laboratory, Department of Veterinary Medicine, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Global One Health initiative (GOHi), The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
26
|
Kulohoma BW, Wamwenje SAO, Wangwe II, Masila N, Mirieri CK, Wambua L. Prevalence of trypanosomes associated with drug resistance in Shimba Hills, Kwale County, Kenya. BMC Res Notes 2020; 13:234. [PMID: 32349785 PMCID: PMC7191804 DOI: 10.1186/s13104-020-05077-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 11/10/2022] Open
Abstract
Objective Animal African trypanosomiasis (AAT) is a life-threatening vector-borne disease, caused by trypanosome parasites, which are principally transmitted by tsetse flies. In Kenya, the prevalence of drug-resistant trypanosomes in endemic regions remains poorly understood. The objective of this study was to establish AAT point prevalence, drug susceptibility of associated trypanosomes, and measure infectivity by multiple AAT mammalian hosts to tsetse flies in Shimba hills, a resource-poor region with high bovine trypanosomiasis prevalence and morbidity rates at the coast of Kenya. We collected tsetse flies using traps (1 Ngu and 2 biconical), and then sorted them on sex and species. Trypanosomes present in tsetse flies were detected by first extracting all genomic DNA, and then performing PCR reactions with established primers of the internal transcribed spacer regions. Polymorphisms associated with trypanocide resistance in the TbAT1 gene were also detected by performing PCR reactions with established primers. Results Our findings suggest low trypanosome prevalence (3.7%), low trypanocide resistance, and low infectivity by multiple mammalian hosts to tsetse flies in Shimba hills. We conclude that enhanced surveillance is crucial for informing disease management practices that help prevent the spread of drug-resistant trypanosomiasis.
Collapse
Affiliation(s)
- Benard W Kulohoma
- Centre for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya. .,International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| | - Sarah A O Wamwenje
- Centre for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Ibrahim I Wangwe
- Centre for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Nicodemus Masila
- Kenya Tsetse and Trypanosomiasis Eradication Council (KENTTEC), Kwale County, Kenya
| | - Caroline K Mirieri
- Directorate of Veterinary Services, Vector Regulatory and Zoological Services, Makindu, Kenya
| | - Lillian Wambua
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.,School of Biological Sciences, University of Nairobi, Nairobi, Kenya.,International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
27
|
Squarre D, Hayashida K, Gaithuma A, Chambaro H, Kawai N, Moonga L, Namangala B, Sugimoto C, Yamagishi J. Diversity of trypanosomes in wildlife of the Kafue ecosystem, Zambia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:34-41. [PMID: 32420023 PMCID: PMC7215119 DOI: 10.1016/j.ijppaw.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 11/07/2022]
Abstract
The Kafue ecosystem is a vast conservation protected area comprising the Kafue National Park (KNP) and the Game Management Areas (GMA) that act as a buffer around the national park. The KNP has been neglected as a potential foci for rhodesiense sleeping sickness despite the widespread presence of the tsetse vector and abundant wildlife reservoirs. The aim of this study was to generate information on circulating trypanosomes and their eminent threat/risk to public health and livestock production of a steadily growing human and livestock population surrounding the park. We detected various trypanosomes circulating in different mammalian wildlife species in KNP in Zambia by applying a high throughput ITS1-polymerase chain reaction (PCR)/nanopore sequencing method in combination with serum resistant associated-PCR/Sanger sequencing method. The prevalence rates of trypanosomes in hartebeest, sable antelope, buffalo, warthog, impala and lechwe were 6.4%, 37.2%, 13.2%, 11.8%, 2.8% and 11.1%, respectively. A total of six trypanosomes species or subspecies were detected in the wildlife examined, including Trypanosoma brucei brucei, T. godfreyi, T. congolense, T. simiae and T. theileri. Importantly we detected human infective T. b. rhodesiense in buffalo and sable antelope with a prevalence of 9.4% and 12.5%, respectively. In addition, T. b. rhodesiense was found in the only vervet monkey analyzed. The study thus reaffirmed that the Kafue ecosystem is a genuine neglected and re-emerging foci for human African trypanosomiasis. This is the first assessment of the trypanosome diversity circulating in free-ranging wildlife of the KNP. Detected six African trypanosomes in wildlife species of Kafue National Park using ITS1-PCR and Nanopore sequencing method. Confirmed presence of Trypanosoma brucei rhodesiense using SRA PCR. Identified unique divergence of SRA sequence of Trypanosoma brucei rhodesiense from buffalo, sable and vervet monkey.
Collapse
Affiliation(s)
- David Squarre
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.,Wildlife Veterinary Unit, Department of National Parks and Wildlife, P/Bag 1, Chilanga, Zambia.,The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, EH25 9RG, UK, United Kingdom
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Alex Gaithuma
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Herman Chambaro
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.,Central Veterinary Research Institute, P.O Box, 33980, Chilanga, Zambia
| | - Naoko Kawai
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Ladslav Moonga
- Department of Paraclinical Studies, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Boniface Namangala
- Department of Paraclinical Studies, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| |
Collapse
|
28
|
Design of an Epitope-Based Vaccine Ensemble for Animal Trypanosomiasis by Computational Methods. Vaccines (Basel) 2020; 8:vaccines8010130. [PMID: 32188062 PMCID: PMC7157688 DOI: 10.3390/vaccines8010130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
African animal trypanosomiasis is caused by vector-transmitted parasites of the genus Trypanosoma. T. congolense and T. brucei brucei are predominant in Africa; T. evansi and T. vivax in America and Asia. They have in common an extracellular lifestyle and livestock tropism, which provokes huge economic losses in regions where vectors are endemic. There are licensed drugs to treat the infections, but adherence to treatment is poor and appearance of resistances common. Therefore, the availability of a prophylactic vaccine would represent a major breakthrough towards the management and control of the disease. Selection of the most appropriate antigens for its development is a bottleneck step, especially considering the limited resources allocated. Herein we propose a vaccine strategy based on multiple epitopes from multiple antigens to counteract the parasites´ biological complexity. Epitopes were identified by computer-assisted genome-wide screenings, considering sequence conservation criteria, antigens annotation and sub-cellular localization, high binding affinity to antigen presenting molecules, and lack of cross-reactivity to proteins in cattle and other breeding species. We ultimately provide 31 B-cell, 8 CD4 T-cell, and 15 CD8 T-cell epitope sequences from 30 distinct antigens for the prospective design of a genetic ensemble vaccine against the four trypanosome species responsible for African animal trypanosomiasis.
Collapse
|
29
|
Ebhodaghe F, Isaac C, Ohiolei JA. A meta-analysis of the prevalence of bovine trypanosomiasis in some African countries from 2000 to 2018. Prev Vet Med 2018; 160:35-46. [PMID: 30388996 DOI: 10.1016/j.prevetmed.2018.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/13/2018] [Accepted: 09/18/2018] [Indexed: 01/24/2023]
Abstract
Bovine trypanosomiasis is a disease of cattle. In sub-Saharan Africa, the disease mean prevalence estimates are unknown in most endemic countries. We therefore performed a meta-analysis with the aim of estimating national mean prevalence of bovine trypanosomiasis in endemic countries across sub-Saharan Africa. Relevant articles reporting bovine trypanosomiasis prevalence were retrieved through systematic literature search and scanning of articles reference-lists. Eligibility criteria included that articles reported sample size, prevalence, and diagnostic technique adopted. Overall, data from 180 eligible articles from 19 countries satisfied the inclusion criteria. Meta-analysis of prevalence data based on the random-effects model resulted in an overall mean prevalence of 15.10% (95% CI: 13.22-17.08). National prevalence estimates were generally high except those of Benin and Senegal where estimates ranked below 10.00%. Significant heterogeneity (I2 = 98.75%. p = <0.0001) was noted between studies, and univariate meta-regression analysis identified choice of diagnostic method being major contributor to observed heterogeneity (R2 = 36.37%); while country of study (R2 = 9.57%) and sample size (R2 = 3.47%) had marginal effect on heterogeneity. In spite of past and ongoing control activities, bovine trypanosomiasis remains highly prevalent in most endemic sub-Saharan African countries. Nevertheless, dearth of epidemiological data in some countries and the use of less sensitive diagnostic tools limit reliable estimation of the disease prevalence. Therefore, there is the need to intensify efforts in aspects of surveillance and increased application of molecular diagnostic tool(s) across endemic locations as this would raise the chances of achieving a near-accurate estimate of the disease prevalence which is the first step to attempting eradication.
Collapse
Affiliation(s)
- F Ebhodaghe
- African Regional Postgraduate Programme in Insect Science, West African Sub-Regional Centre, University of Ghana Legon, Accra, Ghana; Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria.
| | - C Isaac
- Department of Zoology, Ambrose Alli University, Ekpoma, Nigeria.
| | - J A Ohiolei
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
30
|
Nnko HJ, Gwakisa PS, Ngonyoka A, Saigilu M, Ole-Neselle M, Kisoka W, Sindato C, Estes A. Pastoralists' Vulnerability to Trypanosomiasis in Maasai Steppe. ECOHEALTH 2017; 14:718-731. [PMID: 29098491 DOI: 10.1007/s10393-017-1275-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/12/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
Trypanosomiasis is a neglected tropical disease of both livestock and humans. Although pastoral communities of the Maasai Steppe have been able to adapt to trypanosomiasis in the past, their traditional strategies are now constrained by changes in climate and land regimes that affect their ability to move with their herds and continually shape the communities' vulnerability to trypanosomiasis. Despite these constraints, information on communities' vulnerability and adaptive capacity to trypanosomiasis is limited. A cross-sectional study was therefore conducted in Simanjiro and Monduli districts of the Maasai Steppe to establish pastoralists' vulnerability to animal trypanosomiasis and factors that determined their adaptation strategies. A weighted overlay approach in ArcGIS 10.4 was used to analyze vulnerability levels while binomial and multinomial logistic regressions in R 3.3.2 were used to analyze the determinants of adaptation. Simanjiro district was the most vulnerable to trypanosomiasis. The majority (87.5%, n = 136) of the respondents were aware of trypanosomiasis in animals, but only 7.4% (n = 136) knew about the human form of the disease. Reported impacts of animal trypanosomiasis were low milk production (95.6%, n = 136), death of livestock (96.8%, n = 136) and emaciation of animals (99.9%, n = 136). Crop farming was the most frequently reported animal trypanosomiasis adaptation strategy (66%, n = 136). At a 95% confidence interval, accessibility to livestock extension services (β = 7.61, SE = 3.28, df = 135, P = 0.02), years of livestock keeping experience (β = 6.17, SE = 1.95, df = 135, P = 0.001), number of cattle owned (β = 5.85, SE = 2.70, df = 135, P = 0.03) and membership in associations (β = - 4.11, SE = 1.79, df = 135, P = 0.02) had a significant impact on the probability of adapting to animal trypanosomiasis.
Collapse
Affiliation(s)
- Happiness J Nnko
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha-Tengeru Campus, Arusha, Tanzania.
- University of Dodoma, Dodoma, Tanzania.
| | | | - Anibariki Ngonyoka
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha-Tengeru Campus, Arusha, Tanzania
- University of Dodoma, Dodoma, Tanzania
| | - Meshack Saigilu
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha-Tengeru Campus, Arusha, Tanzania
| | - Moses Ole-Neselle
- Emergence Centre for Transboundary Animal Disease, FAO Tanzania Office, Dar es Salaam, Tanzania
| | - William Kisoka
- National Institute for Medical Research, Dare es Salaam, Tanzania
| | - Calvin Sindato
- National Institute for Medical Research, Tabora, Tanzania
- Southern African Centre for Infectious Disease Surveillance, Morogoro, Tanzania
| | - Anna Estes
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha-Tengeru Campus, Arusha, Tanzania
- Pennsylvania State University, State College, PA, USA
| |
Collapse
|