1
|
Mayi MPA, Antonio-Nkondjio C, Bamou R, Damiani C, Cappelli A, Djiappi-Tchamen B, Djamouko-Djonkam L, Ilbeigi Khamseh Nejad M, Pichler V, Ricci I, Favia G. First detection of kdr L1014F allele in Anopheles ziemanni and Anopheles pharoensis in Cameroon and distribution of the allele in members of the Anopheles gambiae complex. Parasit Vectors 2024; 17:363. [PMID: 39192348 DOI: 10.1186/s13071-024-06420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Knockdown resistance (kdr) is one of the primary resistance mechanisms present in anopheline species. Although this mutation is largely spread across the Anopheles gambiae s.l. members, its prevalence in other species is still not well documented. METHODS The present study investigated the distribution and allelic frequencies of kdr in An. gambiae s.l., An. pharoensis, and An. ziemanni samples collected in 2022 and 2023 in nine sites spread across five ecogeographical settings in Cameroon. Members of the An. gambiae complex were identified molecularly by polymerase chain reaction (PCR). kdr L1014F and L1014S alleles were screened by PCR and confirmed by sequencing. RESULTS An. gambiae (49.9%), An. coluzzii (36.5%), and An. arabiensis (13%) were identified, and the frequency of the kdr L1014F was high in both An. gambiae and An. coluzzii in all sites. The kdr L1014F allele was detected for the first time in 8 out of 14 An. ziemanni samples examined and in 5 out of 22 An. pharoensis samples examined. The kdr L1014S allele was scarce and found only in the heterozygote "RS" state in An. arabiensis and An. gambiae in Yangah and Santchou. CONCLUSIONS The present study sheds light on the rapid expansion of the kdr L1014F allele in malaria vectors in Cameroon and stresses the need for surveillance activities also targeting secondary malaria vectors to improve the control of malaria transmission.
Collapse
Affiliation(s)
- Marie Paul Audrey Mayi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Christophe Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Roland Bamou
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
- Laboratory of Malaria and Vector Research-LMVR, Rockville National Institute of Health /NIAID, Rockville, USA
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Borel Djiappi-Tchamen
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Landre Djamouko-Djonkam
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Mahdokht Ilbeigi Khamseh Nejad
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Verena Pichler
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032, Camerino, Italy.
| |
Collapse
|
2
|
Fadel AN, Ibrahim SS, Sandeu MM, Tatsinkou CGM, Menze BD, Irving H, Hearn J, Nagi SC, Weedall GD, Terence E, Tchapga W, Wanji S, Wondji CS. Exploring the molecular mechanisms of increased intensity of pyrethroid resistance in Central African population of a major malaria vector Anopheles coluzzii. Evol Appl 2024; 17:e13641. [PMID: 38410533 PMCID: PMC10895554 DOI: 10.1111/eva.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular mechanisms driving the escalation of pyrethroid resistance in the major malaria mosquitoes of Central Africa remain largely uncharacterized, hindering effective management strategies. Here, resistance intensity and the molecular mechanisms driving it were investigated in a population of Anopheles coluzzii from northern Cameroon. High levels of pyrethroid and organochloride resistance were observed in An. coluzzii population, with no mortality for 1× permethrin; only 11% and 33% mortalities for 5× and 10× permethrin diagnostic concentrations, and <2% mortalities for deltamethrin and DDT, respectively. Moderate bendiocarb resistance (88% mortality) and full susceptibility to malathion were observed. Synergist bioassays with piperonyl butoxide recovered permethrin susceptibility, with mortalities increasing to 53.39%, and 87.30% for 5× and 10× permethrin, respectively, implicating P450 monooxygenases. Synergist bioassays with diethyl maleate (DEM) recovered permethrin and DDT susceptibilities (mortalities increasing to 34.75% and 14.88%, respectively), implicating glutathione S-transferases. RNA-seq-based genome-wide transcriptional analyses supported by quantitative PCR identified glutathione S-transferase, GSTe2 (RNA-seqFC = 2.93 and qRT-PCRFC = 8.4, p < 0.0043) and CYP450, CYP6Z2 (RNA-seqFC = 2.39 and qRT-PCRFC = 11.7, p < 0.0177) as the most overexpressed detoxification genes in the pyrethroid-resistant mosquitoes, compared to mosquitoes of the susceptible Ngousso colony. Other overexpressed genes include P450s, CYP6M2 (FC = 1.68, p < 0.0114), CYP4G16 (FC = 2.02, p < 0.0005), and CYP4G17 (FC = 1.86, p < 0.0276). While high frequency of the 1014F kdr mutation (50%) and low frequencies of 1014S (6.61%) and 1575Y (10.29%) were observed, no ace-1 mutation was detected in bendiocarb-resistant populations, suggesting the preeminent role of metabolic mechanism. Overexpression of metabolic resistance genes (including GSTe2 and CYP6Z2 known to confer resistance to multiple insecticides) in An. coluzzii from the Sudan Savannah of Cameroon highlights the need for alternative management strategies to reduce malaria burden in northern Cameroon.
Collapse
Affiliation(s)
- Amen N. Fadel
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Sulaiman S. Ibrahim
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of BiochemistryBayero UniversityKanoNigeria
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Maurice M. Sandeu
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Microbiology and Infectious DiseasesSchool of Veterinary Medicine and SciencesUniversity of NgaoundéréNgaoundéréCameroon
| | | | | | - Helen Irving
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Jack Hearn
- Centre of Epidemiology and Planetary HealthNorth FacultyVeterinary & Animal ScienceScotland's Rural CollegeInvernessUK
| | - Sanjay C. Nagi
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Gareth D. Weedall
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Ebai Terence
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
| | - Williams Tchapga
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
| | - Samuel Wanji
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| |
Collapse
|
3
|
Chouakeu NAK, Tchuinkam T, Bamou R, Bindamu MM, Talipouo A, Kopya E, Awono-Ambene P, Antonio-Nkondjio C. Malaria transmission pattern across the Sahelian, humid savanna, highland and forest eco-epidemiological settings in Cameroon. Malar J 2023; 22:116. [PMID: 37029411 PMCID: PMC10080520 DOI: 10.1186/s12936-023-04544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Malaria remains a major public health concern in Cameroon. Understanding vector distribution and malaria transmission dynamics is of paramount importance for evaluating the performance of control strategies. This study assesses patterns of malaria transmission in four eco-epidemiological settings in Cameroon. METHODS Adult mosquitoes were collected using Human Landing Catches (HLC) once every 4 months from August 2019 to November 2021 in Kaélé, Tibati, Santchou and Bertoua. Mosquitoes were sorted by genus and Anopheles gambiae sensu lato (s.l.) species complex were identified using PCR. The presence of Plasmodium falciparum circumsporozoite protein (CSP) was measured by ELISA; the entomological inoculation rates (EIR) was estimated in each locality. RESULTS A total of 23,536 mosquitoes were collected. Anopheles gambiae and/or Anopheles coluzzii were the main malaria vectors in all sites. Anopheles arabiensis was recorded in low frequency in Kaélé and Tibati. Other species collected included Anopheles funestus, Anopheles pharoensis and Anopheles ziemmani. High anopheline biting rates were recorded outdoor in all sites except in Kaélé. Important differences in species biting dynamics were observed between sites. The sporozoite infection rate varied from 0.36 to 4%. The daily EIR was found to vary from 0.07 in Santchou to 0.26 infected bites/man/night (ib/m/n) in Kaélé). CONCLUSION The study suggests heterogeneous patterns of malaria transmission in different ecoepidemiological settings across the country. The findings stress the need to improve malaria vector control strategies.
Collapse
Affiliation(s)
- Nelly Armanda Kala Chouakeu
- Vector Borne Diseases Laboratory of the Research Unit of Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
- Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Timoléon Tchuinkam
- Vector Borne Diseases Laboratory of the Research Unit of Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Roland Bamou
- Vector Borne Diseases Laboratory of the Research Unit of Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
- Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Mabu Maxim Bindamu
- Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- University of Bamenda, Bamenda, Cameroon
| | - Abdou Talipouo
- Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Edmond Kopya
- Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon.
| |
Collapse
|
4
|
Saili K, de Jager C, Sangoro OP, Nkya TE, Masaninga F, Mwenya M, Sinyolo A, Hamainza B, Chanda E, Fillinger U, Mutero CM. Anopheles rufipes implicated in malaria transmission both indoors and outdoors alongside Anopheles funestus and Anopheles arabiensis in rural south-east Zambia. Malar J 2023; 22:95. [PMID: 36927373 PMCID: PMC10018844 DOI: 10.1186/s12936-023-04489-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The primary malaria vector-control interventions, indoor residual spraying and long-lasting insecticidal nets, are effective against indoor biting and resting mosquito species. Consequently, outdoor biting and resting malaria vectors might elude the primary interventions and sustain malaria transmission. Varied vector biting and resting behaviour calls for robust entomological surveillance. This study investigated the bionomics of malaria vectors in rural south-east Zambia, focusing on species composition, their resting and host-seeking behaviour and sporozoite infection rates. METHODS The study was conducted in Nyimba District, Zambia. Randomly selected households served as sentinel houses for monthly collection of mosquitoes indoors using CDC-light traps (CDC-LTs) and pyrethrum spray catches (PSC), and outdoors using only CDC-LTs for 12 months. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were further identified using molecular techniques. Plasmodium falciparum sporozoite infection was determined using sandwich enzyme-linked immunosorbent assays. RESULTS From 304 indoor and 257 outdoor light trap-nights and 420 resting collection, 1409 female Anopheles species mosquitoes were collected and identified morphologically; An. funestus (n = 613; 43.5%), An. gambiae sensu lato (s.l.)(n = 293; 20.8%), Anopheles pretoriensis (n = 282; 20.0%), Anopheles maculipalpis (n = 130; 9.2%), Anopheles rufipes (n = 55; 3.9%), Anopheles coustani s.l. (n = 33; 2.3%), and Anopheles squamosus (n = 3, 0.2%). Anopheles funestus sensu stricto (s.s.) (n = 144; 91.1%) and Anopheles arabiensis (n = 77; 77.0%) were the dominant species within the An. funestus group and An. gambiae complex, respectively. Overall, outdoor CDC-LTs captured more Anopheles mosquitoes (mean = 2.25, 95% CI 1.22-3,28) than indoor CDC-LTs (mean = 2.13, 95% CI 1.54-2.73). Fewer resting mosquitoes were collected with PSC (mean = 0.44, 95% CI 0.24-0.63). Sporozoite infectivity rates for An. funestus, An. arabiensis and An. rufipes were 2.5%, 0.57% and 9.1%, respectively. Indoor entomological inoculation rates (EIRs) for An. funestus s.s, An. arabiensis and An. rufipes were estimated at 4.44, 1.15 and 1.20 infectious bites/person/year respectively. Outdoor EIRs for An. funestus s.s. and An. rufipes at 7.19 and 4.31 infectious bites/person/year, respectively. CONCLUSION The findings of this study suggest that An. rufipes may play an important role in malaria transmission alongside An. funestus s.s. and An. arabiensis in the study location.
Collapse
Affiliation(s)
- Kochelani Saili
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya. .,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
| | - Christiaan de Jager
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Onyango P Sangoro
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Theresia E Nkya
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, Tanzania
| | | | | | - Andy Sinyolo
- National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Emmanuel Chanda
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
DDT Resistance in Anopheles pharoensis from Northern Cameroon Associated with High Cuticular Hydrocarbon Production. Genes (Basel) 2022; 13:genes13101723. [PMID: 36292608 PMCID: PMC9601446 DOI: 10.3390/genes13101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Despite the contribution of secondary vectors to malaria transmission, there is still not enough information on their susceptibility status to insecticides. The present study assesses the resistance profile of Anopheles pharoensis to DDT. WHO tube tests were used to screen mosquito populations collected from the far-north region of Cameroon for susceptibility to 4% DDT. High DDT resistance in An. pharoensis populations from Maga, Simatou and Yangah with mortality rates ranging from 62.79% to 80% was recorded. Direct sequencing (Sanger) of the VGSC gene was undertaken to search for kdr L1014F/S mutations. However, no kdr allele was detected in the resistant samples. We then looked for cuticle alterations and CHC identification and quantitation were undertaken using GC-MS and GC-FID. High production of cuticular hydrocarbon was recorded in the populations of Yangah and Simatou, with 2420.9 ± 265 and 2372.5 ± 225 ng CHCs/mg dry weight, respectively. The present findings are the first ever describing the development of cuticle resistance in An. pharoensis. The data suggest the need to expand surveillance activities on other vector species.
Collapse
|
6
|
David Forfuet F, Mayi MPA, Fru-Cho J, Kowo C, Nota Anong D, Esack Fonda A, Djomo C, Tchuinkam T, Brisco KK, Sehgal R, John Cornel A. Efficacy of Trapping Methods in the Collection of Eretmapodites (Diptera: Culicidae) Mosquitoes in an Afrotropical Rainforest Region, South western Cameroon. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1394-1403. [PMID: 35640028 DOI: 10.1093/jme/tjac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 06/15/2023]
Abstract
Very little data exist on the biology of an afrotropical rainforest mosquito Eretmapodites (Er.) in a world undergoing dramatic changes due to deforestation. The aim was to assess the efficacy of different trapping methods in the collection of Er. mosquito in forested area. This was a longitudinal study involving collection of mosquitoes for over two years. Multiple collection methods (grouped into two categories), were used; i) net baited and un-baited traps to collect adults, ii) techniques that target immature stages subsequently reared to adults. All males were identified by genitalia dissection. Five thousand seven hundred and four mosquitoes representing 11 genera among which 2,334 Er. were identified. Mosquito abundance was highest in the net traps (n = 1276 (56.4%)) and sweep nets (n = 393(17.4%)) respectively. The abundance was highest in green colored net traps (435(34.09%)) with significant value of χ2= 40.000, P < 0.001 and in pigeons baited traps (473 (37.06%)) with significant value of χ2= 42.000, P = 0.003. The diversity ranges from H' = 2.65; DS = 0.84; SR = 24; ACE = 24.77 in sweep net to H' = 0; DS = 0; SR = 1; ACE = 1 in rock pool among males mosquitoes. While for females, H = 1.14; DS = 0.71; SR = 5; ACE = 5.16, in sweep net to H = 0; DS = 0; SR = 1; ACE = 1 in rock pool, tarpaulin, resting cage. Net traps, bamboo pot, and sweep netting are efficient in collecting high abundance of forest mosquitoes in the Talanagaye rainforest.
Collapse
Affiliation(s)
| | - Marie Paul Audrey Mayi
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, Cameroon
| | - Jerome Fru-Cho
- Department of Microbiology and Parasitology, University of Buea, Cameroon
| | - Cyril Kowo
- Department of Microbiology and Parasitology, University of Buea, Cameroon
| | - Damian Nota Anong
- Department of Microbiology and Parasitology, University of Buea, Cameroon
| | | | - Charlene Djomo
- Higher Institute of Environmental Science, Department of Environmental Health, PO Box 35460, Yaounde, Cameroon
| | - Timoleon Tchuinkam
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, Dschang, Cameroon
| | - Katherine K Brisco
- Mosquito Control Research Laboratory, Department of Entomology and Nematology and Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California at Davis, Parlier, CA, USA
| | - Ravinder Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Anthony John Cornel
- Mosquito Control Research Laboratory, Department of Entomology and Nematology and Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California at Davis, Parlier, CA, USA
| |
Collapse
|
7
|
Mbakop LR, Awono-Ambene PH, Ekoko WE, Mandeng SE, Nwane P, Fesuh BN, Toto JC, Alenou LD, Onguina HG, Piameu M, Fomena A, Etang J. Malaria Transmission and Vector Resistance to Insecticides in a Changing Environment: Case of Simbock in Yaoundé-City, Cameroon. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.902211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological upheavals resulting from uncontrolled urbanization can lead to significant changes in vector borne diseases’ profiles, thus requiring a thorough revision of their prevention and control strategies. The current study aimed at characterizing malaria vector populations in the Simbock neighborhood of Yaoundé-city (Cameroon), in relation to its urbanization scheme. Adult mosquitoes were captured by human landing catches (HLC) in- and outdoors prior to (2000–2006) and during infrastructural development (2014–2016). Anophelines were morphologically identified and analyzed for Plasmodium (P.) falciparum circumsporozoite protein detection using the ELISA technique. Species of the Anopheles (An.) gambiae complex were identified using SINE-PCR. Adult An. gambiae s.l. from larvae collected between 2014 and 2017 were tested for susceptibility to insecticides (0.1% bendiocarb, 4% DDT, 0.75% permethrin and 0.05% deltamethrin) with or without piperonyl butoxide (PBO) synergist, using WHO standard bioassays. The Hot Oligonucleotide Ligation Assay was used to detect the knockdown resistance (kdr) L995F/S mutations. Overall, nine malaria vector species were identified in 2000-2006, mostly An. moucheti (49%), An. nili (13.5%) and An. gambiae s.l. (12%); the six remaining species were represented at less than 3% each. However, only three species were found in 2014-2016, with increasing proportions of An. gambiae s.l. (67%) and An. funestus (32%) (P<0.0001). An. gambiae s.l. consisted An. coluzzii (> 85%) and An. gambiae (<15%) species during the two study periods. Plasmodium falciparum infection rates were 2.1% and 1.0% in 2000-2006 and 2014-2016 respectively (P=0.4), with decreasing entomological inoculation rates (EIR) from 0.34 infective bites per man per night (ib/m/n) to 0.02 ib/m/n (P<0.0001). Anopheles gambiae s.l. was resistant to DDT and permethrin [<40% mortality rates (MR)], and deltamethrin (65-89% MR), but fully susceptible to bendiocarb (100% MR). Pre-exposure of mosquitoes to PBO resulted in 90-100% MR to deltamethrin but not to permethrin. Furthermore, the two kdr L995F/S resistance alleles were recorded at 0.64 and 0.006 frequencies respectively. This study highlights a shift from rural to urban malaria transmission in Simbock, coupled with DDT and pyrethroid resistance in An. gambiae s.l. Combination vector control interventions, e.g., PBO nets and bendiocarb indoor residual spraying are needed in such areas.
Collapse
|
8
|
Gebhardt ME, Searle KM, Kobayashi T, Shields TM, Hamapumbu H, Simubali L, Mudenda T, Thuma PE, Stevenson JC, Moss WJ, Norris DE. Understudied Anophelines Contribute to Malaria Transmission in a Low-Transmission Setting in the Choma District, Southern Province, Zambia. Am J Trop Med Hyg 2022; 106:tpmd210989. [PMID: 35344932 PMCID: PMC9128685 DOI: 10.4269/ajtmh.21-0989] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022] Open
Abstract
Malaria transmission has declined substantially in Southern Province, Zambia, which is considered a low-transmission setting. The Zambian government introduced a reactive test-and-treat strategy to identify active zones of transmission and treat parasitemic residents. This study was conducted in the Choma District, Southern Province, Zambia, concurrently with an evaluation of this strategy to identify vectors responsible for sustaining transmission, and to identify entomological, spatial, and ecological risk factors associated with increased densities of mosquitoes. Anophelines were collected with CDC light traps indoors and near animal pens in index cases and neighboring households. Outdoor collections captured significantly more anophelines than indoor traps, and 10 different anopheline species were identified. Four species (Anopheles arabiensis, An. rufipes, An. squamosus, and An. coustani) were positive for Plasmodium falciparum circumsporozoite protein by ELISA, and 61% of these 26 anophelines were captured outdoors. Bloodmeal assays confirm plasticity in An. arabiensis foraging, feeding both on humans and animals, whereas An. rufipes, An. squamosus, and An. coustani were largely zoophilic and exophilic. Linear regression of count data for indoor traps revealed that households with at least one parasitemic resident by polymerase chain reaction testing was associated with higher female anopheline counts. This suggests that targeting households with parasitemic individuals for vector interventions may reduce indoor anopheline populations. However, many vectors species responsible for transmission may not be affected by indoor interventions because they are primarily exophilic and forage opportunistically. These data underscore the necessity for further evaluation of vector surveillance and control tools that are effective outdoors, in conjunction with current indoor-based interventions.
Collapse
Affiliation(s)
- Mary E. Gebhardt
- Johns Hopkins Malaria Research Institute, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kelly M. Searle
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Timothy M. Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | | | - Jennifer C. Stevenson
- Johns Hopkins Malaria Research Institute, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Macha Research Trust, Choma, Zambia
| | - William J. Moss
- Johns Hopkins Malaria Research Institute, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Douglas E. Norris
- Johns Hopkins Malaria Research Institute, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
9
|
Bamou R, Mayi MPA, Djiappi-Tchamen B, Nana-Ndjangwo SM, Nchoutpouen E, Cornel AJ, Awono-Ambene P, Parola P, Tchuinkam T, Antonio-Nkondjio C. An update on the mosquito fauna and mosquito-borne diseases distribution in Cameroon. Parasit Vectors 2021; 14:527. [PMID: 34635176 PMCID: PMC8507310 DOI: 10.1186/s13071-021-04950-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
The expansion of mosquito-borne diseases such as dengue, yellow fever, and chikungunya in the past 15 years has ignited the need for active surveillance of common and neglected mosquito-borne infectious diseases. The surveillance should be designed to detect diseases and to provide relevant field-based data for developing and implementing effective control measures to prevent outbreaks before significant public health consequences can occur. Mosquitoes are important vectors of human and animal pathogens, and knowledge on their biodiversity and distribution in the Afrotropical region is needed for the development of evidence-based vector control strategies. Following a comprehensive literature search, an inventory of the diversity and distribution of mosquitoes as well as the different mosquito-borne diseases found in Cameroon was made. A total of 290 publications/reports and the mosquito catalogue website were consulted for the review. To date, about 307 species, four subspecies and one putative new species of Culicidae, comprising 60 species and one putative new species of Anopheles, 67 species and two subspecies of Culex, 77 species and one subspecies of Aedes, 31 species and one subspecies of Eretmapodites, two Mansonia, eight Coquillettidia, and 62 species with unknown medical and veterinary importance (Toxorhynchites, Uranotaenia, Mimomyia, Malaya, Hodgesia, Ficalbia, Orthopodomyia, Aedeomyia, and Culiseta and Lutzia) have been collected in Cameroon. Multiple mosquito species implicated in the transmission of pathogens within Anopheles, Culex, Aedes, Eretmapodites, Mansonia, and Coquillettidia have been reported in Cameroon. Furthermore, the presence of 26 human and zoonotic arboviral diseases, one helminthic disease, and two protozoal diseases has been reported. Information on the bionomics, taxonomy, and distribution of mosquito species will be useful for the development of integrated vector management programmes for the surveillance and elimination of mosquito-borne diseases in Cameroon. ![]()
Collapse
Affiliation(s)
- Roland Bamou
- Vector Borne Diseases Laboratory of the Biology and Applied Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon. .,Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon. .,Aix Marseille Univ, IRD, SSA, AP-HM, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France. .,IHU Méditerranée Infection, Marseille, France.
| | - Marie Paul Audrey Mayi
- Vector Borne Diseases Laboratory of the Biology and Applied Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Borel Djiappi-Tchamen
- Vector Borne Diseases Laboratory of the Biology and Applied Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon.,Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Stella Mariette Nana-Ndjangwo
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon.,Laboratoire de Parasitologie et d'écologie, Université de Yaoundé 1, Yaoundé, Cameroun
| | - Elysée Nchoutpouen
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Antony John Cornel
- Department of Entomology and Nematology, Mosquito Control Research Laboratory, University of California, Davis, California, USA
| | - Parfait Awono-Ambene
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Phillipe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Timoléon Tchuinkam
- Vector Borne Diseases Laboratory of the Biology and Applied Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon.,Vector Biology Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
10
|
Doumbe-Belisse P, Kopya E, Ngadjeu CS, Sonhafouo-Chiana N, Talipouo A, Djamouko-Djonkam L, Awono-Ambene HP, Wondji CS, Njiokou F, Antonio-Nkondjio C. Urban malaria in sub-Saharan Africa: dynamic of the vectorial system and the entomological inoculation rate. Malar J 2021; 20:364. [PMID: 34493280 PMCID: PMC8424958 DOI: 10.1186/s12936-021-03891-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Sub-Saharan Africa is registering one of the highest urban population growth across the world. It is estimated that over 75% of the population in this region will be living in urban settings by 2050. However, it is not known how this rapid urbanization will affect vector populations and disease transmission. The present study summarizes findings from studies conducted in urban settings between the 1970s and 2020 to assess the effects of urbanization on the entomological inoculation rate pattern and anopheline species distribution. Different online databases such as PubMed, ResearchGate, Google Scholar, Google were screened. A total of 90 publications were selected out of 1527. Besides, over 200 additional publications were consulted to collate information on anopheline breeding habitats and species distribution in urban settings. The study confirms high malaria transmission in rural compared to urban settings. The study also suggests that there had been an increase in malaria transmission in most cities after 2003, which could also be associated with an increase in sampling, resources and reporting. Species of the Anopheles gambiae complex were the predominant vectors in most urban settings. Anopheline larvae were reported to have adapted to different aquatic habitats. The study provides updated information on the distribution of the vector population and the dynamic of malaria transmission in urban settings. The study also highlights the need for implementing integrated control strategies in urban settings.
Collapse
Affiliation(s)
- P Doumbe-Belisse
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - E Kopya
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - C S Ngadjeu
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - N Sonhafouo-Chiana
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Health Sciences, University of Buea, Cameroon, P.O. Box 63, Buea, Cameroon
| | - A Talipouo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - L Djamouko-Djonkam
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Dschang Cameroon, P.O. Box 67, Dschang, Cameroon
| | - H P Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
| | - C S Wondji
- Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
| | - F Njiokou
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - C Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun. .,Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
11
|
Galani BRT, Mapouokam DW, Simo FBN, Mohamadou H, Chuisseu PDD, Njintang NY, Moundipa PF. Investigation of dengue-malaria coinfection among febrile patients consulting at Ngaoundere Regional Hospital, Cameroon. J Med Virol 2021; 93:3350-3361. [PMID: 33325045 DOI: 10.1002/jmv.26732] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023]
Abstract
This study aimed at evaluating the seroprevalence of dengue among malarious patients consulting at the Ngaoundere Regional Hospital. During 2 months and a half, 174 participants were recruited and their blood samples were screened for Plasmodium spp and then for Dengue virus (DENV) infection using rapid diagnostic tests. Also, hematological asparameters were measured using a hematology autoanalyzer. Among patients tested, 134 (77.01%) were malaria-positive, and 12/134 (8.95%) were coinfected. In this population, 8/12 (66.67%) were only anti-DENV IgM-positive, 3/12 (25%) were both NS1 and anti-DENV IgM positive, and 1/12 (8.33%) were anti-DENV IgG-positive. Furthermore, women were more affected (58.3%) than men (41.7%). The most affected age groups were young people aged less than or equal to 15 years (33.3%) and adults aged between 30 and 45 years (33.3%). A significant association (p < .05; odds ratio [OR] = 5.16) was found between the age range (30-45) and dengue-malaria coinfection. Similarly, we noted a significant association between the coinfection, and joint pain (p < .05; OR = 6.15), fatigue (p < .01; OR = 5.74), and chills (p < .05; OR = 0). Analysis of hematologic parameters showed a significant decrease (p < .001) in platelets in coinfected patients compared with monoinfected patients. In conclusion, dengue-malaria coinfection is a reality in Ngaoundere city and associated with the appearance of clinical features which predict the disease severity.
Collapse
Affiliation(s)
- Borris R T Galani
- Department of Biological Sciences, Faculty of Science, Laboratory of Applied Biochemistry, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Danielle W Mapouokam
- Department of Biological Sciences, Faculty of Science, Laboratory of Applied Biochemistry, University of Ngaoundere, Ngaoundere, Cameroon
| | - Fredy B N Simo
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | | | - Pascal D D Chuisseu
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
- Higher Institute of Health Sciences, Université des Montagnes, Bangangté, Cameroon
| | - Nicolas Y Njintang
- Department of Biological Sciences, Faculty of Science, Laboratory of Applied Biochemistry, University of Ngaoundere, Ngaoundere, Cameroon
| | - Paul F Moundipa
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| |
Collapse
|
12
|
Goupeyou-Youmsi J, Rakotondranaivo T, Puchot N, Peterson I, Girod R, Vigan-Womas I, Paul R, Ndiath MO, Bourgouin C. Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighbouring villages of Madagascar. Parasit Vectors 2020; 13:430. [PMID: 32843082 PMCID: PMC7447585 DOI: 10.1186/s13071-020-04282-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/03/2020] [Indexed: 02/01/2023] Open
Abstract
Background Malaria is still a heavy public health concern in Madagascar. Few studies combining parasitology and entomology have been conducted despite the need for accurate information to design effective vector control measures. In a Malagasy region of moderate to intense transmission of both Plasmodium falciparum and P. vivax, parasitology and entomology have been combined to survey malaria transmission in two nearby villages. Methods Community-based surveys were conducted in the villages of Ambohitromby and Miarinarivo at three time points (T1, T2 and T3) during a single malaria transmission season. Human malaria prevalence was determined by rapid diagnostic tests (RDTs), microscopy and real-time PCR. Mosquitoes were collected by human landing catches and pyrethrum spray catches and the presence of Plasmodium sporozoites was assessed by TaqMan assay. Results Malaria prevalence was not significantly different between villages, with an average of 8.0% by RDT, 4.8% by microscopy and 11.9% by PCR. This was mainly due to P. falciparum and to a lesser extent to P. vivax. However, there was a significantly higher prevalence rate as determined by PCR at T2 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi_{2}^{2}$$\end{document}χ22 = 7.46, P = 0.025). Likewise, mosquitoes were significantly more abundant at T2 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi_{2}^{2}$$\end{document}χ22 = 64.8, P < 0.001), especially in Ambohitromby. At T1 and T3 mosquito abundance was higher in Miarinarivo than in Ambohitromby (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi_{2}^{2}$$\end{document}χ22 = 14.92, P < 0.001). Of 1550 Anopheles mosquitoes tested, 28 (1.8%) were found carrying Plasmodium sporozoites. The entomological inoculation rate revealed that Anopheles coustani played a major contribution in malaria transmission in Miarinarivo, being responsible of 61.2 infective bites per human (ib/h) during the whole six months of the survey, whereas, it was An. arabiensis, with 36 ib/h, that played that role in Ambohitromby. Conclusions Despite a similar malaria prevalence in two nearby villages, the entomological survey showed a different contribution of An. coustani and An. arabiensis to malaria transmission in each village. Importantly, the suspected secondary malaria vector An. coustani, was found playing the major role in malaria transmission in one village. This highlights the importance of combining parasitology and entomology surveys for better targeting local malaria vectors. Such study should contribute to the malaria pre-elimination goal established under the 2018–2022 National Malaria Strategic Plan. ![]()
Collapse
Affiliation(s)
- Jessy Goupeyou-Youmsi
- Immunology of Infectious Diseases Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar. .,Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France. .,Doctoral School "Complexité du Vivant", Sorbonne University, Paris, France.
| | - Tsiriniaina Rakotondranaivo
- G4 Malaria Group, Institut Pasteur de Madagascar, Antananarivo, Madagascar.,Doctoral School "Génie du vivant et modélisation" Mahajanga University, Mahajanga, Madagascar
| | - Nicolas Puchot
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR2000, Institut Pasteur, Paris, France
| | - Ingrid Peterson
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Inès Vigan-Womas
- Immunology of Infectious Diseases Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Richard Paul
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR2000, Institut Pasteur, Paris, France
| | | | - Catherine Bourgouin
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique UMR2000, Institut Pasteur, Paris, France.
| |
Collapse
|
13
|
Goupeyou-Youmsi J, Rakotondranaivo T, Puchot N, Peterson I, Girod R, Vigan-Womas I, Paul R, Ndiath MO, Bourgouin C. Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighbouring villages of Madagascar. Parasit Vectors 2020; 13:430. [PMID: 32843082 DOI: 10.1101/787432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/03/2020] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Malaria is still a heavy public health concern in Madagascar. Few studies combining parasitology and entomology have been conducted despite the need for accurate information to design effective vector control measures. In a Malagasy region of moderate to intense transmission of both Plasmodium falciparum and P. vivax, parasitology and entomology have been combined to survey malaria transmission in two nearby villages. METHODS Community-based surveys were conducted in the villages of Ambohitromby and Miarinarivo at three time points (T1, T2 and T3) during a single malaria transmission season. Human malaria prevalence was determined by rapid diagnostic tests (RDTs), microscopy and real-time PCR. Mosquitoes were collected by human landing catches and pyrethrum spray catches and the presence of Plasmodium sporozoites was assessed by TaqMan assay. RESULTS Malaria prevalence was not significantly different between villages, with an average of 8.0% by RDT, 4.8% by microscopy and 11.9% by PCR. This was mainly due to P. falciparum and to a lesser extent to P. vivax. However, there was a significantly higher prevalence rate as determined by PCR at T2 ([Formula: see text] = 7.46, P = 0.025). Likewise, mosquitoes were significantly more abundant at T2 ([Formula: see text] = 64.8, P < 0.001), especially in Ambohitromby. At T1 and T3 mosquito abundance was higher in Miarinarivo than in Ambohitromby ([Formula: see text] = 14.92, P < 0.001). Of 1550 Anopheles mosquitoes tested, 28 (1.8%) were found carrying Plasmodium sporozoites. The entomological inoculation rate revealed that Anopheles coustani played a major contribution in malaria transmission in Miarinarivo, being responsible of 61.2 infective bites per human (ib/h) during the whole six months of the survey, whereas, it was An. arabiensis, with 36 ib/h, that played that role in Ambohitromby. CONCLUSIONS Despite a similar malaria prevalence in two nearby villages, the entomological survey showed a different contribution of An. coustani and An. arabiensis to malaria transmission in each village. Importantly, the suspected secondary malaria vector An. coustani, was found playing the major role in malaria transmission in one village. This highlights the importance of combining parasitology and entomology surveys for better targeting local malaria vectors. Such study should contribute to the malaria pre-elimination goal established under the 2018-2022 National Malaria Strategic Plan.
Collapse
Affiliation(s)
- Jessy Goupeyou-Youmsi
- Immunology of Infectious Diseases Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar.
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France.
- Doctoral School "Complexité du Vivant", Sorbonne University, Paris, France.
| | - Tsiriniaina Rakotondranaivo
- G4 Malaria Group, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Doctoral School "Génie du vivant et modélisation" Mahajanga University, Mahajanga, Madagascar
| | - Nicolas Puchot
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR2000, Institut Pasteur, Paris, France
| | - Ingrid Peterson
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Inès Vigan-Womas
- Immunology of Infectious Diseases Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Richard Paul
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR2000, Institut Pasteur, Paris, France
| | | | - Catherine Bourgouin
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France.
- Centre National de la Recherche Scientifique UMR2000, Institut Pasteur, Paris, France.
| |
Collapse
|
14
|
Escobar D, Ascencio K, Ortiz A, Palma A, Sánchez A, Fontecha G. Blood Meal Sources of Anopheles spp. in Malaria Endemic Areas of Honduras. INSECTS 2020; 11:insects11070450. [PMID: 32708582 PMCID: PMC7412045 DOI: 10.3390/insects11070450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022]
Abstract
Malaria remains a life-threatening disease in many tropical countries. Honduras has successfully reduced malaria transmission as different control methods have been applied, focusing mainly on indoor mosquitoes. The selective pressure exerted by the use of insecticides inside the households could modify the feeding behavior of the mosquitoes, forcing them to search for available animal hosts outside the houses. These animal hosts in the peridomicile could consequently become an important factor in maintaining vector populations in endemic areas. Herein, we investigated the blood meal sources and Plasmodium spp. infection on anophelines collected outdoors in endemic areas of Honduras. Individual PCR reactions with species-specific primers were used to detect five feeding sources on 181 visibly engorged mosquitoes. In addition, a subset of these mosquitoes was chosen for pathogen analysis by a nested PCR approach. Most mosquitoes fed on multiple hosts (2 to 4), and 24.9% of mosquitoes had fed on a single host, animal or human. Chicken and bovine were the most frequent blood meal sources (29.5% and 27.5%, respectively). The average human blood index (HBI) was 22.1%. None of the mosquitoes were found to be infected with Plasmodium spp. Our results show the opportunistic and zoophilic behavior of Anopheles mosquitoes in Honduras.
Collapse
Affiliation(s)
- Denis Escobar
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Krisnaya Ascencio
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Andrés Ortiz
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Adalid Palma
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Ana Sánchez
- Department of Health Sciences, Brock University, St. Catharines, ON L2V 5A2, Canada;
| | - Gustavo Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
- Correspondence: ; Tel.: +504-33935443
| |
Collapse
|
15
|
Antonio-Nkondjio C, Ndo C, Njiokou F, Bigoga JD, Awono-Ambene P, Etang J, Ekobo AS, Wondji CS. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit Vectors 2019; 12:501. [PMID: 31655608 PMCID: PMC6815446 DOI: 10.1186/s13071-019-3753-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022] Open
Abstract
Malaria still has a devastating impact on public health and welfare in Cameroon. Despite the increasing number of studies conducted on disease prevalence, transmission patterns or treatment, there are to date, not enough studies summarising findings from previous works in order to identify gaps in knowledge and areas of interest where further evidence is needed to drive malaria elimination efforts. The present study seeks to address these gaps by providing a review of studies conducted so far on malaria in Cameroon since the 1940s to date. Over 250 scientific publications were consulted for this purpose. Although there has been increased scale-up of vector control interventions which significantly reduced the morbidity and mortality to malaria across the country from a prevalence of 41% of the population reporting at least one malaria case episode in 2000 to a prevalence of 24% in 2017, the situation is not yet under control. There is a high variability in disease endemicity between epidemiological settings with prevalence of Plasmodium parasitaemia varying from 7 to 85% in children aged 6 months to 15 years after long-lasting insecticidal nets (LLINs) scale-up. Four species of Plasmodium have been recorded across the country: Plasmodium falciparum, P. malariae, P. ovale and P. vivax. Several primate-infecting Plasmodium spp. are also circulating in Cameroon. A decline of artemisinin-based combinations therapeutic efficacy from 97% in 2006 to 90% in 2016 have been reported. Several mutations in the P. falciparum chloroquine resistance (Pfcrt) and P. falciparum multidrug resistance 1 (Pfmdr1) genes conferring resistance to either 4-amino-quinoleine, mefloquine, halofanthrine and quinine have been documented. Mutations in the Pfdhfr and Pfdhps genes involved in sulfadoxine-pyrimethamine are also on the rise. No mutation associated with artemisinin resistance has been recorded. Sixteen anopheline species contribute to malaria parasite transmission with six recognized as major vectors: An. gambiae, An. coluzzii, An. arabiensis, An. funestus, An. nili and An. moucheti. Studies conducted so far, indicated rapid expansion of DDT, pyrethroid and carbamate resistance in An. gambiae, An. coluzzii, An. arabiensis and An. funestus threatening the performance of LLINs. This review highlights the complex situation of malaria in Cameroon and the need to urgently implement and reinforce integrated control strategies in different epidemiological settings, as part of the substantial efforts to consolidate gains and advance towards malaria elimination in the country.
Collapse
Affiliation(s)
- Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, UK
| | - Cyrille Ndo
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Flobert Njiokou
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Jude D. Bigoga
- Laboratory for Vector Biology and control, National Reference Unit for Vector Control, The Biotechnology Center, Nkolbisson-University of Yaounde I, P.O. Box 3851, Messa, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
| | - Josiane Etang
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Institute for Insect Biotechnology, Justus Liebig University Gießen, Winchester Str. 2, 35394 Gießen, Germany
| | - Albert Same Ekobo
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, UK
| |
Collapse
|
16
|
Patterns of anopheline feeding/resting behaviour and Plasmodium infections in North Cameroon, 2011-2014: implications for malaria control. Parasit Vectors 2019; 12:297. [PMID: 31196161 PMCID: PMC6567421 DOI: 10.1186/s13071-019-3552-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Effective malaria control relies on evidence-based interventions. Anopheline behaviour and Plasmodium infections were investigated in North Cameroon, following long-lasting insecticidal net (LLIN) distribution in 2010. Methods During four consecutive years from 2011 to 2014, adult mosquitoes were collected indoors, outdoors and in exit traps across 38 locations in the Garoua, Pitoa and Mayo-Oulo health districts. Anophelines were morphologically and molecularly identified, then analysed for blood meal origins and Plasmodium falciparum circumsporozoite protein (Pf-CSP). Blood from children under 5 years-old using LLINs was examined for Plasmodium infections. Results Overall, 9376 anophelines belonging to 14 species/sibling species were recorded. Anopheles gambiae (s.l.) [An. arabiensis (73.3%), An. coluzzii (17.6%) and An. gambiae (s.s.) (9.1%)] was predominant (72%), followed by An. funestus (s.l.) (20.5%) and An. rufipes (6.5%). The recorded blood meals were mainly from humans (28%), cattle (15.6%) and sheep (11.6%) or mixed (45%). Pf-CSP rates were higher indoors (3.2–5.4%) versus outdoors (0.8–2.0%), and increased yearly (χ2 < 18, df = 10, P < 0.03). Malaria prevalence in children under 5 years-old, in households using LLINs was 30% (924/3088). Conclusions The present study revealed the variability of malaria vector resting and feeding behaviour, and the persistence of Plasmodium infections regardless the use of LLINs. Supplementary interventions to LLINs are therefore needed to sustain malaria prevention in North Cameroon.
Collapse
|
17
|
Fadel AN, Ibrahim SS, Tchouakui M, Terence E, Wondji MJ, Tchoupo M, Wanji S, Wondji CS. A combination of metabolic resistance and high frequency of the 1014F kdr mutation is driving pyrethroid resistance in Anopheles coluzzii population from Guinea savanna of Cameroon. Parasit Vectors 2019; 12:263. [PMID: 31133042 PMCID: PMC6537440 DOI: 10.1186/s13071-019-3523-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The scale-up in the distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying has significantly reduced malaria burden and mortality. However, insecticide resistance, among other factors, is responsible for a recent rebound in malaria transmission in 2015-2016, threatening the progress so far made. As a contribution towards understanding patterns of resistance and its mechanism in the field we characterized a population of Anopheles gambiae (s.l.) from Gounougou, a Guinea savanna of north/central Cameroon. RESULTS Indoor collection conducted in September 2017 identified Anopheles coluzzii and Anopheles arabiensis as the unique Anopheles vector species, with abundances of 83 and 17%, respectively. Analysis of infection with TaqMan assays using heads/thoraces of indoor collected females of An. coluzzii revealed a low Plasmodium falciparum parasite rate of 4.7%. Bioassays conducted with female An. coluzzii revealed extreme resistance, with low mortalities of only 3.75 ± 1.25%, 3.03 ± 1.59% and 1.45 ± 1.45%, respectively, for permethrin, deltamethrin and DDT. In contrast, high susceptibility was obtained with the organophosphates and carbamates, with mortalities in the range of 98-100%. Synergist assays with piperonyl butoxide (PBO) recovered some susceptibility with increased mortality for permethrin to 14.88 ± 8.74%, and for deltamethrin to 32.50 ± 10.51% (~27-fold increase compared to mortalities with deltamethrin alone, χ2 = 29, df = 1, P < 0.0001). These correlated with the results of cone bioassays which revealed complete loss of efficacy of Olyset®Net (0% mortality) and PermaNet®2.0 (0% mortality), and the considerable loss of efficacy of Olyset®Plus (mortality of 2 ± 2%), PermaNet®3.0 side panel (mortality of 2 ± 2%) and PermaNet3.0® roof (mortality of 16 ± 5.1%). Time-course bioassays conducted with deltamethrin established a high intensity of resistance, with LT50 of 309.09 (95% CI 253.07-393.71, Fiducial), and a resistance ratio of 93.09 compared with the fully susceptible Ngoussou laboratory colony. TaqMan genotyping revealed a high frequency of the 1014F allele (65.25%) in the An. coluzzii populations. Sequencing of a fragment of the voltage-gated sodium channel identified a single An. arabiensis female harbouring the 1014S kdr mutation. CONCLUSIONS This finding of high pyrethroid and DDT resistance in An. coluzzii from north-central Cameroon is a major obstacle to malaria control using pyrethroid bednets and indoor residual spraying with DDT.
Collapse
Affiliation(s)
- Amen N Fadel
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA, UK. .,Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria.
| | - Magellan Tchouakui
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Ebai Terence
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Murielle J Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA, UK
| | - Micareme Tchoupo
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Samuel Wanji
- Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Charles S Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA, UK
| |
Collapse
|
18
|
Case Definitions of Clinical Malaria in Children from Three Health Districts in the North Region of Cameroon. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9709013. [PMID: 31139663 PMCID: PMC6500661 DOI: 10.1155/2019/9709013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/05/2022]
Abstract
Malaria endemicity in Cameroon greatly varies according to ecological environment. In such conditions, parasitaemia, which is associated with fever, may not always suffice to define an episode of clinical malaria. The evaluation of malaria control intervention strategies mostly consists of identifying cases of clinical malaria and is crucial to promote better diagnosis for accurate measurement of the impact of the intervention. We sought out to define and quantify clinical malaria cases in children from three health districts in the Northern region of Cameroon. A cohort study of 6,195 children aged between 6 and 120 months was carried out during the raining season (July to October) between 2013 and 2014. Differential diagnosis of clinical malaria was performed using the parasite density and axillary temperature. At recruitment, patients with malaria-related symptoms (fever [axillary temperature ≥ 37.5°C], chills, severe malaise, headache, or vomiting) and a malaria positive blood smear were classified under clinical malaria group. The malaria attributable fraction was calculated using logistic regression models. Plasmodium falciparum was responsible for over 91% of infections. Children from Pitoa health district had the highest number of asymptomatic infections (45.60%) compared to those from Garoua and Mayo Oulo. The most suitable cut-off for the association between parasite densities and fever was found among children less than 24 months. Overall, parasite densities that ranged above 3,200 parasites per μl of blood could be used to define the malaria attributable fever cases. In groups of children aged between 24 and 59 months and 60 and 94 months, the optimum cut-off parasite density was 6,400 parasites per μl of blood, while children aged between 95 and 120 months had a cut-off of 800 parasites per μl of blood. In the same ecoepidemiological zone, clinical malaria case definitions are influenced by age and location (health district) and this could be considered when evaluating malaria intervention strategies in endemic areas.
Collapse
|
19
|
Zhou D, Duan B, Xu Y, Ma L, Shen B, Sun Y, Zhu C. NYD-OP7/PLC regulatory signaling pathway regulates deltamethrin resistance in Culex pipiens pallens (Diptera: Culicidae). Parasit Vectors 2018; 11:419. [PMID: 30012184 PMCID: PMC6048805 DOI: 10.1186/s13071-018-3011-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Investigation of insecticide resistance mechanisms is considered a vital first step towards the creation of effective strategies to control resistant mosquitoes and manage mosquito-borne diseases. Our previous study revealed that NYD-OP7 may be associated with deltamethrin resistance in Culex pipiens pallen. However, the precise function of NYD-OP7 in deltamethrin resistance is still unclear. In this study, we investigated the role of NYD-OP7 in the molecular mechanisms underlying pyrethroid resistance. RESULTS Knockdown of NYD-OP7 not only increased the susceptibility of the mosquitoes to deltamethrin in vivo but also simultaneously repressed both expression and enzyme activity of its downstream effector molecule, phospholipase C (PLC) and expression of several insecticide resistance-related P450 genes. Knockdown of PLC also sensitized the mosquitoes to deltamethrin and reduced the expression of the P450 genes. CONCLUSIONS Our results revealed that NYD-OP7 and its downstream effector PLC contribute to deltamethrin resistance by regulating the expression of P450s in Cx. pipiens pallens.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Baiyun Duan
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|