1
|
Pradela LK, Casella T, Manieri FZ, de Andrade LK, Barroso MDV, Nhu NTK, Schembri MA, Moreira CG, Nogueira MCL. Description of bla KPC-carrying Escherichia coli in patients from a Brazilian hospital over a 4-year period. Diagn Microbiol Infect Dis 2025; 112:116833. [PMID: 40209325 DOI: 10.1016/j.diagmicrobio.2025.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli are recognized by the World Health Organization as a critical group of bacterial priority pathogens of public health importance. Thus, increased understanding of the genetic characteristics of KPC-producing E. coli is required. Here, we performed a retrospective study in a Brazilian teaching-hospital to describe the genomic features linked to antimicrobial resistance, virulence, and phylogeny of 40 meropenem-resistant E. coli. All isolates carried the blaKPC-2 gene, but amikacin, tigecycline, colistin, polymyxin B, and fosfomycin showed good activity. Molecular typing by MLST revealed 20 sequence types (STs), with a predominance of ST131. Whole-genome sequencing identified Tn4401 as a mechanism responsible for blaKPC-2 mobilization, a variety of antimicrobial resistance and virulence genes, the predominance of pathogenic phylogroup lineages, and the grouping of genomes belonging to the same ST. KPC-producing E. coli is not a common pathogen, but few treatment alternatives are available against potentially virulent strains.
Collapse
Affiliation(s)
- Letícia Kalir Pradela
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil
| | - Tiago Casella
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil; Hospital de Base de São José do Rio Preto. 5544, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil
| | - Fernanda Zani Manieri
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho". Rodovia Araraquara-Jau, Km 01. CEP: 14801902. Araraquara, SP, Brazil
| | - Letícia Kellen de Andrade
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil
| | - Marlon do Valle Barroso
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil
| | - Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark Andrew Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Cristiano Gallina Moreira
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho". Rodovia Araraquara-Jau, Km 01. CEP: 14801902. Araraquara, SP, Brazil; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Mara Corrêa Lelles Nogueira
- Centro de Investigação de Microrganismos, FAMERP. 5416, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil; Hospital de Base de São José do Rio Preto. 5544, Brigadeiro Faria Lima Avenue. Vila São Pedro. CEP: 15090-000. São José do Rio Preto, SP, Brazil.
| |
Collapse
|
2
|
Piper KR, Souza SSR, Ikhimiukor OO, Workman AA, Martin IW, Andam CP. Lineage-specific variation in frequency and hotspots of recombination in invasive Escherichia coli. BMC Genomics 2025; 26:190. [PMID: 39994515 PMCID: PMC11853335 DOI: 10.1186/s12864-025-11367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The opportunistic bacterium Escherichia coli can invade normally sterile sites in the human body, potentially leading to life-threatening organ dysfunction and even death. However, our understanding of the evolutionary processes that shape its genetic diversity in this sterile environment remains limited. Here, we aim to quantify the frequency and characteristics of homologous recombination in E. coli from bloodstream infections. RESULTS Analysis of 557 short-read genome sequences revealed that the propensity to exchange DNA by homologous recombination varies within a distinct population (bloodstream) at narrow geographic (Dartmouth Hitchcock Medical Center, New Hampshire, USA) and temporal (years 2016 - 2022) scope. We identified the four largest monophyletic sequence clusters in the core genome phylogeny that are represented by prominent sequence types (ST): BAPS1 (mainly ST95), BAPS4 (mainly ST73), BAPS10 (mainly ST131), BAPS14 (mainly ST58). We show that the four dominant clusters vary in different characteristics of recombination: number of single nucleotide polymorphisms due to recombination, number of recombination blocks, cumulative bases in recombination blocks, ratio of probabilities that a given site was altered through recombination and mutation (r/m), and ratio of rates at which recombination and mutation occurred (ρ/θ). Each sequence cluster contains a unique set of antimicrobial resistance (AMR) and virulence genes that have experienced recombination. Common among the four sequence clusters were the recombined virulence genes with functions associated with the Curli secretion channel (csgG) and ferric enterobactin transport (entEF, fepEG). We did not identify any one recombined AMR gene that was present in all four sequence clusters. However, AMR genes mdtABC, baeSR, emrKY and tolC had experienced recombination in sequence clusters BAPS4, BAPS10, and BAPS14. These differences lie in part on the contributions of vertically inherited ancestral recombination and contemporary branch-specific recombination, with some genomes having relatively higher proportions of recombined DNA. CONCLUSIONS Our results highlight the variation in the propensity to exchange DNA via homologous recombination within a distinct population at narrow geographic and temporal ranges. Understanding the sources of the genetic variation in invasive E. coli will help inform the implementation of effective strategies to reduce the burden of disease and AMR.
Collapse
Affiliation(s)
- Kathryn R Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Adrienne A Workman
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA
| | - Isabella W Martin
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
3
|
Yang X, Li M, Jia ZC, Liu Y, Wu SF, Chen MX, Hao GF, Yang Q. Unraveling the secrets: Evolution of resistance mediated by membrane proteins. Drug Resist Updat 2024; 77:101140. [PMID: 39244906 DOI: 10.1016/j.drup.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, Jiangsu 210095, China.
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
4
|
Sallem N, Ben Mansour N, Amri H, Boudaoura M, Gargouri O, Mahjoubi F, Hammami A, Mnif B. Extended-spectrum beta-lactamase- and carbapenemase-producing Escherichia coli isolates causing hospital- and community-acquired infections in Tunisia (2001-2019): expansion of CTX-M-15-C2 and CTX-M-27-C1 ST131 subclades. Microbiol Spectr 2024; 12:e0147124. [PMID: 39451135 PMCID: PMC11619393 DOI: 10.1128/spectrum.01471-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) and carbapenemase-producing E. coli (CP-EC) is increasing worldwide. We investigated the epidemiology of ESBL-EC and CP-EC causing hospital-acquired (HA) infections in a large teaching hospital in Tunisia over the last two decades and compared it with a collection of 107 community-acquired (CA) ESBL-EC isolates. Between 2001 and 2019, the incidence of HA ESBL-EC increased significantly from 0.08 to 0.32 cases per 1,000 patient days, due entirely to the rapid emergence and expansion of ST131, which accounted for 42.3% (157/371) of HA ESBL-EC. Most ESBL-EC harbored the CTX-M type (92%) with a predominance of blaCTX-M-15. The C2/H30-Rx subclone (n = 103, 65.6%) accounted for 90% of ST131 isolates between 2003 and 2012 and was exclusively associated with CTX-M-15, whereas cluster C1-M27, which was associated with CTX-M-27, emerged in 2013 and expanded gradually to 55% of ST131 in 2019. ST131 prevalence was higher among CA ESBL-EC than HA ESBL-EC (63.6% vs. 42.3%, P = 0.002). CA C2 subclone and non-ST131 isolates showed higher virulence scores than HA isolates. The incidence of CP-EC remained stable over the study period with a mean of 0.08 cases per 1,000 patient days. Among the 38 identified CP-EC isolates, only 16.2% belonged to the ST131 clone and 81.5% produced OXA-48-like carbapenemases. ST131 is the major driver of ESBL-EC spread in both hospital and community settings in Tunisia, mainly linked to the expansion of the CTX-M-15-C2 and CTX-M-27-C1 subclades. The emergence of CP-EC requires ongoing genomic surveillance. IMPORTANCE We aimed to investigate the microbiological features of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) and carbapenemase-producing E. coli (CP-EC) causing hospital- and community-acquired infections in Tunisia over the last two decades. The study captured the emergence and expansion of the CTX-M-15-C2 ST131 subclade and successively the CTX-M-27-C1 ST131 subclade, which were responsible for the steady increase in the prevalence of ESBL-EC. However, the incidence of CP-EC remained stable over the study period with a highly diverse content in carbapenemase genes dominated by blaOXA-48-like. This is the first study to provide comprehensive data on the epidemiology of ESBL-EC and CP-EC in a North African country.
Collapse
Affiliation(s)
- Nesrine Sallem
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Noura Ben Mansour
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Hana Amri
- Regional Hospital Of Jebeniana, Sfax, Tunisia
| | - Mohamed Boudaoura
- Policlinique de la Caisse Nationale de Sécurité Sociale, Sfax, Tunisia
| | - Olfa Gargouri
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Faouzia Mahjoubi
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Adnene Hammami
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Basma Mnif
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Davin-Regli A, Pagès JM, Vergalli J. The contribution of porins to enterobacterial drug resistance. J Antimicrob Chemother 2024; 79:2460-2470. [PMID: 39205648 DOI: 10.1093/jac/dkae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
In Enterobacteriaceae, susceptibility to cephalosporins and carbapenems is often associated with membrane and enzymatic barrier resistance. For about 20 years, a large number of Klebsiella pneumoniae, Escherichia coli and Enterobacter cloacae presenting ß-lactam resistance have been isolated from medical clinics. In addition, some of the resistant isolates exhibited alterations in the outer membrane porin OmpC-OmpF orthologues, resulting in the complete absence of gene expression, replacement by another porin or mutations affecting channel properties. Interestingly, for mutations reported in OmpC-OmpF orthologues, major changes in pore function were found to be present in the gene encoding for OmpC. The alterations were located in the constriction region of the porin and the resulting amino acid substitutions were found to induce severe restriction of the lumen diameter and/or alteration of the electrostatic field that governs the diffusion of charged molecules. This functional adaptation through porins maintains the entry of solutes necessary for bacterial growth but critically controls the influx of harmful molecules such as β-lactams at a reduced cost. The data recently published show the importance of understanding the underlying parameters affecting the uptake of antibiotics by infectious bacteria. Furthermore, the development of reliable methods to measure the concentration of antibiotics within bacterial cells is key to combat impermeability-resistance mechanisms.
Collapse
|
6
|
Li X, Fu M, Len Y, Hu R, Xu C, Xiong X, Zhou Y. Characteristics of multidrug-resistant hypervirulent Klebsiella pneumoniae strains ST29 and K212 harbouring tmexC2-tmexD2-toprJ2. J Glob Antimicrob Resist 2024; 38:349-353. [PMID: 39002612 DOI: 10.1016/j.jgar.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVES This study aimed to characterize a tigecycline-resistant hypervirulent Klebsiella pneumoniae (HvKP) strain, identified as KLZT, which carries the tigecycline resistance gene cluster tmexC2-tmexD2-toprJ2 belonging to ST29 and serotype K212. METHODS Antimicrobial susceptibility and virulence phenotypes were assessed, followed by whole-genome sequencing (WGS) using PacBio II and MiSeq sequencers. Genome annotation was carried out using the RAST server and bioinformatics analysis revealed the genetic characteristics of this strain. RESULTS Antimicrobial and virulence phenotype testing indicated that K. pneumoniae strain KLZT could be considered as a multidrug-resistant HvKP. WGS analysis showed that KLZT has a single 5,536,506-bp chromosome containing three plasmids 290,963 bp (pKLZT-1), 199,302 bp (pKLZT-2), and 4820 bp (pKLZT-3) in size, and also includes the ST29 and K212 serotypes. Four (blaSHV-187, oqxA, oqxB, and fosA6) and six resistance genes (tmexC2-tmxeD2-toprJ2, blaOXA-1, aac(6')-Ib-cr, catB3, arr-3, and blaLEN27) were identified from chromosomal and plasmid pKLZT-1, respectively. Gene-based analysis of the resistance genes of plasmid pKLZT-1 showed that the tigecycline resistance gene cluster-carrying region was flanked by umuC and umuD (umuD-hps-IS5-tmexC2-tmexD2-toprJ2-umuC), as well as other resistance genes and virulence factors (ureB, ureC, and ureG), which were carried by IS5075-Tn3-intI1 -aac(6')-Ib-cr-blaOXA-1-catB3-arr-3-blaLEN27-Tn3-ISkpn26-ureBCG-IS5075. CONCLUSIONS WGS has revealed that a multidrug-resistant strain, HvKP KLZT, belonging to ST29 with capsular serotype K212, contains a multidrug-resistance plasmid.
Collapse
Affiliation(s)
- Xingming Li
- The First People's Hospital Of Neijiang, Neijiang, 641000, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Min Fu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000,China
| | - Yaxu Len
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, 214000, China
| | - Changwen Xu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 640000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Tellapragada C, Razavi M, Peris PS, Jonsson P, Vondracek M, Giske CG. Resistance to aztreonam-avibactam among clinical isolates of Escherichia coli is primarily mediated by altered penicillin-binding protein 3 and impermeability. Int J Antimicrob Agents 2024; 64:107256. [PMID: 38925228 DOI: 10.1016/j.ijantimicag.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
This study was conducted to investigate decreased susceptibility (minimum inhibitory concentrations [MICs] 0.25-4 mg/L) and resistance (MICs > 4 mg/L) to aztreonam-avibactam (ATM-AVI). Contemporary non-replicate clinical isolates of carbapenemase-producing Escherichia coli (CP-EC) (n=90) and ESBL-producing E. coli (EP-EC) (n=12) were used. CP-EC belonged to 25 distinct sequence types (STs) and all EP-EC belonged to ST405. All strains were isolated from 2019 to 2022 at the Karolinska University Laboratory, Stockholm, Sweden. ATM-AVI MICs were determined using broth microdilution. The EUCAST epidemiological cut-off value of 0.125 mg/L was used to define the wild type (WT). Whole-genome sequences (Illumina) were analysed for detecting resistance determinants among WT vs. non-WT isolates. Among 102 isolates, 40 (39%) and 62 (61%) were WT and non-WT, respectively. Among non-WT isolates, resistance was noted for 20 and decreased susceptibility for 42. Resistance was observed among 14/47 New Delhi metallo-β-lactamase (NDM)-producers, 5/43 OXA-48 group producers, and 1/12 EP-EC. Decreased susceptibility was observed among 29/47 NDM, 13/43 OXA-48 group, and 3/12 EP-EC. Resistant isolates predominantly belonged to ST405, followed by STs 410, 361, 167, 617, and 1284. Penicillin-binding protein 3 (PBP3) inserts (YRIK/YRIN) were observed in 20/20 and CMY-42 in 5/20 resistant isolates. Several mutations in the ftsI (encoding PBP3) and regulatory genes of outer membrane proteins (OmpC and OmpF) and efflux pumps (AcrAB-TolC) were detected. A ≥ 2-fold reduction in MICs was observed among 20/20 vs. 7/20 isolates tested in the presence of the membrane permeabiliser, polymyxin B nanopeptide (PMBN) and efflux inhibitor, phenylalanine arginine β-naphthylamide (PAβN), respectively. In conclusion, resistance to ATM-AVI is a result of interplay of various determinants, including target alterations, deactivating enzymes, and decreased permeability.
Collapse
Affiliation(s)
- Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Mohammad Razavi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Pol Saludes Peris
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Patrik Jonsson
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Vondracek
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Dahdouh E, Gómez-Marcos L, Cañada-García JE, de Arellano ER, Sánchez-García A, Sánchez-Romero I, López-Urrutia L, de la Iglesia P, Gonzalez-Praetorius A, Sotelo J, Valle-Millares D, Alonso-González I, Bautista V, Lara N, García-Cobos S, Cercenado E, Aracil B, Oteo-Iglesias J, Pérez-Vázquez M. Characterizing carbapenemase-producing Escherichia coli isolates from Spain: high genetic heterogeneity and wide geographical spread. Front Cell Infect Microbiol 2024; 14:1390966. [PMID: 38817448 PMCID: PMC11137265 DOI: 10.3389/fcimb.2024.1390966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Carbapenemase-Producing Escherichia coli (CP-Eco) isolates, though less prevalent than other CP-Enterobacterales, have the capacity to rapidly disseminate antibiotic resistance genes (ARGs) and cause serious difficult-to-treat infections. The aim of this study is phenotypically and genotypically characterizing CP-Eco isolates collected from Spain to better understand their resistance mechanisms and population structure. Methods Ninety representative isolates received from 2015 to 2020 from 25 provinces and 59 hospitals Spanish hospitals were included. Antibiotic susceptibility was determined according to EUCAST guidelines and whole-genome sequencing was performed. Antibiotic resistance and virulence-associated genes, phylogeny and population structure, and carbapenemase genes-carrying plasmids were analyzed. Results and discussion The 90 CP-Eco isolates were highly polyclonal, where the most prevalent was ST131, detected in 14 (15.6%) of the isolates. The carbapenemase genes detected were bla OXA-48 (45.6%), bla VIM-1 (23.3%), bla NDM-1 (7.8%), bla KPC-3 (6.7%), and bla NDM-5 (6.7%). Forty (44.4%) were resistant to 6 or more antibiotic groups and the most active antibiotics were colistin (98.9%), plazomicin (92.2%) and cefiderocol (92.2%). Four of the seven cefiderocol-resistant isolates belonged to ST167 and six harbored bla NDM. Five of the plazomicin-resistant isolates harbored rmt. IncL plasmids were the most frequent (45.7%) and eight of these harbored bla VIM-1. bla OXA-48 was found in IncF plasmids in eight isolates. Metallo-β-lactamases were more frequent in isolates with resistance to six or more antibiotic groups, with their genes often present on the same plasmid/integron. ST131 isolates were associated with sat and pap virulence genes. This study highlights the genetic versatility of CP-Eco and its potential to disseminate ARGs and cause community and nosocomial infections.
Collapse
Affiliation(s)
- Elias Dahdouh
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Laro Gómez-Marcos
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier E. Cañada-García
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Sánchez-García
- Servicio de Microbiología, URSalud UTE, Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | | | | | | | | | - Jared Sotelo
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Valle-Millares
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabela Alonso-González
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilia Cercenado
- Servicio de Microbiología, Hospital Universitario Gregorio Marañón, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red (CIBER) de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Mushtaq S, Vickers A, Woodford N, Livermore DM. Activity of aztreonam/avibactam and ceftazidime/avibactam against Enterobacterales with carbapenemase-independent carbapenem resistance. Int J Antimicrob Agents 2024; 63:107081. [PMID: 38176458 DOI: 10.1016/j.ijantimicag.2023.107081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/01/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Enterobacterales with carbapenemase-independent resistance to carbapenems are sometimes selected during therapy and, on rare occasions, cause outbreaks. Most have extended-spectrum or AmpC β-lactamases, together with changes to permeability or penicillin-binding proteins (PBPs). Newer β-lactam-β-lactamase inhibitor combinations may present useful options for infections due to these organisms. Accordingly, Clinical and Laboratory Standards Institute/European Committee on Antimicrobial Susceptibility Testing broth-microdilution was used to measure the minimum inhibitory concentrations (MICs) of ceftazidime/avibactam and aztreonam/avibactam for 51 carbapenemase-negative Enterobacterales with resistance or reduced susceptibility to carbapenems: genomic sequencing of the least-susceptible organisms was also undertaken. MICs of the two avibactam combinations cross-correlated closely, but with fewer MICs (2/51 vs. 10/51) exceeding 8+4 mg/L in the case of ceftazidime/avibactam. Raised MICs for Escherichia coli were associated with PBP3 inserts together with CMY-42 β-lactamase; correlates among Enterobacter cloacae complex isolates remain elusive, with AmpC and PBP3 sequences found to be species specific. In the case of Klebsiella spp., no MICs exceeding 2 mg/L were seen for either combination. It appears that these avibactam combinations have potential against Enterobacterales with carbapenemase-independent carbapenem resistance or reduced susceptibility, with ceftazidime/avibactam being more reliably active than aztreonam/avibactam.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | | |
Collapse
|
10
|
Daaboul D, Kassem II, El Omari K, Dabboussi F, Oueslati S, Naas T, Osman M. The occurrence of the carbapenemase gene, bla NDM-5, on a transmissible IncX3 plasmid in multidrug-resistant Escherichia coli isolated from a farm dog. J Glob Antimicrob Resist 2024; 36:59-61. [PMID: 38128725 DOI: 10.1016/j.jgar.2023.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES In-depth phenotypic and genomic analyses on a carbapenem-resistant Escherichia coli isolate, recovered from the faeces of a farm dog in Lebanon, focusing on its antimicrobial resistance (AMR) patterns and the underlying resistome. METHODS E. coli strain EC-106 was identified using MALDI-TOF-MS. Analyses using Carba NP, immunochromatographic assay NG Carba5, and other antimicrobial susceptibility testing were performed. Whole-genome sequencing (WGS) using the Illumina technology and different software available at the Center of Genomic Epidemiology wwere used to predict the resistome, sequence type (ST), plasmid types, and virulence genes. RESULTS Susceptibility testing revealed that E. coli EC-106 was multi-drug resistant, including against newer antimicrobials such as imipenem-relebactam (MIC = 16 µg/mL), meropenem-vaborbactam (MIC = 16 µg/mL), and ceftazidime-avibactam (MIC > 32 µg/mL), but remained susceptible to aztreonam (MIC = 0.12 µg/mL), aztreonam-avibactam (MIC = 0.06 µg/mL), and cefiderocol (MIC = 0.5 µg/mL). WGS analyses showed that E. coli EC-106 carried 13 acquired resistance genes associated with resistance to β-lactams (blaNDM-5 and blaTEM-1B), aminoglycosides (aac(3)-IId, aph(3')-Ia, aadA1, and aadA2), tetracyclines (tetA), amphenicols (partial catA1), macrolides (mphA), sulphonamides (sul1 and sul3), trimethoprim (dfrA12), and quaternary ammonium compounds (partial qacE). The blaNDM-5 was located on an IncX3 plasmid. The isolate was predicted to be a human pathogen (92.9%) and belonged to ST1011. CONCLUSION To our knowledge, this is the first report of the detection of an IncX3 plasmid carrying the blaNDM-5 gene in animals in Lebanon, highlighting the severe AMR challenges in the country. Taken together, our current and previous findings suggest that blaNDM-5 might be spreading in different hosts and genetic backgrounds across clinical and non-clinical settings.
Collapse
Affiliation(s)
- Dina Daaboul
- Team ReSIST, UMR1184, INSERM, CEA, Translational Research Building, Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France; Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Issmat I Kassem
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, Griffin, Georgia
| | - Khaled El Omari
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon; Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Saoussen Oueslati
- Team ReSIST, UMR1184, INSERM, CEA, Translational Research Building, Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team ReSIST, UMR1184, INSERM, CEA, Translational Research Building, Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, New York; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York; Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
11
|
Pitout JDD, Peirano G, Matsumura Y, DeVinney R, Chen L. Escherichia coli sequence type 410 with carbapenemases: a paradigm shift within E. coli toward multidrug resistance. Antimicrob Agents Chemother 2024; 68:e0133923. [PMID: 38193668 PMCID: PMC10869336 DOI: 10.1128/aac.01339-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Escherichia coli sequence type ST410 is an emerging carbapenemase-producing multidrug-resistant (MDR) high-risk One-Health clone with the potential to significantly increase carbapenem resistance among E. coli. ST410 belongs to two clades (ST410-A and ST410-B) and three subclades (ST410-B1, ST410-B2, and ST410-B3). After a fimH switch between clades ST410-A and ST410-B1, ST410-B2 and ST410-B3 subclades showed a stepwise progression toward developing MDR. (i) ST410-B2 initially acquired fluoroquinolone resistance (via homologous recombination) in the 1980s. (ii) ST410-B2 then obtained CMY-2, CTX-M-15, and OXA-181 genes on different plasmid platforms during the 1990s. (iii) This was followed by the chromosomal integration of blaCMY-2, fstl YRIN insertion, and ompC/ompF mutations during the 2000s to create the ST410-B3 subclade. (iv) An IncF plasmid "replacement" scenario happened when ST410-B2 transformed into ST410-B3: F36:31:A4:B1 plasmids were replaced by F1:A1:B49 plasmids (both containing blaCTX-M-15) followed by blaNDM-5 incorporation during the 2010s. User-friendly cost-effective methods for the rapid identification of ST410 isolates and clades are needed because limited data are available about the frequencies and global distribution of ST410 clades. Basic mechanistic, evolutionary, surveillance, and clinical studies are urgently required to investigate the success of ST410 (including the ability to acquire successive MDR determinants). Such information will aid with management and prevention strategies to curb the spread of carbapenem-resistant E. coli. The medical community can ill afford to ignore the spread of a global E. coli clone with the potential to end the carbapenem era.
Collapse
Affiliation(s)
- Johann D. D. Pitout
- Cummings School of Medicine, Calcary, Alberta, Canada
- University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gisele Peirano
- Cummings School of Medicine, Calcary, Alberta, Canada
- University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Yasufumi Matsumura
- Kyoto University Graduate School of Medicine, Pretoria, Gauteng, South Africa
| | | | - Liang Chen
- Meridian Health Center for Discovery and Innovation, Kyoto, Japan
- Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
12
|
Daaboul D, Oueslati S, Rima M, Kassem II, Mallat H, Birer A, Girlich D, Hamze M, Dabboussi F, Osman M, Naas T. The emergence of carbapenemase-producing Enterobacterales in hospitals: a major challenge for a debilitated healthcare system in Lebanon. Front Public Health 2023; 11:1290912. [PMID: 38074718 PMCID: PMC10699444 DOI: 10.3389/fpubh.2023.1290912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Background Carbapenem- and extended-spectrum cephalosporin-resistant Enterobacterales (CR-E and ESCR-E, respectively) are increasingly isolated worldwide. Information about these bacteria is sporadic in Lebanon and generally relies on conventional diagnostic methods, which is detrimental for a country that is struggling with an unprecedented economic crisis and a collapsing public health system. Here, CR-E isolates from different Lebanese hospitals were characterized. Materials and methods Non-duplicate clinical ESCR-E or CR-E isolates (N = 188) were collected from three hospitals from June 2019 to December 2020. Isolates were identified by MALDI-TOF, and their antibiotic susceptibility by Kirby-Bauer disk diffusion assay. CR-E isolates (n = 33/188) were further analyzed using Illumina-based WGS to identify resistome, MLST, and plasmid types. Additionally, the genetic relatedness of the CR-E isolates was evaluated using an Infrared Biotyper system and compared to WGS. Results Using the Kirby-Bauer disk diffusion assay, only 90 isolates out of the 188 isolates that were collected based on their initial routine susceptibility profile by the three participating hospitals could be confirmed as ESCR-E or CR-E isolates and were included in this study. This collection comprised E. coli (n = 70; 77.8%), K. pneumoniae (n = 13; 14.4%), Enterobacter spp. (n = 6; 6.7%), and Proteus mirabilis (n = 1; 1.1%). While 57 were only ESBL producers the remaining 33 isolates (i.e., 26 E. coli, five K. pneumoniae, one E. cloacae, and one Enterobacter hormaechei) were resistant to at least one carbapenem, of which 20 were also ESBL-producers. Among the 33 CR-E, five different carbapenemase determinants were identified: blaNDM-5 (14/33), blaOXA-244 (10/33), blaOXA-48 (5/33), blaNDM-1 (3/33), and blaOXA-181 (1/33) genes. Notably, 20 CR-E isolates were also ESBL-producers. The analysis of the genetic relatedness revealed a substantial genetic diversity among CR-E isolates, suggesting evolution and transmission from various sources. Conclusion This study highlighted the emergence and broad dissemination of blaNDM-5 and blaOXA-244 genes in Lebanese clinical settings. The weak AMR awareness in the Lebanese community and the ongoing economic and healthcare challenges have spurred self-medication practices. Our findings highlight an urgent need for transformative approaches to combat antimicrobial resistance in both community and hospital settings.
Collapse
Affiliation(s)
- Dina Daaboul
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Saoussen Oueslati
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital Le Kremlin-Bicêtre, Paris, France
| | - Mariam Rima
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
| | - Issmat I. Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, GA, United States
| | - Hassan Mallat
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Aurélien Birer
- French National Reference Center for Antibiotic Resistance, Clermont-Ferrand, France
| | - Delphine Girlich
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, United States
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Thierry Naas
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital Le Kremlin-Bicêtre, Paris, France
| |
Collapse
|
13
|
Thanh Hoang HT, Yamamoto M, Calvopina M, Bastidas-Caldes C, Khong DT, Nguyen TN, Kawahara R, Yamaguchi T, Yamamoto Y. Comparative genome analysis of colistin-resistant Escherichia coli harboring mcr isolated from rural community residents in Ecuador and Vietnam. PLoS One 2023; 18:e0293940. [PMID: 37917755 PMCID: PMC10621974 DOI: 10.1371/journal.pone.0293940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023] Open
Abstract
The spread of colistin-resistant bacteria among rural community residents of low- and middle-income countries is a major threat to community health. Although the mechanism of the spread of colistin-resistant bacteria in communities is unknown, geographic and regional characteristics may influence it. To elucidate the spread mechanism of colistin-resistant bacteria, we analyzed the genomes of colistin-resistant Escherichia coli isolated from Vietnam and Ecuador residents, which are geographically and socially different. Stool specimens of 139 and 98 healthy residents from Ecuador and Vietnam rural communities, respectively, were analyzed for colistin-resistant E. coli with mcr. Its prevalence in the residents of all the communities assessed was high and approximately equal in both countries: 71.8% in Ecuador and 69.4% in Vietnam. A phylogenetic tree analysis revealed that the sequence type of colistin-resistant E. coli was diverse and the major sequence types were different between the two countries. The location of mcr in the isolates showed that the proportion of chromosomal mcr was 35.1% and 8.5% in the Vietnam and Ecuador isolates, respectively. Most of these chromosomal mcr genes (75%-76%) had an intact mcr-transposon Tn6330. Contrastingly, the replicon types of the mcr-carrying-plasmids were diverse in both countries, but almost all belonged to IncI2 in Ecuador and IncX1/X4 in Vietnam. Approximately 26%-45% of these mcr-plasmids had other resistance genes, which also varied between countries. These results suggest that although the overall profile of the colistin-resistant E. coli isolates is diverse in these countries, the phylogenesis of the isolates and mcr-carrying plasmids has regional characteristics. Although the contributing factors are not clear, it is obvious that the overall profile of colistin-resistant bacteria dissemination varies between countries. Such different epidemic patterns are important for establishing country-specific countermeasures against colistin-resistant bacteria.
Collapse
Affiliation(s)
- Hoa Thi Thanh Hoang
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Mayumi Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Health Administration Center, Gifu University, Gifu, Japan
| | - Manuel Calvopina
- One Health Research Group, Universidad De Las Americas, Quito, Ecuador
| | | | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Ryuji Kawahara
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Takahiro Yamaguchi
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yoshimasa Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
14
|
Coluzzi C, Guillemet M, Mazzamurro F, Touchon M, Godfroid M, Achaz G, Glaser P, Rocha EPC. Chance Favors the Prepared Genomes: Horizontal Transfer Shapes the Emergence of Antibiotic Resistance Mutations in Core Genes. Mol Biol Evol 2023; 40:msad217. [PMID: 37788575 PMCID: PMC10575684 DOI: 10.1093/molbev/msad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomerase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emergence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug resistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be a key to the success of adaptation processes.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Martin Guillemet
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Touchon
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Maxime Godfroid
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Guillaume Achaz
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Glaser
- Institut Pasteur, Université de Paris Cité, CNRS, UMR6047, Unité EERA, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
15
|
Shropshire WC, Endres BT, Borjan J, Aitken SL, Bachman WC, McElheny CL, Wu CT, Egge SL, Khan A, Miller WR, Bhatti MM, Saharasbhojane P, Kawai A, Shields RK, Shelburne SA, Doi Y. High-level ceftazidime/avibactam resistance in Escherichia coli conferred by the novel plasmid-mediated β-lactamase CMY-185 variant. J Antimicrob Chemother 2023; 78:2442-2450. [PMID: 37574665 PMCID: PMC10545501 DOI: 10.1093/jac/dkad249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVES To characterize a blaCMY variant associated with ceftazidime/avibactam resistance from a serially collected Escherichia coli isolate. METHODS A patient with an intra-abdominal infection due to recurrent E. coli was treated with ceftazidime/avibactam. On Day 48 of ceftazidime/avibactam therapy, E. coli with a ceftazidime/avibactam MIC of >256 mg/L was identified from abdominal drainage. Illumina and Oxford Nanopore Technologies WGS was performed on serial isolates to identify potential resistance mechanisms. Site-directed mutants of CMY β-lactamase were constructed to identify amino acid residues responsible for ceftazidime/avibactam resistance. RESULTS WGS revealed that all three isolates were E. coli ST410. The ceftazidime/avibactam-resistant strain uniquely acquired a novel CMY β-lactamase gene, herein called blaCMY-185, harboured on an IncI-γ/K1 conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2, including A114E, Q120K, V211S and N346Y, and conferred high-level ceftazidime/avibactam resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced ceftazidime/avibactam susceptibility. However, double and triple mutants containing N346Y previously associated with ceftazidime/avibactam resistance in other AmpC enzymes, conferred ceftazidime/avibactam MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to steric hindrance between the side chain of Y346 and the sulphate group of avibactam. CONCLUSIONS We identified ceftazidime/avibactam resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer ceftazidime/avibactam resistance.
Collapse
Affiliation(s)
- William C Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jovan Borjan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel L Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William C Bachman
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christi L McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chin-Ting Wu
- Program in Diagnostic Genetics and Genomics, MD Anderson Cancer Center School of Health Professions, Houston, TX, USA
| | - Stephanie L Egge
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Ayesha Khan
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA
| | - William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
| | - Micah M Bhatti
- Department of Laboratory Medicine, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pranoti Saharasbhojane
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ryan K Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
16
|
Kyung SM, Lee J, Lee ES, Hwang CY, Yoo HS. Genomic molecular epidemiology of carbapenemase-producing Escherichia coli ST410 isolates by complete genome analysis. Vet Res 2023; 54:72. [PMID: 37658425 PMCID: PMC10472685 DOI: 10.1186/s13567-023-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/04/2023] [Indexed: 09/03/2023] Open
Abstract
The circulation of carbapenemase-producing Escherichia coli (CPEC) in our society is a serious concern for vulnerable patients in nosocomial environments. However, the genomic epidemiology of the circulation of CPEC bacteria among companion animals remains largely unknown. In this study, epidemiological analysis was conducted using complete genome identification of CPEC ST410 isolates obtained from companion animals. To estimate the genomic distance and relatedness of the isolates, a total of 37 whole-genome datasets of E. coli ST410 strains were downloaded and comparatively analysed. As a result of the analysis, the genomic structure of the chromosomes and plasmids was identified, revealing the genomic positions of multiple resistance and virulence genes. The isolates in this study were grouped into the subclade H24/RxC, with fimH24, and substituted quinolone resistance-determining regions (QRDRs) and multiple beta-lactamases, including extended-spectrum β-lactamase (ESBL) and carbapenemase. In addition, the in silico comparison of the whole-genome datasets revealed unidentified ST410 H24/Rx subgroups, including either high pathogenicity islands (HPIs) or H21 serotypes. Considering the genetic variations and resistance gene dissemination of the isolates carried by companion animals, future approaches for preventive measurement must include the "One Health" perspective for public health in our society.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Junho Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Seo Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Jousset AB, Bouabdallah L, Birer A, Rosinski-Chupin I, Mariet JF, Oueslati S, Emeraud C, Girlich D, Glaser P, Naas T, Bonnin RA, Dortet L. Population Analysis of Escherichia coli Sequence Type 361 and Reduced Cefiderocol Susceptibility, France. Emerg Infect Dis 2023; 29:1877-1881. [PMID: 37610183 PMCID: PMC10461684 DOI: 10.3201/eid2909.230390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Cefiderocol resistance is increasingly reported in New Delhi metallo-β-lactamase-producing Enterobacterales. Genomic and phenotypic analysis of Escherichia coli sequence type 361, a primary clone causing carbapenemase spread in France, revealed mutations leading to cefiderocol resistance. Continued genomic surveillance of carbapenem-resistant Enterobacterales could clarify prevalence of cefiderocol-resistant E. coli in Europe.
Collapse
|
18
|
Lewis JM, Mphasa M, Banda R, Beale MA, Mallewa J, Anscome C, Zuza A, Roberts AP, Heinz E, Thomson NR, Feasey NA. Genomic analysis of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli colonising adults in Blantyre, Malawi reveals previously undescribed diversity. Microb Genom 2023; 9:mgen001035. [PMID: 37314322 PMCID: PMC10327512 DOI: 10.1099/mgen.0.001035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/15/2023] [Indexed: 06/15/2023] Open
Abstract
Escherichia coli is one of the most prevalent Gram-negative species associated with drug resistant infections. Strains that produce extended-spectrum beta-lactamases (ESBLs) or carbapenemases are both particularly problematic and disproportionately impact resource limited healthcare settings where last-line antimicrobials may not be available. A large number of E. coli genomes are now available and have allowed insights into pathogenesis and epidemiology of ESBL E. coli but genomes from sub-Saharan Africa (sSA) are significantly underrepresented. To reduce this gap, we investigated ESBL-producing E. coli colonising adults in Blantyre, Malawi to assess bacterial diversity and AMR determinants and to place these isolates in the context of the wider population structure. We performed short-read whole-genome sequencing of 473 colonising ESBL E. coli isolated from human stool and contextualised the genomes with a previously curated multi-country collection of 10 146 E. coli genomes and sequence type (ST)-specific collections for our three most commonly identified STs. These were the globally successful ST131, ST410 and ST167, and the dominant ESBL genes were bla CTX-M, mirroring global trends. However, 37 % of Malawian isolates did not cluster with any isolates in the curated multicountry collection and phylogenies were consistent with locally spreading monophyletic clades, including within the globally distributed, carbapenemase-associated B4/H24RxC ST410 lineage. A single ST2083 isolate in this collection harboured a carbapenemase gene. Long read sequencing demonstrated the presence of a globally distributed ST410-associated carbapenemase carrying plasmid in this isolate, which was absent from the ST410 strains in our collection. We conclude there is a risk that carbapenem resistance in E. coli could proliferate rapidly in Malawi under increasing selection pressure, and that both ongoing antimicrobial stewardship and genomic surveillance are critical as local carbapenem use increases.
Collapse
Affiliation(s)
- Joseph M. Lewis
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Jane Mallewa
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Catherine Anscome
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Allan Zuza
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A. Feasey
- Malawi-Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
19
|
Pitout JD, Peirano G, DeVinney R. The contributions of multidrug resistant clones to the success of pandemic extra-intestinal Pathogenic Escherichia coli. Expert Rev Anti Infect Ther 2023; 21:343-353. [PMID: 36822840 DOI: 10.1080/14787210.2023.2184348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
INTRODUCTION High-risk multidrug (MDR) clones have played essential roles in the global emergence and spread of antimicrobial resistance (AMR), especially among Extra-intestinal Escherichia coli (ExPEC). AREAS COVERED Successful global ExPEC MDR clones are linked with the acquisition of fluoroquinolone resistance, CTX-M enzymes, and with carbapenemases. This article described the underlying mechanisms of fluoroquinolone resistance, the acquisition of CTX-M and carbapenemase genes among three global ExPEC high-risk MDR clones, namely i) ST1193 as being an example of a fluoroquinolone resistant clone. ii) ST131 as an example of a fluoroquinolone resistant and CTX-M clone. iii) ST410 as an example of a fluoroquinolone resistant, CTX-M and carbapenemase clone. This article also highlighted the contributions of these MDR determinants in the evolution of these high-risk MDR clones. EXPERT OPINION There is an enormous public health burden due to E. coli MDR high-risk clones such as ST1193, ST131 and ST410. These clones have played pivotal roles in the global spread of AMR. Sparse information is available on which specific features of these high-risk MDR clones have enabled them to become such successful global pathogens in relative short time periods.
Collapse
Affiliation(s)
- Johann Dd Pitout
- University of Calgary, Calgary, Alberta, Canada.,Dynalife Laboratories, University of Calgary, Calgary, Alberta, Canada.,University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gisele Peirano
- University of Calgary, Calgary, Alberta, Canada.,Dynalife Laboratories, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
20
|
Kaye KS, Naas T, Pogue JM, Rossolini GM. Cefiderocol, a Siderophore Cephalosporin, as a Treatment Option for Infections Caused by Carbapenem-Resistant Enterobacterales. Infect Dis Ther 2023; 12:777-806. [PMID: 36847998 PMCID: PMC10017908 DOI: 10.1007/s40121-023-00773-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) remain a significant public health threat, and, despite recent approvals, new antibiotics are needed. Severe infections caused by CRE, such as nosocomial pneumonia and bloodstream infections, are associated with a relatively high risk of morbidity and mortality. The recent approval of ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, plazomicin, eravacycline and cefiderocol has broadened the armamentarium for the treatment of patients with CRE infections. Cefiderocol is a siderophore cephalosporin with overall potent in vitro activity against CRE. It is taken up via iron transport channels through active transport, with some entry into bacteria through traditional porin channels. Cefiderocol is relatively stable against hydrolysis by most serine- and metallo-beta-lactamases, including KPC, NDM, VIM, IMP and OXA carbapenemases-the most frequent carbapenemases detected in CRE. The efficacy and safety of cefiderocol has been demonstrated in three randomised, prospective, parallel group or controlled clinical studies in patients at risk of being infected by multidrug-resistant or carbapenem-resistant Gram-negative bacteria. This paper reviews the in vitro activity, emergence of resistance, preclinical effectiveness, and clinical experience for cefiderocol, and its role in the management of patients with CRE infections.
Collapse
Affiliation(s)
- Keith S Kaye
- Division of Allergy, Immunology and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - Thierry Naas
- Team ReSIST, UMR1184, INSERM, CEA, University Paris-Saclay, Translational Research Building, Faculty of Medicine, Hopital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, and Microbiology and Virology Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| |
Collapse
|
21
|
Bakthavatchalam YD, Elangovan D, Jaganathan SV, Subburaju N, Shankar A, Manokaran Y, J. S, Devi R, Baveja S, Devi S, S. J, Bhattacharya S, S. M. R, Yesudhason B, Shetty V, Mutreja A, Manesh A, Varghese GM, Marwick CA, Parcell BJ, Gilbert IH, Veeraraghavan B. In Vitro Activity of Two Cefepime-Based Novel Combinations, Cefepime/Taniborbactam and Cefepime/Zidebactam, against Carbapenemase-Expressing Enterobacterales Collected in India. Microbiol Spectr 2023; 11:e0492522. [PMID: 36847537 PMCID: PMC10100882 DOI: 10.1128/spectrum.04925-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
In recent times, discovery efforts for novel antibiotics have mostly targeted carbapenemase-producing Gram-negative organisms. Two different combination approaches are pertinent: β-lactam-β-lactamase inhibitor (BL/BLI) or β-lactam-β-lactam enhancer (BL/BLE). Cefepime combined with a BLI, taniborbactam, or with a BLE, zidebactam, has been shown to be promising. In this study, we determined the in vitro activity of both these agents along with comparators against multicentric carbapenemase-producing Enterobacterales (CPE). Nonduplicate CPE isolates of Escherichia coli (n = 270) and Klebsiella pneumoniae (n = 300), collected from nine different tertiary-care hospitals across India during 2019 to 2021, were included in the study. Carbapenemases in these isolates were detected by PCR. E. coli isolates were also screened for the presence of the 4-amino-acid insert in penicillin binding protein 3 (PBP3). MICs were determined by reference broth microdilution. Higher MICs of cefepime/taniborbactam (>8 mg/L) were linked to NDM, both in K. pneumoniae and in E. coli. In particular, such higher MICs were observed in 88 to 90% of E. coli isolates producing NDM and OXA-48-like or NDM alone. On the other hand, OXA-48-like-producing E. coli or K. pneumoniae isolates were nearly 100% susceptible to cefepime/taniborbactam. Regardless of the carbapenemase types and the pathogens, cefepime/zidebactam showed potent activity (>99% inhibited at ≤8 mg/L). It seems that the 4-amino-acid insert in PBP3 (present universally in the study E. coli isolates) along with NDM adversely impact the activity of cefepime/taniborbactam. Thus, the limitations of the BL/BLI approach in tackling the complex interplay of enzymatic and nonenzymatic resistance mechanisms were better revealed in whole-cell studies where the activity observed was a net effect of β-lactamase inhibition, cellular uptake, and target affinity of the combination. IMPORTANCE The study revealed the differential ability of cefepime/taniborbactam and cefepime/zidebactam in tackling carbapenemase-producing Indian clinical isolates that also harbored additional mechanisms of resistance. NDM-expressing E. coli with 4-amino-acid insert in PBP3 are predominately resistant to cefepime/taniborbactam, while the β-lactam enhancer mechanism-based cefepime/zidebactam showed consistent activity against single- or dual-carbapenemase-producing isolates including E. coli with PBP3 inserts.
Collapse
Affiliation(s)
| | - Divyaa Elangovan
- Department of Microbiology, Panimalar Medical College Hospital and Research Institute, Chennai, India
| | | | - Nivedhana Subburaju
- Department of Microbiology, Rainbow Children’s Hospital and Perinatal Care, Hyderabad, India
| | - Abirami Shankar
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Yuvasri Manokaran
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Sudarsana J.
- Department of Microbiology, Baby Memorial Hospital, Kozhikode, India
| | - Rema Devi
- Department of Microbiology, Dr. Somervell Memorial CSI Medical College and Hospital, Thiruvananthapuram, India
| | - Sujata Baveja
- Department of Microbiology, Lokmanya Tilak Municipal General Hospital and Medical College (Sion Hospital), Mumbai, India
| | - Sheela Devi
- Department of Microbiology, Pondicherry Institute of Medical Sciences, Kalapet, India
| | - Jayakumar S.
- Department of Microbiology, Saveetha Medical College and Hospital, Chennai, India
| | | | - Rudresh S. M.
- Department of Microbiology, ESI Post Graduate Institute of Medical Science and Research, Bengaluru, India
| | - Bineshlal Yesudhason
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Vignesh Shetty
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Ankur Mutreja
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Abi Manesh
- Department of Infectious Disease, Christian Medical College and Hospital, Vellore, India
| | - George M. Varghese
- Department of Infectious Disease, Christian Medical College and Hospital, Vellore, India
| | - Charis A. Marwick
- Population Health and Genomics, University of Dundee, Dundee, United Kingdom
| | | | - Ian H. Gilbert
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| |
Collapse
|
22
|
Karlowsky JA, Hackel MA, Wise MG, Six DA, Uehara T, Daigle DM, Cusick SM, Pevear DC, Moeck G, Sahm DF. In Vitro Activity of Cefepime-Taniborbactam and Comparators against Clinical Isolates of Gram-Negative Bacilli from 2018 to 2020: Results from the Global Evaluation of Antimicrobial Resistance via Surveillance (GEARS) Program. Antimicrob Agents Chemother 2023; 67:e0128122. [PMID: 36541767 PMCID: PMC9872668 DOI: 10.1128/aac.01281-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Taniborbactam is a novel cyclic boronate β-lactamase inhibitor in clinical development in combination with cefepime. We assessed the in vitro activity of cefepime-taniborbactam and comparators against a 2018-2020 collection of Enterobacterales (n = 13,731) and Pseudomonas aeruginosa (n = 4,619) isolates cultured from infected patients attending hospitals in 56 countries. MICs were determined by CLSI broth microdilution. Taniborbactam was tested at a fixed concentration of 4 μg/mL. Isolates with cefepime-taniborbactam MICs of ≥16 μg/mL underwent whole-genome sequencing. β-lactamase genes were identified in meropenem-resistant isolates by PCR/Sanger sequencing. Against Enterobacterales, taniborbactam reduced the cefepime MIC90 value by >64-fold (from >16 to 0.25 μg/mL). At ≤16 μg/mL, cefepime-taniborbactam inhibited 99.7% of all Enterobacterales isolates; >97% of isolates with multidrug-resistant (MDR) and ceftolozane-tazobactam-resistant phenotypes; ≥90% of isolates with meropenem-resistant, difficult-to-treat-resistant (DTR), meropenem-vaborbactam-resistant, and ceftazidime-avibactam-resistant phenotypes; 100% of VIM-positive, AmpC-positive, and KPC-positive isolates; 98.7% of extended-spectrum β-lactamase (ESBL)-positive; 98.8% of OXA-48-like-positive; and 84.6% of NDM-positive isolates. Against P. aeruginosa, taniborbactam reduced the cefepime MIC90 value by 4-fold (from 32 to 8 μg/mL). At ≤16 μg/mL, cefepime-taniborbactam inhibited 97.4% of all P. aeruginosa isolates; ≥85% of isolates with meropenem-resistant, MDR, and meropenem-vaborbactam-resistant phenotypes; >75% of isolates with DTR, ceftazidime-avibactam-resistant, and ceftolozane-tazobactam-resistant phenotypes; and 87.4% of VIM-positive isolates. Multiple potential mechanisms, including carriage of IMP, certain alterations in PBP3, permeability (porin) defects, and possibly, upregulation of efflux were present in most isolates with cefepime-taniborbactam MICs of ≥16 μg/mL. We conclude that cefepime-taniborbactam exhibited potent in vitro activity against Enterobacterales and P. aeruginosa and inhibited most carbapenem-resistant isolates, including those carrying serine carbapenemases or NDM/VIM metallo-β-lactamases (MBLs).
Collapse
Affiliation(s)
- James A. Karlowsky
- IHMA, Schaumburg, Illinois, USA
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - David A. Six
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | | | | | | | | | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | | |
Collapse
|
23
|
Yu Y, Shao C, Gong X, Quan H, Liu D, Chen Q, Chu Y. Antimicrobial Resistance Surveillance of Tigecycline-Resistant Strains Isolated from Herbivores in Northwest China. Microorganisms 2022; 10:microorganisms10122432. [PMID: 36557685 PMCID: PMC9784582 DOI: 10.3390/microorganisms10122432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
There is no doubt that antimicrobial resistance (AMR) is a global threat to public health and safety, regardless of whether it’s caused by people or natural transmission. This study aimed to investigate the genetic characteristics and variations of tigecycline-resistant Gram-negative isolates from herbivores in northwest China. In this study, a total of 300 samples were collected from various provinces in northwest China, and 11 strains (3.67%) of tigecycline-resistant bacteria were obtained. In addition, bacterial identification and antibiotic susceptibility testing against 14 antibiotics were performed. All isolates were multiple drug-resistant (MDR) and resistant to more than three kinds of antibiotics. Using an Illumina MiSeq platform, 11 tigecycline-resistant isolates were sequenced using whole genome sequencing (WGS). The assembled draft genomes were annotated, and then sequences were blasted against the AMR gene database and virulence factor database. Several resistance genes mediating drug resistance were detected by WGS, including fluoroquinolone resistance genes (gyrA_S83L, gyrA_D87N, S83L, parC_S80I, and gyrB_S463A), fosfomycin resistance genes (GlpT_E448K and UhpT_E350Q), beta-lactam resistance genes (FtsI_D350N and S357N), and the tigecycline resistance gene (tetR N/A). Furthermore, there were five kinds of chromosomally encoded genetic systems that confer MDR (MarR_Y137H, G103S, MarR_N/A, SoxR_N/A, SoxS_N/A, AcrR N/A, and MexZ_K127E). A comprehensive analysis of MDR strains derived from WGS was used to detect variable antimicrobial resistance genes and their precise mechanisms of resistance. In addition, we found a novel ST type of Escherichia coli (ST13667) and a newly discovered point mutation (K127E) in the MexZ gene of Pseudomonas aeruginosa. WGS plays a crucial role in AMR control, prevention strategies, as well as multifaceted intervention strategies.
Collapse
Affiliation(s)
- Yongfeng Yu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Changchun Shao
- Lanzhou Institute for Food and Drug Control, Lanzhou 730050, China
| | - Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Heng Quan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Donghui Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Correspondence: (Q.C.); (Y.C.)
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Correspondence: (Q.C.); (Y.C.)
| |
Collapse
|
24
|
Chen L, Peirano G, Kreiswirth BN, Devinney R, Pitout JDD. Acquisition of genomic elements were pivotal for the success of Escherichia coli ST410. J Antimicrob Chemother 2022; 77:3399-3407. [PMID: 36204996 PMCID: PMC10205468 DOI: 10.1093/jac/dkac329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Escherichia coli ST410 is an emerging MDR clone linked to blaCTX-M-15 and blaOXA-181. Limited comprehensive data about the global distribution of ST410 clades and mobile genetic elements associated with different β-lactamases are available. METHODS Short- and long-read WGS were performed on a collection of ST410 producing carbapenemases (n = 45) obtained from 11 countries. The evolutionary history of global E. coli ST410 was also investigated. RESULTS OXA-181 and NDM-5 were the most frequent carbapenemases and used different underlying strategies to ensure their successful association with ST410 clades. Our phylogenetic analysis of publicly available ST410 genomes amended the previously published ST410 B subclades: ST410-B1 is identical to B1/H24, ST410-B2 includes B2/H24R and B3/H24Rx, while ST410-B3 corresponds to B4/H24RxC. Long-read WGS identified the following genomic events that likely shaped the evolution of ST410-B3: (i) gyrA and parC mutations were acquired via homologous recombination events; (ii) chromosomal integration of blaCMY-2 among ST410-B3; (iii) the emergence of ST410-B3 from ST410-B2 was accompanied by the replacement of IncFII plasmids harbouring blaCTX-M-15 (i.e. F36:31:A4:B1 in ST410-B2 with F1:A1:B49 plasmids in ST410-B3); and (iv) the NDM-5 gene was integrated within F1:A1:B49 plasmids over time. CONCLUSIONS The global ST410 population producing carbapenemases is dominated by the ST410-B2 and B3 subclades with varied geographical distribution that requires ongoing genomic surveillance. We provided an updated timeline of pivotal genomic events that have shaped the success of the ST410-B3 subclade.
Collapse
Affiliation(s)
- Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Gisele Peirano
- Alberta Precision Laboratories, Calgary, Alberta, Canada
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, T2L 2K8 Calgary, Alberta, Canada
| | - Barry N Kreiswirth
- Hackensack Meridian Health Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Rebekah Devinney
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, T2L 2K8 Calgary, Alberta, Canada
| | - Johann D D Pitout
- Alberta Precision Laboratories, Calgary, Alberta, Canada
- Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, T2L 2K8 Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
25
|
Shropshire WC, Konovalova A, McDaneld P, Gohel M, Strope B, Sahasrabhojane P, Tran CN, Greenberg D, Kim J, Zhan X, Aitken S, Bhatti M, Savidge TC, Treangen TJ, Hanson BM, Arias CA, Shelburne SA. Systematic Analysis of Mobile Genetic Elements Mediating β-Lactamase Gene Amplification in Noncarbapenemase-Producing Carbapenem-Resistant Enterobacterales Bloodstream Infections. mSystems 2022; 7:e0047622. [PMID: 36036505 PMCID: PMC9601100 DOI: 10.1128/msystems.00476-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Noncarbapenemase-producing carbapenem-resistant Enterobacterales (non-CP-CRE) are increasingly recognized as important contributors to prevalent carbapenem-resistant Enterobacterales (CRE) infections. However, there is limited understanding of mechanisms underlying non-CP-CRE causing invasive disease. Long- and short-read whole-genome sequencing was used to elucidate carbapenem nonsusceptibility determinants in Enterobacterales bloodstream isolates at MD Anderson Cancer Center in Houston, Texas. We investigated carbapenem nonsusceptible Enterobacterales (CNSE) mechanisms (i.e., isolates with carbapenem intermediate resistance phenotypes or greater) through a combination of phylogenetic analysis, antimicrobial resistance gene detection/copy number quantification, porin assessment, and mobile genetic element (MGE) characterization. Most CNSE isolates sequenced were non-CP-CRE (41/79; 51.9%), whereas 25.3% (20/79) were Enterobacterales with intermediate susceptibility to carbapenems (CIE), and 22.8% (18/79) were carbapenemase-producing Enterobacterales (CPE). Statistically significant copy number variants (CNVs) of extended-spectrum β-lactamase (ESBL) genes (Wilcoxon Test; P-value < 0.001) were present in both non-CP-CR E. coli (median CNV = 2.6×; n = 17) and K. pneumoniae (median CNV = 3.2×, n = 17). All non-CP-CR E. coli and K. pneumoniae had predicted reduced expression of at least one outer membrane porin gene (i.e., ompC/ompF or ompK36/ompK35). Completely resolved CNSE genomes revealed that IS26 and ISEcp1 structures harboring blaCTX-M variants along with other antimicrobial resistance elements were associated with gene amplification, occurring in mostly IncFIB/IncFII plasmid contexts. MGE-mediated β-lactamase gene amplifications resulted in either tandem arrays, primarily mediated by IS26 translocatable units, or segmental duplication, typically due to ISEcp1 transposition units. Non-CP-CRE strains were the most common cause of CRE bacteremia with carbapenem nonsusceptibility driven by concurrent porin loss and MGE-mediated amplification of blaCTX-M genes. IMPORTANCE Carbapenem-resistant Enterobacterales (CRE) are considered urgent antimicrobial resistance (AMR) threats. The vast majority of CRE research has focused on carbapenemase-producing Enterobacterales (CPE) even though noncarbapenemase-producing CRE (non-CP-CRE) comprise 50% or more of isolates in some surveillance studies. Thus, carbapenem resistance mechanisms in non-CP-CRE remain poorly characterized. To address this problem, we applied a combination of short- and long-read sequencing technologies to a cohort of CRE bacteremia isolates and used these data to unravel complex mobile genetic element structures mediating β-lactamase gene amplification. By generating complete genomes of 65 carbapenem nonsusceptible Enterobacterales (CNSE) covering a genetically diverse array of isolates, our findings both generate novel insights into how non-CP-CRE overcome carbapenem treatments and provide researchers scaffolds for characterization of their own non-CP-CRE isolates. Improved recognition of mechanisms driving development of non-CP-CRE could assist with design and implementation of future strategies to mitigate the impact of these increasingly recognized AMR pathogens.
Collapse
Affiliation(s)
- W. C. Shropshire
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - A. Konovalova
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - P. McDaneld
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - M. Gohel
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - B. Strope
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - P. Sahasrabhojane
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C. N. Tran
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - D. Greenberg
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - J. Kim
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - X. Zhan
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - S. Aitken
- Division of Pharmacy, Michigan Medicine at University of Michigan, Ann Arbor, Michigan, USA
| | - M. Bhatti
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - T. C. Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - T. J. Treangen
- Department of Computer Science, Rice University, Houston, Texas, USA
| | - B. M. Hanson
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| | - C. A. Arias
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - S. A. Shelburne
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Santona A, Sumbana JJ, Fiamma M, Deligios M, Taviani E, Simbine SE, Zimba T, Sacarlal J, Rubino S, Paglietti B. High-risk lineages among Extended-Spectrum β-Lactamase Escherichia coli from extraintestinal infections in Maputo Central Hospital, Mozambique. Int J Antimicrob Agents 2022; 60:106649. [DOI: 10.1016/j.ijantimicag.2022.106649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
|
27
|
Specificities and Commonalities of Carbapenemase-Producing Escherichia coli Isolated in France from 2012 to 2015. mSystems 2022; 7:e0116921. [PMID: 35014866 PMCID: PMC8751382 DOI: 10.1128/msystems.01169-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carbapenemase-producing Escherichia coli (CP-Ec) represents a major public health threat with a risk of dissemination in the community as has occurred for lineages producing extended-spectrum β-lactamases. To characterize the extent of CP-Ec spread in France, isolates from screening and infection samples received at the French National Reference Center (F-NRC) laboratory for carbapenemase-producing Enterobacterales were investigated. A total of 691 CP-Ec isolates collected between 2012 and 2015 and 22 isolates collected before 2012 were fully sequenced. Analysis of their genome sequences revealed some disseminating multidrug-resistant (MDR) lineages frequently acquiring diverse carbapenemase genes mainly belonging to clonal complex 23 (CC23) (sequence type 410 [ST410]) and CC10 (ST10 and ST167) and sporadic isolates, including rare ST131 isolates (n = 17). However, the most represented sequence type (ST) was ST38 (n = 92) with four disseminated lineages carrying blaOXA-48-like genes inserted in the chromosome. Globally, the most frequent carbapenemase gene (n = 457) was blaOXA-48. It was also less frequently associated with MDR isolates being the only resistance gene in 119 isolates. Thus, outside the ST38 clades, its acquisition was frequently sporadic with no sign of dissemination, reflecting the circulation of the IncL plasmid pOXA-48 in France and its high frequency of conjugation. In contrast, blaOXA-181 and blaNDM genes were often associated with the evolution of MDR E. coli lineages characterized by mutations in ftsI and ompC. IMPORTANCE Carbapenemase-producing Escherichia coli (CP-Ec) might be difficult to detect, as MICs can be very low. However, their absolute number and their proportion among carbapenem-resistant Enterobacterales have been increasing, as reported by WHO and national surveillance programs. This suggests a still largely uncharacterized community spread of these isolates. Here, we have characterized the diversity and evolution of CP-Ec isolated in France before 2016. We show that carbapenemase genes are associated with a wide variety of E. coli genomic backgrounds and a small number of dominant phylogenetic lineages. In a significant proportion of CP-Ec, the most frequent carbapenemase gene blaOXA-48, was detected in isolates lacking any other resistance gene, reflecting the dissemination of pOXA-48 plasmids, likely in the absence of any antibiotic pressure. In contrast, carbapenemase gene transfer may also occur in multidrug-resistant E. coli, ultimately giving rise to at-risk lineages encoding carbapenemases with a high potential of dissemination.
Collapse
|
28
|
Chang Z, An L, He Z, Zhang Y, Li S, Lei M, Xu P, Lai Y, Jiang Z, Huang Y, Duan X, Wu W. Allicin supressed Escherichia coli-induced urinary tract infections by a Novel MALT1/NF-κB pathway. Food Funct 2022; 13:3495-3511. [PMID: 35246671 DOI: 10.1039/d1fo03853b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Escherichia coli (E. coli) strains cause the majority of urinary tract infections (UTIs) and are resistant to various antibiotics. Therefore, it is imperative to explore novel host-target therapies. As a...
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Lingyue An
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Zhican He
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yuyan Zhang
- Guangzhou Institute of Dermatology, Guangzhou, 510095, China
| | - Shujue Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Min Lei
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Peng Xu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yongchang Lai
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Zheng Jiang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yapeng Huang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Xiaolu Duan
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Wenqi Wu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| |
Collapse
|
29
|
Abstract
Mutations conferring resistance to one antibiotic can increase (cross-resistance) or decrease (collateral sensitivity) resistance to others. Antibiotic combinations displaying collateral sensitivity could be used in treatments that slow resistance evolution. However, lab-to-clinic translation requires understanding whether collateral effects are robust across different environmental conditions. Here, we isolated and characterized resistant mutants of Escherichia coli using five antibiotics, before measuring collateral effects on resistance to other paired antibiotics. During both isolation and phenotyping, we varied conditions in ways relevant in nature (pH, temperature, and bile). This revealed that local abiotic conditions modified expression of resistance against both the antibiotic used during isolation and other antibiotics. Consequently, local conditions influenced collateral sensitivity in two ways: by favoring different sets of mutants (with different collateral sensitivities) and by modifying expression of collateral effects for individual mutants. These results place collateral sensitivity in the context of environmental variation, with important implications for translation to real-world applications. IMPORTANCE When bacteria become resistant to an antibiotic, the genetic changes involved sometimes increase (cross-resistance) or decrease (collateral sensitivity) their resistance to other antibiotics. Antibiotic combinations showing repeatable collateral sensitivity could be used in treatment to slow resistance evolution. However, collateral sensitivity interactions may depend on the local environmental conditions that bacteria experience, potentially reducing repeatability and clinical application. Here, we show that variation in local conditions (pH, temperature, and bile salts) can influence collateral sensitivity in two ways: by favoring different sets of mutants during bacterial resistance evolution (with different collateral sensitivities to other antibiotics) and by modifying expression of collateral effects for individual mutants. This suggests that translation from the lab to the clinic of new approaches exploiting collateral sensitivity will be influenced by local abiotic conditions.
Collapse
|
30
|
Cummins EA, Snaith AE, McNally A, Hall RJ. The role of potentiating mutations in the evolution of pandemic Escherichia coli clones. Eur J Clin Microbiol Infect Dis 2021:10.1007/s10096-021-04359-3. [PMID: 34787747 DOI: 10.1007/s10096-021-04359-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022]
Abstract
The Escherichia coli species exhibits a vast array of variable lifestyles, including environmental, commensal, and pathogenic organisms. Many of these E. coli contribute significantly to the global threat of antimicrobial resistance (AMR). Multidrug-resistant (MDR) clones of E. coli have arisen multiple times over varying timescales. The repeated emergence of successful pandemic clones, including the notorious ST131 lineage, highlights a desperate need to further study the evolutionary processes underlying their emergence and success. Here, we review the evolutionary emergence of E. coli ST131 pandemic clones and draw parallels between their evolutionary trajectories and those of other lineages. From colonization and expansion to the acquisition of multidrug resistance plasmids, potentiating mutations are present at each stage, leading to a proposed sequence of events that may result in the formation of an antimicrobial-resistant pandemic clone.
Collapse
Affiliation(s)
- Elizabeth A Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann E Snaith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca J Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
31
|
Lasko MJ, Nicolau DP, Asempa TE. Clinical exposure-response relationship of cefepime/taniborbactam against Gram-negative organisms in the murine complicated urinary tract infection model. J Antimicrob Chemother 2021; 77:443-447. [PMID: 34747449 DOI: 10.1093/jac/dkab405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Complicated urinary tract infections (cUTIs) are frequently encountered in hospitals and ICUs. Increasingly, the causative pathogens harbour enzymatic resistance mechanisms. Taniborbactam is a novel β-lactamase inhibitor with activity against Ambler class A, B, C and D β-lactamases. Herein, we assessed the efficacy of cefepime alone and the combination cefepime/taniborbactam in a neutropenic murine cUTI model. METHODS Eighteen cefepime-resistant clinical isolates (9 Enterobacterales, 3 Pseudomonas aeruginosa and 6 Stenotrophomonas maltophilia; cefepime MIC = 32 to >512 mg/L) were assessed. Cefepime/taniborbactam MICs ranged from 0.06 to 128 mg/L. Human-simulated plasma regimens (HSRs) of cefepime alone and in combination with taniborbactam were developed in the murine cUTI model. The efficacy of cefepime HSR and cefepime/taniborbactam HSR was determined as the change in log10 cfu/kidney at 48 h compared with 48 h controls. RESULTS Mean ± SD initial bacterial burden was 5.66 ± 0.56 log10 cfu/kidney, which increased to 9.05 ± 0.39 log10 cfu/kidney at 48 h. The cefepime HSR was ineffective, as bacterial burden was similar to untreated controls (-0.14 ± 0.40 change in log10 cfu/kidney). In contrast, cefepime/taniborbactam exhibited substantial killing, with log10 cfu/kidney changes of -5.48 ± 1.3, -4.79 ± 0.3 and -5.04 ± 0.7 for ESBL/AmpC-, KPC- and OXA-48-harbouring Enterobacterales, respectively. Cefepime/taniborbactam also exhibited robust killing of P. aeruginosa (-6.5 ± 0.26) and S. maltophilia (-5.66 ± 0.71). CONCLUSIONS Humanized exposures of cefepime/taniborbactam achieved robust killing of Enterobacterales, P. aeruginosa and S. maltophilia harbouring ESBL, AmpC, KPC and/or OXA-48. These data support the role of cefepime/taniborbactam for cUTI treatment for cefepime/taniborbactam MICs up to 32 mg/L.
Collapse
Affiliation(s)
- Maxwell J Lasko
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
32
|
Ngbede EO, Adekanmbi F, Poudel A, Kalalah A, Kelly P, Yang Y, Adamu AM, Daniel ST, Adikwu AA, Akwuobu CA, Abba PO, Mamfe LM, Maurice NA, Adah MI, Lockyear O, Butaye P, Wang C. Concurrent Resistance to Carbapenem and Colistin Among Enterobacteriaceae Recovered From Human and Animal Sources in Nigeria Is Associated With Multiple Genetic Mechanisms. Front Microbiol 2021; 12:740348. [PMID: 34690985 PMCID: PMC8528161 DOI: 10.3389/fmicb.2021.740348] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023] Open
Abstract
Resistance to last resort drugs such as carbapenem and colistin is a serious global health threat. This study investigated carbapenem and colistin resistance in 583 non-duplicate Enterobacteriaceae isolates utilizing phenotypic methods and whole genome sequencing (WGS). Of the 583 isolates recovered from humans, animals and the environment in Nigeria, 18.9% (110/583) were resistant to at least one carbapenem (meropenem, ertapenem, and imipenem) and 9.1% (53/583) exhibited concurrent carbapenem-colistin resistance. The minimum inhibitory concentrations of carbapenem and colistin were 2–32 μg/mL and 8 to >64 μg/mL, respectively. No carbapenem resistant isolates produced carbapenemase nor harbored any known carbapenemase producing genes. WGS supported that concurrent carbapenem-colistin resistance was mediated by novel and previously described alterations in chromosomal efflux regulatory genes, particularly mgrB (M1V) ompC (M1_V24del) ompK37 (I70M, I128M) ramR (M1V), and marR (M1V). In addition, alterations/mutations were detected in the etpA, arnT, ccrB, pmrB in colistin resistant bacteria and ompK36 in carbapenem resistant bacteria. The bacterial isolates were distributed into 37 sequence types and characterized by the presence of internationally recognized high-risk clones. The results indicate that humans and animals in Nigeria may serve as reservoirs and vehicles for the global spread of the isolates. Further studies on antimicrobial resistance in African countries are warranted.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Folasade Adekanmbi
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Anil Poudel
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Anwar Kalalah
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Patrick Kelly
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Yi Yang
- Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Andrew M Adamu
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Salem T Daniel
- Department of Microbiology, College of Sciences, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Alex A Adikwu
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Chinedu A Akwuobu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Paul O Abba
- Department of Medical Microbiology and Parasitology, Benue State University Teaching Hospital, Makurdi, Nigeria
| | - Levi M Mamfe
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Nanven A Maurice
- Department of Diagnostics and Extension, National Veterinary Research Institute, Vom, Nigeria
| | - Mohammed I Adah
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Olivia Lockyear
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Patrick Butaye
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.,Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
33
|
Liu Z, Liu Y, Xi W, Liu S, Liu J, Mu H, Chen B, He H, Fan Y, Ma W, Zhang W, Fu M, Wang J, Song X. Genetic Features of Plasmid- and Chromosome-Mediated mcr-1 in Escherichia coli Isolates From Animal Organs With Lesions. Front Microbiol 2021; 12:707332. [PMID: 34456890 PMCID: PMC8386294 DOI: 10.3389/fmicb.2021.707332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
The genomic context of the mcr-1 gene in Escherichia coli from animal feces has been widely reported. However, less is known about the mcr-1-carrying plasmid characteristics and other functional regions of Escherichia coli isolates from animal organs with lesions. The present study investigated the antimicrobial resistance, population structure, and genetic features of mcr-1-positive Escherichia coli strains isolated from animal organs with lesions. The antimicrobial susceptibility testing indicated that 24 mcr-1-positive Escherichia coli isolates were resistant to at least three or all antimicrobial categories. MLST analysis suggested that the dominant clone complexes (CC) were mainly CC156, CC448, and CC10. In addition, ST10596, a newly discovered sequence type in swine, failed to be classified. Meanwhile, the mcr-1 gene located on the different plasmids was successfully transferred to the recipients, and whole-genome sequencing indicated the mcr-1 gene was embedded in mcr-1-pap2 cassette but not flanked by ISApl1. The mcr-1 gene is located on the chromosome and embedded in Tn6330. Furthermore, NDM-5 was found on the IncX3-type plasmid of J-8. The virB6 and traI gene of type IV secretion system (T4SS) were truncated by IS2 and IS100 and located on the IncX4- and the IncHI2/HI2A/N-type plasmids, respectively. The multidrug-resistant (MDR) region of IncHI2/HI2A/N-type plasmids contained two class 1 integrons (In0, In640) and four composite transposons (Tn4352, Tn6010, cn_4692_IS26, cn_6354_IS26). Overall, 24 mcr-1-positive Escherichia coli isolates in our study showed MDR, or even extensively drug resistant (XDR), and exhibited population diversity. The T4SS gene truncation by the insertion sequence may affect the efficiency of plasmid conjugative transfer. Furthermore, the class 1 integrons and composite transposons in the MDR region of IncHI2/HI2A/n-type plasmid contributed to the multireplicon plasmid formation, the acquisition, and transfer of antimicrobial resistance genes (ARGs).
Collapse
Affiliation(s)
- Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Xi
- Qingdao Adverse Drug Reaction Monitoring Center, China Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Shuangshi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Beibei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hao He
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
34
|
Johnston BD, Thuras P, Porter SB, Anacker M, VonBank B, Vagnone PS, Witwer M, Castanheira M, Johnson JR. Global molecular epidemiology of carbapenem-resistant Escherichia coli (2002-2017). Eur J Clin Microbiol Infect Dis 2021:10.1007/s10096-021-04310-6. [PMID: 34278542 DOI: 10.1007/s10096-021-04310-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The emergence of carbapenem-resistant (CR) Escherichia coli obliges an assessment of such strains' molecular epidemiology. Accordingly, we characterized in detail a globally distributed collection of CR E. coli isolates, then explored for associations between geographical origin and bacterial traits, and between different bacterial traits. We used established PCR-based assays and broth microdilution MIC determinations to characterize 343 global CR (i.e., non-susceptible to ≥ 1 carbapenem) extraintestinal E. coli isolates (2002-2017) for diverse molecular traits-including phylogroups, sequence types (STs), beta-lactamase genes, and 51 virulence genes-and susceptibility to 12 relevant antimicrobial agents. The study population was tremendously diverse according to all assessed variables. Nonetheless, certain geographically aligned, unifying themes emerged. These included an association of an Asia/West Pacific origin with non-B2/D/F phylogroups and STs, lower molecularly inferred virulence, more extensive resistance, and specific resistance genes (notably, metallo-beta-lactamases). Likewise, U.S. isolates from the central region, vs. other regions, were more virulent-appearing and more often from phylogroup B2 and ST131, but less extensively resistant and more often carbapenemase-gene negative. The global CR E. coli population is highly diverse according to multiple characteristics and varies significantly by geographical region. This predictably will pose challenges for prevention and management, and obliges ongoing surveillance.
Collapse
Affiliation(s)
- Brian D Johnston
- Infectious Diseases (111F), VA Medical Center, Minneapolis VA Health Care System, 1 Veterans Drive, Minneapolis, MN, 55417, USA
- University of Minnesota, Minneapolis, MN, USA
| | - Paul Thuras
- Infectious Diseases (111F), VA Medical Center, Minneapolis VA Health Care System, 1 Veterans Drive, Minneapolis, MN, 55417, USA
- University of Minnesota, Minneapolis, MN, USA
| | - Stephen B Porter
- Infectious Diseases (111F), VA Medical Center, Minneapolis VA Health Care System, 1 Veterans Drive, Minneapolis, MN, 55417, USA
| | | | | | | | | | | | - James R Johnson
- Infectious Diseases (111F), VA Medical Center, Minneapolis VA Health Care System, 1 Veterans Drive, Minneapolis, MN, 55417, USA.
- University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
35
|
Osei Sekyere J, Reta MA, Bernard Fourie P. Risk factors for, and molecular epidemiology and clinical outcomes of, carbapenem- and polymyxin-resistant Gram-negative bacterial infections in pregnant women, infants, and toddlers: a systematic review and meta-analyses. Ann N Y Acad Sci 2021; 1502:54-71. [PMID: 34212401 DOI: 10.1111/nyas.14650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
In the following systematic review and meta-analyses, we report several conclusions about resistance to carbapenem and polymyxin last-resort antibiotics for treating multidrug-resistant bacterial infections among pregnant women and infants. Resistance to carbapenems and polymyxins is increasing, even in otherwise vulnerable groups such as pregnant women, toddlers, and infants, for whom therapeutic options are limited. In almost all countries, carbapenem-/polymyxin-resistant Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii infect and/or colonize neonates and pregnant women, causing periodic outbreaks with very high infant mortalities. Downregulation of plasmid-borne blaNDM , blaKPC , blaOXA-48 , blaIMP, blaVIM , blaGES-5 , and ompK35/36 in clonal strains accelerates the horizontal and vertical transmissions of carbapenem resistance among these pathogens. New Delhi metallo-β-lactamase (NDM)-positive isolates in infants/neonates have been mainly detected in China and India, while OXA-48-positive isolates in infants/neonates have been mainly detected in Africa. NDM-positive isolates in pregnant women have been found only in Madagascar. Antibiotic therapy, prolonged hospitalization, invasive procedures, mechanical ventilation, low birth weight, and preterm delivery have been common risk factors associated with carbapenem/polymyxin resistance. The use of polymyxins to treat carbapenem-resistant infections may be selecting for resistance to both agents, restricting therapeutic options for infected infants and pregnant women. Currently, low- and middle-income countries have the highest burden of these pathogens. Antibiotic stewardship, periodic rectal and vaginal screening, and strict infection control practices in neonatal ICUs are necessary to forestall future outbreaks and deaths.
Collapse
Affiliation(s)
- John Osei Sekyere
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Melese Abate Reta
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Petrus Bernard Fourie
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
36
|
Jousset AB, Bonnin RA, Takissian J, Girlich D, Mihaila L, Cabanel N, Dortet L, Glaser P, Naas T. Concomitant carriage of KPC-producing and non-KPC-producing Klebsiella pneumoniae ST512 within a single patient. J Antimicrob Chemother 2021; 75:2087-2092. [PMID: 32386410 DOI: 10.1093/jac/dkaa137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND KPC-producing Klebsiella pneumoniae of clonal group 258 are prominent in healthcare settings in many regions of the world. The blaKPC gene is mostly carried by a multireplicon IncFIIk-IncFI plasmid suspected to be highly compatible and stable in this genetic background. Here, we analysed the genetic diversity of an ST512 K. pneumoniae population in a single patient. METHODS Twelve K. pneumoniae isolates (n = 5 from urine samples and n = 7 from rectal swabs) were recovered from one patient over a 2 month period. Antimicrobial susceptibility testing, plasmid extraction and WGS were performed on all isolates. The first K. pneumoniae isolate, D1, was used as a reference for phylogenetic analysis. RESULTS Antimicrobial susceptibility testing, plasmid analysis and WGS revealed concomitant carriage of carbapenem-resistant and carbapenem-susceptible K. pneumoniae isolates of ST512, with the absence of the entire blaKPC-carrying plasmid in the susceptible population. Furthermore, 14 other genetic events occurred within the genome, including 3 chromosomal deletions (of 71 kb, 33 kb and 11 bp), 2 different insertions of ISKpn26 and 9 SNPs. Interestingly, most of the events occurred in the same chromosomal region that has been deleted independently several times, probably after homologous recombination involving 259 bp repeated sequences. CONCLUSIONS Our study revealed (to the best of our knowledge) the first case of in vivo blaKPC-carrying plasmid curing and a wide within-patient genetic diversity of a single K. pneumoniae ST512 clone over a short period of carriage. This within-patient diversity must be taken into account when characterizing transmission chains using WGS during nosocomial outbreaks.
Collapse
Affiliation(s)
- Agnès B Jousset
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', University Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-Assistance Publique/Hôpitaux de Paris-University Paris-Saclay, Paris, France
| | - Rémy A Bonnin
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', University Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-Assistance Publique/Hôpitaux de Paris-University Paris-Saclay, Paris, France
| | - Julie Takissian
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', University Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Delphine Girlich
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', University Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-Assistance Publique/Hôpitaux de Paris-University Paris-Saclay, Paris, France
| | - Liliana Mihaila
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Nicolas Cabanel
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-Assistance Publique/Hôpitaux de Paris-University Paris-Saclay, Paris, France
| | - Laurent Dortet
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', University Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-Assistance Publique/Hôpitaux de Paris-University Paris-Saclay, Paris, France
| | - Philippe Glaser
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-Assistance Publique/Hôpitaux de Paris-University Paris-Saclay, Paris, France.,CNRS UMR3525, Paris, France
| | - Thierry Naas
- EA7361 'Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases', University Paris-Saclay, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,Associated French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-Assistance Publique/Hôpitaux de Paris-University Paris-Saclay, Paris, France
| |
Collapse
|
37
|
Bhagwat SS, Hariharan P, Joshi PR, Palwe SR, Shrivastava R, Patel MV, Devanga Ragupathi NK, Bakthavatchalam YD, Ramesh MS, Soman R, Veeraraghavan B. Activity of cefepime/zidebactam against MDR Escherichia coli isolates harbouring a novel mechanism of resistance based on four-amino-acid inserts in PBP3. J Antimicrob Chemother 2021; 75:3563-3567. [PMID: 32772098 DOI: 10.1093/jac/dkaa353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recent reports reveal the emergence of Escherichia coli isolates harbouring a novel resistance mechanism based on four-amino-acid inserts in PBP3. These organisms concomitantly expressed ESBLs or/and serine-/metallo-carbapenemases and were phenotypically detected by elevated aztreonam/avibactam MICs. OBJECTIVES The in vitro activities of the investigational antibiotic cefepime/zidebactam and approved antibiotics (ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam and others) were determined against E. coli isolates harbouring four-amino-acid inserts in PBP3. METHODS Whole-genome sequenced E. coli isolates (n = 89) collected from a large tertiary care hospital in Southern India (n = 64) and from 12 tertiary care hospitals located across India (n = 25) during 2016-18, showing aztreonam/avibactam MICs ≥1 mg/L (≥4 times the aztreonam epidemiological cut-off) were included in this study. The MICs of antibiotics were determined using the reference broth microdilution method. RESULTS Four-amino-acid inserts [YRIK (n = 30) and YRIN (n = 53)] were found in 83/89 isolates. Among 83 isolates, 65 carried carbapenemase genes [blaNDM (n = 39), blaOXA-48-like (n = 11) and blaNDM + blaOXA-48-like (n = 15)] and 18 isolates produced ESBLs/class C β-lactamases only. At least 16 unique STs were noted. Cefepime/zidebactam demonstrated potent activity, with all isolates inhibited at ≤1 mg/L. Comparator antibiotics including ceftazidime/avibactam and imipenem/relebactam showed limited activities. CONCLUSIONS E. coli isolates concurrently harbouring four-amino-acid inserts in PBP3 and NDM are an emerging therapeutic challenge. Assisted by the PBP2-binding action of zidebactam, the cefepime/zidebactam combination overcomes both target modification (PBP3 insert)- and carbapenemase (NDM)-mediated resistance mechanisms in E. coli.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mayur S Ramesh
- Department of Infectious Disease, Henry Ford Hospital, Detroit, MI, USA
| | - Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | | |
Collapse
|
38
|
Novel Specific Metallo-β-Lactamase Inhibitor ANT2681 Restores Meropenem Activity to Clinically Effective Levels against NDM-Positive Enterobacterales. Antimicrob Agents Chemother 2021; 65:AAC.00203-21. [PMID: 33820763 PMCID: PMC8315971 DOI: 10.1128/aac.00203-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The global dissemination of metallo-β-lactamase (MBL)-producing carbapenem-resistant Enterobacterales (CRE) is a serious public health concern. Specifically, NDM (New Delhi MBL) has been a major cause of carbapenem therapy failures in recent years, particularly as effective treatments for serine-β-lactamase (SBL)-producing Enterobacterales are now commercially available. Since the NDM gene is carried on promiscuous plasmids encoding multiple additional resistance determinants, a large proportion of NDM-CREs are also resistant to many commonly used antibiotics, resulting in limited and suboptimal treatment options. ANT2681 is a specific, competitive inhibitor of MBLs with potent activity against NDM enzymes, progressing to clinical development in combination with meropenem (MEM). Susceptibility studies have been performed with MEM-ANT2681 against 1,687 MBL-positive Enterobacterales, including 1,108 NDM-CRE. The addition of ANT2681 at 8 μg/ml reduced the MEM MIC50/MIC90 from >32/>32 μg/ml to 0.25/8 μg/ml. Moreover, the combination of 8 μg/ml of both MEM and ANT2681 inhibited 74.9% of the Verona integron-encoded MBL (VIM)-positive and 85.7% of the imipenem hydrolyzing β-lactamase (IMP)-positive Enterobacterales tested. The antibacterial activity of MEM-ANT2681 against NDM-CRE compared very favorably to that of cefiderocol (FDC) and cefepime (FEP)-taniborbactam, which displayed MIC90 values of 8 μg/ml and 32 μg/ml, respectively, whereas aztreonam-avibactam (ATM-AVI) had a MIC90 of 0.5 μg/ml. Particularly striking was the activity of MEM-ANT2681 against NDM-positive Escherichia coli (MIC90 1 μg/ml), in contrast to ATM-AVI (MIC90 4 μg/ml), FDC (MIC90 >32 μg/ml), and FEP-taniborbactam (MIC90 >32 μg/ml), which were less effective due to the high incidence of resistant PBP3-insertion mutants. MEM-ANT2681 offers a potential new therapeutic option to treat serious infections caused by NDM-CRE.
Collapse
|
39
|
Sommer J, Gerbracht KM, Krause FF, Wild F, Tietgen M, Riedel-Christ S, Sattler J, Hamprecht A, Kempf VAJ, Göttig S. OXA-484, an OXA-48-Type Carbapenem-Hydrolyzing Class D β-Lactamase From Escherichia coli. Front Microbiol 2021; 12:660094. [PMID: 34054758 PMCID: PMC8153228 DOI: 10.3389/fmicb.2021.660094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
OXA-48-like carbapenemases are among the most frequent carbapenemases in Gram-negative Enterobacterales worldwide with the highest prevalence in the Middle East, North Africa and Europe. Here, we investigated the so far uncharacterized carbapenemase OXA-484 from a clinical E. coli isolate belonging to the high-risk clone ST410 regarding antibiotic resistance pattern, horizontal gene transfer (HGT) and genetic support. OXA-484 differs by the amino acid substitution 214G compared to the most closely related variants OXA-181 (214R) and OXA-232 (214S). The bla OXA - 484 was carried on a self-transmissible 51.5 kb IncX3 plasmid (pOXA-484) showing high sequence similarity with plasmids harboring bla OXA - 181. Intraspecies and intergenus HGT of pOXA-484 to different recipients occurred at low frequencies of 1.4 × 10-7 to 2.1 × 10-6. OXA-484 increased MICs of temocillin and carbapenems similar to OXA-232 and OXA-244, but lower compared with OXA-48 and OXA-181. Hence, OXA-484 combines properties of OXA-181-like plasmid support and transferability as well as β-lactamase activity of OXA-232.
Collapse
Affiliation(s)
- Julian Sommer
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Kristina M Gerbracht
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Felix F Krause
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Florian Wild
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Manuela Tietgen
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Faculty of Biological Sciences of the Goethe University Frankfurt am Main, Frankfurt, Germany.,University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| | - Sara Riedel-Christ
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Janko Sattler
- Institute for Medical Microbiology, Immunology and Hygiene, German Center for Infection Research (DZIF Partner Site Cologne-Bonn), University Hospital of Cologne, Cologne, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology and Hygiene, German Center for Infection Research (DZIF Partner Site Cologne-Bonn), University Hospital of Cologne, Cologne, Germany.,Institute for Medical Microbiology, University Hospital of Oldenburg, Oldenburg, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
40
|
Girlich D, Bonnin RA, Naas T. Occurrence and Diversity of CTX-M-Producing Escherichia coli From the Seine River. Front Microbiol 2020; 11:603578. [PMID: 33362749 PMCID: PMC7755597 DOI: 10.3389/fmicb.2020.603578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
CTX-M-producing Escherichia coli are spreading since 1999 both in clinical and in community settings. Environmental samples such as rivers have also been pointed out as being vectors for ESBL producers. In this report, we have investigated the presence and the diversity of CTX-M-producing E. coli isolates in two samplings of the Seine River (next to Notre Dame), Paris France, performed in June 2016 and 2017. The total number of bacteria growing on the selective ChromID ESBL agar was 3.1 × 105 cfu/L (23.8% of all growing bacteria) in 2016, whereas it was 100-fold lower in 2017 (3 × 103 cfu/L; 8.3% of all growing bacteria). However, among them, the prevalence of ESBL-producing E. coli increased from <0.1 to 1.1% in one-year. ESBLs were exclusively of the CTX-M-type: CTX-M-1 (n = 5), CTX-M-15 (n = 7), CTX-M-14 (n = 1), and CTX-M-27 (n = 2). The isolates belonged to several multi locus sequence types, and a wide diversity of incompatibility groups of plasmids were identified in those E. coli isolates. The occurrence and diversity of E. coli isolates belonging to many clones and producing many CTX-M-variants have been identified in our study. The presence of these bacteria in rivers that are open again for recreational usage (swimming) is worrying as it may contribute to further dissemination of ESBL producers in the community.
Collapse
Affiliation(s)
- Delphine Girlich
- Team Resist, UMR1184, LabEx Lermit, Bacteriology-Hygiene unit, APHP, Hôpital Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- Team Resist, UMR1184, LabEx Lermit, Bacteriology-Hygiene unit, APHP, Hôpital Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team Resist, UMR1184, LabEx Lermit, Bacteriology-Hygiene unit, APHP, Hôpital Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
41
|
Chiarelli A, Cabanel N, Rosinski-Chupin I, Zongo PD, Naas T, Bonnin RA, Glaser P. Diversity of mucoid to non-mucoid switch among carbapenemase-producing Klebsiella pneumoniae. BMC Microbiol 2020; 20:325. [PMID: 33109078 PMCID: PMC7590720 DOI: 10.1186/s12866-020-02007-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/12/2020] [Indexed: 11/10/2022] Open
Abstract
Background Klebsiella pneumoniae is a leading cause of intractable hospital-acquired multidrug-resistant infections and carbapenemase-producing K. pneumoniae (CPKp) are particularly feared. Most of the clinical isolates produce capsule as a major virulence factor. Recombination events at the capsule locus are frequent and responsible for capsule diversity within Klebsiella spp. Capsule diversity may also occur within clonal bacterial populations generating differences in colony aspect. However, little is known about this phenomenon of phenotypic variation in CPKp and its consequences. Results Here, we explored the genetic causes of in vitro switching from capsulated, mucoid to non-mucoid, non-capsulated phenotype in eight clinical CPKp isolates. We compared capsulated, mucoid colony variants with one of their non-capsulated, non-mucoid isogenic variant. The two colony variants were distinguished by their appearance on solid medium. Whole genome comparison was used to infer mutations causing phenotypic differences. The frequency of phenotypic switch was strain-dependent and increased along with colony development on plate. We observed, for 72 non-capsulated variants that the loss of the mucoid phenotype correlates with capsule deficiency and diverse genetic events, including transposition of insertion sequences or point mutations, affecting genes belonging to the capsule operon. Reduced or loss of capsular production was associated with various in vitro phenotypic changes, affecting susceptibility to carbapenem but not to colistin, in vitro biofilm formation and autoaggregation. Conclusions The different impact of the phenotypic variation among the eight isolates in terms of capsule content, biofilm production and carbapenem susceptibility suggested heterogeneous selective advantage for capsular loss according to the strain and the mutation. Based on our results, we believe that attention should be paid in the phenotypic characterization of CPKp clinical isolates, particularly of traits related to virulence and carbapenem resistance. Supplementary information Supplementary information accompanies this paper at 10.1186/s12866-020-02007-y.
Collapse
Affiliation(s)
- Adriana Chiarelli
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,UMR CNRS 3525, 75015, Paris, France.,Sorbonne Université, 75015, Paris, France
| | - Nicolas Cabanel
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,UMR CNRS 3525, 75015, Paris, France
| | - Isabelle Rosinski-Chupin
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,UMR CNRS 3525, 75015, Paris, France
| | - Pengdbamba Dieudonné Zongo
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,UMR CNRS 3525, 75015, Paris, France
| | - Thierry Naas
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,EA 7361 Structure, dynamic, function and expression of broad-spectrum beta-lactamases", Faculty of Medicine University Paris-Sud, University Paris-Saclay, Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,EA 7361 Structure, dynamic, function and expression of broad-spectrum beta-lactamases", Faculty of Medicine University Paris-Sud, University Paris-Saclay, Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Philippe Glaser
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France. .,UMR CNRS 3525, 75015, Paris, France.
| |
Collapse
|
42
|
Sato T, Ito A, Ishioka Y, Matsumoto S, Rokushima M, Kazmierczak KM, Hackel M, Sahm DF, Yamano Y. Escherichia coli strains possessing a four amino acid YRIN insertion in PBP3 identified as part of the SIDERO-WT-2014 surveillance study. JAC Antimicrob Resist 2020; 2:dlaa081. [PMID: 34223033 PMCID: PMC8210206 DOI: 10.1093/jacamr/dlaa081] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 01/25/2023] Open
Abstract
Background In addition to carbapenemases, dissemination of recently reported Escherichia coli lineages possessing a four amino acid insertion in PBP3 (encoded by ftsI) that confers reduced susceptibility to PBP3-targeted β-lactams, such as ceftazidime, can pose a threat of antimicrobial resistance. Objectives To evaluate genotypic and phenotypic characteristics of E. coli possessing the mutated PBP3 collected during SIDERO-WT-2014 surveillance. Methods A subset of 65 E. coli clinical isolates with MICs ≥2 mg/L for ceftazidime/avibactam, ceftolozane/tazobactam or cefiderocol, among a total of 1529 isolates from the multinational surveillance study, were subjected to gene analysis and antimicrobial susceptibility testing. Isogenic PBP3 mutants were constructed to confirm experimentally an impact on antimicrobial susceptibility. Results Eleven strains possessing a YRIN-inserted PBP3 were identified, consisting of nine strains collected from the same hospital in Turkey (ST1284) and one each from the USA and Italy (ST361). Strains associated with each ST lineage possessed similar genetic backgrounds including β-lactamase genotypes; all nine strains from Turkey carried CMY-42, OXA-1 and the OXA-181 carbapenemase (five strains additionally carried CTX-M-15 ESBL), whereas the two other strains carried CMY-42 and TEM-1, indicating dissemination driven by selective pressure. The presence of the YRIN insertion contributed to reduced susceptibility to aztreonam, ceftazidime, cefepime and ceftolozane/tazobactam, although the strains remained susceptible to ceftazidime/avibactam despite relatively high MICs. Conclusions E. coli strains of both ST1284 and ST361 lineages, possessing YRIN-inserted PBP3, are disseminating in several regions. The YRIN insertion in PBP3 occurred with multiple β-lactamases, which indicates frequent cross-resistance to other β-lactams.
Collapse
Affiliation(s)
- Takafumi Sato
- Drug Discovery & Diseases Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
- Corresponding author. E-mail:
| | - Akinobu Ito
- Drug Efficacy Evaluation I, Shionogi TechnoAdvance Research & Co., Ltd., Osaka Japan
| | - Yoshino Ishioka
- Drug Discovery & Diseases Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Shuhei Matsumoto
- Drug Discovery & Diseases Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Masatomo Rokushima
- Drug Discovery & Diseases Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | | | - Meredith Hackel
- International Health Management Associates, Inc., Schaumburg, IL, USA
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, IL, USA
| | - Yoshinori Yamano
- Drug Discovery & Diseases Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|