1
|
Zhang Y, Chen L, Yang S, Dai R, Sun H, Zhang L. Identification and Validation of Circadian Rhythm-Related Genes Involved in Intervertebral Disc Degeneration and Analysis of Immune Cell Infiltration via Machine Learning. JOR Spine 2025; 8:e70066. [PMID: 40225045 PMCID: PMC11994230 DOI: 10.1002/jsp2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Background Low back pain is a significant burden worldwide, and intervertebral disc degeneration (IVDD) is identified as the primary cause. Recent research has emphasized the significant role of circadian rhythms (CRs) and immunity in affecting intervertebral discs (IVD). However, the influence of circadian rhythms and immunity on the mechanism of IVDD remains unclear. This study aimed to identify and validate key rhythm-related genes in IVDD and analyze their correlation with immune cell infiltration. Methods Two gene expression profiles related to IVDD and rhythm-related genes were obtained from the Gene Expression Omnibus and GeneCards databases to identify differentially expressed rhythm-related genes (DERGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) were conducted to explore the biological functions of these genes. LASSO regression and SVM algorithms were employed to identify hub genes. We subsequently investigated the correlation between hub rhythm-related genes and immune cell infiltration. Finally, nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated from normal and degenerative human IVD tissues. Hub rhythm-related genes expression in NPMSCs was confirmed by real-time quantitative PCR (RT-qPCR). Results Six hub genes related to CRs (CCND1, FOXO1, FRMD8, NTRK2, PRRT1, and TFPI) were screened out. Immune infiltration analysis revealed that the IVDD group had significantly more M0 macrophages and significantly fewer follicular helper T cells than those of the control group. Specifically, M0 macrophages were significantly associated with FRMD8, PRRT1, and TFPI. T follicular helper cells were significantly associated with FRDM8, FOXO1, and CCND1. We further confirmed that CCND1, FRMD8, NTRK2, and TFPI were dysrhythmic within NPMSCs from degenerated IVD in vitro. Conclusion Six genes (CCND1, FOXO1, FRMD8, NTRK2, PRRT1 and TFPI) linked to circadian rhythms associated with IVDD progression, together with immunity. The identification of these DEGs may provide new insights for the diagnosis and treatment of IVDD.
Collapse
Affiliation(s)
- Yongbo Zhang
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsThe Yangzhou School of Clinical Medicine of Dalian Medical UniversityYangzhouChina
| | - Liuyang Chen
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| | - Sheng Yang
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsThe Yangzhou School of Clinical Medicine of Dalian Medical UniversityYangzhouChina
| | - Rui Dai
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| | - Hua Sun
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| | - Liang Zhang
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| |
Collapse
|
2
|
Lei L, Wang H, Zhao Z, Huang Y, Huang X, Guo X, Jiang G, Chen S, Wang W, Chen X, Zheng Z, Wang J, Chen F. Curculigoside upregulates BMAL1 to decrease nucleus pulposus cell apoptosis by inhibiting the JAK/STAT3 pathway. Osteoarthritis Cartilage 2025; 33:412-425. [PMID: 39622432 DOI: 10.1016/j.joca.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a natural process that occurs with aging and is the main cause of low back pain. Basic helix-loop-helix ARNT-like 1 (BMAL1) plays key roles in the pathogenesis of many diseases. The present study investigates the role of curculigoside (CUR), which has been reported to be a potential anti-apoptotic compound in other diseases. METHODS Dysregulated genes were identified by RNA sequencing (RNA-seq). Western blotting (WB), immunohistochemistry, immunofluorescence (IF) staining, and real-time fluorescent quantitative polymerase chain reaction were used to detect BMAL1 expression in 25 human intervertebral disc specimens (male: female =13:12), tissues from BMAL1-knockout mice and from an IVDD mouse model. The regulatory effects of CUR and BMAL1 in nucleus pulposus (NP) cells after Small Interfering RNA (siRNA) transfection were examined by flow cytometry, IF staining and WB. The therapeutic effect of intraperitoneal CUR injection was also evaluated in mice. RESULTS BMAL1 expression was negatively correlated with IVDD severity and was significantly lower in degenerative NP cells. After BMAL1 knockdown using siRNA, the apoptosis rate of degenerative NP cells was significantly higher, while transfection with a lentivirus overexpressing BMAL1 exerted the opposite effect. Bioinformatics analysis revealed that BMAL1 is regulated by the JAK-STAT3 pathway, and CUR upregulated BMAL1 expression by inhibiting STAT3 phosphorylation, subsequently alleviating NP cell apoptosis and increasing extracellular matrix (ECM) components., thus alleviating IVDD. CONCLUSIONS CUR can inhibit apoptosis and improve the ECM by upregulating BMAL1 expression, which is reduced in IVDD. This study provides a therapeutic strategy to alleviate apoptosis associated with inflammation-induced IVDD.
Collapse
Affiliation(s)
- Linchuan Lei
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Zhuoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Yuming Huang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Xingyu Guo
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Guowei Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Shunlun Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Xi Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Hunan 410011, PR China.
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Pain Research Center, Sun Yat Sen University, PR China.
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Fan Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Ramsay SD, Nenke MA, Meyer EJ, Torpy DJ, Young RL. Unveiling the novel role of circadian rhythms in sepsis and septic shock: unexplored implications for chronotherapy. Front Endocrinol (Lausanne) 2025; 16:1508848. [PMID: 39968295 PMCID: PMC11832378 DOI: 10.3389/fendo.2025.1508848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Circadian rhythms are critical to coordinating body processes to external environmental cues, such as light and feeding, to ensure efficiency and maintain optimal health. These rhythms are controlled by 'clock' transcription factors, such as Clock, Bmal1, Per1/2, Cry1/2, and Rev-erbs, which are present in almost every tissue. In modern society, disruptions to normal circadian rhythms are increasingly prevalent due to extended lighting, shift work, and long-distance travel. These disruptions misalign external cues to body processes and contribute to diseases such as obesity and non-alcoholic fatty liver disease. They also exacerbate pre-existing health issues, such as depression and inflammatory bowel disease. The normal inflammatory response to acute infection displays remarkable circadian rhythmicity in humans with increased inflammatory activity during the normal night or rest period. Severe bloodborne infections, exemplified in sepsis and the progression to septic shock, can not only disrupt the circadian rhythmicity of inflammatory processes but can be exacerbated by circadian misalignment. Examples of circadian disruptions during sepsis and septic shock include alteration or loss of hormonal rhythms controlling blood pressure and inflammation, white blood cell counts, and cytokine secretions. These changes to circadian rhythms hinder sepsis and septic shock recovery and also increase mortality. Chronotherapy and chronopharmacotherapy are promising approaches to resynchronise circadian rhythms or leverage circadian rhythms to optimise medication efficacy, respectively, and hold much potential in the treatment of sepsis and septic shock. Despite knowledge of how circadian rhythms change in these grave conditions, very little research has been undertaken on the use of these therapies in support of sepsis management. This review details the circadian disruptions associated with sepsis and septic shock, the influence they have on morbidity and mortality, and the potential clinical benefits of circadian-modulating therapies.
Collapse
Affiliation(s)
- Stewart D. Ramsay
- Intestinal Nutrient Sensing Group, The University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Marni A. Nenke
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Emily J. Meyer
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - David J. Torpy
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Richard L. Young
- Intestinal Nutrient Sensing Group, The University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Ze Y, Wu Y, Tan Z, Li R, Li R, Gao W, Zhao Q. Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review. Bone Res 2025; 13:19. [PMID: 39870641 PMCID: PMC11772753 DOI: 10.1038/s41413-025-00403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/29/2025] Open
Abstract
Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent. Studies have shown that multiple signaling pathways are involved in the process of Bmal1 regulating bone and cartilage metabolism, but the exact regulatory mechanisms remain unclear. This paper reviews the signaling pathways by which Bmal1 regulates bone/cartilage metabolism, the upstream regulatory factors that control Bmal1, and the current Bmal1 knockout mouse models for research. We hope to provide new insights for the prevention and treatment of bone/cartilage diseases related to circadian rhythms.
Collapse
Affiliation(s)
- Yiting Ze
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongyao Wu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Tan
- Department of Implant Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Rui Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Rong Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenzhen Gao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Huo Y, Gao Y, Li B, Zhang P, Liu H, Wang G, Pang C, Wang Y, Bai L. Analysis of how melatonin-upregulated clock genes PER2 and CRY2 alleviate rheumatoid arthritis-associated interstitial lung disease. Eur J Pharmacol 2025; 986:177136. [PMID: 39551335 DOI: 10.1016/j.ejphar.2024.177136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Melatonin (Mel) serves as the central regulator for maintaining circadian rhythms and plays a crucial role not only in controlling the rhythmic clock, but also in several functional domains such as immunomodulation and anti-inflammation. In this study, we explored the clinical relevance of Mel and rheumatoid arthritis comorbid with interstitial lung disease (RA-ILD), and its potential therapeutic effects on arthropathy and pulmonary fibrosis (PF) in mice with collagen-induced arthritis (CIA). The results demonstrated that low serum levels of Mel were correlated with disease activity and severity of PF in RA-ILD patients. In addition, Mel was potentially efficacious in alleviating arthritis, bone destruction, and PF in a mouse model of CIA. Meanwhile, we observed that in lung tissues, the circadian-clock genes (CCGs) period circadian regulator 2 (PER2) and cryptochrome circadian regulator 2 (CRY2) were predominantly expressed in epithelial cells (ECs), and the regulation of their expression in ECs was closely correlated with Mel-mediated suppression of inflammatory responses and a significant reduction in macrophagic inflammatory activity. These results implied that Mel and its associated CCGs might play important regulatory roles in RA-ILD and its associated pathological processes.
Collapse
Affiliation(s)
- Yinping Huo
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Yajie Gao
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China
| | - Bingle Li
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Peiyao Zhang
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Huiyang Liu
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Guan Wang
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Chunyan Pang
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China
| | - Yongfu Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China.
| | - Li Bai
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China.
| |
Collapse
|
6
|
Liu Q, Zhang Y. Biological Clock Perspective in Rheumatoid Arthritis. Inflammation 2024:10.1007/s10753-024-02120-4. [PMID: 39126449 DOI: 10.1007/s10753-024-02120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic polyarticular pain, and its main pathological features include inflammatory cell infiltration, synovial fibroblast proliferation, and cartilage erosion. Immune cells, synovial cells and neuroendocrine factors play pivotal roles in the pathophysiological mechanism underlying rheumatoid arthritis. Biological clock genes regulate immune cell functions, which is linked to rhythmic changes in arthritis pathology. Additionally, the interaction between biological clock genes and neuroendocrine factors is also involved in rhythmic changes in rheumatoid arthritis. This review provides an overview of the contributions of circadian rhythm genes to RA pathology, including their interaction with the immune system and their involvement in regulating the secretion and function of neuroendocrine factors. A molecular understanding of the role of the circadian rhythm in RA may offer insights for effective disease management.
Collapse
Affiliation(s)
- Qingxue Liu
- Gengjiu Clinical College of Anhui Medical University; Anhui Zhongke Gengjiu Hospital, Hefei, 230051, China
| | - Yihao Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
8
|
Downton P, Dickson SH, Ray DW, Bechtold DA, Gibbs JE. Fibroblast-like synoviocytes orchestrate daily rhythmic inflammation in arthritis. Open Biol 2024; 14:240089. [PMID: 38981514 DOI: 10.1098/rsob.240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.
Collapse
Affiliation(s)
- Polly Downton
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Suzanna H Dickson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - David W Ray
- NIHR Oxford Health Biomedical Research Centre and NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, and Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford OX3 7LE, UK
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
9
|
Huang M, Wu Y, Li Y, Chen X, Feng J, Li Z, Li J, Chen J, Lu Y, Feng Y. Circadian clock-related genome-wide mendelian randomization identifies putatively genes for ulcerative colitis and its comorbidity. BMC Genomics 2024; 25:130. [PMID: 38302916 PMCID: PMC10832088 DOI: 10.1186/s12864-024-10003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Circadian rhythm is crucial to the function of the immune system. Disorders of the circadian rhythm can contribute to inflammatory diseases such as Ulcerative colitis (UC). This Mendelian Randomization (MR) analysis applies genetic tools to represent the aggregated statistical results of exposure to circadian rhythm disorders and UC and its comorbidities, allowing for causal inferences. METHODS Summary statistics of protein, DNA methylation and gene expression quantitative trait loci in individuals of European ancestry (pQTL, mQTL, and eQTL, respectively) were used. Genetic variants located within or near 152 circadian clock-related genes and closely related to circadian rhythm disorders were selected as instrumental variables. Causal relationships with UC and its comorbidities were then estimated through employed Summary data-based Mendelian Randomization (SMR) and Inverse-Variance-Weighted MR (IVW-MR). RESULTS Through preliminary SMR analysis, we identified a potential causal relationship between circadian clock-related genes and UC along with its comorbidities, which was further confirmed by IVW-MR analysis. Our study identified strong evidence of positive correlation involving seven overlapping genes (CSNK1E, OPRL1, PIWIL2, RORC, MAX, PPP5C, and AANAT) through MWAS and TWAS in UC, four overlapping genes (OPRL1, CHRNB2, FBXL17, and SIRT1) in UC with PSC, and three overlapping genes (ARNTL, USP7, and KRAS) in UC with arthropathy. CONCLUSIONS This SMR study demonstrates the causal effect of circadian rhythm disorders in UC and its comorbidities. Furthermore, our investigation pinpointed candidate genes that could potentially serve as drug targets.
Collapse
Affiliation(s)
- Mengfen Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiqiang Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Jiankun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Yue Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Yan Feng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| |
Collapse
|
10
|
Kaneshiro K, Nakagawa K, Tsukamoto H, Matsuoka G, Okuno S, Tateishi K, Terashima Y, Shibanuma N, Yoshida K, Hashiramoto A. The clock gene Bmal1 controls inflammatory mediators in rheumatoid arthritis fibroblast-like synoviocytes. Biochem Biophys Res Commun 2024; 691:149315. [PMID: 38043198 DOI: 10.1016/j.bbrc.2023.149315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
OBJECT To clarify the involvement of clock genes in the production of inflammatory mediators from RA-FLS, we examined the role of Bmal1, one of the master clock genes. METHODS RA-FLSs were stimulated with IL-1β (0, 20 ng/mL), IL-6 (0, 20 ng/mL), IL-17 (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expression of Bmal1, MMP-3, CCL2, IL-6, IL-7 and IL-15 by qPCR and immunofluorescence staining. After silencing Bmal1, RA-FLSs were stimulated with IL-1β (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expressions of inflammatory mediators; MMP-3, CCL2, IL-6 and IL-15 by qPCR, ELISA and immunofluorescence staining. RESULTS Bmal1 expressions were increased by IL-1β, TNF-α and IFN-γ stimulations. Under stimulations with TNF-α, IL-1β, and IFN-γ, mRNA and protein expressions of MMP-3, CCL2 and IL-6 were suppressed by siBmal1. CONCLUSION Results indicate that Bmal1 contributes the production of MMP-3, CCL2, and IL-6 from RA-FLS, implying Bmal1 is involved in the pathogenesis of RA by regulating the inflammation.
Collapse
Affiliation(s)
- Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| | - Kanako Nakagawa
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hikari Tsukamoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Genta Matsuoka
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Seitaro Okuno
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Koji Tateishi
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | | | - Nao Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - Kohsuke Yoshida
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
11
|
Zhou Q, Hu H, Yang Y, Kang Y, Lan X, Wu X, Guo Z, Pan C. Insertion/deletion (Indel) variant of the goat RORA gene is associated with growth traits. Anim Biotechnol 2023; 34:2175-2182. [PMID: 35622416 DOI: 10.1080/10495398.2022.2078980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
RAR related orphan receptor A (RORA), which encodes the retinoid-acid-related orphan receptor alpha (RORα), is a clock gene found in skeletal muscle. Several studies have shown that RORα plays an important role in bone formation, suggesting that RORA gene may take part in the regulation of growth and development. The purpose of this research is to study the insertion/deletion (indel) variations of the RORA gene and investigate the relationship with the growth traits of Shaanbei white cashmere (SBWC) goats. Herein, the current study identified that the P4-11-bp and P11-28-bp deletion sites are polymorphic among 12 pairs of primers within the RORA gene in the SBWC goats (n = 641). Moreover, the P11-28-bp deletion locus was significantly related to the body height (p = 0.046), height at hip cross (p = 0.012), and body length (p = 0.003). Both of P4-11-bp and P11-28-bp indels showed the moderate genetic diversity (0.25
Collapse
Affiliation(s)
- Qian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huina Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhengang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Animal Husbandry and Veterinary Science Institute of Bijie city, Bijie, Guizhou, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Wei J, Zhang S, Chen Z, Tu S, Wang Y, Feng Y, Kuang Z, Wu L, Ai H. The prevalence of temporomandibular disorder and temporomandibular morphology among diverse chronotype profiles. Chronobiol Int 2023; 40:1444-1453. [PMID: 37850303 DOI: 10.1080/07420528.2023.2270054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
This study investigates the influence of chronotype on the prevalence of temporomandibular joint disorders (TMD) and the morphology of temporomandibular joint (TMJ). According to the Morningness-Eveningness Questionnaire-Self-Assessment, the participants were divided into morning group (n = 30), intermediate group (n = 83), and evening group (n = 30). Thirty participants were randomly selected from the intermediate group for subsequent examination and measurements. The morphology of TMJs was investigated using questionnaire and clinical examination form in Diagnostic Criteria for Temporomandibular Disorder. Meanwhile, the morphological results of TMJs were measured from cone-beam computed tomography images. The prevalence rate of TMD in the morning group (23%) was significantly lower than that in the intermediate group (56.7%), while there was no difference between the evening (53.4%) and intermediate groups. As to morphological measurements, there was no significant difference among three groups in mediolateral width of condylar process, anteroposterior width of condylar process, radius of condyle, medial joint space, lateral joint space, condylar stress angle, horizontal condylar inclination, width of glenoid fossa, depth of glenoid fossa, and posterior joint space, while there was a significant difference in horizontal condylar angle (p = 0.00490), articular eminence inclination (p < .0001), anterior joint space (p = 0.0163), and superior joint space (p = 0.0004). The morphology of TMJ in the morning group was better than that in the evening and intermediate groups. An association was found between TMD prevalence, temporomandibular morphology, and chronotype.
Collapse
Affiliation(s)
- Jiaming Wei
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sai Zhang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoqin Tu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Feng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhili Kuang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liping Wu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34:1677-1701. [PMID: 37393580 DOI: 10.1007/s00198-023-06836-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.
Collapse
Affiliation(s)
- Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Wilantri S, Grasshoff H, Lange T, Gaber T, Besedovsky L, Buttgereit F. Detecting and exploiting the circadian clock in rheumatoid arthritis. Acta Physiol (Oxf) 2023; 239:e14028. [PMID: 37609862 DOI: 10.1111/apha.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Over the past four decades, research on 24-h rhythms has yielded numerous remarkable findings, revealing their genetic, molecular, and physiological significance for immunity and various diseases. Thus, circadian rhythms are of fundamental importance to mammals, as their disruption and misalignment have been associated with many diseases and the abnormal functioning of many physiological processes. In this article, we provide a brief overview of the molecular regulation of 24-h rhythms, their importance for immunity, the deleterious effects of misalignment, the link between such pathological rhythms and rheumatoid arthritis (RA), and the potential exploitation of chronobiological rhythms for the chronotherapy of inflammatory autoimmune diseases, using RA as an example.
Collapse
Affiliation(s)
- Siska Wilantri
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | | | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
15
|
Juliana N, Azmi L, Effendy NM, Mohd Fahmi Teng NI, Abu IF, Abu Bakar NN, Azmani S, Yazit NAA, Kadiman S, Das S. Effect of Circadian Rhythm Disturbance on the Human Musculoskeletal System and the Importance of Nutritional Strategies. Nutrients 2023; 15:nu15030734. [PMID: 36771440 PMCID: PMC9920183 DOI: 10.3390/nu15030734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The circadian system in the human body responds to daily environmental changes to optimise behaviour according to the biological clock and also influences various physiological processes. The suprachiasmatic nuclei are located in the anterior hypothalamus of the brain, and they synchronise to the 24 h light/dark cycle. Human physiological functions are highly dependent on the regulation of the internal circadian clock. Skeletal muscles comprise the largest collection of peripheral clocks in the human body. Both central and peripheral clocks regulate the interaction between the musculoskeletal system and energy metabolism. The skeletal muscle circadian clock plays a vital role in lipid and glucose metabolism. The pathogenesis of osteoporosis is related to an alteration in the circadian rhythm. In the present review, we discuss the disturbance of the circadian rhythm and its resultant effect on the musculoskeletal system. We also discuss the nutritional strategies that are potentially effective in maintaining the system's homeostasis. Active collaborations between nutritionists and physiologists in the field of chronobiological and chrononutrition will further clarify these interactions. This review may be necessary for successful interventions in reducing morbidity and mortality resulting from musculoskeletal disturbances.
Collapse
Affiliation(s)
- Norsham Juliana
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
- Correspondence: ; Tel.: +60-13-331-1706
| | - Liyana Azmi
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Nadia Mohd Effendy
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | | | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Malaysia
| | - Nur Nabilah Abu Bakar
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Sahar Azmani
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Noor Anisah Abu Yazit
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Suhaini Kadiman
- Anaesthesia and Intensive Care Unit, National Heart Institute, Kuala Lumpur 50400, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
16
|
Zhu Y, Liu Y, Escames G, Yang Z, Zhao H, Qian L, Xue C, Xu D, Acuña-Castroviejo D, Yang Y. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 2022; 81:101725. [PMID: 36029999 DOI: 10.1016/j.arr.2022.101725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The old people often suffer from circadian rhythm disturbances, which in turn accelerate aging. Many aging-related degenerative diseases such as Alzheimer's disease, Parkinson's disease, and osteoarthritis have an inextricable connection with circadian rhythm. In light of the predominant effects of clock genes on regulating circadian rhythm, we systematically present the elaborate network of roles that clock genes play in aging in this review. First, we briefly introduce the basic background regarding clock genes. Second, we systemically summarize the roles of clock genes in aging and aging-related degenerative diseases. Third, we discuss the relationship between clock genes polymorphisms and aging. In summary, this review is intended to clarify the indispensable roles of clock genes in aging and sheds light on developing clock genes as anti-aging targets.
Collapse
Affiliation(s)
- Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chengxu Xue
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Danni Xu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
17
|
Luengas-Martinez A, Paus R, Iqbal M, Bailey L, Ray DW, Young HS. Circadian rhythms in psoriasis and the potential of chronotherapy in psoriasis management. Exp Dermatol 2022; 31:1800-1809. [PMID: 35851722 DOI: 10.1111/exd.14649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023]
Abstract
The physiology and pathology of the skin are influenced by daily oscillations driven by a master clock located in the brain, and peripheral clocks in individual cells. The pathogenesis of psoriasis is circadian-rhythmic, with flares of disease and symptoms such as itch typically being worse in the evening/night-time. Patients with psoriasis have changes in circadian oscillations of blood pressure and heart rate, supporting wider circadian disruption. In addition, shift work, a circadian misalignment challenge, is associated with psoriasis. These features may be due to underlying circadian control of key effector elements known to be relevant in psoriasis such as cell cycle, proliferation, apoptosis and inflammation. Indeed, peripheral clock pathology may lead to hyperproliferation of keratinocytes in the basal layers, insufficient apoptosis of differentiating keratinocytes in psoriatic epidermis, dysregulation of skin-resident and migratory immune cells and modulation of angiogenesis through circadian oscillation of vascular endothelial growth factor A (VEGF-A) in epidermal keratinocytes. Chronotherapeutic effects of topical steroids and topical vitamin D analogues have been reported, suggesting that knowledge of circadian phase may improve the efficacy, and therapeutic index of treatments for psoriasis. In this viewpoint essay, we review the current literature on circadian disruption in psoriasis. We explore the hypothesis that psoriasis is circadian-driven. We also suggest that investigation of the circadian components specific to psoriasis and that the in vitro investigation of circadian regulation of psoriasis will contribute to the development of a novel chronotherapeutic treatment strategy for personalised psoriasis management. We also propose that circadian oscillations of VEGF-A offer an opportunity to enhance the efficacy and tolerability of a novel anti-VEGF-A therapeutic approach, through the timed delivery of anti-VEGF-A drugs.
Collapse
Affiliation(s)
- Andrea Luengas-Martinez
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Muenster, Germany
- CUTANEON, Hamburg, Germany
| | - Mudassar Iqbal
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Laura Bailey
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Helen S Young
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
He X, Yu M, Zhao J, Wang A, Yin J, Wang H, Qiu J, He X, Wu X. Chrono-moxibustion adjusts circadian rhythm of CLOCK and BMAL1 in adjuvant-induced arthritic rats. Am J Transl Res 2022; 14:4880-4897. [PMID: 35958509 PMCID: PMC9360894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The clinical symptoms of rheumatoid arthritis (RA) have significant circadian rhythms, with morning stiffness and joint pain. Moxibustion is effective in the treatment of RA, while the underlying therapeutic mechanisms remain limited. Thus, we explored whether moxibustion could adjust the circadian rhythm of RA by modulating the core clock genes CLOCK and BMAL1 at the molecular level. METHODS 144 Sprague Dawley rats were randomly divided into four groups: control group (group A), model group (group B), 7-9 am moxibustion treatment group (group C), and 5-7 pm moxibustion treatment group (group D). Each group was divided into 6 time points (0 am, 4 am, 8 am, 12 N, 6 pm, and 8 pm) with an equal number of rats at each time point. Except for group A, all rats were injected with Freund's Complete Adjuvant (FCA) 0.15 ml on the right foot pad to establish the RA model. The rats of the two moxibustion treatment groups were respectively subjected to moxibustion at 7-9 am and 5-7 pm. After 3 weeks of treatment, the tissues were collected at 6 time points during the next 24 hours. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to test the mRNA expression of CLOCK and BMAL1 in the hypothalamus and synovial tissues. CLOCK and BMAL1 protein expression in synovial tissues were detected with western blot. RESULTS Compared to group A, group B showed significantly down-regulated expression levels of CLOCK and BMLA1 at synovial tissue (P < 0.05), while no statistically significant difference was found in the hypothalamus (P > 0.05). The expression levels of CLOCK and BMLA1 were up-regulated in the moxibustion treatment groups in different tissues, especially in synovial tissue (P < 0.05) compared to group B. Nevertheless, no difference was observed between groups C and D (P > 0.05). CONCLUSIONS Moxibustion could treat RA by modulating clock core genes CLOCK and BMAL1 to regulate the circadian rhythm. However, there was no significant difference between the 7-9 am moxibustion treatment group and the 5-7 pm moxibustion treatment group. This study provides a basis for research on moxibustion in the treatment of RA.
Collapse
Affiliation(s)
- Xinling He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Mingfang Yu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Luzhou T.C.M. HospitalLuzhou 646000, Sichuan, China
| | - Jiasong Zhao
- Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610072, Sichuan, China
| | - Aiyang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Haoyu Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Jiao Qiu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Xueyi He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Xiao Wu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| |
Collapse
|
19
|
Du Z, You X, Wu D, Huang S, Zhou Z. Rhythm disturbance in osteoarthritis. Cell Commun Signal 2022; 20:70. [PMID: 35610652 PMCID: PMC9128097 DOI: 10.1186/s12964-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is one of the main causes of disabilities among older people. To date, multiple disease-related molecular networks in OA have been identified, including abnormal mechanical loadings and local inflammation. These pathways have not, however, properly elucidated the mechanism of OA progression. Recently, sufficient evidence has suggested that rhythmic disturbances in the central nervous system (CNS) and local joint tissues affect the homeostasis of joint and can escalate pathological changes of OA. This is accompanied with an exacerbation of joint symptoms that interfere with the rhythm of CNS in reverse. Eventually, these processes aggravate OA progression. At present, the crosstalk between joint tissues and biological rhythm remains poorly understood. As such, the mechanisms of rhythm changes in joint tissues are worth study; in particular, research on the effect of rhythmic genes on metabolism and inflammation would facilitate the understanding of the natural rhythms of joint tissues and the OA pathology resulting from rhythm disturbance. Video Abstract
Collapse
Affiliation(s)
- Ze Du
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuanhe You
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Diwei Wu
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shishu Huang
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Liang C, Ke Q, Liu Z, Ren J, Zhang W, Hu J, Wang Z, Chen H, Xia K, Lai X, Wang Q, Yang K, Li W, Wu Z, Wang C, Yan H, Jiang X, Ji Z, Ma M, Long X, Wang S, Wang H, Sun H, Belmonte J, Qu J, Xiang A, Liu GH. BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res 2022; 50:3323-3347. [PMID: 35286396 PMCID: PMC8989534 DOI: 10.1093/nar/gkac146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aging in humans is intricately linked with alterations in circadian rhythms concomitant with physiological decline and stem cell exhaustion. However, whether the circadian machinery directly regulates stem cell aging, especially in primates, remains poorly understood. In this study, we found that deficiency of BMAL1, the only non-redundant circadian clock component, results in an accelerated aging phenotype in both human and cynomolgus monkey mesenchymal progenitor cells (MPCs). Unexpectedly, this phenotype was mainly attributed to a transcription-independent role of BMAL1 in stabilizing heterochromatin and thus preventing activation of the LINE1-cGAS-STING pathway. In senescent primate MPCs, we observed decreased capacity of BMAL1 to bind to LINE1 and synergistic activation of LINE1 expression. Likewise, in the skin and muscle tissues from the BMAL1-deficient cynomolgus monkey, we observed destabilized heterochromatin and aberrant LINE1 transcription. Altogether, these findings uncovered a noncanonical role of BMAL1 in stabilizing heterochromatin to inactivate LINE1 that drives aging in primate cells.
Collapse
Affiliation(s)
- Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haoteng Yan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Miyang Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing 400062, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
21
|
Gray KJ, Gibbs JE. Adaptive immunity, chronic inflammation and the clock. Semin Immunopathol 2022; 44:209-224. [PMID: 35233691 PMCID: PMC8901482 DOI: 10.1007/s00281-022-00919-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
The adaptive arm of the immune system facilitates recognition of specific foreign pathogens and, via the action of T and B lymphocytes, induces a fine-tuned response to target the pathogen and develop immunological memory. The functionality of the adaptive immune system exhibits daily 24-h variation both in homeostatic processes (such as lymphocyte trafficking and development of T lymphocyte subsets) and in responses to challenge. Here, we discuss how the circadian clock exerts influence over the function of the adaptive immune system, considering the roles of cell intrinsic clockwork machinery and cell extrinsic rhythmic signals. Inappropriate or misguided actions of the adaptive immune system can lead to development of autoimmune diseases such as rheumatoid arthritis, ulcerative colitis and multiple sclerosis. Growing evidence indicates that disturbance of the circadian clock has negative impact on development and progression of these chronic inflammatory diseases and we examine current understanding of clock-immune interactions in the setting of these inflammatory conditions. A greater appreciation of circadian control of adaptive immunity will facilitate further understanding of mechanisms driving daily variation in disease states and drive improvements in the diagnosis and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kathryn J Gray
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
22
|
Németh V, Horváth S, Kinyó Á, Gyulai R, Lengyel Z. Expression Patterns of Clock Gene mRNAs and Clock Proteins in Human Psoriatic Skin Samples. Int J Mol Sci 2021; 23:121. [PMID: 35008548 PMCID: PMC8745255 DOI: 10.3390/ijms23010121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic inflammatory skin disorder that can be associated with sleep disturbance and negatively influence the daily rhythm. The link between the pathomechanism of psoriasis and the circadian rhythm has been suggested by several previous studies. However, there are insufficient data on altered clock mechanisms in psoriasis to prove these theories. Therefore, we investigated the expression of the core clock genes in human psoriatic lesional and non-lesional skin and in human adult low calcium temperature (HaCaT) keratinocytes after stimulation with pro-inflammatory cytokines. Furthermore, we examined the clock proteins in skin biopsies from psoriatic patients by immunohistochemistry. We found that the clock gene transcripts were elevated in psoriatic lesions, especially in non-lesional psoriatic areas, except for rev-erbα, which was consistently downregulated in the psoriatic samples. In addition, the REV-ERBα protein showed a different epidermal distribution in non-lesional skin than in healthy skin. In cytokine-treated HaCaT cells, changes in the amplitude of the bmal1, cry1, rev-erbα and per1 mRNA oscillation were observed, especially after TNFα stimulation. In conclusion, in our study a perturbation of clock gene transcripts was observed in uninvolved and lesional psoriatic areas compared to healthy skin. These alterations may serve as therapeutic targets and facilitate the development of chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
| | | | | | | | - Zsuzsanna Lengyel
- Department of Dermatology, Venereology and Oncodermatology, Medical School, University of Pécs, H-7632 Pecs, Hungary; (V.N.); (S.H.); (Á.K.); (R.G.)
| |
Collapse
|
23
|
Cermakian N, Stegeman SK, Tekade K, Labrecque N. Circadian rhythms in adaptive immunity and vaccination. Semin Immunopathol 2021; 44:193-207. [PMID: 34825270 DOI: 10.1007/s00281-021-00903-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Adaptive immunity allows an organism to respond in a specific manner to pathogens and other non-self-agents. Also, cells of the adaptive immune system, such as T and B lymphocytes, can mediate a memory of an encounter with a pathogen, allowing a more efficient response to a future infection. As for other aspects of physiology and of the immune system, the adaptive immune system is regulated by circadian clocks. Consequently, the development, differentiation, and trafficking between tissues of adaptive immune cells have been shown to display daily rhythms. Also, the response of T cells to stimuli (e.g., antigen presentation to T cells by dendritic cells) varies according to a circadian rhythm, due to T cell-intrinsic mechanisms as well as cues from other tissues. The circadian control of adaptive immune response has implications for our understanding of the fight against pathogens as well as auto-immune diseases, but also for vaccination, a preventive measure based on the development of immune memory.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Douglas Research Centre, McGill University, 6875 Boulevard LaSalle, Montreal, QC, H4H 1R3, Canada.
| | - Sophia K Stegeman
- Douglas Research Centre, McGill University, 6875 Boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
| | - Kimaya Tekade
- Douglas Research Centre, McGill University, 6875 Boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
| | - Nathalie Labrecque
- Hôpital Maisonneuve Rosemont Research Centre, Département de Médecine and Département de Microbiologie, infectiologie et immunologie, Université de Montréal, QC, H1T 2M4, Montreal, Canada
| |
Collapse
|
24
|
Ursini F, De Giorgi A, D’Onghia M, De Giorgio R, Fabbian F, Manfredini R. Chronobiology and Chronotherapy in Inflammatory Joint Diseases. Pharmaceutics 2021; 13:1832. [PMID: 34834246 PMCID: PMC8621834 DOI: 10.3390/pharmaceutics13111832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Circadian rhythm perturbations can impact the evolution of different conditions, including autoimmune diseases. This narrative review summarizes the current understanding of circadian biology in inflammatory joint diseases and discusses the potential application of chronotherapy. Proinflammatory cytokines are key players in the development and progression of rheumatoid arthritis (RA), regulating cell survival/apoptosis, differentiation, and proliferation. The production and secretion of inflammatory cytokines show a dependence on the human day-night cycle, resulting in changing cytokine plasma levels over 24 h. Moreover, beyond the circadian rhythm of cytokine secretion, disturbances in timekeeping mechanisms have been proposed in RA. Taking into consideration chronotherapy concepts, modified-release (MR) prednisone tablets have been introduced to counteract the negative effects of night-time peaks of proinflammatory cytokines. Low-dose MR prednisone seems to be able to improve the course of RA, reduce morning stiffness and morning serum levels of IL-6, and induce significant clinical benefits. Additionally, methotrexate (MTX) chronotherapy has been reported to be associated with a significant improvement in RA activity score. Similar effects have been described for polymyalgia rheumatica and gout, although the available literature is still limited. Growing knowledge of chronobiology applied to inflammatory joint diseases could stimulate the development of new drug strategies to treat patients in accordance with biological rhythms and minimize side effects.
Collapse
Affiliation(s)
- Francesco Ursini
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.U.); (M.D.)
| | - Alfredo De Giorgi
- Clinica Medica Unit, Department of Medical Sciences, University of Ferrara, via L. Borsari 47, 44121 Ferrara, Italy;
| | - Martina D’Onghia
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.U.); (M.D.)
| | - Roberto De Giorgio
- Internal Medicine II Unit, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Fabbian
- Clinica Medica Unit, Department of Medical Sciences, University of Ferrara, via L. Borsari 47, 44121 Ferrara, Italy;
| | - Roberto Manfredini
- Clinica Medica Unit, Department of Medical Sciences, University of Ferrara, via L. Borsari 47, 44121 Ferrara, Italy;
| |
Collapse
|
25
|
Palomino-Segura M, Hidalgo A. Circadian immune circuits. J Exp Med 2021; 218:211639. [PMID: 33372990 PMCID: PMC7774593 DOI: 10.1084/jem.20200798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Immune responses are gated to protect the host against specific antigens and microbes, a task that is achieved through antigen- and pattern-specific receptors. Less appreciated is that in order to optimize responses and to avoid collateral damage to the host, immune responses must be additionally gated in intensity and time. An evolutionary solution to this challenge is provided by the circadian clock, an ancient time-keeping mechanism that anticipates environmental changes and represents a fundamental property of immunity. Immune responses, however, are not exclusive to immune cells and demand the coordinated action of nonhematopoietic cells interspersed within the architecture of tissues. Here, we review the circadian features of innate immunity as they encompass effector immune cells as well as structural cells that orchestrate their responses in space and time. We finally propose models in which the central clock, structural elements, and immune cells establish multidirectional circadian circuits that may shape the efficacy and strength of immune responses and other physiological processes.
Collapse
Affiliation(s)
- Miguel Palomino-Segura
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Song X, Bai H, Meng X, Xiao J, Gao L. Drivers of phenotypic variation in cartilage: Circadian clock genes. J Cell Mol Med 2021; 25:7593-7601. [PMID: 34213828 PMCID: PMC8358851 DOI: 10.1111/jcmm.16768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/07/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Endogenous homeostasis and peripheral tissue metabolism are disrupted by irregular fluctuations in activation, movement, feeding and temperature, which can accelerate negative biological processes and lead to immune reactions, such as rheumatoid arthritis (RA) and osteoarthritis (OA). This review summarizes abnormal phenotypes in articular joint components such as cartilage, bone and the synovium, attributed to the deletion or overexpression of clock genes in cartilage or chondrocytes. Understanding the functional mechanisms of different genes, the differentiation of mouse phenotypes and the prevention of joint ageing and disease will facilitate future research.
Collapse
Affiliation(s)
- Xiaopeng Song
- College of Veterinary Medicine, Heilongjiang Key Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Bai
- College of Veterinary Medicine, Heilongjiang Key Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Xinghua Meng
- College of Veterinary Medicine, Heilongjiang Key Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Jianhua Xiao
- College of Veterinary Medicine, Heilongjiang Key Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Heilongjiang Key Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
27
|
Kinouchi K, Mikami Y, Kanai T, Itoh H. Circadian rhythms in the tissue-specificity from metabolism to immunity; insights from omics studies. Mol Aspects Med 2021; 80:100984. [PMID: 34158177 DOI: 10.1016/j.mam.2021.100984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022]
Abstract
Creatures on earth have the capacity to preserve homeostasis in response to changing environments. The circadian clock enables organisms to adapt to daily predictable rhythms in surrounding conditions. In mammals, circadian clocks constitute hierarchical network, where the central pacemaker in hypothalamic suprachiasmatic nucleus (SCN) serves as a time-keeping machinery and governs peripheral clocks in every other organ through descending neural and humoral factors. The central clock in SCN is reset by light, whilst peripheral clocks are entrained by feeding-fasting rhythms, emphasizing the point that temporal patterns of nutrient availability specifies peripheral clock functions. Indeed, emerging evidence revealed various types of diets or timing of food intake reprogram circadian rhythms in a tissue specific manner. This advancement in understanding of mechanisms underlying tissue specific responsiveness of circadian oscillators to nutrients at the genomic and epigenomic levels is largely owing to employment of state-of-the-art technologies. Specifically, high-throughput transcriptome, proteome, and metabolome have provided insights into how genes, proteins, and metabolites behave over circadian cycles in a given tissue under a certain dietary condition in an unbiased fashion. Additionally, combinations with specialized types of sequencing such as nascent-seq and ribosomal profiling allow us to dissect how circadian rhythms are generated or obliterated at each step of gene regulation. Importantly, chromatin immunoprecipitation followed by deep sequencing methods provide chromatin landscape in terms of regulatory mechanisms of circadian gene expression. In this review, we outline recent discoveries on temporal genomic and epigenomic regulation of circadian rhythms, discussing entrainment of the circadian rhythms by feeding as a fundamental new comprehension of metabolism and immune response, and as a potential therapeutic strategy of metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
28
|
Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021; 20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Circadian rhythm is a natural, endogenous process whose physiological functions are controlled by a set of clock genes. Disturbance of the clock genes have detrimental effects on both innate and adaptive immunity, which significantly enhance pro-inflammatory responses and susceptibility to autoimmune diseases via strictly controlling the individual cellular components of the immune system that initiate and perpetuate the inflammation pathways. Autoimmune diseases, especially rheumatoid arthritis (RA), often exhibit substantial circadian oscillations, and circadian rhythm is involved in the onset and progression of autoimmune diseases. Mounting evidence indicate that the synthetic ligands of circadian clock genes have the property of reducing the susceptibility and clinical severity of subjects. This review supplies an overview of the roles of circadian clock genes in the pathology of autoimmune diseases, including BMAL1, CLOCK, PER, CRY, REV-ERBα, and ROR. Furthermore, summarized some circadian clock genes as candidate genes for autoimmune diseases and current advancement on therapy of autoimmune diseases with synthetic ligands of circadian clock genes. The existing body of knowledge demonstrates that circadian clock genes are inextricably linked to autoimmune diseases. Future research should pay attention to improve the quality of life of patients with autoimmune diseases and reduce the effects of drug preparation on the normal circadian rhythms.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Brisbane, Australia
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Yu Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
29
|
Jones K, Angelozzi M, Gangishetti U, Haseeb A, de Charleroy C, Lefebvre V, Bhattaram P. Human Adult Fibroblast-like Synoviocytes and Articular Chondrocytes Exhibit Prominent Overlap in Their Transcriptomic Signatures. ACR Open Rheumatol 2021; 3:359-370. [PMID: 33931959 PMCID: PMC8207692 DOI: 10.1002/acr2.11255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Fibroblast‐like synoviocytes (FLS) and articular chondrocytes (AC) derive from a common pool of embryonic precursor cells. They are currently believed to engage in largely distinct differentiation programs to build synovium and articular cartilage and maintain healthy tissues throughout life. We tested this hypothesis by deeply characterizing and comparing their transcriptomic attributes. Methods We profiled the transcriptomes of freshly isolated AC, synovium, primary FLS, and dermal fibroblasts from healthy adult humans using bulk RNA sequencing assays and downloaded published single‐cell RNA sequencing data from freshly isolated human FLS. We integrated all data to define cell‐specific signatures and validated findings with quantitative reverse transcription PCR of human samples and RNA hybridization of mouse joint sections. Results We identified 212 AC and 168 FLS markers on the basis of exclusive or enriched expression in either cell and 294 AC/FLS markers on the basis of similar expression in both cells. AC markers included joint‐specific and pan‐cartilaginous genes. FLS and AC/FLS markers featured 37 and 55 joint‐specific genes, respectively, and 131 and 239 pan‐fibroblastic genes, respectively. These signatures included many previously unrecognized markers with potentially important joint‐specific roles. AC/FLS markers overlapped in their expression patterns among all FLS and AC subpopulations, suggesting that they fulfill joint‐specific properties in all, rather than in discrete, AC and FLS subpopulations. Conclusion This study broadens knowledge and identifies a prominent overlap of the human adult AC and FLS transcriptomic signatures. It also provides data resources to help further decipher mechanisms underlying joint homeostasis and degeneration and to improve the quality control of tissues engineered for regenerative treatments.
Collapse
Affiliation(s)
- Kyle Jones
- Emory University School of Medicine, Atlanta, Georgia
| | - Marco Angelozzi
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Abdul Haseeb
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Ravi Allada
- From the Department of Neurobiology, Northwestern University, Evanston (R.A.), and the Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago (J.B.) - both in Illinois
| | - Joseph Bass
- From the Department of Neurobiology, Northwestern University, Evanston (R.A.), and the Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago (J.B.) - both in Illinois
| |
Collapse
|
31
|
Liang S, Hu J, Zhang A, Li F, Li X. miR-155 induces endothelial cell apoptosis and inflammatory response in atherosclerosis by regulating Bmal1. Exp Ther Med 2020; 20:128. [PMID: 33082860 PMCID: PMC7557345 DOI: 10.3892/etm.2020.9259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death from vascular diseases worldwide, and endothelial cell (EC) dysfunction is the key cause of atherosclerosis. miR-155 was found to induce endothelial injury and to trigger atherosclerosis. In addition, brain and muscle ARNT-like protein-1 (Bmal1) has been found to be closely related to EC function. Therefore, the present study aimed to explore the mechanism underlying the regulation of Bmal1 by miR-155 in the induction of EC apoptosis and inflammatory response in atherosclerosis. The atherosclerosis model in apolipoprotein E (ApoE)- / - mice was established. miR-155 and Bmal1 expression was quantified by RT-qPCR and western blot analysis, respectively. The role of miR-155 and Bmal1 in atherosclerosis was evaluated through changes in cardiac function, plaque area, cardiomyocyte apoptosis, and inflammatory factor levels in mice. Moreover, the regulatory relationship between them was identified by dual-luciferase reporter gene assay to explore the mechanism of action of miR-155. After the modeling, the expression of miR-155 was upregulated and Bmal1 was downregulated in aorta, and there was a significant linear correlation between them. Upregulation of miR-155 increased the atherosclerotic plaque area, cell apoptosis, total cholesterol (TC) and triglyceride (TG), as well as weakened aortic diastolic function. However, opposite changes occurred after downregulation of miR-155 or an increase in Bmal1. In addition, the microRNA.org website predicted that there were targeted binding sites between miR-155 and Bmal1, which was verified with a dual-luciferase reporter gene assay. miR-155 was able to inhibit the expression by targeting Bmal1. Moreover, a rescue experiment showed that Bmal1 hindered the promotion of miR-155 in regards to atherosclerosis. In conclusion, miR-155 induces EC apoptosis and inflammatory response, weakens aortic diastolic function, and promotes the progression of atherosclerosis through targeted inhibition of Bmal1.
Collapse
Affiliation(s)
- Shuangchao Liang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Jiqiong Hu
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Andong Zhang
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Fangkuan Li
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiaoqiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
32
|
MacDonald IJ, Huang CC, Liu SC, Tang CH. Reconsidering the Role of Melatonin in Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21082877. [PMID: 32326031 PMCID: PMC7215432 DOI: 10.3390/ijms21082877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory joint disorder characterized by synovial proliferation and inflammation, with eventual joint destruction if inadequately treated. Modern therapies approved for RA target the proinflammatory cytokines or Janus kinases that mediate the initiation and progression of the disease. However, these agents fail to benefit all patients with RA, and many lose therapeutic responsiveness over time. More effective or adjuvant treatments are needed. Melatonin has shown beneficial activity in several animal models and clinical trials of inflammatory autoimmune diseases, but the role of melatonin is controversial in RA. Some research suggests that melatonin enhances proinflammatory activities and thus promotes disease activity in RA, while other work has documented substantial anti-inflammatory and immunoregulatory properties of melatonin in preclinical models of arthritis. In addition, disturbance of the circadian rhythm is associated with RA development and melatonin has been found to affect clock gene expression in joints of RA. This review summarizes current understanding about the immunopathogenic characteristics of melatonin in RA disease. Comprehensive consideration is required by clinical rheumatologists to balance the contradictory effects.
Collapse
Affiliation(s)
- Iona J. MacDonald
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan;
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +(886)-2205-2121 (ext. 7726)
| |
Collapse
|
33
|
Hand LE, Gray KJ, Dickson SH, Simpkins DA, Ray DW, Konkel JE, Hepworth MR, Gibbs JE. Regulatory T cells confer a circadian signature on inflammatory arthritis. Nat Commun 2020; 11:1658. [PMID: 32245954 PMCID: PMC7125185 DOI: 10.1038/s41467-020-15525-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
The circadian clock is an intrinsic oscillator that imparts 24 h rhythms on immunity. This clock drives rhythmic repression of inflammatory arthritis during the night in mice, but mechanisms underlying this effect are not clear. Here we show that the amplitude of intrinsic oscillators within macrophages and neutrophils is limited by the chronic inflammatory environment, suggesting that rhythms in inflammatory mediators might not be a direct consequence of intrinsic clocks. Anti-inflammatory regulatory T (Treg) cells within the joints show diurnal variation, with numbers peaking during the nadir of inflammation. Furthermore, the anti-inflammatory action of Treg cells on innate immune cells contributes to the night-time repression of inflammation. Treg cells do not seem to have intrinsic circadian oscillators, suggesting that rhythmic function might be a consequence of external signals. These data support a model in which non-rhythmic Treg cells are driven to rhythmic activity by systemic signals to confer a circadian signature to chronic arthritis.
Collapse
Affiliation(s)
- L E Hand
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - K J Gray
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - S H Dickson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D A Simpkins
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - J E Konkel
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - M R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - J E Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
34
|
Tang Z, Xu T, Li Y, Fei W, Yang G, Hong Y. Inhibition of CRY2 by STAT3/miRNA-7-5p Promotes Osteoblast Differentiation through Upregulation of CLOCK/BMAL1/P300 Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:865-876. [PMID: 31982773 PMCID: PMC6994415 DOI: 10.1016/j.omtn.2019.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Accumulating evidence indicates that cryptochrome circadian regulatory (CRY) proteins have emerged as crucial regulators of osteogenic differentiation. However, the associated mechanisms are quite elusive. In this study, we show that knockdown of CRY2 downregulated the expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN) to facilitate osteoblast differentiation. Further study identified that CRY2 was directly targeted by microRNA (miR)-7-5p, which was highly induced during osteoblast differentiation. The expression of Runx2, ALP, collagen type I alpha 1 (Col1a1), and OCN was upregulated by overexpression of miR-7-5p and induction of osteoblast differentiation. Moreover, signal transducer and activator of transcription 3 (STAT3) transcriptionally activated miR-7-5p to significantly enhance the expression of above osteogenic marker genes and mineral formation. However, overexpression of CRY2 abolished the osteogenic differentiation induced by miR-7-5p overexpression. Silencing of CRY2 unraveled the binding of CRY2 with the circadian locomotor output cycles kaput (CLOCK)/brain and muscle ARNT-like 1 (BMAL1) complex to release CLOCK/BMAL1, which facilitated the binding of CLOCK/BMAL1 to the promoter region of the P300 E-box to stimulate the transcription of P300. P300 subsequently promoted the acetylation of histone 3 and the formation of a transcriptional complex with Runx2 to enhance osteogenesis. Taken together, our study revealed that CRY2 is repressed by STAT3/miR-7-5p to promote osteogenic differentiation through CLOCK/BMAL1/P300 signaling. The involved molecules may be potentially targeted for treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhenghui Tang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; School of Life Sciences, Shanghai University, Shanghai 200244, China
| | - Tianyuan Xu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Yinghua Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yang Hong
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China.
| |
Collapse
|
35
|
Li YN, Fan ML, Liu HQ, Ma B, Dai WL, Yu BY, Liu JH. Dihydroartemisinin derivative DC32 inhibits inflammatory response in osteoarthritic synovium through regulating Nrf2/NF-κB pathway. Int Immunopharmacol 2019; 74:105701. [PMID: 31228817 DOI: 10.1016/j.intimp.2019.105701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
Synovitis is an aseptic inflammation that leads to joint effusion, pain and swelling. As one of the main drivers of pathogenesis in osteoarthritis (OA), the presence of synovitis contributes to pain, incidence and progression of OA. In our previous study, DC32 [(9α,12α-dihydroartemisinyl) bis(2'-chlorocinnmate)], a dihydroartemisinin derivative, was found to have an antirheumatic ability via immunosuppression, but the effect of DC32 on synovitis has not been fully illuminated. In this study, we chose to evaluate the effect and mechanism of DC32 on attenuating synovial inflammation. Fibroblast-like synoviocytes (FLSs) of papain-induced OA rats were isolated and cultured. And DC32 significantly inhibited the invasion and migration of cultured OA-FLSs, as well as the transcription of IL-6, IL-1β, CXCL12 and CX3CL1 in cultured OA-FLSs measured by qPCR. DC32 remarkably inhibited the activation of ERK and NF-κB pathway, increased the expression of Nrf2 and HO-1 in cultured OA-FLSs detected by western blot. DC32 inhibited the degradation and phosphorylation of IκBα which further prevented the phosphorylation of NF-κB p65 and the effect of DC32 could be relieved by siRNA for Nrf2. In papain-induced OA mice, DC32 significantly alleviated papain-induced mechanical allodynia, knee joint swelling and infiltration of inflammatory cell in synovium. DC32 upregulated the mRNA expression of Type II collagen and aggrecan, and downregulated the mRNA expression of MMP2, MMP3, MMP13 and ADAMTS-5 in the knee joints of papain-induced OA mice measured by qPCR. The level of TNF-α in the serum and secretion of TNF-α in the knee joints were also reduced by DC32 in papain-induced OA mice. In conclusion, DC32 inhibited the inflammatory response in osteoarthritic synovium through regulating Nrf2/NF-κB pathway and attenuated OA. In this way, DC32 may be a potential agent in the treatment of OA.
Collapse
Affiliation(s)
- Ya-Nan Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng-Lin Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Han-Qing Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bin Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Abstract
While many of intricacies of the mammalian circadian rhythm remain unknown, the role that this physiological clock plays in our everyday lives and within the global ecosystem is clearly evident. However, only recently has the importance of circadian rhythm in cartilage health and joint homeostasis been brought to light. A recent study by Hand and colleagues advances our understanding of these processes further by demonstrating that disruption of circadian clock regulation in mesenchymal cells not only has an impact on the development of joint structures, but on the inflammatory response and on the onset/pathogenesis of arthritis.
Collapse
Affiliation(s)
- Roman J Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
- Department of Anatomy and Cell Biology, University of Calgary, Calgary, Alberta, Canada.
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|