1
|
Yang J, Gong L, Zhu X, Wang Y, Li C. Mediation of Systemic Inflammation Response Index in the Association of Healthy Eating Index-2020 in Patientis with Periodontitis. ORAL HEALTH & PREVENTIVE DENTISTRY 2025; 23:225-232. [PMID: 40231719 DOI: 10.3290/j.ohpd.c_1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
PURPOSE To investigate the function of the Systemic Inflammation Response Index (SIRI) in the association of Healthy Eating Index (HEI) 2020 in patients with periodontitis risk. MATERIALS AND METHODS This study utilised data from the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2014, including participants's oral examination results, dietary records, and levels of inflammatory markers. The study employed HEI-2020 as the independent variable and periodontitis as the dependent variable, using weighted logistic regression analysis to examine the association between HEI-2020 and periodontitis. Additionally, restricted cubic splines (RCS) were employed to further explore the non-linear association between the two. Mediation analysis was conducted to investigate the role of SIRI in the association between HEI-2020 and periodontitis. RESULTS 3829 (34.5%) of the 9569 patients were diagnosed with periodontitis. In the weighted logistics regression model, HEI-2020 and the risk of periodontitis showed a statistically significant negative association (OR: 0.99, 95% CI: 0.98-1.00, p 0.001). The findings of the RCS curve showed a linear correlation (pnon-linear=0.684) between the risk of periodontitis and HEI-2020. With a mediation proportion of 9.82% (p 0.001), the findings of the mediation study indicated that SIRI partially mediated the relationship between HEI-2020 and periodontitis. CONCLUSION HEI-2020 and periodontitis risk are statistically significantly negatively correlated, and SIRI is a major mediating factor in this relationship. The study results may help clinicians better understand how a healthy diet impacts the risk of periodontal disease and identify the mediating role of SIRI in this association. This knowledge can guide personalised dietary and inflammation management strategies, enhancing oral and overall health by preventing and managing periodontal issues effectively.
Collapse
|
2
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
3
|
Ruskin DN, Martinez LA, Masino SA. Ketogenic diet, adenosine, and dopamine in addiction and psychiatry. Front Nutr 2025; 12:1492306. [PMID: 40129664 PMCID: PMC11932665 DOI: 10.3389/fnut.2025.1492306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
Adhering to the ketogenic diet can reduce or stop seizures, even when other treatments fail, via mechanism(s) distinct from other available therapies. These results have led to interest in the diet for treating conditions such as Alzheimer's disease, depression and schizophrenia. Evidence points to the neuromodulator adenosine as a key mechanism underlying therapeutic benefits of a ketogenic diet. Adenosine represents a unique and direct link among cell energy, neuronal activity, and gene expression, and adenosine receptors form functional heteromers with dopamine receptors. The importance of the dopaminergic system is established in addiction, as are the challenges of modulating the dopamine system directly. A mediator that could antagonize dopamine's effects would be useful, and adenosine is such a mediator due to its function and location. Studies report that the ketogenic diet improves cognition, sociability, and perseverative behaviors, and might improve depression. Many of the translational opportunities based on the ketogenic diet/adenosine link have come to the fore, including addiction, autism spectrum disorder, painful conditions, and a range of hyperdopaminergic disorders.
Collapse
|
4
|
Krejčová G, Novotná D, Bajgar A. Ketogenesis nutritionally supports brain during bacterial infection in Drosophila. Brain Behav Immun 2025; 125:280-291. [PMID: 39824470 DOI: 10.1016/j.bbi.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Mounting an immune response is a nutritionally demanding process that requires the systemic redistribution of energy stores towards the immune system. This is facilitated by cytokine-induced insulin resistance, which simultaneously promotes the mobilization of lipids and carbohydrates while limiting their consumption in immune-unrelated processes, such as development, growth, and reproduction. However, this adaptation also restricts the availability of nutrients to vital organs, which must then be sustained by alternative fuels. Here, we employed an experimental model of severe bacterial infection in Drosophila melanogaster to investigate whether ketogenesis may represent a metabolic adaptation for overcoming periods of nutritional scarcity during the immune response. We found that the immune response to severe bacterial infection is accompained by increased ketogenesis in the fat body and macrophages, leading to elevated levels of β-hydroxybutyrate in circulation. Although this metabolic adaptation is essential for survival during infection, it is not required for the elimination of the pathogen itself. Instead, ketone bodies predominately serve as an energy source for the brain neurons during this period of nutrient scarcity.
Collapse
Affiliation(s)
- Gabriela Krejčová
- University of South Bohemia, Faculty of Science, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic
| | - Diana Novotná
- University of South Bohemia, Faculty of Science, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- University of South Bohemia, Faculty of Science, Department of Molecular Biology and Genetics, Ceske Budejovice, Czech Republic.
| |
Collapse
|
5
|
Lavalle S, Scapaticci R, Masiello E, Salerno VM, Cuocolo R, Cannella R, Botteghi M, Orro A, Saggini R, Donati Zeppa S, Bartolacci A, Stocchi V, Piccoli G, Pegreffi F. Beyond the Surface: Nutritional Interventions Integrated with Diagnostic Imaging Tools to Target and Preserve Cartilage Integrity: A Narrative Review. Biomedicines 2025; 13:570. [PMID: 40149547 PMCID: PMC11940242 DOI: 10.3390/biomedicines13030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/29/2025] Open
Abstract
This narrative review provides an overview of the various diagnostic tools used to assess cartilage health, with a focus on early detection, nutrition intervention, and management of osteoarthritis. Early detection of cartilage damage is crucial for effective patient management. Traditional diagnostic tools like radiography and conventional magnetic resonance imaging (MRI) sequences are more suited to detecting late-stage structural changes. This paper highlights advanced imaging techniques, including sodium MRI, T2 mapping, T1ρ imaging, and delayed gadolinium-enhanced MRI of cartilage, which provide valuable biochemical information about cartilage composition, particularly the glycosaminoglycan content and its potential links to nutrition-related factors influencing cartilage health. Cartilage degradation is often linked with inflammation and measurable via markers like CRP and IL-6 which, although not specific to cartilage breakdown, offer insights into the inflammation affecting cartilage. In addition to imaging techniques, biochemical markers, such as collagen breakdown products and aggrecan fragments, which reflect metabolic changes in cartilage, are discussed. Emerging tools like optical coherence tomography and hybrid positron emission tomography-magnetic resonance imaging (PET-MRI) are also explored, offering high-resolution imaging and combined metabolic and structural insights, respectively. Finally, wearable technology and biosensors for real-time monitoring of osteoarthritis progression, as well as the role of artificial intelligence in enhancing diagnostic accuracy through pattern recognition in imaging data are addressed. While these advanced diagnostic tools hold great potential for early detection and monitoring of osteoarthritis, challenges remain in clinical translation, including validation in larger populations and integration into existing clinical workflows and personalized treatment strategies for cartilage-related diseases.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy; (S.L.); (V.M.S.); (F.P.)
| | - Rosa Scapaticci
- Institute for the Electromagnetic Sensing of the Environment, National Research Council of Italy, 80124 Naples, Italy;
| | - Edoardo Masiello
- Department of Radiology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Mario Salerno
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy; (S.L.); (V.M.S.); (F.P.)
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Matteo Botteghi
- Experimental Pathology Research Group, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy;
- Medical Physics Activities Coordination Centre, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Alessandro Orro
- Institute of Biomedical Technologies CNR, Via Fratelli Cervi, 93, 20054 Segrate, Italy;
| | - Raoul Saggini
- Faculty of Psychology, eCampus University, 22060 Novedrate, Italy;
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.B.); (G.P.)
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, 20132 Roma, Italy;
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.B.); (G.P.)
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, 20132 Roma, Italy;
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.B.); (G.P.)
| | - Francesco Pegreffi
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy; (S.L.); (V.M.S.); (F.P.)
- Recovery and Functional Rehabilitation Unit, Ospedale Umberto I, 94100 Enna, Italy
| |
Collapse
|
6
|
Kong L, Li S, Fu Y, Cai Q, Du X, Liang J, Ma T. Mitophagy in relation to chronic inflammation/ROS in aging. Mol Cell Biochem 2025; 480:721-731. [PMID: 38834837 DOI: 10.1007/s11010-024-05042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Various assaults on mitochondria occur during the human aging process, contributing to mitochondrial dysfunction. This mitochondrial dysfunction is intricately connected with aging and diseases associated with it. In vivo, the accumulation of defective mitochondria can precipitate inflammatory and oxidative stress, thereby accelerating aging. Mitophagy, an essential selective autophagy process, plays a crucial role in managing mitochondrial quality control and homeostasis. It is a highly specialized mechanism that systematically removes damaged or impaired mitochondria from cells, ensuring their optimal functioning and survival. By engaging in mitophagy, cells are able to maintain a balanced and stable environment, free from the potentially harmful effects of dysfunctional mitochondria. An ever-growing body of research highlights the significance of mitophagy in both aging and age-related diseases. Nonetheless, the association between mitophagy and inflammation or oxidative stress induced by mitochondrial dysfunction remains ambiguous. We review the fundamental mechanisms of mitophagy in this paper, delve into its relationship with age-related stress, and propose suggestions for future research directions.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xinyun Du
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
7
|
Dyson G, Barrett M, Schlupp L, Prinz E, Hannebut N, Szymczak A, Brawner CM, Jeffries MA. Ketogenic Diet-Associated Worsening of Osteoarthritis Histologic Secerity, Increased Pain Sensitivity and Gut Microbiome Dysbiosis in Mice. ACR Open Rheumatol 2025; 7:e11794. [PMID: 39853943 PMCID: PMC11760994 DOI: 10.1002/acr2.11794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/26/2025] Open
Abstract
OBJECTIVES Dietary interventions are a potentially powerful treatment option for knee osteoarthritis (OA). The objective of this study was to evaluate a well-formulated ketogenic diet (KD) in the context of knee OA histology and pain using the destabilization of the medial meniscus (DMM) mouse model and correlate with gut microbiome and systemic cytokine levels. METHODS Adult male mice underwent unilateral DMM or sham surgery and were then fed eight weeks of KD or chow. At baseline and every two weeks, mechanical allodynia of the operated and contralateral knees was assessed via analgesiometry. Knee joints were collected for histology, gut microbiome analysis was performed on cecal material via 16S sequencing, and serum cytokines were analyzed via Bio-Plex assay. RESULTS KD mice had worse histopathologic OA after DMM (mean ± SEM Osteoarthritis Research Society International score: KD-DMM: 4.0 ± 0.5 vs chow-DMM: 2.7 ± 0.08; P = 0.02). KD mice had increased mechanical allodynia postsurgery (P = 0.005 in mixed-effects model). The gut microbiome changed substantially with KD: 59 clades were altered by KD in DMM and 39 by KD in sham (36 were shared, 25 overlapped with previous murine OA studies). Several clades were correlated on an individual-mouse level with both histology and allodynia (eg, Lactobacillus histology P = 0.004, allodynia P = 1 × 10-4). Serum analysis showed four cytokines increased with KD (interleukin [IL]-1β, IL-2, IL-3, and IL-13). CONCLUSION KD started immediately after OA induction via DMM is associated with worsened histologic outcomes. KD also worsens mechanical allodynia after either DMM or sham surgery. KD induces significant gut microbiome dysbiosis in clades previously associated with murine OA.
Collapse
Affiliation(s)
- Gabby Dyson
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and the Oklahoma City Veterans Affairs Medical Center
| | - Montana Barrett
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and the Oklahoma City Veterans Affairs Medical Center
| | - Leoni Schlupp
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma City
| | - Emmaline Prinz
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma City
| | - Nicholas Hannebut
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and the Oklahoma City Veterans Affairs Medical Center
| | - Aleksander Szymczak
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma City
| | - Cindy Miranda Brawner
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and the Oklahoma City Veterans Affairs Medical Center
| | - Matlock A. Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, the University of Oklahoma Health Sciences Center, and the Oklahoma City Veterans Affairs Medical Center
| |
Collapse
|
8
|
Cai Z, Zhang Z, Leng J, Xie M, Zhang K, Zhang J, Zhang H, Hu H, Deng Y, Bai X, Song Q, Lai P. β-Hydroxybutyrate ameliorates osteoarthritis through activation of the ERBB3 signaling pathway in mice. J Bone Miner Res 2024; 40:140-153. [PMID: 39498503 DOI: 10.1093/jbmr/zjae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 01/07/2025]
Abstract
The ketogenic diet (KD) has demonstrated efficacy in ameliorating inflammation in rats with osteoarthritis (OA). However, the long-term safety of the KD and the underlying mechanism by which it delays OA remain unclear. We found that while long-term KD could ameliorate OA, it induced severe hepatic steatosis in mice. Consequently, we developed 2 versions of ketogenic-based diets: KD supplemented with vitamin D and intermittent KD. Both KD supplemented with vitamin D and intermittent KD effectively alleviated OA by significantly reducing the levels of inflammatory cytokines, cartilage loss, sensory nerve sprouting, and knee hyperalgesia without inducing hepatic steatosis. Furthermore, β-hydroxybutyrate (β-HB), a convenient energy carrier produced by adipocytes, could ameliorate OA without causing liver lesions. Mechanistically, β-HB enhanced chondrocyte autophagy and reduced apoptosis through the activation of Erb-B2 receptor tyrosine kinase 3 (ERBB3) signaling pathway; a pathway which was down-regulated in the articular chondrocytes from both OA patients and mice. Collectively, our findings highlighted the potential therapeutic value of β-HB and KD supplemented with vitamin D and intermittent KD approaches for managing OA.
Collapse
Affiliation(s)
- Zhiqing Cai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhimin Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiarong Leng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengyun Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kang Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingyi Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haiyan Zhang
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yinghu Deng
- Department of Spine Surgery, Tongling People's Hospital, Tongling, 244000, Anhui, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qiancheng Song
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pinglin Lai
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Hadžić K, Gregor A, Kofler B, Pignitter M, Duszka K. The beneficial impact of ketogenic diets on chemically-induced colitis in mice depends on the diet's lipid composition. J Nutr Biochem 2024; 134:109736. [PMID: 39128609 DOI: 10.1016/j.jnutbio.2024.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Previously, we showed that restrictive diets, including ketogenic diet (KD), have an anti-inflammatory impact on the healthy gastrointestinal tract of mice. Afterward, we found that energy-restricting diets mitigate inflammation in the dextran sodium sulfate (DSS) colitis mouse model. The current study aimed to verify the impact of KD on DSS colitis and assess if the diet's fat composition influences the outcomes of the intervention. Mice with mild chronic colitis were fed control chow, KD composed of long-chain triglycerides (KD LCT) or a KD containing a mix of LCT and medium-chain triglycerides (KD LCT/MCT). KDs did not reverse DSS-enhanced gut permeability and shortening of the colon. Both KDs had a similar impact on liver, cecum, and spleen weight, villi and colon length, the thickness of muscularis externa, and expression of ZO-1 and occludin. On the contrary, body weight, glutathione (GSH) and taurine-GSH levels, GSH-S transferase (GST), and myeloperoxidase (MPO) activity, as well as an abundance of several fecal bacteria, all were differentially affected by the two types of KDs. When compared to the DSS control diet, reduction in colon mucosa cytokines expression was stronger in KD LCT than in the KD LCT/MCT group. We conclude that the outcomes of the KD interventions in terms of potential therapeutical applications depend on lipid composition. KD LCT showed a strong positive impact on gut inflammation. A potential contribution of GSH to KD outcomes and a correlation between MPO activity and microbiota composition was identified.
Collapse
Affiliation(s)
- Kajs Hadžić
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Barbara Kofler
- Department of Pediatrics, Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Kawasaki R, Sakata A, Tatsumi K, Mitani S, Takeda M, Kasuda S, Matsumoto N, Harada S, Soeda T, Nishida Y, Yoshimura Y, Shima M. β-hydroxybutyrate suppresses pathological changes of blood-induced arthropathy in rats. Sci Rep 2024; 14:29696. [PMID: 39614095 DOI: 10.1038/s41598-024-77074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/18/2024] [Indexed: 12/01/2024] Open
Abstract
Arthropathy is a common complication in haemophilia and decreases quality of life. It has been known that concentrations of β-hydroxybutyrate (BHB) in blood are increased by a ketogenic diet, and elevated levels of circulating BHB restricts the progression of inflammation-mediated joint pathological changes. We hypothesized that elevation of blood BHB concentrations could be effective for reducing the progression of bleeding-induced arthropathy by moderating the inflammatory responses of macrophages. In this study, we investigated whether BHB alleviates the arthropathy caused by repeated intra-articular blood injection in rats. To increase blood BHB levels, rats were fed with ketogenic diet. Repeated intra-articular blood injection induced significant joint swelling, whereas ketogenic diet intake significantly increased blood BHB concentrations and ameliorated the joint swelling. The periarticular tissue-fibrosis observed in the control diet intake group appeared to be significantly alleviated in the ketogenic diet intake group. In addition, the IL-1β, which is involved in the progression of arthropathy, levels in the supernatants of blood-exposed macrophages derived from THP-1 cell line were significantly suppressed by BHB supplementation. In summary, BHB moderated the pathological joint changes caused by intra-articular blood exposure.
Collapse
Affiliation(s)
- Ryohei Kawasaki
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
| | - Kohei Tatsumi
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan.
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan.
| | - Seiji Mitani
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Maiko Takeda
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Japan
| | - Shogo Kasuda
- Department of Legal Medicine, Nara Medical University, Kashihara, Japan
| | - Naoki Matsumoto
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Suguru Harada
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Tetsuhiro Soeda
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Yukiko Nishida
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
- Project Planning and Coordination Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd, Chuo-ku, Japan
| | - Yasushi Yoshimura
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Midori Shima
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
| |
Collapse
|
11
|
Qu X, Huang L, Rong J. The ketogenic diet has the potential to decrease all-cause mortality without a concomitant increase in cardiovascular-related mortality. Sci Rep 2024; 14:22805. [PMID: 39353986 PMCID: PMC11445255 DOI: 10.1038/s41598-024-73384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
The impact of the ketogenic diet (KD) on overall mortality and cardiovascular disease (CVD) mortality remains inconclusive.This study enrolled a total of 43,776 adults from the National Health and Nutrition Examination Survey (NHANES) conducted between 2001 and 2018 to investigate the potential association between dietary ketogenic ratio (DKR) and both all-cause mortality as well as cardiovascular disease(CVD) mortality.Three models were established, and Cox proportional hazards regression analysis was employed to examine the correlation. Furthermore, a restricted cubic spline function was utilized to assess the non-linear relationship. In addition, subgroup analysis and sensitivity analysis were performed.In the adjusted Cox proportional hazards regression model, a significant inverse association was observed between DKR and all-cause mortality (HR = 0.76, 95% CI = 0.63-0.9, P = 0.003). However, no significant association with cardiovascular mortality was found (HR = 1.13; CI = 0.79-1.6; P = 0.504). Additionally, a restricted cubic spline(RCS) analysis demonstrated a linear relationship between DKR and all-cause mortality risk. In the adult population of the United States, adherence to a KD exhibits potential in reducing all-cause mortality risk while not posing an increased threat of CVD-related fatalities.
Collapse
Affiliation(s)
- Xiaolong Qu
- Department of Cardiovascular Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong New Area, Shanghai, 200120, China
| | - Lei Huang
- Department of Cardiology, Renji Hospital Ningbo Branch, Shanghai Jiao Tong University School of Medicine, 1155 Binhai 2nd Road, Hangzhou Bay New District, Ningbo, 315336, China
| | - Jiacheng Rong
- Department of Cardiology, Renji Hospital Ningbo Branch, Shanghai Jiao Tong University School of Medicine, 1155 Binhai 2nd Road, Hangzhou Bay New District, Ningbo, 315336, China.
| |
Collapse
|
12
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
13
|
Ciaffi J, Mancarella L, Pederzani G, Lisi L, Brusi V, Pignatti F, Ricci S, Vitali G, Faldini C, Ursini F. Efficacy, Safety, and Tolerability of a Very Low-Calorie Ketogenic Diet in Women with Obesity and Symptomatic Knee Osteoarthritis: A Pilot Interventional Study. Nutrients 2024; 16:3236. [PMID: 39408203 PMCID: PMC11479182 DOI: 10.3390/nu16193236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a major risk factor for knee osteoarthritis (OA), and weight loss is crucial for its management. This pilot study explores the effects of a Very Low-Calorie Ketogenic Diet (VLCKD) in women with obesity and symptomatic knee OA. METHODS Women with symptomatic knee OA and obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, were eligible for the VLCKD protocol. The intervention included a ketogenic phase from baseline (T0) to the 8th week (T8), followed by a progressive reintroduction of carbohydrates over the next 12 weeks, ending at the 20th week (T20). Body mass index (BMI), the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index, the EuroQol 5D (EQ-5D), and the 36-item Short Form Health Survey (SF-36) were assessed at all time points. Generalized estimating equations were used to analyze the association between BMI and patient-reported outcomes across the study period. RESULTS Twenty participants started the study, but four discontinued the intervention, with two of these being due to adverse effects. The mean age of the 16 patients who completed the 20-week program was 57.3 ± 5.5 years, and their mean BMI was 40.0 ± 4.8 kg/m2. The mean BMI significantly decreased to 37.5 ± 4.5 at T4, 36.3 ± 4.6 at T8, and 34.8 ± 4.8 at T20 (all p < 0.001 compared to baseline). The total WOMAC score improved from a mean of 43.6 ± 16.9 at T0 to 30.2 ± 12.8 at T4 (p = 0.005) and further to 24.7 ± 10.6 at T8 (p = 0.001) and to 24.8 ± 15.9 at T20 (p = 0.005). The reduction in BMI was significantly correlated with the improvements in WOMAC, EQ-5D, and SF-36 over time. No major adverse effects were observed. CONCLUSIONS A 20-week VLCKD in women with obesity and knee OA significantly reduced their weight and improved their outcomes, warranting further research. This trial is registered with number NCT05848544 on ClinicalTrials.gov.
Collapse
Affiliation(s)
- Jacopo Ciaffi
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (G.P.); (L.L.); (V.B.); (F.P.); (F.U.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40127 Bologna, Italy;
| | - Luana Mancarella
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (G.P.); (L.L.); (V.B.); (F.P.); (F.U.)
| | - Giulia Pederzani
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (G.P.); (L.L.); (V.B.); (F.P.); (F.U.)
| | - Lucia Lisi
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (G.P.); (L.L.); (V.B.); (F.P.); (F.U.)
| | - Veronica Brusi
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (G.P.); (L.L.); (V.B.); (F.P.); (F.U.)
| | - Federica Pignatti
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (G.P.); (L.L.); (V.B.); (F.P.); (F.U.)
| | - Susanna Ricci
- Dietetic Service, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.R.); (G.V.)
| | - Giorgia Vitali
- Dietetic Service, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.R.); (G.V.)
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40127 Bologna, Italy;
- 1st Orthopaedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Ursini
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.M.); (G.P.); (L.L.); (V.B.); (F.P.); (F.U.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40127 Bologna, Italy;
| |
Collapse
|
14
|
Dyńka D, Rodzeń Ł, Rodzeń M, Łojko D, Kraszewski S, Ibrahim A, Hussey M, Deptuła A, Grzywacz Ż, Ternianov A, Unwin D. Beneficial Effects of the Ketogenic Diet on Nonalcoholic Fatty Liver Disease (NAFLD/MAFLD). J Clin Med 2024; 13:4857. [PMID: 39200999 PMCID: PMC11355934 DOI: 10.3390/jcm13164857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is likely to be approaching 38% of the world's population. It is predicted to become worse and is the main cause of morbidity and mortality due to hepatic pathologies. It is particularly worrying that NAFLD is increasingly diagnosed in children and is closely related, among other conditions, to insulin resistance and metabolic syndrome. Against this background is the concern that the awareness of patients with NAFLD is low; in one study, almost 96% of adult patients with NAFLD in the USA were not aware of their disease. Thus, studies on the therapeutic tools used to treat NAFLD are extremely important. One promising treatment is a well-formulated ketogenic diet (KD). The aim of this paper is to present a review of the available publications and the current state of knowledge of the effect of the KD on NAFLD. This paper includes characteristics of the key factors (from the point of view of NAFLD regression), on which ketogenic diet exerts its effects, i.e., reduction in insulin resistance and body weight, elimination of fructose and monosaccharides, limitation of the total carbohydrate intake, anti-inflammatory ketosis state, or modulation of gut microbiome and metabolome. In the context of the evidence for the effectiveness of the KD in the regression of NAFLD, this paper also suggests the important role of taking responsibility for one's own health through increasing self-monitoring and self-education.
Collapse
Affiliation(s)
- Damian Dyńka
- Rodzen Brothers Foundation, 64-234 Wieleń, Poland
| | | | | | - Dorota Łojko
- Department of Psychiatry, Poznan University of Medical Science, 60-572 Poznan, Poland
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ali Ibrahim
- Schoen Inpatient Children’s Eating Disorders Service, 147 Chester Rd, Streetly, Sutton Coldfield B74 3NE, UK
| | - Maria Hussey
- Private General Medical Practice Maria Hussey, Ojcowa Wola 5, 14-420 Mlynary, Poland
| | - Adam Deptuła
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Żaneta Grzywacz
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Alexandre Ternianov
- Primary Care Centre Vila Olimpica, Parc Sanitary Pere Virgili, c. Joan Miró 17, 08005 Barcelona, Spain
| | - David Unwin
- Faculty of Health Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK
| |
Collapse
|
15
|
Song X, Liu Y, Chen S, Zhang L, Zhang H, Shen X, Du H, Sun R. Knee osteoarthritis: A review of animal models and intervention of traditional Chinese medicine. Animal Model Exp Med 2024; 7:114-126. [PMID: 38409942 PMCID: PMC11079151 DOI: 10.1002/ame2.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults. The pathophysiology of KOA remains poorly understood, as it involves complex mechanisms that result in the same outcome. Consequently, researchers are interested in studying KOA and require appropriate animal models for basic research. Chinese herbal compounds, which consist of multiple herbs with diverse pharmacological properties, possess characteristics such as multicomponent, multipathway, and multitarget effects. The potential benefits in the treatment of KOA continue to attract attention. PURPOSE This study aims to provide a comprehensive overview of the advantages, limitations, and specific considerations in selecting different species and methods for KOA animal models. This will help researchers make informed decisions when choosing an animal model. METHODS Online academic databases (e.g., PubMed, Google Scholar, Web of Science, and CNKI) were searched using the search terms "knee osteoarthritis," "animal models," "traditional Chinese medicine," and their combinations, primarily including KOA studies published from 2010 to 2023. RESULTS Based on literature retrieval, this review provides a comprehensive overview of the methods of establishing KOA animal models; introduces the current status of advantages and disadvantages of various animal models, including mice, rats, rabbits, dogs, and sheep/goats; and presents the current status of methods used to establish KOA animal models. CONCLUSION This study provides a review of the animal models used in recent KOA research, discusses the common modeling methods, and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.
Collapse
Affiliation(s)
- Xuyu Song
- Orthopaedic trauma surgeryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Ying Liu
- Academy of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Siyi Chen
- Academy of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Lei Zhang
- Department of Traditional Chinese MedicineThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Huijie Zhang
- College of pharmacyShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Xianhui Shen
- The Second Clinical College of Shandong UniversityShandong UniversityJinanShandongChina
| | - Hang Du
- The Second Clinical College of Shandong UniversityShandong UniversityJinanShandongChina
| | - Rong Sun
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
- The Second Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
16
|
Neudorf H, Little JP. Impact of fasting & ketogenic interventions on the NLRP3 inflammasome: A narrative review. Biomed J 2024; 47:100677. [PMID: 37940045 PMCID: PMC10821592 DOI: 10.1016/j.bj.2023.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Overactivation of the NLRP3 inflammasome is implicated in chronic low-grade inflammation associated with various disease states, including obesity, type 2 diabetes, atherosclerosis, Alzheimer's disease, and Parkinson's disease. Emerging evidence, mostly from cell and animal models of disease, supports a role for ketosis in general, and the main circulating ketone body beta-hydroxybutyrate (BHB) in particular, in reducing NLRP3 inflammasome activation to improve chronic inflammation. As a result, interventions that can induce ketosis (e.g., fasting, intermittent fasting, time-restricted feeding/eating, very low-carbohydrate high-fat ketogenic diets) and/or increase circulating BHB (e.g., exogenous ketone supplementation) have garnered increasing interest for their therapeutic potential. The purpose of the present review is to summarize our current understanding of the literature on how ketogenic interventions impact the NLRP3 inflammasome across human, rodent and cell models. Overall, there is convincing evidence that ketogenic interventions, likely acting through multiple interacting mechanisms in a cell-, disease- and context-specific manner, can reduce NLRP3 inflammasome activation. The evidence supports a direct effect of BHB, although it is important to consider the myriad of other metabolic responses to fasting or ketogenic diet interventions (e.g., elevated lipolysis, low insulin, stable glucose, negative energy balance) that may also impact innate immune responses. Future research is needed to translate promising findings from discovery science to clinical application.
Collapse
Affiliation(s)
- Helena Neudorf
- University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Jonathan P Little
- University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
17
|
Park SB, Yang SJ. Ketogenic diet preserves muscle mass and strength in a mouse model of type 2 diabetes. PLoS One 2024; 19:e0296651. [PMID: 38198459 PMCID: PMC10781088 DOI: 10.1371/journal.pone.0296651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetes is often associated with reduced muscle mass and function. The ketogenic diet (KD) may improve muscle mass and function via the induction of nutritional ketosis. To test whether the KD is able to preserve muscle mass and strength in a mouse model of type 2 diabetes (T2DM), C57BL/6J mice were assigned to lean control, diabetes control, and KD groups. The mice were fed a standard diet (10% kcal from fat) or a high-fat diet (HFD) (60% kcal from fat). The diabetic condition was induced by a single injection of streptozotocin (STZ; 100 mg/kg) and nicotinamide (NAM; 120 mg/kg) into HFD-fed mice. After 8-week HFD feeding, the KD (90% kcal from fat) was fed to the KD group for the following 6 weeks. After the 14-week experimental period, an oral glucose tolerance test and grip strength test were conducted. Type 2 diabetic condition induced by HFD feeding and STZ/NAM injection resulted in reduced muscle mass and grip strength, and smaller muscle fiber areas. The KD nutritional intervention improved these effects. Additionally, the KD altered the gene expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome- and endoplasmic reticulum (ER) stress-related markers in the muscles of diabetic mice. Collectively, KD improved muscle mass and function with alterations in NLRP3 inflammasome and ER stress.
Collapse
Affiliation(s)
- Sol Been Park
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Bonam SR, Mastrippolito D, Georgel P, Muller S. Pharmacological targets at the lysosomal autophagy-NLRP3 inflammasome crossroads. Trends Pharmacol Sci 2024; 45:81-101. [PMID: 38102020 DOI: 10.1016/j.tips.2023.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dylan Mastrippolito
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France
| | - Philippe Georgel
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
19
|
Jiang J, Pan H, Shen F, Tan Y, Chen S. Ketogenic diet alleviates cognitive dysfunction and neuroinflammation in APP/PS1 mice via the Nrf2/HO-1 and NF-κB signaling pathways. Neural Regen Res 2023; 18:2767-2772. [PMID: 37449643 DOI: 10.4103/1673-5374.373715] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease is a progressive neurological disorder characterized by cognitive decline and chronic inflammation within the brain. The ketogenic diet, a widely recognized therapeutic intervention for refractory epilepsy, has recently been proposed as a potential treatment for a variety of neurological diseases, including Alzheimer's disease. However, the efficacy of ketogenic diet in treating Alzheimer's disease and the underlying mechanism remains unclear. The current investigation aimed to explore the effect of ketogenic diet on cognitive function and the underlying biological mechanisms in a mouse model of Alzheimer's disease. Male amyloid precursor protein/presenilin 1 (APP/PS1) mice were randomly assigned to either a ketogenic diet or control diet group, and received their respective diets for a duration of 3 months. The findings show that ketogenic diet administration enhanced cognitive function, attenuated amyloid plaque formation and proinflammatory cytokine levels in APP/PS1 mice, and augmented the nuclear factor-erythroid 2-p45 derived factor 2/heme oxygenase-1 signaling pathway while suppressing the nuclear factor-kappa B pathway. Collectively, these data suggest that ketogenic diet may have a therapeutic potential in treating Alzheimer's disease by ameliorating the neurotoxicity associated with Aβ-induced inflammation. This study highlights the urgent need for further research into the use of ketogenic diet as a potential therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Jingwen Jiang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanxia Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Lab of Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, ShanghaiTech University, Shanghai, China
| |
Collapse
|
20
|
Charlot A, Lernould A, Plus I, Zoll J. [Beneficial effects of ketogenic diet for Alzheimer's disease management]. Biol Aujourdhui 2023; 217:253-263. [PMID: 38018953 DOI: 10.1051/jbio/2023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 11/30/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects almost 1 million people in France and 55 million in the world. This pathology is a global health preoccupation because of the lack of efficient curative treatment and the increase of its prevalence. During the last decade, the comprehension of pathophysiological mechanisms involved in AD have been improved. Amyloid plaques and neurofibrillary tangles accumulation are characteristic of Alzheimer's brain patients, accompanied by increased brain inflammation and oxidative stress, impaired cerebral metabolism of glucose and mitochondrial function. Treatment of AD includes different approaches, as pharmacology, psychology support, physiotherapy, and speech therapy. However, these interventions do not have a curative effect, but only compensatory on the disease. Ketogenic diet (KD), a low-carbohydrates and high-fat diet, associated with a medium-chain triglycerides intake (MCTs) might induce benefices for Alzheimer disease patients. Carbohydrate restriction and MCTs promotes the production of ketone bodies from fatty acid degradation. These metabolites replacing glucose, serve the brain as energetic substrates, and induce neuroprotective effects. Such a nutritional support might slow down the disease progression and improve cognitive abilities of patients. This review aims to examine the neuroprotective mechanisms of KD in AD progression and describes the advantages and limitations of KD as a therapeutic strategy.
Collapse
Affiliation(s)
- Anouk Charlot
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Alix Lernould
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Irène Plus
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Joffrey Zoll
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
21
|
Dong W, Peng Q, Liu Z, Xie Z, Guo X, Li Y, Chen C. Estrogen plays an important role by influencing the NLRP3 inflammasome. Biomed Pharmacother 2023; 167:115554. [PMID: 37738797 DOI: 10.1016/j.biopha.2023.115554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is an important part of the natural immune system that plays an important role in many diseases. Estrogen is a sex hormone that plays an important role in controlling reproduction and regulates many physiological and pathological processes. Recent studies have indicated that estrogen is associated with disease progression. Estrogen can ameliorate some diseases (e. g, sepsis, mood disturbances, cerebral ischemia, some hepatopathy, Parkinson's disease, amyotrophic lateral sclerosis, inflammatory bowel disease, spinal cord injury, multiple sclerosis, myocardial ischemia/reperfusion injury, osteoarthritis, and renal fibrosis) by inhibiting the NLRP3 inflammasome. Estrogen can also promote the development of diseases (e.g., ovarian endometriosis, dry eye disease, and systemic lupus erythematosus) by upregulating the NLRP3 inflammasome. In addition, estrogen has a dual effect on the development of cancers and asthma. However, the mechanism of these effects is not summarized. This article reviewed the progress in understanding the effects of estrogen on the NLRP3 inflammasome and its mechanisms in recent years to provide a theoretical basis for an in-depth study.
Collapse
Affiliation(s)
- Wanglin Dong
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhuoxin Liu
- Clinical College of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China.
| | - Xiajun Guo
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yuanyuan Li
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
22
|
Shin Y, Han S, Kwon J, Ju S, Choi TG, Kang I, Kim SS. Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients 2023; 15:4466. [PMID: 37892541 PMCID: PMC10609902 DOI: 10.3390/nu15204466] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiome is a diverse bacterial community in the human gastrointestinal tract that plays important roles in a variety of biological processes. Short-chain fatty acids (SCFA) are produced through fermentation of dietary fiber. Certain microbes in the gut are responsible for producing SCFAs such as acetate, propionate and butyrate. An imbalance in gut microbiome diversity can lead to metabolic disorders and inflammation-related diseases. Changes in SCFA levels and associated microbiota were observed in IBD, suggesting an association between SCFAs and disease. The gut microbiota and SCFAs affect reactive oxygen species (ROS) associated with IBD. Gut microbes and SCFAs are closely related to IBD, and it is important to study them further.
Collapse
Affiliation(s)
- Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
23
|
Cecchi N, Romanelli R, Ricevuti F, Amitrano M, Carbone MG, Dinardo M, Burgio E. Current knowledges in pharmaconutrition: " Ketogenics" in pediatric gliomas. Front Nutr 2023; 10:1222908. [PMID: 37614745 PMCID: PMC10442509 DOI: 10.3389/fnut.2023.1222908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Brain tumors account for 20-25% of pediatric cancers. The most frequent type of brain tumor is Glioma from grade I to grade IV according to the rate of malignancy. Current treatments for gliomas use chemotherapy, radiotherapy, tyrosine kinase inhibitors, monoclonal antibodies and surgery, but each of the treatment strategies has several serious side effects. Therefore, to improve treatment efficacy, it is necessary to tailor therapies to patient and tumor characteristics, using appropriate molecular targets. An increasingly popular strategy is pharmaconutrition, which combines a tailored pharmacological treatment with a diet designed to synergize the effects of drugs. In this review we deal in the molecular mechanisms, the epigenetic effects and modulation of the oxidative stress pathway of ketogenic diets, that underlie its possible role, in the treatment of infantile gliomas, as a complementary approach to conventional cancer therapy.
Collapse
Affiliation(s)
- Nicola Cecchi
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Roberta Romanelli
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Flavia Ricevuti
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Marianna Amitrano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Maria Grazia Carbone
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Michele Dinardo
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Ernesto Burgio
- ECERI-European Cancer and Environment Research Institute, Brussels, Belgium
| |
Collapse
|
24
|
Xie W, Qi S, Dou L, Wang L, Wang X, Bi R, Li N, Zhang Y. Achyranthoside D attenuates chondrocyte loss and inflammation in osteoarthritis via targeted regulation of Wnt3a. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154663. [PMID: 36657317 DOI: 10.1016/j.phymed.2023.154663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Achyranthes bidentata Blume (A. bidentata) is a common Chinese herb used to treat osteoarthritis (OA). Achyranthoside D (Ach-D) is a glucuronide saponin isolated from A. bidentata. PURPOSE To assess the mechanisms of action of Ach-D and its effects on OA. METHODS The effects of Ach-D were evaluated in rats underwent anterior cruciate ligament transection (ACLT) with medial meniscectomy (MMx) and in interleukin (IL)-1β-induced chondrocytes. Histological changes in rat cartilage tissues were detected using Safranin O-Fast green and haematoxylin-eosin staining. Immunohistochemical staining, qRT-PCR, ELISA, immunoblotting, and immunofluorescence were conducted to examine cartilage degeneration-related and inflammation-related factor expression. CCK-8, LDH assay, and EdU staining were performed to detect chondrocyte death. RESULTS Ach-D dose-dependently reduced the Osteoarthritis Research Society International (OARSI) scores, alleviated cartilage injury, and decreased the serum concentrations of CTX-II and COMP in ACLT-MMx models. Ach-D increased the expression levels of collagen II and aggrecan and decreased the levels of cartilage degeneration-related proteins, ADAMTS-5, MMP13, and MMP3, in rat cartilage tissues. Additionally, nod-like receptor protein 3 (NLRP3)-related inflammation was reduced by Ach-D, as shown by the significantly inhibited expression levels of NLRP3, ASC, GSDMD, IL-6, TNF-α, IL-1β, and IL-18 in rat cartilage tissues. In primary rat chondrocytes, Ach-D protected against IL-1β-induced viability loss and LDH release. Wnt3a is the target protein of Ach-D. Mechanistically, Ach-D alleviated OA by inhibiting Wnt signalling. CONCLUSION ACH-D may reduce inflammation and cartilage degeneration by inhibiting the Wnt signalling pathway, thereby reducing OA.
Collapse
Affiliation(s)
- Wenpeng Xie
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Shangfeng Qi
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Luming Dou
- Bone traumatology department, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, 265600, Shandong, PR China
| | - Lei Wang
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Second Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Xiangpeng Wang
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Rongxiu Bi
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China
| | - Nianhu Li
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China.
| | - Yongkui Zhang
- Department of Orthopedics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, Shandong, PR China.
| |
Collapse
|