1
|
Song Y, Gao B, Cai H, Qin X, Xia X, Dong Q, Hirata T, Li Z. Comparative analysis of virulence in Listeria monocytogenes: Insights from genomic variations and in vitro cell-based studies. Int J Food Microbiol 2025; 435:111188. [PMID: 40188629 DOI: 10.1016/j.ijfoodmicro.2025.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
Listeria monocytogenes is a significant foodborne pathogen capable of crossing the intestinal barrier and causing invasive listeriosis. This study focused on 37 L. monocytogenes strains isolated from food and clinical samples in the Shanghai region between 2020 and 2023. The in vitro cell models were used to assess the bacteria's ability to cross the intestinal barrier, as well as their adhesion and invasion capabilities in placental cells. Whole-genome analysis of the bacterial strains was also performed. The results showed that strains from lineage I exhibited significantly higher translocation ability across the Caco-2 barrier, as well as higher adhesion and invasion rates in JEG-3 cells, compared to strains from lineage II. Strains from serogroup IIb demonstrated significantly higher adhesion and invasion rates in JEG-3 cells than those from serogroups IIa and IIc. Clinical isolates had significantly higher translocation ability across the Caco-2 barrier, and higher adhesion and invasion rates in JEG-3 cells, compared to food-derived strains. Mutations in the inlA gene were detected in ST9 and ST121 strains, which may be a potential cause of the reduced virulence observed in these ST types. The presence of LIPI-4 in ST87 strains and LIPI-3 in ST3 strains may also explain the high virulence of these ST types strains. The results of this study, by integrating in vitro virulence phenotypes with genomic data, further enhance the understanding of virulence differences among different bacterial strains.
Collapse
Affiliation(s)
- Yiyang Song
- School of Health Science and Engineering at the University of Shanghai for Science and Technology, China
| | - Binru Gao
- School of Health Science and Engineering at the University of Shanghai for Science and Technology, China
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, China
| | - XiaoJie Qin
- School of Health Science and Engineering at the University of Shanghai for Science and Technology, China
| | - XueJuan Xia
- School of Health Science and Engineering at the University of Shanghai for Science and Technology, China
| | - Qingli Dong
- School of Health Science and Engineering at the University of Shanghai for Science and Technology, China
| | - Takashi Hirata
- Kyoto University in Japan, Japan; Shijonawate Gakuen University, Osaka, Japan
| | - Zhuosi Li
- School of Health Science and Engineering at the University of Shanghai for Science and Technology, China.
| |
Collapse
|
2
|
Yamazaki T, Kosugi Y, Makibe F, Matsuo J. Molecular Characterization of Virulence-Related Genes in Listeria monocytogenes Isolated from Retail Meats in Sapporo, Japan. Curr Microbiol 2025; 82:139. [PMID: 39961869 DOI: 10.1007/s00284-025-04121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025]
Abstract
Listeria monocytogenes is the causative agent of the globally prevalent foodborne illness listeriosis. Infection is caused by the ingestion of food contaminated with L. monocytogenes, which invades host cells via the bacterial cell surface protein internalin A (InlA). Fewer outbreaks of listeriosis have been reported in Japan than in other countries, suggesting that circulating L. monocytogenes strains in Japan have an increased prevalence of InlA mutations or mutations in other virulence factors, thereby impairing cell invasion. Herein, we investigated the molecular characteristics of inlA and other key virulence factors in L. monocytogenes isolated from retail meats sold in Japan. We isolated L. monocytogenes from retail meats in Sapporo, Japan and investigated the presence of five virulence-related genes (actA, hlyA, iap, plcA, and prfA). We also determined the sequences of the inlA gene, which encodes InlA. Ninety-three L. monocytogenes strains (31.0%) were isolated from 300 meat samples. The major serogroup of the strains was serogroup IIc (49.5%), followed by serogroup IIa (41.9%). Overall, 98.9% of the 93 strains possessed the five examined virulence-related genes. However, 51.6% of these strains exhibited premature stop codons in inlA. We showed that approximately half of the L. monocytogenes strains contaminating retail meats in Sapporo, Japan express mutated InlA, suggesting that their ability to invade host cells may be impaired. This may be one reason why fewer listeriosis outbreaks occur in Japan than in other countries, and provides new insight into geographical differences in the incidence of a common infectious disease.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- School of Medical Technology, Health Sciences University of Hokkaido, 2-5 Ainosato, Kita-ku, Sapporo, 002-8072, Japan
| | - Yume Kosugi
- School of Medical Technology, Health Sciences University of Hokkaido, 2-5 Ainosato, Kita-ku, Sapporo, 002-8072, Japan
| | - Fumika Makibe
- School of Medical Technology, Health Sciences University of Hokkaido, 2-5 Ainosato, Kita-ku, Sapporo, 002-8072, Japan
| | - Junji Matsuo
- School of Medical Technology, Health Sciences University of Hokkaido, 2-5 Ainosato, Kita-ku, Sapporo, 002-8072, Japan.
| |
Collapse
|
3
|
Manqele A, Adesiyun A, Mafuna T, Pierneef R, Moerane R, Gcebe N. Virulence Potential and Antimicrobial Resistance of Listeria monocytogenes Isolates Obtained from Beef and Beef-Based Products Deciphered Using Whole-Genome Sequencing. Microorganisms 2024; 12:1166. [PMID: 38930548 PMCID: PMC11205329 DOI: 10.3390/microorganisms12061166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterial pathogen that threatens the food chain and human health. In this study, whole-genome sequencing (WGS) was used for the genomic characterization of L. monocytogenes (n = 24) from beef and beef-based products. Multilocus Sequence Type (MLST) analysis revealed that ST204 of CC204 was the most common sequence type (ST). Other sequence types detected included ST1 and ST876 of CC1, ST5 of CC5, ST9 of CC9, ST88 of CC88, ST2 and ST1430 of CC2, and ST321 of CC321. Genes encoding for virulence factors included complete LIPI-1 (pfrA-hly-plcA-plcB-mpl-actA) from 54% (13/24) of the isolates of ST204, ST321, ST1430, and ST9 and internalin genes inlABC that were present in all the STs. All the L. monocytogenes STs carried four intrinsic/natural resistance genes, fosX, lin, norB, and mprF, conferring resistance to fosfomycin, lincosamide, quinolones, and cationic peptides, respectively. Plasmids pLGUG1 and J1776 were the most detected (54% each), followed by pLI100 (13%) and pLM5578 (7%). The prophage profile, vB_LmoS_188, was overrepresented amongst the isolates, followed by LP_101, LmoS_293_028989, LP_030_2_021539, A006, and LP_HM00113468. Listeria genomic island 2 (LGI-2) was found to be present in all the isolates, while Listeria genomic island 3 (LGI-3) was present in a subset of isolates (25%). The type VII secretion system was found in 42% of the isolates, and sortase A was present in all L. monocytogenes genomes. Mobile genetic elements and genomic islands did not harbor any virulence, resistance, or environmental adaptation genes that may benefit L. monocytogenes. All the STs did not carry genes that confer resistance to first-line antibiotics used for the treatment of listeriosis. The characterization of L. monocytogenes in our study highlighted the environmental resistance and virulence potential of L. monocytogenes and the risk posed to the public, as this bacterium is frequently found in food and food processing environments.
Collapse
Affiliation(s)
- Ayanda Manqele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| | - Abiodun Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Department of Basic Veterinary Sciences, University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Johannesburg 20062028, South Africa
| | - Rian Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- SARChI Chair: Marine Microbiomics, microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Nomakorinte Gcebe
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| |
Collapse
|
4
|
Pan X, Shen J, Hong Y, Wu Y, Guo D, Zhao L, Bu X, Ben L, Wang X. Comparative Analysis of Growth, Survival, and Virulence Characteristics of Listeria monocytogenes Isolated from Imported Meat. Microorganisms 2024; 12:345. [PMID: 38399749 PMCID: PMC10891628 DOI: 10.3390/microorganisms12020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen with worldwide prevalence. Understanding the variability in the potential pathogenicity among strains of different subtypes is crucial for risk assessment. In this study, the growth, survival, and virulence characteristics of 16 L. monocytogenes strains isolated from imported meat in China (2018-2020) were investigated. The maximum specific growth rate (μmax) and lag phase (λ) were evaluated using the time-to-detection (TTD) method and the Baranyi model at different temperatures (25, 30, and 37 °C). Survival characteristics were determined by D-values and population reduction after exposure to heat (60, 62.5, and 65 °C) and acid (HCl, pH = 2.5, 3.5, and 4.5). The potential virulence was evaluated via adhesion and invasion to Caco-2 cells, motility, and lethality to Galleria mellonella. The potential pathogenicity was compared among strains of different lineages and subtypes. The results indicate that the lineage I strains exhibited a higher growth rate than the lineage II strains at three growth temperatures, particularly serotype 4b within lineage I. At all temperatures tested, serotypes 1/2a and 1/2b consistently demonstrated higher heat resistance than the other subtypes. No significant differences in the log reduction were observed between the lineage I and lineage II strains at pH 2.5, 3.5, and 4.5. However, the serotype 1/2c strains exhibited significantly low acid resistance at pH 2.5. In terms of virulence, the lineage I strains outperformed the lineage II strains. The invasion rate to Caco-2 cells and lethality to G. mellonella exhibited by the serotype 4b strains were higher than those observed in the other serotypes. This study provides meaningful insights into the growth, survival, and virulence of L. monocytogenes, offering valuable information for understanding the correlation between the pathogenicity and subtypes of L. monocytogenes.
Collapse
Affiliation(s)
- Xinye Pan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Lina Zhao
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Xiangfeng Bu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Leijie Ben
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| |
Collapse
|
5
|
Mejía L, Espinosa-Mata E, Freire AL, Zapata S, González-Candelas F. Listeria monocytogenes, a silent foodborne pathogen in Ecuador. Front Microbiol 2023; 14:1278860. [PMID: 38179446 PMCID: PMC10764610 DOI: 10.3389/fmicb.2023.1278860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can produce serious, even fatal, infections. Among other foods, it can be found in unpasteurized dairy and ready-to-eat products. Surveillance of L. monocytogenes is of great interest since sources of infection are difficult to determine due to the long incubation period, and because the symptoms of listeriosis are similar to other diseases. We performed a genomic study of L. monocytogenes isolated from fresh cheeses and clinical samples from Ecuador. Sixty-five isolates were evaluated and sequenced, 14 isolates from cheese samples and 20 from clinical listeriosis cases from the National Institute of National Institute of Public Health Research, and 31 isolates from artisanal cheese samples from 8 provinces. All isolates exhibited heterogeneous patterns of the presence of pathogenicity islands. All isolates exhibited at least 4 genes from LIPI-1, but all references (26 L. monocytogenes closed genomes available in the NCBI database) showed the complete island, which encompasses 5 genes but is present in only two Ecuadorian isolates. Most isolates lacked gene actA. Genes from LIPI-2 were absent in all isolates. LIPI-3 and LIPI-4 were present in only a few references and isolates. With respect to the stress survival islets, our samples either presented SSI-1 or SSI-F2365, except for one isolate that presented SSI-F2365 and also one gene from SSI-1. None of the samples presented SSI-2. The predominant ST (sequence type) was ST2 (84.62% 55/65), and the only ST found in food (93.33% 42/45) and clinical samples (65% 13/20). Isolates were not grouped according to their sampling origin, date, or place in a phylogenetic tree obtained from the core alignment. The presence of ST2 in food and clinical samples, with high genomic similarity, suggests a foodborne infection risk linked to the consumption of fresh cheeses in Ecuador.
Collapse
Affiliation(s)
- Lorena Mejía
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
| | - Estefanía Espinosa-Mata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ana Lucía Freire
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sonia Zapata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
- CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain
| |
Collapse
|
6
|
Centorotola G, Ziba MW, Cornacchia A, Chiaverini A, Torresi M, Guidi F, Cammà C, Bowa B, Mtonga S, Magambwa P, D’Alterio N, Scacchia M, Pomilio F, Muuka G. Listeria monocytogenes in ready to eat meat products from Zambia: phenotypical and genomic characterization of isolates. Front Microbiol 2023; 14:1228726. [PMID: 37711697 PMCID: PMC10498467 DOI: 10.3389/fmicb.2023.1228726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
The contamination of ready to eat foods (RTE) products due to Listeria monocytogenes could compromise the products safety becoming a great risk for the consumers. The high presence of L. monocytogenes in RTE products has been described worldwide, but few data are available about these products from African countries. The aims of this study were to report the presence of L. monocytogenes in Zambian RTE products, providing genomic characterization and data on similarity with African circulating strains using whole genome sequencing (WGS). A total of 304 RTE products, produced by different Zambian manufacturers, were purchased at retail, from major supermarkets located in Lusaka, Zambia, comprising 130 dairy and 174 meat products. L. monocytogenes was detected only in 18 (10.3%) RTE meat products of the 174 samples tested. The MLST analysis grouped the 18 L. monocytogenes isolates in 7 clonal complexes (CCs): CC1 (n = 5), CC2 (n = 4), CC9 (n = 4), CC5 (n = 2), CC121 (n = 1), CC155 (n = 1), and CC3 (n = 1). According to the cgMLST results, several clusters were detected, in particular belonging to hyper-virulent clones CC1 and CC2. Regarding the virulence factors, a complete L. monocytogenes Pathogenicity Island 3 (LIPI-3) was present both in the CC1 and CC3, in addition to LIPI-1. Several resistance genes and mobile genetic elements were detected, including Stress Islands, the bcrABC cassette and Tn6188_qac transposon, plasmids and intact prophages. Despite being a first preliminary work with a limited number of samples and isolates, this study helped to increase existing knowledge on contaminated RTE products in Zambia, confirming the presence of hyper-virulent L. monocytogenes CCs, which could play an important role in human diseases, posing a public health concern for consumers.
Collapse
Affiliation(s)
- Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maureen Wakwamba Ziba
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Benson Bowa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Samson Mtonga
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Phelly Magambwa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Massimo Scacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Geoffrey Muuka
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| |
Collapse
|
7
|
Schiavano GF, Guidi F, Pomilio F, Brandi G, Salini R, Amagliani G, Centorotola G, Palma F, Felici M, Lorenzetti C, Blasi G. Listeria monocytogenes Strains Persisting in a Meat Processing Plant in Central Italy: Use of Whole Genome Sequencing and In Vitro Adhesion and Invasion Assays to Decipher Their Virulence Potential. Microorganisms 2023; 11:1659. [PMID: 37512831 PMCID: PMC10383671 DOI: 10.3390/microorganisms11071659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we used both a WGS and an in vitro approach to study the virulence potential of nine Listeria monocytogenes (Lm) strains belonging to genetic clusters persisting in a meat processing plant in Central Italy. The studied clusters belonged to CC1-ST1, CC9-ST9, and CC218-ST2801. All the CC1 and CC218 strains presented the same accessory virulence genes (LIPI-3, gltA, gltB, and aut_IVb). CC1 and CC9 strains presented a gene profile similarity of 22.6% as well as CC9 and CC218 isolates. CC1 and CC218 showed a similarity of 45.2% of the same virulence profile. The hypervirulent strains of lineage I (CC1 and CC218) presented a greater ability to adhere and invade Caco-2 cells than hypovirulent ones (CC9). CC1 strains were significantly more adhesive and invasive compared with CC9 and CC218 strains, although these last CCs presented the same accessory virulence genes. No statistically significant difference was found comparing CC218 with CC9 strains. This study provided for the first time data on the in vitro adhesiveness and invasiveness of CC218-ST2801 and added more data on the virulence characteristics of CC1 and CC9. What we observed confirmed that the ability of Lm to adhere to and invade human cells in vitro is not always decipherable from its virulence gene profile.
Collapse
Affiliation(s)
- Giuditta Fiorella Schiavano
- Dipartimento di Studi Umanistici, Università degli Studi di Urbino "Carlo Bo", Via Bramante, 17, 61029 Urbino, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Via Campo Boario, 64100 Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Via Campo Boario, 64100 Teramo, Italy
| | - Giorgio Brandi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Centro Operativo Veterinario per l'Epidemiologia, Programmazione, Informazione e Analisi del Rischio (COVEPI), National Reference Center for Veterinary Epidemiology, Via Campo Boario, 64100 Teramo, Italy
| | - Giulia Amagliani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Via Campo Boario, 64100 Teramo, Italy
| | - Francesco Palma
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Martina Felici
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Cinzia Lorenzetti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
8
|
Magagna G, Gori M, Russini V, De Angelis V, Spinelli E, Filipello V, Tranquillo VM, De Marchis ML, Bossù T, Fappani C, Tanzi E, Finazzi G. Evaluation of the Virulence Potential of Listeria monocytogenes through the Characterization of the Truncated Forms of Internalin A. Int J Mol Sci 2023; 24:10141. [PMID: 37373288 DOI: 10.3390/ijms241210141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes is a widespread Gram-positive pathogenic bacterium that causes listeriosis, a rather rare but severe foodborne disease. Pregnant women, infants, the elderly, and immunocompromised individuals are considered particularly at risk. L. monocytogenes can contaminate food and food-processing environments. In particular, ready-to-eat (RTE) products are the most common source associated with listeriosis. L. monocytogenes virulence factors include internalin A (InlA), a surface protein known to facilitate bacterial uptake by human intestinal epithelial cells that express the E-cadherin receptor. Previous studies have demonstrated that the presence of premature stop codon (PMSC) mutations naturally occurring in inlA lead to the production of a truncated protein correlated with attenuate virulence. In this study, 849 L. monocytogenes isolates, collected from food, food-processing plants, and clinical cases in Italy, were typed and analyzed for the presence of PMSCs in the inlA gene using Sanger sequencing or whole-genome sequencing (WGS). PMSC mutations were found in 27% of the isolates, predominantly in those belonging to hypovirulent clones (ST9 and ST121). The presence of inlA PMSC mutations in food and environmental isolates was higher than that in clinical isolates. The results reveal the distribution of the virulence potential of L. monocytogenes circulating in Italy and could help to improve risk assessment approaches.
Collapse
Affiliation(s)
- Giulia Magagna
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Maria Gori
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
| | - Valeria Russini
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Veronica De Angelis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Elisa Spinelli
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Virginia Filipello
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Vito Massimo Tranquillo
- Programmazione dei Servizi e Controllo di Gestione, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Maria Laura De Marchis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Teresa Bossù
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Clara Fappani
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elisabetta Tanzi
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
| | - Guido Finazzi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
9
|
Guidi F, Centorotola G, Chiaverini A, Iannetti L, Schirone M, Visciano P, Cornacchia A, Scattolini S, Pomilio F, D’Alterio N, Torresi M. The Slaughterhouse as Hotspot of CC1 and CC6 Listeria monocytogenes Strains with Hypervirulent Profiles in an Integrated Poultry Chain of Italy. Microorganisms 2023; 11:1543. [PMID: 37375045 PMCID: PMC10305255 DOI: 10.3390/microorganisms11061543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In Europe, very few studies are available regarding the diversity of Listeria monocytogenes (L. monocytogenes) clonal complexes (CCs) and sequence types (ST) in poultry and on the related typing of isolates using whole genome sequencing (WGS). In this study, we used a WGS approach to type 122 L. monocytogenes strains isolated from chicken neck skin samples collected in two different slaughterhouses of an integrated Italian poultry company. The studied strains were classified into five CCs: CC1-ST1 (21.3%), CC6-ST6 (22.9%), CC9-ST9 (44.2%), CC121-ST121 (10.6%) and CC193-ST193 (0.8%). CC1 and CC6 strains presented a virulence gene profile composed of 60 virulence genes and including the Listeria Pathogenicity Island 3, aut_IVb, gltA and gltB. According to cgMLST and SNPs analysis, long-term persistent clusters belonging to CC1 and CC6 were found in one of the two slaughterhouses. The reasons mediating the persistence of these CCs (up to 20 months) remain to be elucidated, and may involve the presence and the expression of stress response and environmental adaptation genes including heavy metals resistance genes (cadAC, arsBC, CsoR-copA-copZ), multidrug efflux pumps (mrpABCEF, EmrB, mepA, bmrA, bmr3, norm), cold-shock tolerance (cspD) and biofilm-formation determinants (lmo0673, lmo2504, luxS, recO). These findings indicated a serious risk of poultry finished products contamination with hypervirulent L. monocytogenes clones and raised concern for the consumer health. In addition to the AMR genes norB, mprF, lin and fosX, ubiquitous in L. monocytogenes strains, we also identified parC for quinolones, msrA for macrolides and tetA for tetracyclines. Although the phenotypical expression of these AMR genes was not tested, none of them is known to confer resistance to the primary antibiotics used to treat listeriosis The obtained results increase the data on the L. monocytogenes clones circulating in Italy and in particular in the poultry chain.
Collapse
Affiliation(s)
- Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (M.S.); (P.V.)
| | - Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (M.S.); (P.V.)
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| |
Collapse
|
10
|
Carvalho F, Coimbra AT, Silva L, Duarte AP, Ferreira S. Melissa officinalis essential oil as an antimicrobial agent against Listeria monocytogenes in watermelon juice. Food Microbiol 2023; 109:104105. [DOI: 10.1016/j.fm.2022.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
11
|
Listeria monocytogenes-How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens 2022; 11:pathogens11121491. [PMID: 36558825 PMCID: PMC9783847 DOI: 10.3390/pathogens11121491] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Listeriosis is a serious food-borne illness, especially in susceptible populations, including children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infections, and abortion. Expression of each symptom depends on various bacterial virulence factors, immunological status of the infected person, and the number of ingested bacteria. Internalins, mainly InlA and InlB, invasins (invasin A, LAP), and other surface adhesion proteins (InlP1, InlP4) are responsible for epithelial cell binding, whereas internalin C (InlC) and actin assembly-inducing protein (ActA) are involved in cell-to-cell bacterial spread. L. monocytogenes is able to disseminate through the blood and invade diverse host organs. In persons with impaired immunity, the elderly, and pregnant women, the pathogen can also cross the blood-brain and placental barriers, which results in the invasion of the central nervous system and fetus infection, respectively. The aim of this comprehensive review is to summarize the current knowledge on the epidemiology of listeriosis and L. monocytogenes virulence mechanisms that are involved in host infection, with a special focus on their molecular and cellular aspects. We believe that all this information is crucial for a better understanding of the pathogenesis of L. monocytogenes infection.
Collapse
|
12
|
Magagna G, Finazzi G, Filipello V. Newly Designed Primers for the Sequencing of the inlA Gene of Lineage I and II Listeria monocytogenes Isolates. Int J Mol Sci 2022; 23:ijms232214106. [PMID: 36430584 PMCID: PMC9698914 DOI: 10.3390/ijms232214106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Listeria monocytogenes is a major human foodborne pathogen responsible for listeriosis. The virulence factor Internalin A (inlA) has a key role in the invasion of L. monocytogenes into the human intestinal epithelium, and the presence of premature stop-codons (PMSC) mutations in the inlA gene sequence is correlated with attenuated virulence. The inlA sequencing process is carried out by dividing the gene into three sections which are then reassembled to obtain the full gene. The primers available however were only able to entirely amplify the lineage II isolates. In this study, we present a set of new primers which allow inlA sequencing of isolates belonging to both lineages, since lineage I isolates are the ones most frequently associated to clinical cases. Using newly designed primers, we assessed the presence of inlA PMSCs in food, food processing environments and clinical isolates.
Collapse
Affiliation(s)
- Giulia Magagna
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
- Correspondence: ; Tel.: +39-0302-2906-11
| | - Guido Finazzi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
- Centro di Referenza Nazionale per i Rischi Emergenti in Sicurezza Alimentare—CRESA, Via A. Bianchi 9, 25124 Brescia, Italy
| | - Virginia Filipello
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
13
|
Song Z, Ji S, Wang Y, Luo L, Wang Y, Mao P, Li L, Jiang H, Ye C. The population structure and genetic diversity of Listeria monocytogenes ST9 strains based on genomic analysis. Front Microbiol 2022; 13:982220. [PMID: 36425025 PMCID: PMC9680904 DOI: 10.3389/fmicb.2022.982220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 05/29/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen causing both invasive and non-invasive listeriosis. Sequence type (ST) 9 strains is common in food and food processing environments. In this study, the whole-genome sequences (WGS) of 207 ST9 isolates from different sources, geographical locations (14 countries), and isolated years were analyzed. The ST9 isolates were divided into three clusters after phylogenetic analysis; 67.63% of ST9 isolates contained putative plasmids with different sizes and genomic structure, the putative prophages inserted in the chromosome at ten hotspots, and seven types of premature stop codon (PMSC) mutations in inlA were found in 81.86% of the ST9 isolates. In addition, 78.26% of ST9 isolates harbored Tn554-like elements carrying arsenic resistance genes. All the ST9 isolates conservatively contained environment-resistance genes on the chromosome. This analysis of population structures and features of ST9 isolates was aimed to help develop effective strategies to control this prevalent pathogen in the food chain.
Collapse
Affiliation(s)
- Zexuan Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shunshi Ji
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yiqian Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pan Mao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingling Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaying Jiang
- Department of Clinical Laboratory, People's Hospital of Xindu District, Chengdu, China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
14
|
Pyz-Łukasik R, Paszkiewicz W, Kiełbus M, Ziomek M, Gondek M, Domaradzki P, Michalak K, Pietras-Ożga D. Genetic Diversity and Potential Virulence of Listeria monocytogenes Isolates Originating from Polish Artisanal Cheeses. Foods 2022; 11:2805. [PMID: 36140933 PMCID: PMC9497517 DOI: 10.3390/foods11182805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Artisanal cheeses can be sources of Listeria monocytogenes and cause disease in humans. This bacterial pathogen is a species of diverse genotypic and phenotypic characteristics. The aim of the study was to characterize 32 isolates of L. monocytogenes isolated in 2014-2018 from artisanal cheeses. The isolates were characterized using whole genome sequencing and bioinformatics analysis. The artisanal cheese isolates resolved to four molecular groups: 46.9% of them to IIa (1/2a-3a), 31.2% to IVb (4ab-4b-4d-4e), 12.5% to IIc (1/2c-3c), and 9.4% to IIb (1/2b-3b-7). Two evolutionary lineages emerged: lineage II having 59.4% of the isolates and lineage I having 40.6%. The sequence types (ST) totaled 18: ST6 (15.6% of the isolates), ST2, ST20, ST26, and ST199 (each 9.4%), ST7 and ST9 (each 6.3%), and ST1, ST3, ST8, ST16, ST87, ST91, ST121, ST122, ST195, ST217, and ST580 (each 3.1%). There were 15 detected clonal complexes (CC): CC6 (15.6% of isolates), CC9 (12.5%), CC2, CC20, CC26, and CC199 (each 9.4%), CC7 and CC8 (each 6.3%), and CC1, CC3, CC14, CC87, CC121, CC195, and CC217 (each 3.1%). The isolates were varied in their virulence genes and the differences concerned: inl, actA, LIPI-3, ami, gtcA, aut, vip, and lntA.
Collapse
Affiliation(s)
- Renata Pyz-Łukasik
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Waldemar Paszkiewicz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Monika Ziomek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Michał Gondek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Piotr Domaradzki
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| |
Collapse
|
15
|
Antimicrobial activity of Thymus zygis essential oil against Listeria monocytogenes and its application as food preservative. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Camargo AC, McFarland AP, Woodward JJ, Nero LA. The magnitude of cell invasion and cell-to-cell spread of Listeria monocytogenes is correlated with serotype-specific traits. Int J Food Microbiol 2022; 382:109906. [DOI: 10.1016/j.ijfoodmicro.2022.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
|
17
|
Moreira GMSG, Gronow S, Dübel S, Mendonça M, Moreira ÂN, Conceição FR, Hust M. Phage Display-Derived Monoclonal Antibodies Against Internalins A and B Allow Specific Detection of Listeria monocytogenes. Front Public Health 2022; 10:712657. [PMID: 35372200 PMCID: PMC8964528 DOI: 10.3389/fpubh.2022.712657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes is the causative agent of listeriosis, a highly lethal disease initiated after the ingestion of Listeria-contaminated food. This species comprises different serovars, from which 4b, 1/2a, and 1/2b cause most of the infections. Among the different proteins involved in pathogenesis, the internalins A (InlA) and B (InlB) are the best characterized, since they play a major role in the enterocyte entry of Listeria cells during early infection. Due to their covalent attachment to the cell wall and location on the bacterial surface, along with their exclusive presence in the pathogenic L. monocytogenes, these proteins are also used as detection targets for this species. Even though huge advancements were achieved in the enrichment steps for subsequent Listeria detection, few studies have focused on the improvement of the antibodies for immunodetection. In the present study, recombinant InlA and InlB produced in Escherichia coli were used as targets to generate antibodies via phage display using the human naïve antibody libraries HAL9 and HAL10. A set of five recombinant antibodies (four against InlA, and one against InlB) were produced in scFv-Fc format and tested in indirect ELISA against a panel of 19 Listeria strains (17 species; including the three main serovars of L. monocytogenes) and 16 non-Listeria species. All five antibodies were able to recognize L. monocytogenes with 100% sensitivity (CI 29.24–100.0) and specificity (CI 88.78–100.0) in all three analyzed antibody concentrations. These findings show that phage display-derived antibodies can improve the biological tools to develop better immunodiagnostics for L. monocytogenes.
Collapse
Affiliation(s)
| | - Sabine Gronow
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Marcelo Mendonça
- Universidade Federal do Agreste de Pernambuco, Curso de Medicina Veterinária, Garanhuns, Brazil
| | - Ângela Nunes Moreira
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fabricio Rochedo Conceição
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| |
Collapse
|
18
|
Iglesias MA, Kroning IS, Ramires T, Cunha CEP, Moreira GMSG, Camargo AC, Mendonça M, Nero LA, Conceição FR, Lopes GV, DA Silva WP. Genetic Profiles and Invasion Ability of Listeria monocytogenes Isolated from Bovine Carcasses in Southern Brazil. J Food Prot 2022; 85:591-596. [PMID: 34995347 DOI: 10.4315/jfp-21-345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/05/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The goals of this study were to evaluate the persistence and the virulence potential of Listeria monocytogenes isolated from beef carcasses obtained in processing facilities in the southern region of Rio Grande do Sul, Brazil, based on pulsed-field gel electrophoresis (PFGE), invasion ability in human colorectal carcinoma cells (HCT-116), internalin A (InlA) expression by Western blot, and identification of mutation points in inlA. PFGE profiles demonstrated that L. monocytogenes isolates were grouped based on their previously identified lineages and serogroups (lineage I: serogroup IIb, n = 2, and serogroup IVb, n = 5; lineage II: serogroup IIc, n = 5). Isolates with indistinguishable genetic profiles through this method were obtained from different slaughterhouses and sampling steps, with as much as a 3-year interval. Seven isolates showed high invasion ability (2.4 to 7.4%; lineage I, n = 6, and lineage II, n = 1) in HCT and expressed InlA. Five isolates showed low cell invasion ability (0.6 to 1.4%; lineage I, n = 1, and lineage II, n = 4) and did not express InlA, and two of them (lineage II, serogroup IIc) presented mutations in inlA that led to premature stop codon type 19 at position 326 (GAA → TAA). The results demonstrated that most L. monocytogenes isolates from lineage I expressed InlA and were the most invasive in HCT, indicating their high virulence potential, whereas most isolates from lineage II showed attenuated invasion because of nonexpression of InlA or the presence of premature stop codon type 19 in inlA. The obtained results demonstrated that L. monocytogenes with indistinguishable PFGE profiles can persist or be reintroduced in beef processing facilities in the studied region and that differences in their virulence potential are based on their lineages and serogroups. HIGHLIGHTS
Collapse
Affiliation(s)
- Mariana A Iglesias
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Isabela S Kroning
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Carlos E P Cunha
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gustavo M S G Moreira
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Anderson C Camargo
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcelo Mendonça
- Programa de Pós-Graduação em Sanidade e Reprodução de Animais de Produção, Universidade Federal Rural do Agreste de Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Fabricio R Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Wladimir Padilha DA Silva
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Curcumin-Mediated Sono-Photodynamic Treatment Inactivates Listeria monocytogenes via ROS-Induced Physical Disruption and Oxidative Damage. Foods 2022; 11:foods11060808. [PMID: 35327232 PMCID: PMC8947418 DOI: 10.3390/foods11060808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Sono-photodynamic sterilization technology (SPDT) has become a promising non-thermal food sterilization technique because of its high penetrating power and outstanding microbicidal effects. In this study, Listeria monocytogenes (LMO) was effectively inactivated using curcumin as the sono-photosensitizer activated by ultrasound and blue LED light. The SPDT treatment at optimized conditions yielded a 4-log reduction in LMO CFU. The reactive oxygen species (ROS) production in LMO upon SPDT treatment was subsequently investigated. The results demonstrated SPDT treatment-induced excessive ROS generation led to bacterial cell deformation and membrane rupture, as revealed by the scanning electron microscope (SEM) and cytoplasmic material leakage. Moreover, agarose gel electrophoresis and SDS-PAGE further revealed that SPDT also triggered bacterial genomic DNA cleavage and protein degradation in LMO, thus inducing bacterial apoptosis-like events, such as membrane depolarization.
Collapse
|
20
|
Muchaamba F, Eshwar AK, Stevens MJA, Stephan R, Tasara T. Different Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability in Virulence and Stress Tolerance Profiles. Front Microbiol 2022; 12:792162. [PMID: 35058906 PMCID: PMC8764371 DOI: 10.3389/fmicb.2021.792162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes is a public health and food safety challenge due to its virulence and natural stress resistance phenotypes. The variable distribution of L. monocytogenes molecular subtypes with respect to food products and processing environments and among human and animal clinical listeriosis cases is observed. Sixty-two clinical and food-associated L. monocytogenes isolates were examined through phenome and genome analysis. Virulence assessed using a zebrafish infection model revealed serotype and genotype-specific differences in pathogenicity. Strains of genetic lineage I serotype 4b and multilocus sequence type clonal complexes CC1, CC2, CC4, and CC6 grew and survived better and were more virulent than serotype 1/2a and 1/2c lineage II, CC8, and CC9 strains. Hemolysis, phospholipase activity, and lysozyme tolerance profiles were associated with the differences observed in virulence. Osmotic stress resistance evaluation revealed serotype 4b lineage I CC2 and CC4 strains as more osmotolerant, whereas serotype 1/2c lineage II CC9 strains were more osmo-sensitive than others. Variable tolerance to the widely used quaternary ammonium compound benzalkonium chloride (BC) was observed. Some outbreak and sporadic clinical case associated strains demonstrated BC tolerance, which might have contributed to their survival and transition in the food-processing environment facilitating food product contamination and ultimately outbreaks or sporadic listeriosis cases. Genome comparison uncovered various moderate differences in virulence and stress associated genes between the strains indicating that these differences in addition to gene expression regulation variations might largely be responsible for the observed virulence and stress sensitivity phenotypic differences. Overall, our study uncovered strain and genotype-dependent variation in virulence and stress resilience among clinical and food-associated L. monocytogenes isolates with potential public health risk implications. The extensive genome and phenotypic data generated provide a basis for developing improved Listeria control strategies and policies.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| |
Collapse
|
21
|
Whole-Genome Sequencing Characterization of Virulence Profiles of Listeria monocytogenes Food and Human Isolates and In Vitro Adhesion/Invasion Assessment. Microorganisms 2021; 10:microorganisms10010062. [PMID: 35056510 PMCID: PMC8779253 DOI: 10.3390/microorganisms10010062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes (Lm) is the causative agent of human listeriosis. Lm strains have different virulence potential. For this reason, we preliminarily characterised via Whole-Genome Sequencing (WGS) some Lm strains for their key genomic features and virulence-associated determinants, assigning the clonal complex (CC). Moreover, the ability of the same strains to adhere to and invade human colon carcinoma cell line Caco-2, evaluating the possible correspondence with their genetic virulence profile, was also assessed. The clinical strains typed belonged to clonal complex (CC)1, CC31, and CC101 and showed a very low invasiveness. The Lm strains isolated from food were assigned to CC1, CC7, CC9, and CC121. All CC1 carried the hypervirulence pathogenicity island LIPI-3 in addition to LIPI-1. Premature stop codons in the inlA gene were found only in Lm of food origin belonging to CC9 and CC121. The presence of LIPI2_inlII was observed in all the CCs except CC1. The CC7 strain, belonging to an epidemic cluster, also carried the internalin genes inlG and inlL and showed the highest level of invasion. In contrast, the human CC31 strain lacked the lapB and vip genes and presented the lowest level of invasiveness. In Lm, the genetic determinants of hypo- or hypervirulence are not necessarily predictive of a cell adhesion and/or invasion ability in vitro. Moreover, since listeriosis results from the interplay between host and virulence features of the pathogen, even hypovirulent clones are able to cause infection in immunocompromised people.
Collapse
|
22
|
Guidi F, Chiaverini A, Repetto A, Lorenzetti C, Centorotola G, Bazzucchi V, Palombo B, Gattuso A, Pomilio F, Blasi G. Hyper-Virulent Listeria monocytogenes Strains Associated With Respiratory Infections in Central Italy. Front Cell Infect Microbiol 2021; 11:765540. [PMID: 34746033 PMCID: PMC8564288 DOI: 10.3389/fcimb.2021.765540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen causing listeriosis. Invasive forms of the disease mainly manifest as septicaemia, meningitis and maternal-neonatal infections. Lm-associated respiratory infections are very rare and little known. We reported two Lm respiratory infection cases occurred in Central Italy during the summer of 2020, in the midst of the SARS-CoV2 pandemic. In addition to collect the epidemiological and clinical characteristics of the patients, we used Whole Genome Sequencing to study the genomes of the Lm isolates investigating their virulence and antimicrobial profiles and the presence of genetic mobile elements. Both the strains belonged to hypervirulent MLST clonal complexes (CC). In addition to the Listeria Pathogenicity Island 1 (LIPI-1), the CC1 strain also carried LIPI-3 and the CC4 both LIPI-3 and LIPI-4. Genetic determinants for antimicrobial and disinfectants resistance were found. The CC1 genome presented prophage sequences but they did not interrupt the comK gene, involved in the phagosomal escape of Lm. None of the strains carried plasmids. Lm is an important, although rare, opportunistic pathogen for respiratory tract and lung infections. To avoid dangerous diagnostic delays of these severe clinical forms, it is important to sensitize hospital laboratories to this rare manifestation of listeriosis considering Lm in the differential diagnosis of respiratory infections.
Collapse
Affiliation(s)
- Fabrizia Guidi
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Alexandra Chiaverini
- Laboratorio Nazionale di Riferimento per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Antonella Repetto
- Struttura complessa di Microbiologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Cinzia Lorenzetti
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Gabriella Centorotola
- Laboratorio Nazionale di Riferimento per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Viviana Bazzucchi
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Barbara Palombo
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| | - Antonietta Gattuso
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Pomilio
- Laboratorio Nazionale di Riferimento per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Laboratorio Controllo Alimenti, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Perugia, Italy
| |
Collapse
|
23
|
Centorotola G, Guidi F, D’Aurizio G, Salini R, Di Domenico M, Ottaviani D, Petruzzelli A, Fisichella S, Duranti A, Tonucci F, Acciari VA, Torresi M, Pomilio F, Blasi G. Intensive Environmental Surveillance Plan for Listeria monocytogenes in Food Producing Plants and Retail Stores of Central Italy: Prevalence and Genetic Diversity. Foods 2021; 10:foods10081944. [PMID: 34441721 PMCID: PMC8392342 DOI: 10.3390/foods10081944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes (Lm) can persist in food processing environments (FPEs), surviving environmental stresses and disinfectants. We described an intensive environmental monitoring plan performed in Central Italy and involving food producing plants (FPPs) and retail grocery stores (RSs). The aim of the study was to provide a snapshot of the Lm circulation in different FPEs during a severe listeriosis outbreak, using whole genome sequencing (WGS) to investigate the genetic diversity of the Lm isolated, evaluating their virulence and stress resistance profiles. A total of 1217 samples were collected in 86 FPEs with 12.0% of positive surfaces at FPPs level and 7.5% at RSs level; 133 Lm isolates were typed by multilocus sequencing typing (MLST) and core genome MLST (cgMLST). Clonal complex (CC) 121 (25.6%), CC9 (22.6%), CC1 (11.3%), CC3 (10.5%), CC191 (4.5%), CC7 (4.5%) and CC31 (3.8%) were the most frequent MLST clones. Among the 26 cgMLST clusters obtained, 5 of them persisted after sanitization and were re-isolated during the follow-up sampling. All the CC121 harboured the Tn6188_qac gene for tolerance to benzalkonium chloride and the stress survival islet SSI-2. The CC3, CC7, CC9, CC31 and CC191 carried the SSI-1. All the CC9 and CC121 strains presented a premature stop codon in the inlA gene. In addition to the Lm Pathogenicity Island 1 (LIPI-1), CC1, CC3 and CC191 harboured the LIPI-3. The application of intensive environmental sampling plans for the detection and WGS analysis of Lm isolates could improve surveillance and early detection of outbreaks.
Collapse
Affiliation(s)
- Gabriella Centorotola
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
- Correspondence: or ; Tel.: +39-075-3431
| | - Guglielmo D’Aurizio
- ARS P.F. Prevenzione Veterinaria e Sicurezza Alimentare, Regione Marche, via Don Gioia, 8, 60122 Ancona, Italy;
| | - Romolo Salini
- Centro Operativo Veterinario Per l’Epidemiologia, Programmazione, Informazione e Analisi del Rischio (COVEPI), National Reference Center for Veterinary Epidemiology, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy;
| | - Marco Di Domenico
- Centro di Referenza Nazionale Per Sequenze Genomiche di Microrganismi Patogeni, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy;
| | - Donatella Ottaviani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Stefano Fisichella
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Anna Duranti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Vicdalia Aniela Acciari
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Marina Torresi
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Francesco Pomilio
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| |
Collapse
|
24
|
Hypo- and Hyper-Virulent Listeria monocytogenes Clones Persisting in Two Different Food Processing Plants of Central Italy. Microorganisms 2021; 9:microorganisms9020376. [PMID: 33668440 PMCID: PMC7918772 DOI: 10.3390/microorganisms9020376] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
A total of 66 Listeria monocytogenes (Lm) isolated from 2013 to 2018 in a small-scale meat processing plant and a dairy facility of Central Italy were studied. Whole Genome Sequencing and bioinformatics analysis were used to assess the genetic relationships between the strains and investigate persistence and virulence abilities. The biofilm forming-ability was assessed in vitro. Cluster analysis grouped the Lm from the meat plant into three main clusters: two of them, both belonging to CC9, persisted for years in the plant and one (CC121) was isolated in the last year of sampling. In the dairy facility, all the strains grouped in a CC2 four-year persistent cluster. All the studied strains carried multidrug efflux-pumps genetic determinants (sugE, mdrl, lde, norM, mepA). CC121 also harbored the Tn6188 specific for tolerance to Benzalkonium Chloride. Only CC9 and CC121 carried a Stress Survival Islet and presented high-level cadmium resistance genes (cadA1C1) carried by different plasmids. They showed a greater biofilm production when compared with CC2. All the CC2 carried a full-length inlA while CC9 and CC121 presented a Premature Stop Codon mutation correlated with less virulence. The hypo-virulent clones CC9 and CC121 appeared the most adapted to food-processing environments; however, even the hyper-virulent clone CC2 warningly persisted for a long time. The identification of the main mechanisms promoting Lm persistence in a specific food processing plant is important to provide recommendations to Food Business Operators (FBOs) in order to remove or reduce resident Lm.
Collapse
|
25
|
|
26
|
Medeiros M, Castro VHLD, Mota ALADA, Pereira MG, De Martinis ECP, Perecmanis S, Santana AP. Assessment of Internalin A Gene Sequences and Cell Adhesion and Invasion Capacity of Listeria monocytogenes Strains Isolated from Foods of Animal and Related Origins. Foodborne Pathog Dis 2020; 18:243-252. [PMID: 33337940 DOI: 10.1089/fpd.2020.2855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen of global relevance that causes outbreaks and sporadic cases of listeriosis, acquired through the consumption of contaminated products, including milk or meat products and ready-to-eat meat products subjected to intensive handling. The objective of the present study was to classify L. monocytogenes isolated from various food-related sources in the Federal District of Brazil and surrounding areas to sequence internalin A (inlA) genes from these isolates and assess their adhesion and invasion capacity using Caco-2 cells. In addition, 15 were classified as group I, 3 as group II, and 7 classified as group IV. Premature stop codons (PMSCs) at the nucleotide position 976 (GAA→TAA) of the inlA gene were identified in 5 of the 25 isolates. Adhesion and invasion tests in Caco-2 cells showed that all the isolates were capable of adhesion and cellular invasion, with isolates containing PMSCs exhibiting on average higher invasion capacity than those without PMSCs (p = 0.041) and a median of adhesion very distinctive from those without stop codons. These results are the first report of PMSCs in the inlA gene of L. monocytogenes from the Federal District of Brazil and Brazil.
Collapse
Affiliation(s)
- Margareti Medeiros
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | - Virgilio Hipolito Lemos de Castro
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | - Ana Lourdes Arrais de Alencar Mota
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | | | | | - Simone Perecmanis
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | - Angela Patricia Santana
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
27
|
Pickering AC, Fitzgerald JR. The Role of Gram-Positive Surface Proteins in Bacterial Niche- and Host-Specialization. Front Microbiol 2020; 11:594737. [PMID: 33193271 PMCID: PMC7658395 DOI: 10.3389/fmicb.2020.594737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
Gram-positive bacterial pathogens have an array of proteins on their cell surface that mediate interactions with the host environment. In particular, bacterial cell wall-associated (CWA) proteins play key roles in both colonization and pathogenesis. Furthermore, some CWA proteins promote specialization for host-species or mediate colonization of specific anatomical niches within a host. In this mini review, we provide examples of the many ways by which major pathogens, such as Staphylococci, Streptococci and Listeria monocytogenes, utilize CWA proteins for both host- and niche-specialization. We describe different biological mechanisms mediated by CWA proteins including: the acquisition of iron from hemoglobin in the bloodstream, adherence to and invasion of host cells, and innate immune evasion through binding to the plasma proteins fibrinogen, immunoglobulin G, and complement. We also discuss the limitations of using animal models for understanding the role of specific CWA proteins in host-specialization and how transformative technologies, such as CRISPR-Cas, offer tremendous potential for developing transgenic models that simulate the host environment of interest. Improved understanding of the role of CWA proteins in niche- or host-specificity will allow the design of new therapeutic approaches which target key host–pathogen interactions underpinning Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Amy C Pickering
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Kurpas M, Osek J, Moura A, Leclercq A, Lecuit M, Wieczorek K. Genomic Characterization of Listeria monocytogenes Isolated From Ready-to-Eat Meat and Meat Processing Environments in Poland. Front Microbiol 2020; 11:1412. [PMID: 32670248 PMCID: PMC7331111 DOI: 10.3389/fmicb.2020.01412] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is one of the major foodborne pathogens. Isolates of PCR-serogroups IIb (n = 17) and IVb (n = 31) recovered from food (n = 33) and food processing environment (n = 15) in Poland were characterized using whole genome sequencing. Most isolates belonged to Multi-Locus Sequence Type (MLST) ST2 (31.3%) and ST5 (22.9%). Core genome MLST (cgMLST) analysis classified isolates into seven sublineages (SL) and 25 different cgMLST types (CT). Consistent with the MLST results, most sublineages were SL2 and SL5. Eleven isolates harbored aacA4 encoding resistance to aminoglycosides, three isolates harbored emrC (n = 3) and one brcABC (n = 1) encoding tolerance to benzalkonium chloride. Isolates belonging to SL5 CT2323 carried a so far unreported inlB allele with a deletion of 141 nucleotides encoding the β-repeat sheet and partially the GW1 domain of InlB. Comparison with publicly available genome sequences from L. monocytogenes isolated from human listeriosis cases in Poland from 2004 to 2013 revealed five common CTs, suggesting a possible epidemiological link with these strains. The present study contributes to characterize the diversity of L. monocytogenes in ready-to-eat (RTE) meat and meat processing environments in Poland and unravels previously unnoticed links with clinical cases in Europe.
Collapse
Affiliation(s)
- Monika Kurpas
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Inserm U1117, Paris, France
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Inserm U1117, Paris, France
- Université de Paris, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, Paris, France
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
29
|
A Structural Study on the Listeria Monocytogenes Internalin A-Human E-cadherin Interaction: A Molecular Tool to Investigate the Effects of Missense Mutations. Toxins (Basel) 2020; 12:toxins12010060. [PMID: 31968631 PMCID: PMC7020427 DOI: 10.3390/toxins12010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a widespread foodborne pathogen of high concern and internalin A is an important virulence factor that mediates cell invasion upon the interaction with the host protein E-cadherin. Nonsense mutations of internalin A are known to reduce virulence. Although missense mutations are largely overlooked, they need to be investigated in respect to their effects in cell invasion processes. This work presented a computational workflow to early characterize internalin A missense mutations. The method reliably estimated the effects of a set of engineered missense mutations in terms of their effects on internalin A–E-cadherin interaction. Then, the effects of mutations of an internalin A variant from a L. monocytogenes isolate were calculated. Mutations showed impairing effects on complex stability providing a mechanistic explanation of the low cells invasion capacity previously observed. Overall, our results provided a rational approach to explain the effects of internalin A missense mutations. Moreover, our findings highlighted that the strength of interaction may not directly relate to the cell invasion capacity reflecting the non-exclusive role of internalin A in determining the virulence of L. monocytogenes. The workflow could be extended to other virulence factors providing a promising platform to support a better molecular understanding of L. monocytogenes epidemiology.
Collapse
|