1
|
Li F, Ge H, Lin P, Wang Y, Jiang Y, Zhang Z, Chen Y, Feng J. Genome-Based Screening and Immunogenicity Evaluation of Outer Membrane Protein Antigens for Vibrio harveyi Subunit Vaccine in pearl gentian grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus). FISH & SHELLFISH IMMUNOLOGY 2025:110440. [PMID: 40409699 DOI: 10.1016/j.fsi.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/20/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025]
Abstract
Vibrio harveyi, a major aquatic pathogen prevalent in tropical and subtropical waters, causes substantial economic losses in global mariculture. This study focused on developing subunit vaccines targeting the outer membrane proteins of a new highly virulent strain of V. harveyi, which are recognized as key protective antigens. We performed whole-genome sequencing of a highly virulent endemic strain, followed by systematic screening and identification of immunogenic OMPs. Two candidate antigens, OmpW and OmpK, were successfully expressed and purified using a prokaryotic expression system. To assess the protective efficacy of the vaccine, pearl gentian grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus) were immunized via intraperitoneal injection, followed by a challenge with a virulent strain of V. harveyi. Comprehensive genomic characterization of the pathogen indicated the presence of a wide array of virulence-associated genes, from which 17 antigenic proteins were selected as potential candidates for vaccine development. Compared to the GST control group, grouper immunized with recombinant OmpW or OmpK showed significantly higher serum antibody titers (P < 0.05) and substantial upregulation (2.15-48.6 fold) of key immune-related genes (MHCII and IL1β) in head kidney tissues. Notably, vaccinated fish exhibited a 38.7-50% increase in serum lysozyme activity, confirming the activation of innate immune mechanisms. These findings collectively demonstrate that OmpW and OmpK provide comprehensive immune protection through synergistic enhancement of both adaptive (specific antibody production) and innate (lysozyme-mediated) immune responses. Histopathological examination confirmed the protective effects, showing significantly reduced inflammatory lesions and cellular necrosis in vital organs (head kidney, spleen, and liver) of immunized fish. Our results demonstrate that recombinant OmpW and OmpK proteins induce comprehensive immune protection through synergistic activation of both humoral and cellular immune pathways, establishing a foundation for developing effective V. harveyi subunit vaccines.
Collapse
Affiliation(s)
- Fuyan Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021
| | - Hui Ge
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China
| | - Peng Lin
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021
| | - Yilei Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021
| | - Yonghua Jiang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021
| | - Ziping Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021; Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021
| | - Jianjun Feng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China.
| |
Collapse
|
2
|
Wang X, Lin W, Ye L, Chen X, Ren J, Xue F, Dai J, Tang F. Caspase-8 drove apoptosis of BMECs to promote neutrophil infiltration and DE205B clearance in meningitis. Microbiol Res 2025; 298:128223. [PMID: 40408993 DOI: 10.1016/j.micres.2025.128223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025]
Abstract
Avian pathogenic Escherichia coli (APEC), a significant virulence reservoir for human extraintestinal pathogenic E. coli (ExPEC), poses an escalating zoonotic risk through the food chain. Our previous study demonstrated that the poultry-derived strain DE205B shared high genetic similarity with the neonatal meningitis-associated E. coli (NMEC) strain RS218 and induced meningitis in a rat model. Here, we further demonstrated that DE205B crossed the blood-brain barrier (BBB) via a transcellular pathway without compromising barrier integrity. During this process, brain microvascular endothelial cells (BMECs) trigger limited RIPK1-independent apoptosis. Mechanistically, caspase-8 activation in BMECs drove the release of proinflammatory mediators, thereby promoting neutrophil recruitment into the cerebrospinal fluid (CSF). These neutrophils facilitated bacterial clearance through the formation of neutrophil extracellular traps (NETs). In vivo pharmacological inhibition of caspase-8 attenuated the ability of BMECs to recruit neutrophils, exacerbating meningitis progression. These findings suggested that limited apoptosis of BMECs contributed positively to APEC clearance in the brain. Collectively, this study systematically elucidated mechanisms underlying DE205B-mediated BBB invasion and host immune responses, providing insights into its cross-species pathogenic potential and zoonotic implications.
Collapse
Affiliation(s)
- Xuhang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wanqiu Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Linlin Ye
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinru Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Lee YJ, Abdullah M, Chang YF, Sudani HA, Inzana TJ. Characterization of proteins present in the biofilm matrix and outer membrane vesicles of Histophilus somni during iron-sufficient and iron-restricted growth: identification of potential protective antigens through in silico analyses. mBio 2025; 16:e0064425. [PMID: 40243366 PMCID: PMC12077179 DOI: 10.1128/mbio.00644-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
There is limited efficacy in vaccines currently available to prevent some animal diseases of bacterial origin, such as bovine respiratory disease caused by Histophilus somni. Protective efficacy can potentially be improved if bacterial antigens that are expressed in the host are included in vaccines. During H. somni infection in the bovine host, biofilms become established, and the availability of essential iron is restricted. To investigate further, the protein composition of spontaneously released outer membrane vesicles (OMVs) during iron-sufficient and iron-restricted growth and the proteins expressed in the biofilm matrix were analyzed and compared. Proteomic analysis revealed a dramatic physiological change in H. somni as it transitioned from the planktonic form to the biofilm mode of growth. All transferrin-binding proteins (Tbps) previously identified in H. somni were detected in the OMVs, suggesting that OMVs could induce antibodies to these proteins. Two TbpA-like proteins and seven total proteins were present in the OMVs only when iron was restricted, indicating the expression of these Tbps was differentially regulated. More proteins associated with quorum-sensing (QS) signaling were detected in the biofilm matrix compared with proteins in the OMVs, supporting a link between QS and biofilm formation. Proteins ACA31267.1 (OmpA) and ACA32419.1 (TonB-dependent receptor) were present in the OMV and biofilm matrix and predicted to be potential protective antigens using an immuno-bioinformatic approach. Overall, the results support the development of novel vaccines that contain OMVs obtained from bacteria grown to simulate the in vivo environment, and possibly biofilm matrix, to prevent diseases caused by bacterial pathogens.IMPORTANCEBovine respiratory disease (BRD) is the most economically important disease affecting the cattle industry. Available BRD vaccines consist of killed bacteria but are not very effective. Poor vaccine efficacy may be because the phenotype of bacteria in the host differs from the phenotype of cultured bacteria. Following host infection, virulent bacteria can express transferrin-binding proteins (Tbps) not expressed in culture medium but are required to sequester iron from host proteins. During chronic infections, such as BRD, bacteria can form a biofilm consisting of novel protein and polysaccharide antigens. The unique proteins expressed on outer membrane vesicles (OMVs) of Histophilus somni (a BRD pathogen) in the absence of iron and as a biofilm were identified and characterized. At least two TbpA-like proteins were expressed in OMVs only under iron-limiting conditions. Quorum-sensing-associated proteins were identified in the H. somni biofilm matrix. In silico analysis identified potential protein targets for vaccine development.
Collapse
Affiliation(s)
- Yue-Jia Lee
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Mohd Abdullah
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Habeeb Al Sudani
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Thomas J. Inzana
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| |
Collapse
|
4
|
James EM, Kimera ZI, Mgaya FX, Niccodem EM, Efraim JE, Matee MI, Mbugi EV. Occurrence of virulence genes in multidrug-resistant Escherichia coli isolates from humans, animals, and the environment: One health perspective. PLoS One 2025; 20:e0317874. [PMID: 39854442 PMCID: PMC11760637 DOI: 10.1371/journal.pone.0317874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Escherichia coli is one of the critical One Health pathogens due to its vast array of virulence and antimicrobial resistance genes. This study used multiplex PCR to determine the occurrence of virulence genes bfp, ompA, traT, eaeA, and stx1 among 50 multidrug-resistant (MDR) E. coli isolates from humans (n = 15), animals (n = 29), and the environment (n = 6) in Dar es Salaam, Tanzania. Their association with antimicrobial-resistant genes (ARGs) was determined using Principal Component Analysis (PCA). All 50/50 (100%) MDR E. coli isolates carried at least one virulence gene, with 19/50 (38%) carrying four genes, bfp + traT + eaeA + ompA. The findings showed a high occurrence of virulence genes bfp (82%), traT (82%), eaeA (78%), and ompA (72%); the study detected no stx1 in any of the isolates. In humans, the most detected virulence genes were bfp and traT 14/15 (93.3%); for poultry, it was eaeA 13/14 (92.9%); for pigs, was bfp and traT 13/15 (86.7%); while for river water, it was eaeA 6/6 (100%). The study observed no significant association between virulence genes and ARGs. PCA results show the genes ompA, traT, eaeA, and bfp contributed to the virulence of the isolates, and blaTEM, blaCTX-M, and qnrs contributed to ARGs. The PCA ellipses show that isolates from pigs had more virulence genes than those isolated from poultry, river water, and humans. The high frequency of numerous virulence genes in MDR E. coli isolates from humans, animals, and the environment indicates that these isolates have a very high potential to cause diseases that are difficult to treat because they are MDR.
Collapse
Affiliation(s)
- Edwin M. James
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| | - Zuhura I. Kimera
- Department of Environmental and Occupational Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Fauster X. Mgaya
- Department of Microbiology & Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Elieshiupendo M. Niccodem
- Department of Microbiology & Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Microbiology & Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| | - Joely Ezekiely Efraim
- Department of Economics and Statistics, Moshi Cooperative University, Kilimanjaro, Tanzania
| | - Mecky I. Matee
- Department of Microbiology & Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Erasto V. Mbugi
- Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
5
|
Nawaz S, Wang Z, Zhang Y, Jia Y, Jiang W, Chen Z, Yin H, Huang C, Han X. Avian pathogenic Escherichia coli (APEC): current insights and future challenges. Poult Sci 2024; 103:104359. [PMID: 39388979 PMCID: PMC11490931 DOI: 10.1016/j.psj.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and new investigations have implicated APEC as a possible foodborne zoonotic pathogen. This review analyzes APEC's pathogenic and virulence features, assesses the zoonotic potential, provides an update on antibiotic resistance and vaccine research efforts, and outlines alternate management approaches. Aside from established virulence factors, various additional components, including 2-component systems (TCS), adhesins, secretion systems (SS), invasions, iron acquisition systems, quorum sensing systems (QS), transcriptional regulators (TR), toxins, and genes linked with metabolism, contribute to APEC pathogenesis. APEC may spread to diverse species of birds in all business sectors and can infect birds of varying ages. However, younger birds experience more severe sickness than mature ones, probably due to their developing immune systems, and stress factors such as vaccination, Mycoplasma Infections, poor housing circumstances, respiratory viruses, and other risk factors for secondary infections can all make APEC both primary and secondary pathogens. Understanding these factors will help in generating new and effective treatments. Moreover, APEC O145 was the most prevalent serotype recently reported in all of China. Thus, the APEC's zoonotic potential should not be underrated. Furthermore, it has already been noted that APEC is resistant to almost all antibiotic classes, including carbapenems. A robust vaccine capable of protecting against multiple APEC serotypes is urgently needed. Alternative medications, particularly virulence inhibitors, can provide a special method with a decreased likelihood of acquiring resistance.
Collapse
Affiliation(s)
- Saqib Nawaz
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China; Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yan Zhang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yuanzheng Jia
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Xiangan Han
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, 364012, Fujian, China; Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| |
Collapse
|
6
|
Khairullah AR, Afnani DA, Riwu KHP, Widodo A, Yanestria SM, Moses IB, Effendi MH, Ramandinianto SC, Wibowo S, Fauziah I, Kusala MKJ, Fauzia KA, Furqoni AH, Raissa R. Avian pathogenic Escherichia coli: Epidemiology, virulence and pathogenesis, diagnosis, pathophysiology, transmission, vaccination, and control. Vet World 2024; 17:2747-2762. [PMID: 39897356 PMCID: PMC11784041 DOI: 10.14202/vetworld.2024.2747-2762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry; this type of bacteria is an extraintestinal pathogen E. coli. Unlike other E. coli pathogen groups, the characteristics of APECs cannot be identified by a single group. Serotyping and biotyping are frequently performed for isolates found in colibacillosis infections. The establishment, transmission, and persistence of this pathogenic strain in chicken populations are determined by the intricate interactions of multiple elements that make up the epidemiology of APEC. APEC employs many virulence and pathogenesis factors or mechanisms to infect chickens with colibacillosis. These factors include invasives, protectins, adhesins, iron acquisition, and toxins. In addition, the pathogenicity of APEC strains can be evaluated in 2-4 week-old chicks. The impact of unfavorable environmental conditions has also been documented, despite direct contact being demonstrated to be a significant element in transmission in APEC. Chickens are immunized against colibacillosis using a variety of vaccines. Nevertheless, commercially available vaccinations do not offer sufficient immunity to protect birds from APEC strains. Hatching egg contamination is one of the main ways that APECs spread throughout chicken flocks. Farmers also need to be mindful of storing discarded materials near the manure-watering area, removing them when necessary, and replacing wet materials with dry materials when needed. This review aimed to explain the characteristics, epidemiology, virulence, pathogenesis, diagnosis, pathophysiology, transmission, vaccination, and control of APEC.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46 Cibinong, Bogor, West Java, Indonesia
| | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram, West Nusa Tenggara, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika. Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram 83125, West Nusa Tenggara, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Jl. Dharmawangsa Dalam Selatan, No. 28-30, Kampus B Airlangga, Surabaya, East Java, Indonesia
| | - Sheila Marty Yanestria
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Wijaya Kusuma Surabaya, Jl. Dukuh Kupang XXV No.54, Dukuh Kupang, Dukuh Pakis, Surabaya, East Java, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya, East Java, Indonesia
| | | | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46 Cibinong, Bogor, West Java, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46 Cibinong, Bogor, West Java, Indonesia
| | - Muhammad Khaliim Jati Kusala
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46 Cibinong, Bogor, West Java, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46 Cibinong, Bogor, West Java, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 700 Dannoharu, Oita, Japan
| | - Abdul Hadi Furqoni
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46 Cibinong, Bogor, West Java, Indonesia
| | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Jl. Veteran No.10-11, Ketawanggede, Lowokwaru, Malang, Indonesia
| |
Collapse
|
7
|
Eltabey SM, Ibrahim AH, Zaky MM, Ibrahim AE, Alrashdi YBA, El Deeb S, Saleh MM. Targeting virulence of resistant Escherichia coli by the FDA-approved drugs sitagliptin and nitazoxanide as an alternative antimicrobial approach. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01215-7. [PMID: 39470968 DOI: 10.1007/s12223-024-01215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The spread of multidrug-resistant Escherichia coli in healthcare facilities is a global challenge. Hospital-acquired infections produced by Escherichia coli include gastrointestinal, blood-borne, urinary tract, surgical sites, and neonatal infections. Therefore, novel approaches are needed to deal with this pathogen and its rising resistance. The concept of attenuating virulence factors is an alternative strategy that might lead to low levels of resistance and combat this pathogen. A sub-inhibitory concentration (¼ MIC) of sitagliptin and nitazoxanide was used for phenotypic assessments of Escherichia coli virulence factors such as biofilm production, swimming motility, serum resistance, and protease production. Moreover, qRT-PCR was used to determine the impact of sub-MIC of the tested drugs on the relative expression levels of papC, fimH, fliC, kpsMTII, ompT_m, and stcE genes encoding virulence factors in Escherichia coli. Also, an in vivo model was conducted as a confirmatory test. Phenotypically, our findings demonstrated that the tested strains showed a significant decrease in all the tested virulence factors. Moreover, the genotypic results showed a significant downregulation in the relative expression levels of all the tested genes. Besides, the examined drugs were found to be effective in protecting mice against Escherichia coli pathogenesis. Sitagliptin and nitazoxanide exhibited strong anti-virulence activities against Escherichia coli. In addition, it is recommended that they might function as adjuvant in the management of Escherichia coli infections with either conventional antimicrobial agents or alone as alternative treatment measures.
Collapse
Affiliation(s)
- Sara M Eltabey
- Microbiology Program, Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ali H Ibrahim
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Mahmoud M Zaky
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman.
| | | | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, Brunswick, Germany.
| | - Moustafa M Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Faculty of Pharmacy, Ashour University, Baghdad, Iraq
| |
Collapse
|
8
|
Yoginath Bhambure S, E Costa LIC, Gatty AM, Manjunatha KG, Vittal R, Sannejal AD. Unveiling the traits of antibiotic resistance and virulence in Escherichia coli obtained from poultry waste. Braz J Microbiol 2024; 55:2997-3007. [PMID: 38809497 PMCID: PMC11405593 DOI: 10.1007/s42770-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotic resistance and virulence factors in avian pathogenic Escherichia coli (APEC) have become significant concerns, contributing to adverse environmental effects. The extensive use of antibiotics in poultry farming has resulted in the emergence of antibiotic-resistant APEC strains. This study prioritizes the molecular screening of APEC to uncover their antibiotic resistance and virulence attributes, with specific attention to their environmental impact. To address the imperative of understanding APEC pathogenesis, our study analyzed 50 poultry waste samples including 10 poultry litter, 15 fecal matter, 15 wastewater, and 10 anatomical waste samples. For the presence of virulence genes, 35 Escherichia coli isolates were subjected to molecular characterization. Amongst these, 27 were APEC strains demonstrating the presence of at least four virulence genes each. Notably, virulence genes such as fimH, ompA, ybjX, waaL, cvaC, hlyF, iss, ompT, and iroN were observed among all the E. coli isolates. Furthermore, eleven of the APEC strains exhibited resistance to tetracycline, ampicillin, sulphonamides, and fluoroquinolones.These findings highlight the role of APEC as a potential source of environmental pollution serving as a reservoir for virulence and resistance genes. Understanding the dynamics of antibiotic resistance and virulence in APEC is essential due to its potential threat to broiler chickens and the broader population through the food chain, intensifying concerns related to environmental pollution. Recognizing the ecological impact of APEC is essential for developing effective strategies to mitigate environmental pollution and safeguard the health of ecosystems and human populations.
Collapse
Affiliation(s)
- Sahil Yoginath Bhambure
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Lakiesha Inacia Coelho E Costa
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Ashwitha M Gatty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Kavitha Guladahalli Manjunatha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Rajeshwari Vittal
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Akhila Dharnappa Sannejal
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
9
|
Watthanasakphuban N, Ninchan B, Pinmanee P, Rattanaporn K, Keawsompong S. In Silico Analysis and Development of the Secretory Expression of D-Psicose-3-Epimerase in Escherichia coli. Microorganisms 2024; 12:1574. [PMID: 39203416 PMCID: PMC11356227 DOI: 10.3390/microorganisms12081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
D-psicose-3-epimerase (DPEase), a key enzyme for D-psicose production, has been successfully expressed in Escherichia coli with high yield. However, intracellular expression results in high downstream processing costs and greater risk of lipopolysaccharide (LPS) contamination during cell disruption. The secretory expression of DPEase could minimize the number of purification steps and prevent LPS contamination, but achieving the secretion expression of DPEase in E. coli is challenging and has not been reported due to certain limitations. This study addresses these challenges by enhancing the secretion of DPEase in E. coli through computational predictions and structural analyses. Signal peptide prediction identified PelB as the most effective signal peptide for DPEase localization and enhanced solubility. Supplementary strategies included the addition of 0.1% (v/v) Triton X-100 to promote protein secretion, resulting in higher extracellular DPEase (0.5 unit/mL). Low-temperature expression (20 °C) mitigated the formation of inclusion bodies, thus enhancing DPEase solubility. Our findings highlight the pivotal role of signal peptide selection in modulating DPEase solubility and activity, offering valuable insights for protein expression and secretion studies, especially for rare sugar production. Ongoing exploration of alternative signal peptides and refinement of secretion strategies promise further enhancement in enzyme secretion efficiency and process safety, paving the way for broader applications in biotechnology.
Collapse
Affiliation(s)
- Nisit Watthanasakphuban
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Boontiwa Ninchan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Phitsanu Pinmanee
- Enzyme Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| | - Suttipun Keawsompong
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (N.W.); (B.N.); (K.R.)
| |
Collapse
|
10
|
Sarkar P, Lin CY, Buritica JR, Killiny N, Levy A. Crossing the Gateless Barriers: Factors Involved in the Movement of Circulative Bacteria Within Their Insect Vectors. PHYTOPATHOLOGY 2023; 113:1805-1816. [PMID: 37160668 DOI: 10.1094/phyto-07-22-0249-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Jacobo Robledo Buritica
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
11
|
Pons S, Frapy E, Sereme Y, Gaultier C, Lebreton F, Kropec A, Danilchanka O, Schlemmer L, Schrimpf C, Allain M, Angoulvant F, Lecuyer H, Bonacorsi S, Aschard H, Sokol H, Cywes-Bentley C, Mekalanos JJ, Guillard T, Pier GB, Roux D, Skurnik D. A high-throughput sequencing approach identifies immunotherapeutic targets for bacterial meningitis in neonates. EBioMedicine 2023; 88:104439. [PMID: 36709579 PMCID: PMC9900374 DOI: 10.1016/j.ebiom.2023.104439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Worldwide, Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but full understanding of the pathogenesis of this disease is not yet achieved. Moreover, to date, no vaccine is available against bacterial neonatal meningitis. METHODS Here, we used Transposon Sequencing of saturated banks of mutants (TnSeq) to evaluate E. coli K1 genetic fitness in murine neonatal meningitis. We identified E. coli K1 genes encoding for factors important for systemic dissemination and brain infection, and focused on products with a likely outer-membrane or extra-cellular localization, as these are potential vaccine candidates. We used in vitro and in vivo models to study the efficacy of active and passive immunization. RESULTS We selected for further study the conserved surface polysaccharide Poly-β-(1-6)-N-Acetyl Glucosamine (PNAG), as a strong candidate for vaccine development. We found that PNAG was a virulence factor in our animal model. We showed that both passive and active immunization successfully prevented and/or treated meningitis caused by E. coli K1 in neonatal mice. We found an excellent opsonophagocytic killing activity of the antibodies to PNAG and in vitro these antibodies were also able to decrease binding, invasion and crossing of E. coli K1 through two blood brain barrier cell lines. Finally, to reinforce the potential of PNAG as a vaccine candidate in bacterial neonatal meningitis, we demonstrated that Group B Streptococcus, the main cause of neonatal meningitis in developed countries, also produced PNAG and that antibodies to PNAG could protect in vitro and in vivo against this major neonatal pathogen. INTERPRETATION Altogether, these results indicate the utility of a high-throughput DNA sequencing method to identify potential immunotherapy targets for a pathogen, including in this study a potential broad-spectrum target for prevention of neonatal bacterial infections. FUNDINGS ANR Seq-N-Vaq, Charles Hood Foundation, Hearst Foundation, and Groupe Pasteur Mutualité.
Collapse
Affiliation(s)
- Stéphanie Pons
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière, Paris, France
| | - Eric Frapy
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
| | - Youssouf Sereme
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
| | - Charlotte Gaultier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - François Lebreton
- Department of Ophthalmology and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02114, USA
| | - Andrea Kropec
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Danilchanka
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Schlemmer
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Cécile Schrimpf
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Margaux Allain
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - François Angoulvant
- Assistance Publique - Hôpitaux de Paris, Pediatric Emergency Department, Necker-Enfants Malades University Hospital, University of Paris City, Paris, France; INSERM, Centre de Recherche des Cordeliers, UMRS 1138, Sorbonne Université, Université de Paris, Paris, France
| | - Hervé Lecuyer
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France; Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, University of Paris City, Paris, France
| | - Stéphane Bonacorsi
- E IAME, UMR 1137, INSERM, Université de Paris, AP-HP, Paris, France; Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP, Paris, France
| | - Hugues Aschard
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Harry Sokol
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, F-75012 Paris, France; INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France; Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Guillard
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Université de Reims Champagne-Ardenne, SFR CAP-Santé, Inserm UMR-S 1250 P3Cell, Reims, France; Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, CHU, Reims, France
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Université de Paris, INSERM, UMR 1137 IAME, F-75018 Paris, France; AP-HP, Médecine Intensive Réanimation, Hôpital Louis Mourier, F-92700 Colombes, France
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France; Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, University of Paris City, Paris, France.
| |
Collapse
|
12
|
Identification of Subunits for Novel Universal Vaccines against Three Predominant Serogroups and the Emerging O145 among Avian Pathogenic Escherichia coli by Pan-RV Pipeline. Appl Environ Microbiol 2023; 89:e0106122. [PMID: 36533928 PMCID: PMC9888223 DOI: 10.1128/aem.01061-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Avian pathogenic Escherichia coli, a causative agent of avian colibacillosis, has been causing serious economic losses in the poultry industry. The increase in multidrug-resistant isolates and the complexity of the serotypes of this pathogen, especially the recently reported emergence of a newly predominant serogroup of O145, make the control of this disease difficult. To address this challenge, a high-throughput screening approach, called Pan-RV (Reverse vaccinology based on pangenome analysis), is proposed to search for universal protective antigens against the three traditional serogroups and the newly emerged O145. Using this approach, a total of 61 proteins regarded as probable antigens against the four important serogroups were screened from the core genome of 127 Avian pathogenic Escherichia coli (APEC) genomes, and six were verified by Western blots using antisera. Overall, our research will provide a foundation for the development of an APEC subunit vaccine against avian colibacillosis. Given the exponential growth of whole-genome sequencing (WGS) data, our Pan-RV pipeline will make screening of bacterial vaccine candidates inexpensive, rapid, and efficient. IMPORTANCE With the emergence of drug resistance and the newly predominant serogroup O145, the control of Avian pathogenic Escherichia coli is facing a serious challenge; an efficient immunological method is urgently needed. Here, for the first time, we propose a high-throughput screening approach to search for universal protective antigens against the three traditional serogroups and the newly emerged O145. Importantly, using this approach, a total of 61 proteins regarded as probable antigens against the four important serogroups were screened, and three were shown to be immunoreactive with all antisera (covering the four serogroups), thereby providing a foundation for the development of APEC subunit vaccines against avian colibacillosis. Further, our Pan-RV pipeline will provide immunological control strategies for pathogens with complex and variable genetic backgrounds such as Escherichia coli and will make screening of bacterial vaccine candidates more inexpensive, rapid, and efficient.
Collapse
|
13
|
Liao C, Santoscoy MC, Craft J, Anderson C, Soupir ML, Jarboe LR. Allelic variation of Escherichia coli outer membrane protein A: Impact on cell surface properties, stress tolerance and allele distribution. PLoS One 2022; 17:e0276046. [PMID: 36227900 PMCID: PMC9560509 DOI: 10.1371/journal.pone.0276046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Outer membrane protein A (OmpA) is one of the most abundant outer membrane proteins of Gram-negative bacteria and is known to have patterns of sequence variations at certain amino acids-allelic variation-in Escherichia coli. Here we subjected seven exemplar OmpA alleles expressed in a K-12 (MG1655) ΔompA background to further characterization. These alleles were observed to significantly impact cell surface charge (zeta potential), cell surface hydrophobicity, biofilm formation, sensitivity to killing by neutrophil elastase, and specific growth rate at 42°C and in the presence of acetate, demonstrating that OmpA is an attractive target for engineering cell surface properties and industrial phenotypes. It was also observed that cell surface charge and biofilm formation both significantly correlate with cell surface hydrophobicity, a cell property that is increasingly intriguing for bioproduction. While there was poor alignment between the observed experimental values relative to the known sequence variation, differences in hydrophobicity and biofilm formation did correspond to the identity of residue 203 (N vs T), located within the proposed dimerization domain. The relative abundance of the (I, δ) allele was increased in extraintestinal pathogenic E. coli (ExPEC) isolates relative to environmental isolates, with a corresponding decrease in (I, α) alleles in ExPEC relative to environmental isolates. The (I, α) and (I, δ) alleles differ at positions 203 and 251. Variations in distribution were also observed among ExPEC types and phylotypes. Thus, OmpA allelic variation and its influence on OmpA function warrant further investigation.
Collapse
Affiliation(s)
- Chunyu Liao
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - Miguel C. Santoscoy
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa United States of America
| | - Julia Craft
- Department of Chemical and Biological Engineering, Biological Materials and Processes (BioMAP) NSF REU Program, Iowa State University, Ames, Iowa, United States of America
| | - Chiron Anderson
- Department of Chemical and Biological Engineering, Biological Materials and Processes (BioMAP) NSF REU Program, Iowa State University, Ames, Iowa, United States of America
| | - Michelle L. Soupir
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Laura R. Jarboe
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa United States of America
- * E-mail:
| |
Collapse
|
14
|
Rodrigues IC, Rodrigues SC, Duarte FV, da Costa PM, da Costa PM. The Role of Outer Membrane Proteins in UPEC Antimicrobial Resistance: A Systematic Review. MEMBRANES 2022; 12:981. [PMID: 36295740 PMCID: PMC9609314 DOI: 10.3390/membranes12100981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are one of the most common agents of urinary tract infection. In the last decade, several UPEC strains have acquired antibiotic resistance mechanisms and some have become resistant to all classes of antibiotics. UPEC outer membrane proteins (OMPs) seem to have a decisive role not only in the processes of invasion and colonization of the bladder mucosa, but also in mechanisms of drug resistance, by which bacteria avoid killing by antimicrobial molecules. This systematic review was performed according to the PRISMA guidelines, aiming to characterize UPEC OMPs and identify their potential role in antimicrobial resistance. The search was limited to studies in English published during the last decade. Twenty-nine studies were included for revision and, among the 76 proteins identified, seven were associated with antibiotic resistance. Indeed, OmpC was associated with β-lactams resistance and OmpF with β-lactams and fluoroquinolone resistance. In turn, TolC, OmpX, YddB, TosA and murein lipoprotein (Lpp) were associated with fluoroquinolones, enrofloxacin, novobiocin, β-lactams and globomycin resistances, respectively. The clinical implications of UPEC resistance to antimicrobial agents in both veterinary and human medicine must propel the implementation of new strategies of administration of antimicrobial agents, while also promoting the development of improved antimicrobials, protective vaccines and specific inhibitors of virulence and resistance factors.
Collapse
Affiliation(s)
- Inês C. Rodrigues
- Laboratório de Microbiologia e Tecnologia Alimentar, Departamento de Produção Aquática, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sílvia C. Rodrigues
- Pharmaissues, Consultoria, Lda, Rua da Esperança n° 101, Ribeira de Frades, 3045-420 Coimbra, Portugal
| | - Filipe V. Duarte
- Centro de Neurociências e Biologia Celular (CNC), Faculdade de Medicina, Pólo 1, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Paula M. da Costa
- Microbiology Department, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Paulo M. da Costa
- Laboratório de Microbiologia e Tecnologia Alimentar, Departamento de Produção Aquática, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto, de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
15
|
Hcp Proteins of the Type VI Secretion System Promote Avian Pathogenic E. coli DE205B (O2:K1) to Induce Meningitis in Rats. Life (Basel) 2022; 12:life12091353. [PMID: 36143390 PMCID: PMC9503490 DOI: 10.3390/life12091353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important extra-intestinal pathogenic E. coli (ExPEC), which often causes systemic infection in poultry and causes great economic loss to the breeding industry. In addition, as a major source of human ExPEC infection, the potential zoonotic risk of APEC has been an ongoing concern. Previous studies have pointed out that APEC is a potential zoonotic pathogen, which has high homology with human pathogenic E. coli such as uro-pathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC), shares multiple virulence factors and can cause mammalian diseases. Previous studies have reported that O18 and O78 could cause different degrees of meningitis in neonatal rats, and different serotypes had different degrees of zoonotic risk. Here, we compared APEC DE205B (O2:K1) with NMEC RS218 (O18:K1:H7) by phylogenetic analysis and virulence gene identification to analyze the potential risk of DE205B in zoonotic diseases. We found that DE205B possessed a variety of virulence factors associated with meningitis and, through phylogenetic analysis, had high homology with RS218. DE205B could colonize the cerebrospinal fluid (CSF) of rats, and cause meningitis and nerve damage. Symptoms and pathological changes in the brain were similar to RS218. In addition, we found that DE205B had a complete T6SS, of which Hcp protein was its important structural protein. Hcp1 induced cytoskeleton rearrangement in human brain microvascular endothelial cells (HBMECs), and Hcp2 was mainly involved in the invasion of DE205B in vitro. In the meningitis model of rats, deletion of hcp2 gene reduced survival in the blood and the brain invasiveness of DE205B. Compared with WT group, Δhcp2 group induced lower inflammation and neutrophils infiltration in brain tissue, alleviating the process of meningitis. Together, these results suggested that APEC DE205B had close genetic similarities to NMEC RS218, and a similar mechanism in causing meningitis and being a risk for zoonosis. This APEC serotype provided a basis for zoonotic research.
Collapse
|
16
|
The Outer Membrane Proteins and Their Synergy Triggered the Protective Effects against Pathogenic Escherichia coli. Microorganisms 2022; 10:microorganisms10050982. [PMID: 35630426 PMCID: PMC9143122 DOI: 10.3390/microorganisms10050982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Colibacillosis caused by pathogenic Escherichia coli (E. coli) is one of the most serious infectious diseases, causing an extensive burden on animal husbandry and the human healthcare system. Vaccination is one of the ideal ways to prevent E. coli infection. In this work, recombinant outer membrane protein A (rOmpA), outer membrane protein C (rOmpC) and BamA (rBamA) from E. coli O78 (CVCC CAU0768) were expressed in a prokaryotic expression system with the concentration of 1–2 mg/mL after purification. Considerable immune responses could be triggered in mice that were immunized with these recombinant proteins, high antibody titers, high total IgG level and various antibody isotypes were detected in antisera after booster immunizations. Moreover, mice immunized with several recombinant proteins in combination showed a higher survival rate with the challenge of homologous strain E. coli O78 and a more significant cross-protection effect against heterologous strain E. coli O157:H7 (CICC 21530) in vivo than those of immunized alone. The antisera from immunized mice showed high affinity to multiple strains of Escherichia, Shigella and Salmonella in vitro, indicating that recombinant outer membrane proteins from E. coli O78 had the potential to be developed into universal antigenic substances against not only E. coli but also a variety of Gram-negative bacteria. rOmpA was considered as the most immunogenic protein in this work and the combination of different proteins could further enhance the immune response of immunized mice, which provided the reference for the construction of novel antigens with higher efficiency.
Collapse
|
17
|
Fu D, Wu J, Gu Y, Li Q, Shao Y, Feng H, Song X, Tu J, Qi K. The response regulator OmpR contributes to the pathogenicity of avian pathogenic Escherichia coli. Poult Sci 2022; 101:101757. [PMID: 35240350 PMCID: PMC8892008 DOI: 10.1016/j.psj.2022.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022] Open
Abstract
Avian colibacillosis is a serious systemic infectious disease in poultry and caused by avian pathogenic Escherichia coli (APEC). Previous studies have shown that 2-component systems (TCSs) are involved in the pathogenicity of APEC. OmpR, a response regulator of OmpR/EnvZ TCS, plays an important role in E. coli K-12. However, whether OmpR correlates with APEC pathogenesis has not been established. In this study, we constructed an ompR gene mutant and complement strains by using the CRISPR-Cas9 system and found that the inactivation of the ompR gene attenuated bacterial motility, biofilm formation, and the production of curli. The resistance to environmental stress, serum sensitivity, adhesion, and invasion of DF-1 cells, and pathogenicity in chicks were all significantly reduced in the mutant strain AE17ΔompR. These phenotypes were restored in the complement strain AE17C-ompR. The qRT-PCR results showed that OmpR influences the expression of genes associated with the flagellum, biofilm formation, and virulence. These findings indicate that the regulator OmpR contributes to APEC pathogenicity by affecting the expression and function of virulence factors.
Collapse
|
18
|
Khan K, Jalal K, Uddin R. An integrated in silico based subtractive genomics and reverse vaccinology approach for the identification of novel vaccine candidate and chimeric vaccine against XDR Salmonella typhi H58. Genomics 2022; 114:110301. [PMID: 35149170 DOI: 10.1016/j.ygeno.2022.110301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/25/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
Salmonella typhi is notorious for causing enteric fever which is also known as typhoid fever. It emerged as an extreme drug resistant strain that requires urgent attention to prevent its global spread. Statistically, about 11-17 million typhoid illnesses are reported worldwide annually. The only alternative approach for the control of this illness is proper vaccination. However, available typhoid vaccine has certain limitations such as poor long-term efficacy, and non-recommendation for below 6 years children, which opens the avenues for designing new vaccines to overcome such limitations. Computational-based reverse vaccinology along with subtractive genomics analysis is one of the robust approaches used for the prioritization of vaccine candidates through direct screening of genome sequence assemblies. In the current study, we have successfully designed a peptide-based novel antigen chimeric vaccine candidate against the XDR strain of S. typhi H58. The pipeline revealed four peptides from WP_001176621.1 i.e., peptidoglycan-associated lipoprotein Pal and two peptides from WP_000747548.1 i.e., OmpA family lipoprotein as promising target for the induction of immune response against S. typhi. The six epitopes from both proteins were found as immunogenic, antigenic, virulent, highly conserved, nontoxic, and non-allergenic among whole Salmonella H58 proteome. Furthermore, the binding interaction between a chimeric vaccine and human population alleles was unveiled through structure-based studies. So far, these proteins have never been characterized as vaccine targets against S. typhi. The current study proposed that construct V2 could be a significant vaccine candidate against S. typhi H58. However, to ascertain this, future experimental holistic studies are recommended as follow-up.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan.
| |
Collapse
|
19
|
Tian Y, Yang K, Shi Y, Zhang J, Han Q, Xia X, Song Y. OmpA may be used as a novel target to enrich and detect Escherichia coli in milk samples. J Dairy Sci 2022; 105:2849-2857. [DOI: 10.3168/jds.2021-20974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022]
|
20
|
A Proteomics Approach to Identify Possible Biomarkers of Early and Late Stages of E. coli-induced Urinary Tract Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As one of the most common bacterial infections globally, urinary tract infections (UTI)s affect the bladder and kidneys of many the bladders and kidneys of many. Along with gram-negative bacteria, Escherichia coli (E. coli) causes nearly 40% of nosocomial UTIs, 25% of recurrent infections, and between 80 to 90% of community-acquired infections. Proteomics, commonly used to study changes in protein expression of organisms, can be used to explore candidate biomarkers useful for the diagnosis of pathological conditions. Here, protein profiles of samples from patients diagnosed with E. coli-induced UTI were compared to identify distinctive proteins. Extracted proteins from bacteria from patients’ urine samples were separated into excisable spots using 2D-gel electrophoresis. The gels were then analyzed using Progenesis SameSpot software to select uniquely expressed protein spots, excised, and analyzed by LC/MS. The results were then compared against a database of known proteins. We identified two proteins, outer membrane protein A (OmpA) and RNA polymerase-binding transcription factor (DksA), involved in the survival of E. coli in the harsh environment of the host. We suggest their use as a part of a battery of possible biomarkers proteins for E. coli-induced UTI, and suggest that their overexpression is possibly associated with the stage of infection, early or late.
Collapse
|
21
|
Wang P, Zhang J, Chen Y, Zhong H, Wang H, Li J, Zhu G, Xia P, Cui L, Li J, Dong J, Gao Q, Meng X. ClbG in Avian Pathogenic Escherichia coli Contributes to Meningitis Development in a Mouse Model. Toxins (Basel) 2021; 13:546. [PMID: 34437417 PMCID: PMC8402462 DOI: 10.3390/toxins13080546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Colibactin is a complex secondary metabolite that leads to genotoxicity that interferes with the eukaryotic cell cycle. It plays an important role in many diseases, including neonatal mouse sepsis and meningitis. Avian pathogenic Escherichia coli (APEC) is responsible for several diseases in the poultry industry and may threaten human health due to its potential zoonosis. In this study, we confirmed that clbG was necessary for the APEC XM strain to produce colibactin. The deletion of clbG on APEC XM contributed to lowered γH2AX expression, no megalocytosis, and no cell cycle arrest in vitro. None of the 4-week Institute of Cancer Research mice infected with the APEC XM ΔclbG contracted meningitis or displayed weakened clinical symptoms. Fewer histopathological lesions were observed in the APEC XM ΔclbG group. The bacterial colonization of tissues and the relative expression of cytokines (IL-1β, IL-6, and TNF-α) in the brains decreased significantly in the APEC XM ΔclbG group compared to those in the APEC XM group. The tight junction proteins (claudin-5, occludin, and ZO-1) were not significantly destroyed in APEC XM ΔclbG group in vivo and in vitro. In conclusion, clbG is necessary for the synthesis of the genotoxin colibactin and affects the development of APEC meningitis in mice.
Collapse
Affiliation(s)
- Peili Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiaxiang Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yanfei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Haoran Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Qingqing Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (P.W.); (J.Z.); (Y.C.); (H.Z.); (H.W.); (J.L.); (G.Z.); (P.X.); (L.C.); (J.L.); (J.D.); (Q.G.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
22
|
Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021; 10:pathogens10040467. [PMID: 33921518 PMCID: PMC8069529 DOI: 10.3390/pathogens10040467] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.
Collapse
|
23
|
Diversification of OmpA and OmpF of Yersinia ruckeri is independent of the underlying species phylogeny and evidence of virulence-related selection. Sci Rep 2021; 11:3493. [PMID: 33568758 PMCID: PMC7876001 DOI: 10.1038/s41598-021-82925-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM) which causes economically significant losses in farmed salmonids, especially Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss, Walbaum). However, very little is known about the genetic relationships of disease-causing isolates in these two host species or about factors responsible for disease. Phylogenetic analyses of 16 representative isolates based on the nucleotide sequences of 19 housekeeping genes suggests that pathogenic Atlantic salmon and rainbow trout isolates represent distinct host-specific lineages. However, the apparent phylogenies of certain isolates has been influenced by horizontal gene transfer and recombinational exchange. Splits decomposition analysis demonstrated a net-like phylogeny based on the housekeeping genes, characteristic of recombination. Comparative analysis of the distribution of individual housekeeping gene alleles across the isolates demonstrated evidence of genomic mosaicism and recombinational exchange involving certain Atlantic salmon and rainbow trout isolates. Comparative nucleotide sequence analysis of the key outer membrane protein genes ompA and ompF revealed that the corresponding gene trees were both non-congruent with respect to the housekeeping gene phylogenies providing evidence that horizontal gene transfer has influenced the evolution of both these surface protein-encoding genes. Analysis of inferred amino acid sequence variation in OmpA identified a single variant, OmpA.1, that was present in serotype O1 and O8 isolates representing typical pathogenic strains in rainbow trout and Atlantic salmon, respectively. In particular, the sequence of surface-exposed loop 3 differed by seven amino acids to that of other Y. ruckeri isolates. These findings suggest that positive selection has likely influenced the presence of OmpA.1 in these isolates and that loop 3 may play an important role in virulence. Amino acid sequence variation of OmpF was greater than that of OmpA and was similarly restricted mainly to the surface-exposed loops. Two OmpF variants, OmpF.1 and OmpF.2, were associated with pathogenic rainbow trout and Atlantic salmon isolates, respectively. These OmpF proteins had very similar amino acid sequences suggesting that positive evolutionary pressure has also favoured the selection of these variants in pathogenic strains infecting both species.
Collapse
|
24
|
Ramos S, Silva V, Dapkevicius MDLE, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P. Escherichia coli as Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production. Animals (Basel) 2020; 10:ani10122239. [PMID: 33260303 PMCID: PMC7761174 DOI: 10.3390/ani10122239] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary This revision is about the problem of Escherichia coli as a commensal and pathogenic bacterium among food-producing animals and health implications. Escherichia coli may play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tract; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. The majority of E. coli strains are commensals inhabiting the intestinal tract of humans and warm-blooded animals and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. All over the word, antibiotic resistance is commonly detected among commensal bacteria from food-producing animals, raising important questions on the potential impact of antibiotic use in animals and the possible transmission of these resistant bacteria to humans through the food chain. The use, in food-producing animals, of antibiotics that are critically important in human medicine has been implicated in the emergence of new forms of resistant bacteria, including new strains of multidrug-resistant foodborne bacteria, such as extended spectrum β-lactamase (ESBL)-producing E. coli. Abstract Escherichia coli are facultative, anaerobic Gram-negative rods with many facets. Within resistant bacterial populations, they play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tracts; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. Thus, the prevalence of antimicrobial resistance in these commensal bacteria (or others, such as enterococci) can be a good indicator for the selective pressure caused by the use of antimicrobial agents, providing an early warning of the emergence of antimicrobial resistance in pathogens. As many as 90% of E. coli strains are commensals inhabiting the intestinal tracts of humans and warm-blooded animals. As a commensal, it lives in a mutually beneficial association with its hosts and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. In humans, it is the prominent cause of enteritis, community- and hospital-acquired urinary tract infection (UTI), septicemia, postsurgical peritonitis, and other clinical infections, such as neonatal meningitis, while, in farm animals, it is more prominently associated with diarrhea. On a global scale, E. coli can be considered the most important human pathogen, causing severe infection along with other major bacterial foodborne agents, such as Salmonella spp. and Campylobacter. Thus, the importance of resistance in E. coli, typically considered a benign commensal, should not be underestimated.
Collapse
Affiliation(s)
- Sónia Ramos
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain;
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
- Correspondence: ; Tel./Fax: +351-259-350-466
| |
Collapse
|