1
|
Rodriguez-Hernandez Z, Paredes-Douton A, Galvez-Fernandez M, Grau-Perez M, Sotos-Prieto M, Rentero-Garrido P, Gonzalez-Estecha M, Llorente-Ballesteros MT, Gomez-Ariza JL, Callejon-Leblic B, Fernandez-Navarro P, Laclaustra M, Cenarro A, Civeira F, Glabonjat RA, Monleon D, Pastor-Barriuso R, Moreno-Franco B, Garcia-Barrera T, Tellez-Plaza M. Non-genetic and genetic determinants of serum selenium and selenium species in the Aragon Workers Health Study. Free Radic Biol Med 2025; 233:365-377. [PMID: 40164364 DOI: 10.1016/j.freeradbiomed.2025.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Understanding potential determinants of selenium biomarkers can help to unravel selenium health effects. We evaluated the contribution of non-genetic (sociodemographic and lifestyle) and genetic factors to serum selenium biomarkers and selenium species (quantified as selenium) including selenium in glutathione peroxidase (GPx), selenoprotein P (SeP), selenoalbumin (SeAlb) and total selenometabolites (Se-metabolites) in the Aragon Workers Health Study (AWHS), a predominantly male cohort of car assembly factory workers in Spain. Total serum selenium and selenium species were measured by HPLC/ICP-QQQ-MS in 1624 AWHS participants. Blood and urine selenium, measured by ICP-MS, were available in a subset. A Healthy Lifestyle Score (HLS) included Mediterranean diet, physical activity, smoking, BMI and alcohol intake. Candidate gene and genome-wide discovery analyses (CGA and GDA, respectively) were based on TOPMed imputed SNPs. In sex and age-adjusted models, overall HLS, physical activity, and specific foods intake showed positive associations with serum total selenium, SeAlb and Se-metabolites concentrations. The associations between smoking status and BMI with total serum selenium; age, smoking status, BMI and meat intake with SeAlb; and smoking status with Se-metabolites, were inverse. In the GDA, we identified 20, 24, 21, 26, 16, 20 and 68 independent genetic loci for serum total selenium, GPx, SeP, SeAlb, Se-metabolites, and total blood and urine selenium, respectively, with some overlapping genes also relevant in the CGA. Enrichment analysis pointed to biological pathways including circadian rhythm regulation, immune system processes, signaling and receptor- and transporter-related pathways. The explained variability of selenium markers ranged from 15 % for SeP to 21 % for SeAlb and from 0.2 % for SeP to 3.5 % for SeAlb in environmental determinants-adjusted models with and without the specific selenium biomarker polygenic score, respectively. While the genetic contribution is substantial, selenium status might be influenced by reinforced healthy lifestyle interventions. Follow-up genetic studies to evaluate selenium health consequences are granted.
Collapse
Affiliation(s)
- Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain; Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Anabel Paredes-Douton
- Department of Preventive Medicine and Public Health, Hospital Clínico San Carlos, Madrid, Spain
| | - Marta Galvez-Fernandez
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Preventive Medicine, Public Health and Epidemiology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Grau-Perez
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Instituto de Investigación Sanitaria Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - Mercedes Sotos-Prieto
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine, Public Health and Epidemiology, Universidad Autonoma de Madrid, Madrid, Spain; Department of Environmental Health. Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Pilar Rentero-Garrido
- Instituto de Investigación Sanitaria Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | | | | | - Jose L Gomez-Ariza
- Research Center on Health and The Environment (RENSMA), Department of Chemistry "Prof.J.C.Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Belen Callejon-Leblic
- Research Center on Health and The Environment (RENSMA), Department of Chemistry "Prof.J.C.Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Pablo Fernandez-Navarro
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martin Laclaustra
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain
| | - Fernando Civeira
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Daniel Monleon
- Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Roberto Pastor-Barriuso
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Belen Moreno-Franco
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain; Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain
| | - Tamara Garcia-Barrera
- Research Center on Health and The Environment (RENSMA), Department of Chemistry "Prof.J.C.Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Preventive Medicine, Public Health and Epidemiology, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Ryoo SW, Choi BY, Son SY, Lee JH, Min JY, Min KB. Lead and cadmium exposure was associated with faster epigenetic aging in a representative sample of adults aged 50 and older in the United States. CHEMOSPHERE 2025; 374:144194. [PMID: 39946941 DOI: 10.1016/j.chemosphere.2025.144194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/05/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Lead and cadmium are among the most prevalent environmental toxicants and are highly detrimental to human health. While prior studies link heavy metal exposure to reduced telomere length and increased DNA methylation age, their relationship with epigenetic age acceleration (EAA) remains understudied. This study investigates whether exposure to lead and cadmium accelerates biological aging. METHODS This cross-sectional study analyzed data from 2201 participants aged 50 or older from the 1999-2002 NHANES. Blood lead and cadmium levels were measured using simultaneous multi-element atomic absorption spectrometry. Eight DNA-methylation-based epigenetic clocks were included in the analysis: Hannum Age, Horvath pan-tissue Age, PhenoAge, GrimAge, GrimAge version 2, Skin Blood Age, epiTOC, and DNAmTL. EAA for each individual was calculated as the residuals from the regression of estimated epigenetic age on chronological age. RESULTS Of the 2201 American older adults, the mean (SE, standard error) chronological age was 65.75 (0.21), which was closest to the mean GrimAge (65.99; SE = 0.19). After adjusting for demographics, lifestyle factors, comorbidities, and cell type composition, multivariate linear regression analyses revealed associations of blood lead and cadmium levels with significantly higher Hannum Age, Grim Age, Grim Age2, Skin Blood Age (associated with lead only), as well as Phenotypic Age and DNAmTL (associated with cadmium only). Quartile-based analyses of blood lead and cadmium levels according to quartiles revealed consistent and strong associations between greater exposure to lead or cadmium (e.g., the fourth quartile of the metals) and EAA. Among lifestyle factors, smoking had a pronounced impact on accelerated aging, especially in the Grim Age and Grim Age2. CONCLUSIONS We found that exposure to lead and cadmium was associated with accelerated epigenetic age. These findings suggest the potential role of lead and cadmium in EAA and propose the integration of environmental factors to refine epigenetic age prediction.
Collapse
Affiliation(s)
- Seung-Woo Ryoo
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Baek-Yong Choi
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seok-Yoon Son
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hyeon Lee
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea.
| | - Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea.
| |
Collapse
|
3
|
Bellingham M, Evans NP, Lea RG, Padmanabhan V, Sinclair KD. Reproductive and Metabolic Health Following Exposure to Environmental Chemicals: Mechanistic Insights from Mammalian Models. Annu Rev Anim Biosci 2025; 13:411-440. [PMID: 39531389 DOI: 10.1146/annurev-animal-111523-102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The decline in human reproductive and metabolic health over the past 50 years is associated with exposure to complex mixtures of anthropogenic environmental chemicals (ECs). Real-life EC exposure has varied over time and differs across geographical locations. Health-related issues include declining sperm quality, advanced puberty onset, premature ovarian insufficiency, cancer, obesity, and metabolic syndrome. Prospective animal studies with individual and limited EC mixtures support these observations and provide a means to investigate underlying physiological and molecular mechanisms. The greatest impacts of EC exposure are through programming of the developing embryo and/or fetus, with additional placental effects reported in eutherian mammals. Single-chemical effects and mechanistic studies, including transgenerational epigenetic inheritance, have been undertaken in rodents. Important translational models of human exposure are provided by companion animals, due to a shared environment, and sheep exposed to anthropogenic chemical mixtures present in pastures treated with sewage sludge (biosolids). Future animal research should prioritize EC mixtures that extend beyond a single developmental stage and/or generation. This would provide a more representative platform to investigate genetic and underlying mechanisms that explain sexually dimorphic and individual effects that could facilitate mitigation strategies.
Collapse
Affiliation(s)
- Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom;
| | - Richard G Lea
- University of Nottingham, Loughborough, United Kingdom
| | | | | |
Collapse
|
4
|
Hsu YH, Wu CY, Lee HL, Hsieh RL, Huang YL, Shiue HS, Lin YC, Chen MC, Hsueh YM. Combined effects of global DNA methylation, blood lead and total urinary arsenic levels on developmental delay in preschool children. Environ Health 2025; 24:2. [PMID: 39819460 PMCID: PMC11740333 DOI: 10.1186/s12940-024-01151-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
DNA methylation is a critical step in brain development, 5-Methyl-2'-deoxycytidine (5mdC) is one of the global DNA methylation markers. Arsenic and lead exposures have been associated with neurotoxicity, which may be linked to epigenetic changes. Our research sought to investigate the correlation between 5mdC and developmental delay (DD) among preschoolers. Additionally, we assessed whether 5mdC modified the impacts of blood lead and total urinary arsenic levels on DD. We analyzed the concentrations of 5mdC, blood cadmium and lead, and total urinary arsenic in 174 children with DD and 88 healthy children. Global DNA methylation levels are expressed as the ratio 5mdC/2'-dexyguanosine (dG), called 5mdC (%). In our findings, elevated levels of blood lead and total urinary arsenic were significantly associated with DD risk among preschoolers. Furthermore, high 5mdC (%) was related with reduced risk of DD, with an odds ratio (OR) and 95% confidence interval (CI) of 0.14 (0.06 - 0.32). A notable multiplicative interaction was observed between low 5mdC (%) and elevated blood lead levels to increase OR of DD, with OR and 95% CI was 9.51 (4.18 - 21.64). The findings provide evidence of the combined effects of reduced 5mdC (%) and high blood lead concentrations, increasing the OR of DD.
Collapse
Affiliation(s)
- Yuu-Hueih Hsu
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yin Wu
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Su Memorial Hospital, Shin Kong Wu Ho, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chieh Chen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Kim SH, Yu SY, Choo JH, Kim JK, Kim J, Ahn K, Hwang SY. Changes in Gene Expression Related to Atopic Dermatitis in Mothers and Infants Following VOC Exposure. Int J Mol Sci 2024; 25:12827. [PMID: 39684538 DOI: 10.3390/ijms252312827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Environmental pollutants, particularly volatile organic compounds (VOCs), are associated with various diseases, including atopic dermatitis (AD). However, despite numerous studies on AD, there is a lack of research on the impact of various environmental exposures on mothers and infants. This study, therefore, investigated the effects of maternal exposure to specific VOCs (toluene, xylene, and benzene) on the expression of AD-related genes in mothers and their infants. RNA expression levels and DNA methylation patterns were analyzed to examine the correlation between environmental exposures and AD. A multi-omics approach integrating gene expression and methylation data was additionally employed to gain a broader understanding of the genetic impact of VOC exposure. Network analysis revealed significant changes in gene expression associated with AD. For example, maternal exposure to toluene resulted in the upregulation of AQP10, which is linked to keratinocyte dysfunction, and in infants, the genes IL31RA and CCL20 were notably affected, both of which play critical roles in immune response and skin barrier function. In mothers exposed to xylene, the histamine receptor gene HRH1 was identified as a key player in influencing AD through its role in skin barrier recovery, while infants exhibited consistent network responses with upregulation of IL31RA and downregulation of TIGIT, reflecting a shared response across different xylene isomers. Interestingly, infants exposed to xylene isomers displayed nearly identical gene network patterns, suggesting developmental resistance to diverse environmental factors. No significant gene changes were identified in the benzene-exposed group. These findings suggest that exposure to specific VOCs may have different effects on gene expression related to AD, highlighting the complexity of how environmental factors contribute to disease development.
Collapse
Affiliation(s)
- Seung Hwan Kim
- Department of Bio-Nanotechnology, Hanyang University, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - So Yeon Yu
- Institute of Science and Convergence Technology, Hanyang University, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Jeong Hyeop Choo
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Jin Kyeong Kim
- Department of Molecular & Life Science, Hanyang University, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Seung Yong Hwang
- Department of Medicinal and Life Sciences, Hanyang University, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea
- Department of Applied Artificial Intelligence, Hanyang University, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Pierozan P, Höglund A, Theodoropoulou E, Karlsson O. Perfluorooctanesulfonic acid (PFOS) induced cancer related DNA methylation alterations in human breast cells: A whole genome methylome study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174864. [PMID: 39032741 DOI: 10.1016/j.scitotenv.2024.174864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation plays a pivotal role in cancer. The ubiquitous contaminant perfluorooctanesulfonic acid (PFOS) has been epidemiologically associated with breast cancer, and can induce proliferation and malignant transformation of normal human breast epithelial cells (MCF-10A), but the information about its effect on DNA methylation is sparse. The aim of this study was to characterize the whole-genome methylome effects of PFOS in our breast cell model and compare the findings with previously demonstrated DNA methylation alterations in breast tumor tissues. The DNA methylation profile was assessed at single CpG resolution in MCF-10A cells treated with 1 μM PFOS for 72 h by using Enzymatic Methyl sequencing (EM-seq). We found 12,591 differentially methylated CpG-sites and 13,360 differentially methylated 100 bp tiles in the PFOS exposed breast cells. These differentially methylated regions (DMRs) overlapped with 2406 genes of which 494 were long non-coding RNA and 1841 protein coding genes. We identified 339 affected genes that have been shown to display altered DNA methylation in breast cancer tissue and several other genes related to cancer development. This includes hypermethylation of GACAT3, DELEC1, CASC2, LCIIAR, MUC16, SYNE1 and hypomethylation of TTN and KMT2C. DMRs were also found in estrogen receptor genes (ESR1, ESR2, ESRRG, ESRRB, GREB1) and estrogen responsive genes (GPER1, EEIG1, RERG). The gene ontology analysis revealed pathways related to cancer phenotypes such as cell adhesion and growth. These findings improve the understanding of PFOS's potential role in breast cancer and illustrate the value of whole-genome methylome analysis in uncovering mechanisms of chemical effects, identifying biomarker candidates, and strengthening epidemiological associations, potentially impacting risk assessment.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
7
|
Tuminello S, Durmus N, Snuderl M, Chen Y, Shao Y, Reibman J, Arslan AA, Taioli E. DNA Methylation as a Molecular Mechanism of Carcinogenesis in World Trade Center Dust Exposure: Insights from a Structured Literature Review. Biomolecules 2024; 14:1302. [PMID: 39456235 PMCID: PMC11506790 DOI: 10.3390/biom14101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The collapse of the World Trade Center (WTC) buildings in New York City generated a large plume of dust and smoke. WTC dust contained human carcinogens including metals, asbestos, polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs, including polychlorinated biphenyls (PCBs) and dioxins), and benzene. Excess levels of many of these carcinogens have been detected in biological samples of WTC-exposed persons, for whom cancer risk is elevated. As confirmed in this structured literature review (n studies = 80), all carcinogens present in the settled WTC dust (metals, asbestos, benzene, PAHs, POPs) have previously been shown to be associated with DNA methylation dysregulation of key cancer-related genes and pathways. DNA methylation is, therefore, a likely molecular mechanism through which WTC exposures may influence the process of carcinogenesis.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nedim Durmus
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA;
| | - Yu Chen
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
8
|
Pang WK, Kuznetsova E, Holota H, De Haze A, Beaudoin C, Volle DH. Understanding the role of endocrine disrupting chemicals in testicular germ cell cancer: Insights into molecular mechanisms. Mol Aspects Med 2024; 99:101307. [PMID: 39213722 DOI: 10.1016/j.mam.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review examines the complex interplay between endocrine disrupting chemicals (EDCs) and the development of testicular germ cell tumors (TGCTs). Despite the high cure rates of TGCTs, challenges in diagnosis and treatment remain, necessitating a deeper understanding of the etiology of the disease. Here, we emphasize current knowledge on the role of EDCs as potential risk factors for TGCTs, focusing on pesticides and perfluorinated and polyfluoroalkyl substances (PFAs/PFCs). Evidence suggests that EDCs disrupt endocrine pathways and induce epigenetic changes that contribute to the development of TGCTs. However, the direct link between EDCs and TGCTs remains elusive and requires further investigation of the molecular mechanisms. We also highlighted the importance of studying nuclear receptors as potential targets for understanding TGCT etiology. In addition, recent evidence implicates PFAs/PFCs in TGCT incidence, highlighting the need for further research into their impact on human health. Overall, this review provides valuable insights into the potential role of EDCs in TGCT development and suggests avenues for future research, while also highlighting how understanding their influence may pave the way for novel therapeutic approaches to improve disease management.
Collapse
Affiliation(s)
- Won-Ki Pang
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| | - Ekaterina Kuznetsova
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
9
|
Nikpay M. Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits. EPIGENOMES 2024; 8:29. [PMID: 39189255 PMCID: PMC11348123 DOI: 10.3390/epigenomes8030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
An understanding of the molecular mechanism whereby an environmental chemical causes a disease is important for the purposes of future applications. In this study, a multiomics workflow was designed to combine several publicly available datasets in order to identify CpG sites and genes that mediate the impact of exposure to environmental chemicals on cardiometabolic traits. Organophosphate and prenatal lead exposure were previously reported to change methylation level at the cg23627948 site. The outcome of the analyses conducted in this study revealed that, as the cg23627948 site becomes methylated, the expression of the GNA12 gene decreases, which leads to a higher body fat percentage. Prenatal perfluorooctane sulfonate exposure was reported to increase the methylation level at the cg21153102 site. Findings of this study revealed that higher methylation at this site contributes to higher diastolic blood pressure by changing the expression of CHP1 and GCHFR genes. Moreover, HKR1 mediates the impact of B12 supplementation → cg05280698 hypermethylation on higher kidney function, while CTDNEP1 mediates the impact of air pollution → cg03186999 hypomethylation on higher systolic blood pressure. This study investigates CpG sites and genes that mediate the impact of environmental chemicals on cardiometabolic traits. Furthermore, the multiomics approach described in this study provides a convenient workflow with which to investigate the impact of an environmental factor on the body's biomarkers, and, consequently, on health conditions, using publicly available data.
Collapse
Affiliation(s)
- Majid Nikpay
- Omics and Biomedical Analysis Core Facility, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
10
|
Tuminello S, Ashebir YA, Schroff C, Ramaswami S, Durmus N, Chen Y, Snuderl M, Shao Y, Reibman J, Arslan AA. Genome-wide DNA methylation profiles and breast cancer among World Trade Center survivors. Environ Epidemiol 2024; 8:e313. [PMID: 38841706 PMCID: PMC11152787 DOI: 10.1097/ee9.0000000000000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Background Increased incidence of cancer has been reported among World Trade Center (WTC)-exposed persons. Aberrant DNA methylation is a hallmark of cancer development. To date, only a few small studies have investigated the relationship between WTC exposure and DNA methylation. The main objective of this study was to assess the DNA methylation profiles of WTC-exposed community members who remained cancer free and those who developed breast cancer. Methods WTC-exposed women were selected from the WTC Environmental Health Center clinic, with peripheral blood collected during routine clinical monitoring visits. The reference group was selected from the NYU Women's Health Study, a prospective cohort study with blood samples collected before 9 November 2001. The Infinium MethylationEPIC array was used for global DNA methylation profiling, with adjustments for cell type composition and other confounders. Annotated probes were used for biological pathway and network analysis. Results A total of 64 WTC-exposed (32 cancer free and 32 with breast cancer) and 32 WTC-unexposed (16 cancer free and 16 with prediagnostic breast cancer) participants were included. Hypermethylated cytosine-phosphate-guanine probe sites (defined as β > 0.8) were more common among WTC-exposed versus unexposed participants (14.3% vs. 4.5%, respectively, among the top 5000 cytosine-phosphate-guanine sites). Cancer-related pathways (e.g., human papillomavirus infection, cGMP-PKG) were overrepresented in WTC-exposed groups (breast cancer patients and cancer-free subjects). Compared to the unexposed breast cancer patients, 47 epigenetically dysregulated genes were identified among WTC-exposed breast cancers. These genes formed a network, including Wnt/β-catenin signaling genes WNT4 and TCF7L2, and dysregulation of these genes contributes to cancer immune evasion. Conclusion WTC exposure likely impacts DNA methylation and may predispose exposed individuals toward cancer development, possibly through an immune-mediated mechanism.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
| | - Yibeltal Arega Ashebir
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
| | - Chanel Schroff
- Department of Pathology, NYU Grossman School of Medicine, New York City, New York
| | - Sitharam Ramaswami
- Department of Pathology, NYU Grossman School of Medicine, New York City, New York
| | - Nedim Durmus
- Department of Medicine, NYU Grossman School of Medicine, New York City, New York
| | - Yu Chen
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
- NYU Perlmutter Comprehensive Cancer Center, New York City, New York
| | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York City, New York
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
- NYU Perlmutter Comprehensive Cancer Center, New York City, New York
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, New York City, New York
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York City, New York
| | - Alan A. Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
- NYU Perlmutter Comprehensive Cancer Center, New York City, New York
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York City, New York
| |
Collapse
|
11
|
Gu W, Wang T, Lin Y, Wang Y, Chen Y, Dai Y, Duan H. Particulate polycyclic aromatic hydrocarbons and metals, DNA methylation and DNA methyltransferase among middle-school students in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172087. [PMID: 38561129 DOI: 10.1016/j.scitotenv.2024.172087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The main components of particulate matter (PM) had been reported to change DNA methylation levels. However, the mixed effect of PM and its constituents on DNA methylation and the underlying mechanism in children has not been well characterized. To investigate the association between single or mixture exposures and global DNA methylation or DNA methyltransferases (DNMTs), 273 children were recruited (110 in low-exposed area and 163 in high-exposed area) in China. Serum benzo[a]pyridin-7,8-dihydroglycol-9, 10-epoxide (BPDE)-albumin adduct and urinary metals were determined as exposure markers. The global DNA methylation (% 5mC) and the mRNA expression of DNMT1, and DNMT3A were measured. The linear regression, quantile-based g-computation (QGC), and mediation analyses were performed to investigate the effects of individual and mixture exposure. We found that significantly lower levels of % 5mC (P < 0.001) and the mRNA expression of DNMT3A in high-PM exposed group (P = 0.031). After adjustment for age, gender, BMI z-score, detecting status of urinary cotinine, serum folate, and white blood cells, urinary arsenic (As) was negatively correlated with the % 5mC. One IQR increase in urinary As (19.97 μmol/mol creatinine) was associated with a 11.06 % decrease in % 5mC (P = 0.026). Serum BPDE-albumin adduct and urinary cadmium (Cd) were negatively correlated with the levels of DNMT1 and DNMT3A (P < 0.05). Mixture exposure was negatively associated with expression of DNMT3A in QGC analysis (β: -0.19, P < 0.001). Mixture exposure was significantly associated with decreased % 5mC in the children with non-detected cotinine or normal serum folate (P < 0.05), which the most contributors were PAHs and As. The mediated effect of hypomethylation through DNMT1 or DNMT3A pathway was not observed. Our findings indicated that individual and mixture exposure PAHs and metal components had negative associations with global DNA methylation and decreased DNMT3A expression significantly in school-age individuals.
Collapse
Affiliation(s)
- Wen Gu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yang Lin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Beijing Chaoyang District Center for Disease Prevention and Control, Beijing 100021, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; State Key Laboratory of Trauma and Chemical Poisoning, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yufei Dai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; State Key Laboratory of Trauma and Chemical Poisoning, China.
| |
Collapse
|
12
|
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention due to their health hazards to human cardiovascular disease. Heavy metals, including lead, cadmium, mercury, arsenic, and chromium, are found in various sources such as air, water, soil, food, and industrial products. Recent research strongly suggests a connection between cardiovascular disease and exposure to toxic heavy metals. Epidemiological, basic, and clinical studies have revealed that heavy metals can promote the production of reactive oxygen species, which can then exacerbate reactive oxygen species generation and induce inflammation, resulting in endothelial dysfunction, lipid metabolism distribution, disruption of ion homeostasis, and epigenetic changes. Over time, heavy metal exposure eventually results in an increased risk of hypertension, arrhythmia, and atherosclerosis. Strengthening public health prevention and the application of chelation or antioxidants, such as vitamins and beta-carotene, along with minerals, such as selenium and zinc, can diminish the burden of cardiovascular disease attributable to metal exposure.
Collapse
Affiliation(s)
- Ziwei Pan
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| | - Tingyu Gong
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China (T.G.)
| | - Ping Liang
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| |
Collapse
|
13
|
Geng R, Yu M, Xu J, Wei Y, Wang Q, Chen J, Sun F, Xu K, Xu H, Liu X, Xiao J, Zhang X, Xie B. Amino acids analysis reveals serum methionine contributes to diagnosis of the Kawasaki disease in mice and children. J Pharm Biomed Anal 2024; 239:115873. [PMID: 38008045 DOI: 10.1016/j.jpba.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Kawasaki disease (KD) patients often lack early and definitive diagnosis due to insufficient clinical criteria, whereas biomarkers might accelerate the diagnostic process and treatment. METHODS The KD mouse models were established and thirteen amino acids were determined. A total of 551 serum samples were collected including KD patients (n = 134), HCs (n = 223) and KD patients after intravascular immunoglobulin therapy (IVIG, n = 194). A paired analysis of pre- and post-IVIG was employed in 10 KD patients. RESULTS The pathological alterations of the aorta, myocardial interstitium and coronary artery vessel were observed in KD mice; the serum levels of methionine in KD mice (n = 40) were markedly altered and negatively correlated with the C-reactive protein levels. Consistent with the mouse model, serum methionine were significantly decreased in KD children, with the relative variation ratio of KD with HCs above 30% and AUROC value of 0.845. Serum methionine were correlated with Z-Score and significantly restored to the normal ranges after KD patient IVIG treatment. Another case-control study with 10 KD patients with IVIG sensitivity and 20 healthy controls validated serum methionine as a biomarker for KD patients with AUROC of 0.86. Elevation of serum DNMT1 activities, but no differences of DNMT3a and DNMT3b, were observed in KD patients when comparing with those in the HCs. CONCLUSIONS Our study validated that serum methionine was a potential biomarker for KD, the alteration of which is associated with the activation of DNMT1 in KD patients.
Collapse
Affiliation(s)
- Ruijin Geng
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing 314001, China; School of Pharmaceutical Science, Nanchang University, Nanchang 330001, China
| | - Mengjie Yu
- School of Pharmaceutical Science, Nanchang University, Nanchang 330001, China
| | - Jinbiao Xu
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Yuanwang Wei
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Qiong Wang
- Department of Pediatrics, the Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Junguo Chen
- Department of Pediatrics, the Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Fei Sun
- Department of Pediatrics, the Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Kun Xu
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang 330001, China
| | - Han Xu
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang 330001, China
| | - Xiaohui Liu
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang 330001, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330001, China.
| | - Xianchao Zhang
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing 314001, China.
| | - Baogang Xie
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University, Jiaxing 314001, China; School of Pharmaceutical Science, Nanchang University, Nanchang 330001, China.
| |
Collapse
|
14
|
Kim SH, Yu SY, Choo JH, Kim J, Ahn K, Hwang SY. Epigenetic Methylation Changes in Pregnant Women: Bisphenol Exposure and Atopic Dermatitis. Int J Mol Sci 2024; 25:1579. [PMID: 38338858 PMCID: PMC10855599 DOI: 10.3390/ijms25031579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Bisphenol is a chemical substance widely used in plastic products and food containers. In this study, we observed a relationship between DNA methylation and atopic dermatitis (AD) in the peripheral blood mononuclear cells (PBMCs) of pregnant women exposed to bisphenol A (BPA) and its alternatives, bisphenol S (BPS) and bisphenol F (BPF). DNA methylation is an epigenetic mechanism that regulates gene expression, which can be altered by environmental factors, and affects the onset and progression of diseases. We found that genes belonging to the JAK-STAT and PI3K-AKT signaling pathways were hypomethylated in the blood of pregnant women exposed to bisphenols. These genes play important roles in skin barrier function and immune responses, and may influence AD. Therefore, we suggest that not only BPA, but also BPS and BPF, which are used as alternatives, can have a negative impact on AD through epigenetic mechanisms.
Collapse
Affiliation(s)
- Seung Hwan Kim
- Department of Bio-Nanotechnology, Hanyang University, Ansan 15588, Republic of Korea;
| | - So Yeon Yu
- Department of Molecular & Life Science, Hanyang University, Ansan 15588, Republic of Korea; (S.Y.Y.); (J.H.C.)
| | - Jeong Hyeop Choo
- Department of Molecular & Life Science, Hanyang University, Ansan 15588, Republic of Korea; (S.Y.Y.); (J.H.C.)
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea (K.A.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea (K.A.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Seung Yong Hwang
- Department of Medicinal and Life Sciences, Hanyang University, Ansan 15588, Republic of Korea
- Department of Applied Artificial Intelligence, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
15
|
Ghozal M, Kadawathagedara M, Delvert R, Divaret-Chauveau A, Raherison C, Varraso R, Bédard A, Crépet A, Sirot V, Charles MA, Adel-Patient K, de Lauzon-Guillain B. Prenatal dietary exposure to mixtures of chemicals is associated with allergy or respiratory diseases in children in the ELFE nationwide cohort. Environ Health 2024; 23:5. [PMID: 38195595 PMCID: PMC10775451 DOI: 10.1186/s12940-023-01046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Prenatal exposure to environmental chemicals may be associated with allergies later in life. We aimed to examine the association between prenatal dietary exposure to mixtures of chemicals and allergic or respiratory diseases up to age 5.5 y. METHODS We included 11,638 mother-child pairs from the French "Étude Longitudinale Française depuis l'Enfance" (ELFE) cohort. Maternal dietary exposure during pregnancy to eight mixtures of chemicals was previously assessed. Allergic and respiratory diseases (eczema, food allergy, wheezing and asthma) were reported by parents between birth and age 5.5 years. Associations were evaluated with adjusted logistic regressions. Results are expressed as odds ratio (OR[95%CI]) for a variation of one SD increase in mixture pattern. RESULTS Maternal dietary exposure to a mixture composed mainly of trace elements, furans and polycyclic aromatic hydrocarbons (PAHs) was positively associated with the risk of eczema (1.10 [1.05; 1.15]), this association was consistent across sensitivity analyses. Dietary exposure to one mixture of pesticides was positively associated with the risk of food allergy (1.10 [1.02; 1.18]), whereas the exposure to another mixture of pesticides was positively but slightly related to the risk of wheezing (1.05 [1.01; 1.08]). This last association was not found in all sensitivity analyses. Dietary exposure to a mixture composed by perfluoroalkyl acids, PAHs and trace elements was negatively associated with the risk of asthma (0.89 [0.80; 0.99]), this association was consistent across sensitivity analyses, except the complete-case analysis. CONCLUSION Whereas few individual chemicals were related to the risk of allergic and respiratory diseases, some consistent associations were found between prenatal dietary exposure to some mixtures of chemicals and the risk of allergic or respiratory diseases. The positive association between trace elements, furans and PAHs and the risk of eczema, and that between pesticides mixtures and food allergy need to be confirmed in other studies. Conversely, the negative association between perfluoroalkyl acids, PAHs and trace elements and the risk of asthma need to be further explored.
Collapse
Affiliation(s)
- Manel Ghozal
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France.
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France
| | - Rosalie Delvert
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, 94805, France
| | - Amandine Divaret-Chauveau
- Unité d'allergologie pédiatrique, Hôpital d'enfants, CHRU de Nancy, Vandoeuvre les Nancy, France
- EA 3450 DevAH, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
- UMR 6249 Chrono-Environnement, Université de Bourgogne Franche Comté, Besançon, France
| | - Chantal Raherison
- Inserm, Team EPICENE, Bordeaux Population Health Research Center, UMR 1219, Bordeaux University, Bordeaux, France
| | - Raphaëlle Varraso
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, 94805, France
| | - Annabelle Bédard
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, 94805, France
| | - Amélie Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Véronique Sirot
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Marie Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France
| | - Karine Adel-Patient
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France
| | - Blandine de Lauzon-Guillain
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France
| |
Collapse
|
16
|
Tuminello S, Nguyen E, Durmus N, Alptekin R, Yilmaz M, Crisanti MC, Snuderl M, Chen Y, Shao Y, Reibman J, Taioli E, Arslan AA. World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence. EPIGENOMES 2023; 7:31. [PMID: 38131903 PMCID: PMC10742700 DOI: 10.3390/epigenomes7040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Known carcinogens in the dust and fumes from the destruction of the World Trade Center (WTC) towers on 9 November 2001 included metals, asbestos, and organic pollutants, which have been shown to modify epigenetic status. Epigenome-wide association analyses (EWAS) using uniform (Illumina) methodology have identified novel epigenetic profiles of WTC exposure. Methods: We reviewed all published data, comparing differentially methylated gene profiles identified in the prior EWAS studies of WTC exposure. This included DNA methylation changes in blood-derived DNA from cases of cancer-free "Survivors" and those with breast cancer, as well as tissue-derived DNA from "Responders" with prostate cancer. Emerging molecular pathways related to the observed DNA methylation changes in WTC-exposed groups were explored and summarized. Results: WTC dust exposure appears to be associated with DNA methylation changes across the genome. Notably, WTC dust exposure appears to be associated with increased global DNA methylation; direct dysregulation of cancer genes and pathways, including inflammation and immune system dysregulation; and endocrine system disruption, as well as disruption of cholesterol homeostasis and lipid metabolism. Conclusion: WTC dust exposure appears to be associated with biologically meaningful DNA methylation changes, with implications for carcinogenesis and development of other chronic diseases.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
| | - Emelie Nguyen
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Nedim Durmus
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramazan Alptekin
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Muhammed Yilmaz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Chen
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
17
|
Kunovac A, Hathaway QA, Thapa D, Durr AJ, Taylor AD, Rizwan S, Sharif D, Valentine SJ, Hollander JM. N 6-methyladenosine (M 6A) in fetal offspring modifies mitochondrial gene expression following gestational nano-TiO 2 inhalation exposure. Nanotoxicology 2023; 17:651-668. [PMID: 38180356 PMCID: PMC10988778 DOI: 10.1080/17435390.2023.2293144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
N6-methyladenosine (m6A) is the most prominent epitranscriptomic modification to RNA in eukaryotes, but it's role in adaptive changes within the gestational environment are poorly understood. We propose that gestational exposure to nano titanium dioxide (TiO2) contributes to cardiac m6A methylation in fetal offspring and influences mitochondrial gene expression. 10-week-old pregnant female FVB/NJ wild-type mice underwent 6 nonconsecutive days of whole-body inhalation exposure beginning on gestational day (GD) 5. Mice were exposed to filtered room air or nano-TiO2 with a target aerosol mass concentration of 12 mg/m3. At GD 15 mice were humanely killed and cardiac RNA and mitochondrial proteins extracted. Immunoprecipitation with m6A antibodies was performed followed by sequencing of immunoprecipitant (m6A) and input (mRNA) on the Illumina NextSeq 2000. Protein extraction, preparation, and LC-MS/MS were used for mitochondrial protein quantification. There were no differences in maternal or fetal pup weights, number of pups, or pup heart weights between exposure and control groups. Transcriptomic sequencing revealed 3648 differentially expressed mRNA in nano-TiO2 exposed mice (Padj ≤ 0.05). Transcripts involved in mitochondrial bioenergetics were significantly downregulated (83 of 85 genes). 921 transcripts revealed significant m6A methylation sites (Padj ≤ 0.10). 311 of the 921 mRNA were identified to have both 1) significantly altered expression and 2) differentially methylated sites. Mitochondrial proteomics revealed decreased expression of ATP Synthase subunits in the exposed group (P ≤ 0.05). The lack of m6A modifications to mitochondrial transcripts suggests a mechanism for decreased transcript stability and reduced protein expression due to gestational nano-TiO2 inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Medical Education, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Dharendra Thapa
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrew D. Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Daud Sharif
- Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | | | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
18
|
McGraw KE, Schilling K, Glabonjat RA, Galvez-Fernandez M, Domingo-Relloso A, Martinez-Morata I, Jones MR, Post WS, Kaufman J, Tellez-Plaza M, Valeri L, Brown ER, Kronmal RA, Barr GR, Shea S, Navas-Acien A, Sanchez TR. Urinary Metal Levels and Coronary Artery Calcification: Longitudinal Evidence in the Multi-Ethnic Study of Atherosclerosis (MESA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.31.23297878. [PMID: 37961623 PMCID: PMC10635251 DOI: 10.1101/2023.10.31.23297878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Growing evidence indicates that exposure to metals are risk factors for cardiovascular disease (CVD). We hypothesized that higher urinary levels of metals with prior evidence of an association with CVD, including non-essential (cadmium , tungsten, and uranium) and essential (cobalt, copper, and zinc) metals are associated with baseline and rate of change of coronary artery calcium (CAC) progression, a subclinical marker of atherosclerotic CVD. Methods We analyzed data from 6,418 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) with spot urinary metal levels at baseline (2000-2002) and 1-4 repeated measures of spatially weighted coronary calcium score (SWCS) over a ten-year period. SWCS is a unitless measure of CAC highly correlated to the Agatston score but with numerical values assigned to individuals with Agatston score=0. We used linear mixed effect models to assess the association of baseline urinary metal levels with baseline SWCS, annual change in SWCS, and SWCS over ten years of follow-up. Urinary metals (adjusted to μg/g creatinine) and SWCS were log transformed. Models were progressively adjusted for baseline sociodemographic factors, estimated glomerular filtration rate, lifestyle factors, and clinical factors. Results At baseline, the median and interquartile range (25th, 75th) of SWCS was 6.3 (0.7, 58.2). For urinary cadmium, the fully adjusted geometric mean ratio (GMR) (95%Cl) of SWCS comparing the highest to the lowest quartile was 1.51 (1.32, 1.74) at baseline and 1.75 (1.47, 2.07) at ten years of follow-up. For urinary tungsten, uranium, and cobalt the corresponding GMRs at ten years of follow-up were 1.45 (1.23, 1.71), 1.39 (1.17, 1.64), and 1.47 (1.25, 1.74), respectively. For copper and zinc, the association was attenuated with adjustment for clinical risk factors; GMRs at ten years of follow-up before and after adjustment for clinical risk factors were 1.55 (1.30, 1.84) and 1.33 (1.12, 1.58), respectively, for copper and 1.85 (1.56, 2.19) and 1.57 (1.33, 1.85) for zinc. Conclusion Higher levels of cadmium, tungsten, uranium, cobalt, copper, and zinc, as measured in urine, were associated with subclinical CVD at baseline and at follow-up. These findings support the hypothesis that metals are pro-atherogenic factors.
Collapse
Affiliation(s)
- Katlyn E. McGraw
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Kathrin Schilling
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Ronald A. Glabonjat
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Marta Galvez-Fernandez
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Arce Domingo-Relloso
- Columbia University Mailman School of Public Health, Department of Biostatistics, 722 W 168th St, New York, NY 10032
| | - Irene Martinez-Morata
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Miranda R. Jones
- Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore MD 21057
- Johns Hopkins University Bloomberg School of Public Health, Department of Epidemiology, 615 N. Wolfe Street. Baltimore MD 212057
| | - Wendy S. Post
- Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore MD 21057
- Johns Hopkins University Bloomberg School of Public Health, Department of Epidemiology, 615 N. Wolfe Street. Baltimore MD 212057
| | - Joel Kaufman
- University of Washington, Department of Medicine
| | - Maria Tellez-Plaza
- National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain, Department of Chronic Diseases Epidemiology
| | - Linda Valeri
- Columbia University Mailman School of Public Health, Department of Biostatistics, 722 W 168th St, New York, NY 10032
| | - Elizabeth R. Brown
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division
- University of Washington, Department of Biostatistics
| | | | - Graham R. Barr
- Columbia University Irving Medical Center, Departments of Medicine and Epidemiology
| | - Steven Shea
- Columbia University Irving Medical Center, Departments of Medicine and Epidemiology
| | - Ana Navas-Acien
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Tiffany R. Sanchez
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| |
Collapse
|
19
|
Fryar-Williams S, Tucker G, Strobel J, Huang Y, Clements P. Molecular Mechanism Biomarkers Predict Diagnosis in Schizophrenia and Schizoaffective Psychosis, with Implications for Treatment. Int J Mol Sci 2023; 24:15845. [PMID: 37958826 PMCID: PMC10650772 DOI: 10.3390/ijms242115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Diagnostic uncertainty and relapse rates in schizophrenia and schizoaffective disorder are relatively high, indicating the potential involvement of other pathological mechanisms that could serve as diagnostic indicators to be targeted for adjunctive treatment. This study aimed to seek objective evidence of methylenetetrahydrofolate reductase MTHFR C677T genotype-related bio markers in blood and urine. Vitamin and mineral cofactors related to methylation and indolamine-catecholamine metabolism were investigated. Biomarker status for 67 symptomatically well-defined cases and 67 asymptomatic control participants was determined using receiver operating characteristics, Spearman's correlation, and logistic regression. The 5.2%-prevalent MTHFR 677 TT genotype demonstrated a 100% sensitive and specific case-predictive biomarkers of increased riboflavin (vitamin B2) excretion. This was accompanied by low plasma zinc and indicators of a shift from low methylation to high methylation state. The 48.5% prevalent MTHFR 677 CC genotype model demonstrated a low-methylation phenotype with 93% sensitivity and 92% specificity and a negative predictive value of 100%. This model related to lower vitamin cofactors, high histamine, and HPLC urine indicators of lower vitamin B2 and restricted indole-catecholamine metabolism. The 46.3%-prevalent CT genotype achieved high predictive strength for a mixed methylation phenotype. Determination of MTHFR C677T genotype dependent functional biomarker phenotypes can advance diagnostic certainty and inform therapeutic intervention.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley, SA 5061, Australia
- The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Department of Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Graeme Tucker
- Department of Public Health, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Jörg Strobel
- Department of Psychiatry, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Yichao Huang
- Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Peter Clements
- Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
- Department of Paediatrics, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
20
|
Li N, Wang J, Li K, Yang P, Wang Y, Xu C, He N, Ji K, Song H, Zhang M, Du L, Liu Q. Influence of e-waste exposure on DNA damage and DNA methylation in people living near recycling sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88744-88756. [PMID: 37442932 DOI: 10.1007/s11356-023-28591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
The association between long-term exposure to e-waste and poor health is well established, but how e-waste exposure affects DNA methylation is understudied. In this study, we measured the DNA damage levels and the alternation of DNA methylation in peripheral blood mononuclear cells (PBMCs) collected from a population exposed to e-waste. The concentration of 28 PCB congeners in the blood samples of e-waste recycling workers was elevated than those of the reference group. DNA damage levels were significantly higher than that of samples from the reference group by detecting the SCGE, CA, and CBMN assays. Eventually, we found that the methylation level of 1233 gene loci was changed in the exposure group. Bioinformatic analysis of differential genes revealed that the hypermethylated genes were enriched in cell component movement and regulation of cell function, and hypomethylated genes were involved in the cellular metabolic process. Among the 30 genes we tested, 14 genes showed a negative correlation between methylation level and expression level. Therefore, e-waste exposure potentially increased the levels of DNA damage and alters DNA methylation, which would likely impact human health.
Collapse
Affiliation(s)
- Na Li
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Kejun Li
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Ping Yang
- Tianjin Institute of Medical and Pharmaceutical Science, Tianjin, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China.
| |
Collapse
|
21
|
de Angelis C, Galdiero G, Menafra D, Garifalos F, Verde N, Piscopo M, Negri M, Auriemma RS, Simeoli C, Pivonello C, Colao A, Pivonello R. The environment and male reproductive system: the potential role and underlying mechanisms of cadmium in testis cancer. Crit Rev Toxicol 2023; 53:412-435. [PMID: 37737155 DOI: 10.1080/10408444.2023.2250387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Cadmium is a known human carcinogen, and has been shown to profoundly affect male reproductive function, at multiple levels, by exerting both endocrine and non-endocrine actions. Nevertheless, the potential role of cadmium in the etiology of testis cancer has been scantly investigated in humans, and, currently, available epidemiological observational studies are insufficient to draw definitive conclusions in this regard. On the contrary, experimental studies in laboratory animals demonstrated that cadmium is a strong inducer of testis tumors, mostly represented by benign Leydig cell adenoma; moreover, malignant transformation was also reported in few animals, following cadmium treatment. Early experimental studies in animals proposed an endocrine-dependent mechanism of cadmium-induced testis tumorigenesis; however, more recent findings from cell-free assays, in vitro studies, and short-term in vivo studies, highlighted that cadmium might also contribute to testis tumor development by early occurring endocrine-independent mechanisms, which include aberrant gene expression within the testis, and genotoxic effects, and take place well before the timing of testis tumorigenesis. These endocrine-independent mechanisms, however, have not been directly investigated on testis tumor samples retrieved from affected, cadmium-treated animals so far. The present review focuses on the relationship between cadmium exposure and testis cancer, by reporting the few epidemiological observational human studies available, and by providing animal-based experimental evidences of cadmium implication in the pathogenesis and progression of testis tumor. Moreover, the relevance of experimental animal studies to human cadmium exposure and the translational potential of experimental findings will be extensively discussed, by critically addressing strengths and weaknesses of available data.
Collapse
Affiliation(s)
- Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Giacomo Galdiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Davide Menafra
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
- Department of Public Health, Federico II University, Naples, Italy
| | - Nunzia Verde
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Mariangela Piscopo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Università Federico II di Napoli, Naples, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Università Federico II di Napoli, Naples, Italy
| | - Chiara Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Università Federico II di Napoli, Naples, Italy
| | | | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Università Federico II di Napoli, Naples, Italy
- Unesco Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
- Unesco Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| |
Collapse
|
22
|
Blechter B, Cardenas A, Shi J, Wong JYY, Hu W, Rahman ML, Breeze C, Downward GS, Portengen L, Zhang Y, Ning B, Ji BT, Cawthon R, Li J, Yang K, Bozack A, Dean Hosgood H, Silverman DT, Huang Y, Rothman N, Vermeulen R, Lan Q. Household air pollution and epigenetic aging in Xuanwei, China. ENVIRONMENT INTERNATIONAL 2023; 178:108041. [PMID: 37354880 PMCID: PMC11812304 DOI: 10.1016/j.envint.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden linked to lung cancer. In Xuanwei, China, lung cancer rate for nonsmoking women is among the highest in the world and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from combustion of smoky (bituminous) coal used for cooking and heating. Epigenetic age acceleration (EAA), a DNA methylation-based biomarker of aging, has been shown to be highly correlated with biological processes underlying the susceptibility of age-related diseases. We aim to assess the association between HAP exposure and EAA. METHODS We analyzed data from 106 never-smoking women from Xuanwei, China. Information on fuel type was collected using a questionnaire, and validated exposure models were used to predict levels of 43 HAP constituents. Exposure clusters were identified using hierarchical clustering. EAA was derived for five epigenetic clocks defined as the residuals resulting from regressing each clock on chronological age. We used generalized estimating equations to test associations between exposure clusters derived from predicted levels of HAP exposure, ambient 5-methylchrysene (5-MC), a PAH previously found to be associated with risk of lung cancer, and EAA, while accounting for repeated-measurements and confounders. RESULTS We observed an increase in GrimAge EAA for clusters with 31 and 33 PAHs reflecting current (β = 0.77 y per standard deviation (SD) increase, 95 % CI:0.36,1.19) and childhood (β = 0.92 y per SD, 95 % CI:0.40,1.45) exposure, respectively. 5-MC (ng/m3-year) was found to be associated with GrimAge EAA for current (β = 0.15 y, 95 % CI:0.05,0.25) and childhood (β = 0.30 y, 95 % CI:0.13,0.47) exposure. CONCLUSIONS Our findings suggest that exposure to PAHs from indoor smoky coal combustion, particularly 5-MC, is associated with GrimAge EAA, a biomarker of mortality.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Junming Shi
- Department of Biostatistics, UC Berkeley School of Public Health, Berkeley, CA, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - George S Downward
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Yongliang Zhang
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Bofu Ning
- Xuanwei Center of Diseases Control, Xuanwei, Yunnan, China
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jihua Li
- Quijing Center for Diseases Control and Prevention, Quijing, Yunnan, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - H Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, NY, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Roel Vermeulen
- Department of Biostatistics, UC Berkeley School of Public Health, Berkeley, CA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
23
|
Baradaran Mahdavi S, Kelishadi R. DNA methylation as a potential mediator between environmental pollutants and osteoporosis; a current hypothesis. BIOIMPACTS : BI 2023; 13:521-523. [PMID: 38022380 PMCID: PMC10676528 DOI: 10.34172/bi.2023.27717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/31/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Sadegh Baradaran Mahdavi
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Pamphlett R, Bishop DP. The toxic metal hypothesis for neurological disorders. Front Neurol 2023; 14:1173779. [PMID: 37426441 PMCID: PMC10328356 DOI: 10.3389/fneur.2023.1173779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Multiple sclerosis and the major sporadic neurogenerative disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer disease are considered to have both genetic and environmental components. Advances have been made in finding genetic predispositions to these disorders, but it has been difficult to pin down environmental agents that trigger them. Environmental toxic metals have been implicated in neurological disorders, since human exposure to toxic metals is common from anthropogenic and natural sources, and toxic metals have damaging properties that are suspected to underlie many of these disorders. Questions remain, however, as to how toxic metals enter the nervous system, if one or combinations of metals are sufficient to precipitate disease, and how toxic metal exposure results in different patterns of neuronal and white matter loss. The hypothesis presented here is that damage to selective locus ceruleus neurons from toxic metals causes dysfunction of the blood-brain barrier. This allows circulating toxicants to enter astrocytes, from where they are transferred to, and damage, oligodendrocytes, and neurons. The type of neurological disorder that arises depends on (i) which locus ceruleus neurons are damaged, (ii) genetic variants that give rise to susceptibility to toxic metal uptake, cytotoxicity, or clearance, (iii) the age, frequency, and duration of toxicant exposure, and (iv) the uptake of various mixtures of toxic metals. Evidence supporting this hypothesis is presented, concentrating on studies that have examined the distribution of toxic metals in the human nervous system. Clinicopathological features shared between neurological disorders are listed that can be linked to toxic metals. Details are provided on how the hypothesis applies to multiple sclerosis and the major neurodegenerative disorders. Further avenues to explore the toxic metal hypothesis for neurological disorders are suggested. In conclusion, environmental toxic metals may play a part in several common neurological disorders. While further evidence to support this hypothesis is needed, to protect the nervous system it would be prudent to take steps to reduce environmental toxic metal pollution from industrial, mining, and manufacturing sources, and from the burning of fossil fuels.
Collapse
Affiliation(s)
- Roger Pamphlett
- Department of Pathology, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Janoš T, Ottenbros I, Bláhová L, Šenk P, Šulc L, Pálešová N, Sheardová J, Vlaanderen J, Čupr P. Effects of pesticide exposure on oxidative stress and DNA methylation urinary biomarkers in Czech adults and children from the CELSPAC-SPECIMEn cohort. ENVIRONMENTAL RESEARCH 2023; 222:115368. [PMID: 36716809 PMCID: PMC10009299 DOI: 10.1016/j.envres.2023.115368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 05/13/2023]
Abstract
Current-use pesticide (CUP) exposure occurs mainly through diet and environmental application in both agricultural and urban settings. While pesticide exposure has been associated with many adverse health outcomes, the intermediary molecular mechanisms are still not completely elucidated. Among others, their roles in epigenetics (DNA methylation) and DNA damage due to oxidative stress are presumed. Scientific evidence on urinary biomarkers of such body response in general population is limited, especially in children. A total of 440 urine samples (n = 110 parent-child pairs) were collected during the winter and summer seasons in order to describe levels of overall DNA methylation (5-mC, 5-mdC, 5-hmdC, 7-mG, 3-mA) and oxidative stress (8-OHdG) biomarkers and investigate their possible associations with metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH). Linear mixed-effects models accounting for intraindividual and intrahousehold correlations were utilized. We applied false discovery rate procedure to account for multiplicity and adjusted for potential confounding variables. Higher urinary levels of most biological response biomarkers were measured in winter samples. In adjusted repeated measures models, interquartile range (IQR) increases in pyrethroid metabolites were associated with higher oxidative stress. t/c-DCCA and TCPY were associated with higher urinary levels of cytosine methylation biomarkers (5-mC and/or 5-mdC). The most robust association was observed for tebuconazole metabolite with 3-mA (-15.1% change per IQR increase, 95% CI = -23.6, -5.69) suggesting a role of this pesticide in reduced demethylation processes through possible DNA glycosylase inhibition. Our results indicate an urgent need to extend the range of analyzed environmental chemicals such as azole pesticides (e.g. prothioconazole) in human biomonitoring studies. This is the first study to report urinary DNA methylation biomarkers in children and associations between CUP metabolites and a comprehensive set of biomarkers including methylated and oxidized DNA alterations. Observed associations warrant further large-scale research of these biomarkers and environmental pollutants including CUPs.
Collapse
Affiliation(s)
- Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Ilse Ottenbros
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Center for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Libor Šulc
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jessica Sheardová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
26
|
Itoh H, Harada KH, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Yokoyama K, Zhu J, Harada Sassa M, Yoshida T, Tsugane S, Iwasaki M. Association between serum concentrations of perfluoroalkyl substances and global DNA methylation levels in peripheral blood leukocytes of Japanese women: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159923. [PMID: 36356761 DOI: 10.1016/j.scitotenv.2022.159923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Global DNA methylation levels in peripheral blood leukocytes can be a biomarker for cancer risk; however, levels can be changed by various factors such as environmental pollutants. We investigated the association between serum concentrations of perfluoroalkyl substances (PFASs) and global DNA methylation levels of leukocytes in a cross-sectional study using the control group of a Japanese breast cancer case-control study [397 women with a mean age of 54.1 (SD 10.1) years]. Importantly, our analysis distinguished branched PFAS isomers as different from linear isomers. The serum concentrations of 20 PFASs were measured by in-port arylation gas-chromatography negative chemical ionization mass spectrometry. Global DNA methylation levels in peripheral blood leukocytes were measured using a luminometric methylation assay. Associations between log10-transformed serum PFAS concentrations and global DNA methylation levels were evaluated by regression coefficients in multivariable robust linear regression analyses. Serum concentrations of 13 PFASs were significantly associated with increased global DNA methylation levels in leukocytes. Global DNA methylation was significantly increased by 1.45 %-3.96 % per log10-unit increase of serum PFAS concentration. Our results indicate that exposure to PFASs may increase global DNA methylation levels in peripheral blood leukocytes of Japanese women.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, 183 Matsushiro, Matsushiro-cho, Nagano, Nagano 381-1231, Japan; Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shiro Yokoyama
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hiroshi Onuma
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hideki Nishimura
- Department of Chest Surgery and Breast Surgery, Nagano Municipal Hospital, 1333-1 Tomitake, Nagano, Nagano 381-8551, Japan
| | - Ritsu Kusama
- Department of Surgery, Hokushin General Hospital, 1-5-63 Nishi, Nakano, Nagano 383-8505, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Epidemiology and Social Medicine, International University of Health and Welfare Graduate School of Public Health, 4-1-26 Akasaka, Minato-ku, Tokyo 107-8402, Japan
| | - Jing Zhu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
27
|
Pathak D, Sriram K. Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants. Int J Mol Sci 2023; 24:2272. [PMID: 36768596 PMCID: PMC9917383 DOI: 10.3390/ijms24032272] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Occupational injuries and toxicant exposures lead to the development of neuroinflammation by activating distinct mechanistic signaling cascades that ultimately culminate in the disruption of neuronal function leading to neurological and neurodegenerative disorders. The entry of toxicants into the brain causes the subsequent activation of glial cells, a response known as 'reactive gliosis'. Reactive glial cells secrete a wide variety of signaling molecules in response to neuronal perturbations and thus play a crucial role in the progression and regulation of central nervous system (CNS) injury. In parallel, the roles of protein phosphorylation and cell signaling in eliciting neuroinflammation are evolving. However, there is limited understanding of the molecular underpinnings associated with toxicant- or occupational injury-mediated neuroinflammation, gliosis, and neurological outcomes. The activation of signaling molecules has biological significance, including the promotion or inhibition of disease mechanisms. Nevertheless, the regulatory mechanisms of synergism or antagonism among intracellular signaling pathways remain elusive. This review highlights the research focusing on the direct interaction between the immune system and the toxicant- or occupational injury-induced gliosis. Specifically, the role of occupational injuries, e.g., trips, slips, and falls resulting in traumatic brain injury, and occupational toxicants, e.g., volatile organic compounds, metals, and nanoparticles/nanomaterials in the development of neuroinflammation and neurological or neurodegenerative diseases are highlighted. Further, this review recapitulates the recent advancement related to the characterization of the molecular mechanisms comprising protein phosphorylation and cell signaling, culminating in neuroinflammation.
Collapse
Affiliation(s)
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
28
|
Liu S, Morihiro K, Takeuchi F, Li Y, Okamoto A. Interstrand crosslinking oligonucleotides elucidate the effect of metal ions on the methylation status of repetitive DNA elements. Front Chem 2023; 11:1122474. [PMID: 36711237 PMCID: PMC9881727 DOI: 10.3389/fchem.2023.1122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
DNA methylation plays an important physiological function in cells, and environmental changes result in fluctuations in DNA methylation levels. Metal ions have become both environmental and health concerns, as they have the potential to disrupt the genomic DNA methylation status, even on specific sequences. In the current research, the methylation status of two typical repetitive DNA elements, i.e., long-interspersed nuclear element-1 (LINE-1) and alpha satellite (α-sat), was imaged and assessed using methylation-specific fluorescence in situ hybridization (MeFISH). This technique elucidated the effect of several metal ions on the methylation levels of repetitive DNA sequences. The upregulation and downregulation of the methylation levels of repetitive DNA elements by various metal ions were confirmed and depended on their concentration. This is the first example to investigate the effects of metal ions on DNA methylation in a sequence-specific manner.
Collapse
Affiliation(s)
- Shan Liu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumika Takeuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yufeng Li
- The Key Laboratory of Molecular Oncology of Hebei Province, Tangshan People’s Hospital, Tangshan, Hebei, China
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan,*Correspondence: Akimitsu Okamoto,
| |
Collapse
|
29
|
Chang CH, Subramani B, Yu CJ, Du JC, Chiou HC, Hou JW, Yang W, Chen CF, Chen YS, Hwang B, Chen ML. The association between organophosphate pesticide exposure and methylation of paraoxonase-1 in children with attention-deficit/hyperactivity disorder. ENVIRONMENT INTERNATIONAL 2023; 171:107702. [PMID: 36549222 DOI: 10.1016/j.envint.2022.107702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Boopathi Subramani
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Jung Yu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jung-Chieh Du
- Department of Pediatrics, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Hsien-Chih Chiou
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Songde Branch, Taipei, Taiwan
| | - Jia-Woei Hou
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Winnie Yang
- Department of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Sheue Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Betau Hwang
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Songde Branch, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
30
|
Validity of Geolocation and Distance to Exposure Sources from Geographical Information Systems for Environmental Monitoring of Toxic Metal Exposures Based on Correlation with Biological Samples: a Systematic Review. Curr Environ Health Rep 2022; 9:735-757. [PMID: 36447111 DOI: 10.1007/s40572-022-00383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE OF REVIEW In epidemiologic studies, biomarkers are the best possible choice to assess individual exposure to toxic metals since they integrate all exposure sources. However, measuring biomarkers is not always feasible, given potential budgetary and time constraints or limited availability of samples. Alternatively, approximations to individual metal exposure obtained from geographic information systems (GIS) have become popular to evaluate diverse metal-related health outcomes. Our objective was to conduct a systematic review of epidemiological studies that evaluated the validity of GIS-based geolocation and distance to pollutant sources as an approximation of individual metal exposure based on correlation with biological samples. RECENT FINDINGS We considered 11 toxic metals: lead (Pb), cadmium (Cd), antimony (Sb), aluminum (Al), arsenic (As), chromium (Cr), nickel (Ni), mercury (Hg), tungsten (W), uranium (U), and vanadium (V). The final review included 12 manuscripts which included seven metals (Pb, Cd, Al, As, Cr, Hg, and Ni). Many studies used geolocation of the individuals to compare exposed (industrial, urban, agricultural, or landfill sources) and unexposed areas and not so many studies used distance to a source. For all metals, except lead, there was more animal than human biosampling to conduct biological validation. We observed a trend towards higher levels of Cd, Cr, Hg, and Pb in biosamples collected closer to exposure sources, supporting that GIS-based proxies for these metals might approximate individual exposure. However, given the low number and heterogeneity of the retrieved studies, the accumulated evidence is, overall, not sufficient. Given the practical benefits and potential of modern GIS technologies, which allow environmental monitoring at a reasonable cost, additional validation studies that include human biosampling are needed to support the use of GIS-based individual exposure measures in epidemiologic studies.
Collapse
|
31
|
Elkin ER, Higgins C, Aung MT, Bakulski KM. Metals Exposures and DNA Methylation: Current Evidence and Future Directions. Curr Environ Health Rep 2022; 9:673-696. [PMID: 36282474 PMCID: PMC10082670 DOI: 10.1007/s40572-022-00382-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF THE REVIEW Exposure to essential and non-essential metals is widespread. Metals exposure is linked to epigenetic, particularly DNA methylation, differences. The strength of evidence with respect to the metal exposure type, timing, and level, as well as the DNA methylation association magnitude, and reproducibility are not clear. Focusing on the most recent 3 years, we reviewed the human epidemiologic evidence (n = 26 studies) and the toxicologic animal model evidence (n = 18 studies) for associations between metals exposure and DNA methylation. RECENT FINDINGS In humans, the greatest number of studies focused on lead exposure, followed by studies examining cadmium and arsenic. Approximately half of studies considered metals exposure during the in utero period and measured DNA methylation with the genome-wide Illumina arrays in newborn blood or placenta. Few studies performed formal replication testing or meta-analyses. Toxicology studies of metals and epigenetics had diversity in model systems (mice, rats, drosophila, tilapia, and zebrafish were represented), high heterogeneity of tissues used for DNA methylation measure (liver, testis, ovary, heart, blood, brain, muscle, lung, kidney, whole embryo), and a variety of technologies used for DNA methylation assessment (global, gene specific, genome-wide). The most common metals tested in toxicologic studies were lead and cadmium. Together, the recent studies reviewed provide the strongest evidence for DNA methylation signatures with prenatal metals exposures. There is also mounting epidemiologic evidence supporting lead, arsenic, and cadmium exposures with DNA methylation signatures in adults. The field of metals and DNA methylation is strengthened by the inclusion of both epidemiology and toxicology approaches, and further advancements can be made by coordinating efforts or integrating analyses across studies. Future advances in understanding the molecular basis of sequence specific epigenetic responses to metals exposures, methods for handling exposure mixtures in a genome-wide analytic framework, and pipelines to facilitate collaborative testing will continue to advance the field.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Cesar Higgins
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Jean-Pierre M, Michalovicz LT, Kelly KA, O'Callaghan JP, Nathanson L, Klimas N, J. A. Craddock T. A pilot reverse virtual screening study suggests toxic exposures caused long-term epigenetic changes in Gulf War Illness. Comput Struct Biotechnol J 2022; 20:6206-6213. [DOI: 10.1016/j.csbj.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
33
|
Issah I, Arko-Mensah J, Rozek LS, Rentschler K, Agyekum TP, Dwumoh D, Batterman S, Robins TG, Fobil JN. Association between global DNA methylation (LINE-1) and occupational particulate matter exposure among informal electronic-waste recyclers in Ghana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2406-2424. [PMID: 34404291 DOI: 10.1080/09603123.2021.1969007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
This study examined the associations between PM (2.5 and 10) and global DNA methylation among 100 e-waste workers and 51 non-e-waste workers serving as controls. Long interspersed nucleotide repetitive elements-1 (LINE-1) was measured by pyrosequencing. Personal PM2.5 and PM10 were measured over a 4-hour work-shift using real-time particulate monitors incorporated into a backpack . Linear regression models were used to assess the association between PM and LINE-1 DNA methylation. The concentrations of PM2.5 and PM10 were significantly higher among the e-waste workers than the controls (77.32 vs 34.88, p < 0.001 and 210.21 vs 121.92, p < 0.001, respectively). PM2.5 exposure was associated with increased LINE-1 CpG2 DNA methylation (β = 0.003; 95% CI; 0.001, 0.006; p = 0.022) but not with the average of all 4 CpG sites of LINE-1. In summary, high levels of PM2.5 exposure was associated with increased levels of global DNA methylation in a site-specific manner.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katie Rentschler
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Duah Dwumoh
- Department of Biostatistics, University of Ghana School of Public Health, Legon, Ghana
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| |
Collapse
|
34
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Ogbodo JO, Arazu AV, Iguh TC, Onwodi NJ, Ezike TC. Volatile organic compounds: A proinflammatory activator in autoimmune diseases. Front Immunol 2022; 13:928379. [PMID: 35967306 PMCID: PMC9373925 DOI: 10.3389/fimmu.2022.928379] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The etiopathogenesis of inflammatory and autoimmune diseases, including pulmonary disease, atherosclerosis, and rheumatoid arthritis, has been linked to human exposure to volatile organic compounds (VOC) present in the environment. Chronic inflammation due to immune breakdown and malfunctioning of the immune system has been projected to play a major role in the initiation and progression of autoimmune disorders. Macrophages, major phagocytes involved in the regulation of chronic inflammation, are a major target of VOC. Excessive and prolonged activation of immune cells (T and B lymphocytes) and overexpression of the master pro-inflammatory constituents [cytokine and tumor necrosis factor-alpha, together with other mediators (interleukin-6, interleukin-1, and interferon-gamma)] have been shown to play a central role in the pathogenesis of autoimmune inflammatory responses. The function and efficiency of the immune system resulting in immunostimulation and immunosuppression are a result of exogenous and endogenous factors. An autoimmune disorder is a by-product of the overproduction of these inflammatory mediators. Additionally, an excess of these toxicants helps in promoting autoimmunity through alterations in DNA methylation in CD4 T cells. The purpose of this review is to shed light on the possible role of VOC exposure in the onset and progression of autoimmune diseases.
Collapse
Affiliation(s)
- John Onyebuchi Ogbodo
- Department of Science Laboratory Technology, University of Nigeria, Nsukkagu, Enugu State, Nigeria
| | - Amarachukwu Vivan Arazu
- Department of Science Laboratory Technology, University of Nigeria, Nsukkagu, Enugu State, Nigeria
| | - Tochukwu Chisom Iguh
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ngozichukwuka Julie Onwodi
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tobechukwu Christian Ezike
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
- *Correspondence: Tobechukwu Christian Ezike,
| |
Collapse
|
36
|
Balasubramanian S, Perumal E. A systematic review on fluoride-induced epigenetic toxicity in mammals. Crit Rev Toxicol 2022; 52:449-468. [PMID: 36422650 DOI: 10.1080/10408444.2022.2122771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluoride, one of the global groundwater contaminants, is ubiquitous in our day-to-day life from various natural and anthropogenic sources. Numerous in vitro, in vivo, and epidemiological studies are conducted to understand the effect of fluoride on biological systems. A low concentration of fluoride is reported to increase oral health, whereas chronic exposure to higher concentrations causes fluoride toxicity (fluorosis). It includes dental fluorosis, skeletal fluorosis, and fluoride toxicity in soft tissues. The mechanism of fluoride toxicity has been reviewed extensively. However, epigenetic regulation in fluoride toxicity has not been reviewed. This systematic review summarizes the current knowledge regarding fluoride-induced epigenetic toxicity in the in vitro, in vivo, and epidemiological studies in mammalian systems. We examined four databases for the association between epigenetics and fluoride exposure. Out of 932 articles (as of 31 March 2022), 39 met our inclusion criteria. Most of the studies focused on different genes, and overall, preliminary evidence for epigenetic regulation of fluoride toxicity was identified. We further highlight the need for epigenome studies rather than candidate genes and provide recommendations for future research. Our results indicate a correlation between fluoride exposure and epigenetic processes. Further studies are warranted to elucidate and confirm the mechanism of epigenetic alterations mediated fluoride toxicity.
Collapse
Affiliation(s)
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
37
|
Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia 2022; 54:e14516. [PMID: 35765120 DOI: 10.1111/and.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.
Collapse
Affiliation(s)
- Emmanuel Joseph Ikokide
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
38
|
Ye L, He Z, Li D, Chen L, Chen S, Guo P, Yu D, Ma L, Niu Y, Duan H, Xing X, Xiao Y, Zeng X, Wang Q, Dong G, Aschner M, Zheng Y, Chen W. CpG site-specific methylation as epi-biomarkers for the prediction of health risk in PAHs-exposed populations. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128538. [PMID: 35231813 DOI: 10.1016/j.jhazmat.2022.128538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Environmental insults can lead to alteration in DNA methylation of specific genes. To address the role of altered DNA methylation in prediction of polycyclic aromatic hydrocarbons (PAHs) exposure-induced genetic damage, we recruited two populations, including diesel engine exhausts (low-level) and coke oven emissions (high-level) exposed subjects. The positive correlation was observed between the internal exposure marker (1-hydroxypyrene) and the extents of DNA damage (P < 0.05). The methylation of representative genes, including TRIM36, RASSF1a, and MGMT in peripheral blood lymphocytes was quantitatively examined by bisulfite-pyrosequencing assay. The DNA methylation of these three genes in response to PAHs exposure were changed in a CpG-site-specific manner. The identified hot CpG site-specific methylation of three genes exhibited higher predictive power for DNA damage than the respective single genes in both populations. Furthermore, the dose-response relationship analysis revealed a nonlinear U-shape curve of TRIM36 or RASSF1a methylation in combined population, which led to determination of the threshold of health risk. Furthermore, we established a prediction model for genetic damage based on the unidirectional-alteration MGMT methylation levels. In conclusion, this study provides new insight into the application of multiple epi-biomarkers for health risk assessment upon PAHs exposure.
Collapse
Affiliation(s)
- Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhini He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Guo
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Lu Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
39
|
Kim S, White SM, Radke EG, Dean JL. Harmonization of transcriptomic and methylomic analysis in environmental epidemiology studies for potential application in chemical risk assessment. ENVIRONMENT INTERNATIONAL 2022; 164:107278. [PMID: 35537365 DOI: 10.1016/j.envint.2022.107278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Recent efforts have posited the utility of transcriptomic-based approaches to understand chemical-related perturbations in the context of human health risk assessment. Epigenetic modification (e.g., DNA methylation) can influence gene expression changes and is known to occur as a molecular response to some chemical exposures. Characterization of these methylation events is critical to understand the molecular consequences of chemical exposures. In this context, a novel workflow was developed to interrogate publicly available epidemiological transcriptomic and methylomic data to identify relevant pathway level changes in response to chemical exposure, using inorganic arsenic as a case study. Gene Set Enrichment Analysis (GSEA) was used to identify causal methylation events that result in concomitant downstream transcriptional deregulation. This analysis demonstrated an unequal distribution of differentially methylated regions across the human genome. After mapping these events to known genes, significant enrichment of a subset of these pathways suggested that arsenic-mediated methylation may be both specific and non-specific. Parallel GSEA performed on matched transcriptomic samples determined that a substantially reduced subset of these pathways are enriched and that not all chemically-induced methylation results in a downstream alteration in gene expression. The resulting pathways were found to be representative of well-established molecular events known to occur in response to arsenic exposure. The harmonization of enriched transcriptional patterns with those identified from the methylomic platform promoted the characterization of plausibly causal molecular signaling events. The workflow described here enables significant gene and methylation-specific pathways to be identified from whole blood samples of individuals exposed to environmentally relevant chemical levels. As future efforts solidify specific causal relationships between these molecular events and relevant apical endpoints, this novel workflow could aid risk assessments by identifying molecular targets serving as biomarkers of hazard, informing mechanistic understanding, and characterizing dose ranges that promote relevant molecular/epigenetic signaling events occuring in response to chemical exposures.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Shana M White
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, USA.
| | - Elizabeth G Radke
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C., USA.
| | - Jeffry L Dean
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, USA.
| |
Collapse
|
40
|
Tuminello S, Zhang Y, Yang L, Durmus N, Snuderl M, Heguy A, Zeleniuch-Jacquotte A, Chen Y, Shao Y, Reibman J, Arslan AA. Global DNA Methylation Profiles in Peripheral Blood of WTC-Exposed Community Members with Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095104. [PMID: 35564499 PMCID: PMC9105091 DOI: 10.3390/ijerph19095104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022]
Abstract
Breast cancer represents the most common cancer diagnosis among World Trade Center (WTC)-exposed community members, residents, and cleanup workers enrolled in the WTC Environmental Health Center (WTC EHC). The primary aims of this study were (1) to compare blood DNA methylation profiles of WTC-exposed community members with breast cancer and WTC-unexposed pre-diagnostic breast cancer blood samples, and (2) to compare the DNA methylation differences among the WTC EHC breast cancer cases and WTC-exposed cancer-free controls. Gene pathway enrichment analyses were further conducted. There were significant differences in DNA methylation between WTC-exposed breast cancer cases and unexposed prediagnostic breast cancer cases. The top differentially methylated genes were Intraflagellar Transport 74 (IFT74), WD repeat-containing protein 90 (WDR90), and Oncomodulin (OCM), which are commonly upregulated in tumors. Probes associated with established tumor suppressor genes (ATM, BRCA1, PALB2, and TP53) were hypermethylated among WTC-exposed breast cancer cases compared to the unexposed group. When comparing WTC EHC breast cancer cases vs. cancer-free controls, there appeared to be global hypomethylation among WTC-exposed breast cancer cases compared to exposed controls. Functional pathway analysis revealed enrichment of several gene pathways in WTC-exposed breast cancer cases including endocytosis, proteoglycans in cancer, regulation of actin cytoskeleton, axon guidance, focal adhesion, calcium signaling, cGMP-PKG signaling, mTOR, Hippo, and oxytocin signaling. The results suggest potential epigenetic links between WTC exposure and breast cancer in local community members enrolled in the WTC EHC program.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- Correspondence: (S.T.); (A.A.A.)
| | - Yian Zhang
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
| | - Lei Yang
- Foundation Medicine, Cambridge, MA 02141, USA;
| | - Nedim Durmus
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
| | - Adriana Heguy
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
- NYU Langone’s Genome Technology Center, New York, NY 10016, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yu Chen
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| | - Alan A. Arslan
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY 10016, USA
- Correspondence: (S.T.); (A.A.A.)
| |
Collapse
|
41
|
Galvez-Fernandez M, Sanchez-Saez F, Domingo-Relloso A, Rodriguez-Hernandez Z, Tarazona S, Gonzalez-Marrachelli V, Grau-Perez M, Morales-Tatay JM, Amigo N, Garcia-Barrera T, Gomez-Ariza JL, Chaves FJ, Garcia-Garcia AB, Melero R, Tellez-Plaza M, Martin-Escudero JC, Redon J, Monleon D. Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study. Redox Biol 2022; 52:102314. [PMID: 35460952 PMCID: PMC9048061 DOI: 10.1016/j.redox.2022.102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Background Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals. In a population-based sample, cobalt, copper, selenium, zinc, arsenic, cadmium and antimony exposures were related to some metabolic patterns. Carriers of redox-related variants displayed differential susceptibility to metabolic alterations associated to excessive metal exposures. Cobalt and zinc showed a number of statistical interactions with variants from genes sharing biological pathways with a role in chronic diseases. The metabolic impact of metals combined with variation in redox-related genes might be large in the population, given metals widespread exposure.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sanchez-Saez
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Applied Statistics and Operations Research and Quality Politècnica de València, Valencia, Spain
| | - Vannina Gonzalez-Marrachelli
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jose M Morales-Tatay
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain; Department of Basic Medical Sciences, University Rovira I Virgili, Reus, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - F Javier Chaves
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Rebeca Melero
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, Valladolid, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
42
|
Domingo-Relloso A, Bozack A, Kiihl S, Rodriguez-Hernandez Z, Rentero-Garrido P, Casasnovas JA, Leon-Latre M, Garcia-Barrera T, Gomez-Ariza JL, Moreno B, Cenarro A, de Marco G, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Navas-Acien A, Gamble M, Tellez-Plaza M. Arsenic exposure and human blood DNA methylation and hydroxymethylation profiles in two diverse populations from Bangladesh and Spain. ENVIRONMENTAL RESEARCH 2022; 204:112021. [PMID: 34516978 PMCID: PMC8734953 DOI: 10.1016/j.envres.2021.112021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Associations of arsenic (As) with the sum of 5-mC and 5-hmC levels have been reported; however, As exposure-related differences of the separated 5-mC and 5-hmC markers have rarely been studied. METHODS In this study, we evaluated the association of arsenic exposure biomarkers and 5-mC and 5-hmC in 30 healthy men (43-55 years) from the Aragon Workers Health Study (AWHS) (Spain) and 31 healthy men (31-50 years) from the Folic Acid and Creatinine Trial (FACT) (Bangladesh). We conducted 5-mC and 5-hmC profiling using Infinium MethylationEPIC arrays, on paired standard and modified (ox-BS in AWHS and TAB in FACT) bisulfite converted blood DNA samples. RESULTS The median for the sum of urine inorganic and methylated As species (ΣAs) (μg/L) was 12.5 for AWHS and 89.6 for FACT. The median of blood As (μg/L) was 8.8 for AWHS and 10.2 for FACT. At a statistical significance p-value cut-off of 0.01, the differentially methylated (DMP) and hydroxymethylated (DHP) positions were mostly located in different genomic sites. Several DMPs and DHPs were consistently found in AWHS and FACT both for urine ΣAs and blood models, being of special interest those attributed to the DIP2C gene. Three DMPs (annotated to CLEC12A) for AWHS and one DHP (annotated to NPLOC4) for FACT remained statistically significant after false discovery rate (FDR) correction. Pathways related to chronic diseases including cardiovascular, cancer and neurological were enriched. CONCLUSIONS While we identified common 5-hmC and 5-mC signatures in two populations exposed to varying levels of inorganic As, differences in As-related epigenetic sites across the study populations may additionally reflect low and high As-specific associations. This work contributes a deeper understanding of potential epigenetic dysregulations of As. However, further research is needed to confirm biological consequences associated with DIP2C epigenetic regulation and to investigate the role of 5-hmC and 5-mC separately in As-induced health disorders at different exposure levels.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Statistics and Operations Research, University of Valencia, Spain
| | - Anne Bozack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Samara Kiihl
- Department of Statistics, State University of Campinas, Brazil
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, Biomedical Research Institute Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - J Antonio Casasnovas
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Montserrat Leon-Latre
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Tamara Garcia-Barrera
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - J Luis Gomez-Ariza
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - Belen Moreno
- Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Griselda de Marco
- Genomics Area, Foundation for the Promotion of Health and Biomedical Research of the Valencian Region (FISABIO), Valencia, Spain
| | - Faruque Parvez
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Mary Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
43
|
Yim G, Wang Y, Howe CG, Romano ME. Exposure to Metal Mixtures in Association with Cardiovascular Risk Factors and Outcomes: A Scoping Review. TOXICS 2022; 10:116. [PMID: 35324741 PMCID: PMC8955637 DOI: 10.3390/toxics10030116] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022]
Abstract
Since the National Institute of Environmental Health Sciences (NIEHS) declared conducting combined exposure research as a priority area, literature on chemical mixtures has grown dramatically. However, a systematic evaluation of the current literature investigating the impacts of metal mixtures on cardiovascular disease (CVD) risk factors and outcomes has thus far not been performed. This scoping review aims to summarize published epidemiology literature on the cardiotoxicity of exposure to multiple metals. We performed systematic searches of MEDLINE (PubMed), Scopus, and Web of Science to identify peer-reviewed studies employing statistical mixture analysis methods to evaluate the impact of metal mixtures on CVD risk factors and outcomes among nonoccupationally exposed populations. The search was limited to papers published on or after 1998, when the first dedicated funding for mixtures research was granted by NIEHS, through 1 October 2021. Twenty-nine original research studies were identified for review. A notable increase in relevant mixtures publications was observed starting in 2019. The majority of eligible studies were conducted in the United States (n = 10) and China (n = 9). Sample sizes ranged from 127 to 10,818. Many of the included studies were cross-sectional in design. Four primary focus areas included: (i) blood pressure and/or diagnosis of hypertension (n = 15), (ii) risk of preeclampsia (n = 3), (iii) dyslipidemia and/or serum lipid markers (n = 5), and (iv) CVD outcomes, including stroke incidence or coronary heart disease (n = 8). The most frequently investigated metals included cadmium, lead, arsenic, and cobalt, which were typically measured in blood (n = 15). The most commonly utilized multipollutant analysis approaches were Bayesian kernel machine regression (BKMR), weighted quantile sum regression (WQSR), and principal component analysis (PCA). To our knowledge, this is the first scoping review to assess exposure to metal mixtures in relation to CVD risk factors and outcomes. Recommendations for future studies evaluating the associations of exposure to metal mixtures with risk of CVDs and related risk factors include extending environmental mixtures epidemiologic studies to populations with wider metals exposure ranges, including other CVD risk factors or outcomes outside hypertension or dyslipidemia, using repeated measurement of metals to detect windows of susceptibility, and further examining the impacts of potential effect modifiers and confounding factors, such as fish and seafood intake.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (Y.W.); (C.G.H.); (M.E.R.)
| | | | | | | |
Collapse
|
44
|
Aluru N, Engelhardt J. OUP accepted manuscript. Toxicol Sci 2022; 188:75-87. [PMID: 35477799 PMCID: PMC9237993 DOI: 10.1093/toxsci/kfac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to environmental toxicants during preconception has been shown to affect offspring health and epigenetic mechanisms such as DNA methylation are hypothesized to be involved in adverse outcomes. However, studies addressing the effects of exposure to environmental toxicants during preconception on epigenetic changes in gametes are limited. The objective of this study is to determine the effect of preconceptional exposure to a dioxin-like polychlorinated biphenyl (3,3',4,4',5-pentachlorobiphenyl [PCB126]) on DNA methylation and gene expression in testis. Adult zebrafish were exposed to 3 and 10 nM PCB126 for 24 h and testis tissue was sampled at 7 days postexposure for histology, DNA methylation, and gene expression profiling. Reduced representation bisulfite sequencing revealed 37 and 92 differentially methylated regions (DMRs) in response to 3 and 10 nM PCB126 exposures, respectively. Among them, 19 DMRs were found to be common between both PCB126 treatment groups. Gene ontology (GO) analysis of DMRs revealed that enrichment of terms such as RNA processing, iron-sulfur cluster assembly, and gluconeogenesis. Gene expression profiling showed differential expression of 40 and 1621 genes in response to 3 and 10 nM PCB126 exposures, respectively. GO analysis of differentially expressed genes revealed enrichment of terms related to xenobiotic metabolism, oxidative stress, and immune function. There is no overlap in the GO terms or individual genes between DNA methylation and RNA sequencing results, but functionally many of the altered pathways have been shown to cause spermatogenic defects.
Collapse
Affiliation(s)
| | - Jan Engelhardt
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig D-04107, Germany
- Department of Evolutionary Biology, University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
45
|
Methylmercury and Polycyclic Aromatic Hydrocarbons in Mediterranean Seafood: A Molecular Anthropological Perspective. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eating seafood has numerous health benefits; however, it constitutes one of the main sources of exposure to several harmful environmental pollutants, both of anthropogenic and natural origin. Among these, methylmercury and polycyclic aromatic hydrocarbons give rise to concerns related to their possible effects on human biology. In the present review, we summarize the results of epidemiological investigations on the genetic component of individual susceptibility to methylmercury and polycyclic aromatic hydrocarbons exposure in humans, and on the effects that these two pollutants have on human epigenetic profiles (DNA methylation). Then, we provide evidence that Mediterranean coastal communities represent an informative case study to investigate the potential impact of methylmercury and polycyclic aromatic hydrocarbons on the human genome and epigenome, since they are characterized by a traditionally high local seafood consumption, and given the characteristics that render the Mediterranean Sea particularly polluted. Finally, we discuss the challenges of a molecular anthropological approach to this topic.
Collapse
|
46
|
Issah I, Arko-Mensah J, Rozek LS, Zarins KR, Agyekum TP, Dwomoh D, Basu N, Batterman S, Robins TG, Fobil JN. Global DNA (LINE-1) methylation is associated with lead exposure and certain job tasks performed by electronic waste workers. Int Arch Occup Environ Health 2021; 94:1931-1944. [PMID: 34148106 DOI: 10.1007/s00420-021-01733-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study assessed the associations between blood and urine levels of toxic metals; cadmium (Cd) and lead (Pb), and methylation levels of the LINE-1 gene among e-waste and control populations in Ghana. METHODS The study enrolled 100 male e-waste workers and 51 all-male non-e-waste workers or controls. The concentrations of Cd and Pb were measured in blood and urine using inductively coupled plasma mass spectrometry, while LINE1 methylation levels were assessed by pyrosequencing of bisulfite-converted DNA extracted from whole blood. Single and multiple metals linear regression models were used to determine the associations between metals and LINE1 DNA methylation. RESULTS Blood lead (BPb) and urine lead (UPb) showed higher median concentrations among the e-waste workers than the controls (76.82 µg/L vs 40.25 µg/L, p ≤ 0.001; and 6.89 µg/L vs 3.43 µg/L, p ≤ 0.001, respectively), whereas blood cadmium (BCd) concentration was lower in the e-waste workers compared to the controls (0.59 µg/L vs 0.81 µg/L, respectively, p = 0.003). There was no significant difference in LINE1 methylation between the e-waste and controls (85.16 ± 1.32% vs 85.17 ± 1.11%, p = 0.950). In our single metal linear regression models, BPb was significantly inversely associated with LINE1 methylation in the control group (βBPb = - 0.027, 95% CI - 0.045, - 0.010, p = 0.003). In addition, a weak association between BPb and LINE1 was observed in the multiple metals analysis in the e-waste worker group (βBPb = - 0.005, 95% CI - 0.011, 0.000, p = 0.058). CONCLUSION Continuous Pb exposure may interfere with LINE1 methylation, leading to epigenetic alterations, thus serving as an early epigenetic marker for future adverse health outcomes.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana.
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| |
Collapse
|
47
|
Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int J Hyg Environ Health 2021; 238:113855. [PMID: 34655857 DOI: 10.1016/j.ijheh.2021.113855] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Lead (Pb) is a ubiquitous environmental pollutant and a potent toxic compound. Humans are exposed to Pb through inhalation, ingestion, and skin contact via food, water, tobacco smoke, air, dust, and soil. Pb accumulates in bones, brain, liver and kidney. Fetal exposure occurs via transplacental transmission. The most critical health effects are developmental neurotoxicity in infants and cardiovascular effects and nephrotoxicity in adults. Pb exposure has been steadily decreasing over the past decades, but there are few recent exposure data from the general European population; moreover, no safe Pb limit has been set. Sensitive biomarkers of exposure, effect and susceptibility, that reliably and timely indicate Pb-associated toxicity are required to assess human exposure-health relationships in a situation of low to moderate exposure. Therefore, a systematic literature review based on PubMed entries published before July 2019 that addressed Pb exposure and biomarkers of effect and susceptibility, neurodevelopmental toxicity, epigenetic modifications, and transcriptomics was conducted. Finally included were 58 original papers on Pb exposure and 17 studies on biomarkers. The biomarkers that are linked to Pb exposure and neurodevelopment were grouped into effect biomarkers (serum brain-derived neurotrophic factor (BDNF) and serum/saliva cortisol), susceptibility markers (epigenetic markers and gene sequence variants) and other biomarkers (serum high-density lipoprotein (HDL), maternal iron (Fe) and calcium (Ca) status). Serum BDNF and plasma HDL are potential candidates to be further validated as effect markers for routine use in HBM studies of Pb, complemented by markers of Fe and Ca status to also address nutritional interactions related to neurodevelopmental disorders. For several markers, a causal relationship with Pb-induced neurodevelopmental toxicity is likely. Results on BDNF are discussed in relation to Adverse Outcome Pathway (AOP) 13 ("Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities") of the AOP-Wiki. Further studies are needed to validate sensitive, reliable, and timely effect biomarkers, especially for low to moderate Pb exposure scenarios.
Collapse
|
48
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
49
|
Weyde KVF, Olsen AK, Duale N, Kamstra JH, Skogheim TS, Caspersen IH, Engel SM, Biele G, Xia Y, Meltzer HM, Aase H, Villanger GD. Gestational blood levels of toxic metal and essential element mixtures and associations with global DNA methylation in pregnant women and their infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147621. [PMID: 34000534 DOI: 10.1016/j.scitotenv.2021.147621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pregnant women and their fetuses are exposed to multiple toxic metals that together with variations in essential element levels may alter epigenetic regulation, such as DNA methylation. OBJECTIVES The aim of the study was to investigate the associations between gestational levels of toxic metals and essential elements and mixtures thereof, with global DNA methylation levels in pregnant women and their newborn children. METHODS Using 631 mother-child pairs from a prospective birth cohort (The Norwegian Mother, Father and Child Cohort Study), we measured maternal blood concentration (gestation week ~18) of five toxic metals and seven essential elements. We investigated associations as individual exposures and two-way interactions, using elastic net regression, and total mixture, using quantile g-computation, with blood levels of 5-methylcytocine (5mC) and 5-hydroxymethylcytosine (5hmC) in mothers during pregnancy and their newborn children (cord blood). Multiple testing was adjusted for using the Benjamini and Hochberg false discovery rate (FDR) approach. RESULTS The most sensitive marker of DNA methylation appeared to be 5mC levels. In pregnant mothers, elastic net regression indicated associations between 5mC and selenium and lead (non-linear), while in newborns results indicated relationships between maternal selenium, cobalt (non-linear) and mercury and 5mC, as well as copper (non-linear) and 5hmC levels. Several possible two-way interactions were identified (e.g. arsenic and mercury, and selenium and maternal smoking in newborns). None of these findings met the FDR threshold for multiple testing. No net effect was observed in the joint (mixture) exposure-approach using quantile g-computation. CONCLUSION We identified few associations between gestational levels of several toxic metals and essential elements and global DNA methylation in pregnant mothers and their newborn children. As DNA methylation dysregulation might be a key mechanism in disease development and thus of high importance for public health, our results should be considered as important candidates to investigate in future studies.
Collapse
Affiliation(s)
| | | | - Nur Duale
- Norwegian Institute of Public Health, Oslo, Norway
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | | | | | - Stephanie M Engel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Guido Biele
- Norwegian Institute of Public Health, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Heidi Aase
- Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
50
|
Wu Y, Qie R, Cheng M, Zeng Y, Huang S, Guo C, Zhou Q, Li Q, Tian G, Han M, Zhang Y, Wu X, Li Y, Zhao Y, Yang X, Feng Y, Liu D, Qin P, Hu D, Hu F, Xu L, Zhang M. Air pollution and DNA methylation in adults: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117152. [PMID: 33895575 DOI: 10.1016/j.envpol.2021.117152] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 05/24/2023]
Abstract
This systematic review and meta-analysis aimed to investigate the association between air pollution and DNA methylation in adults from published observational studies. PubMed, Web of Science and Embase databases were systematically searched for available studies on the association between air pollution and DNA methylation published up to March 9, 2021. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). Meta-analysis was used to summarize the combined estimates for the association between air pollutants and global DNA methylation levels. Heterogeneity was assessed with the Cochran Q test and quantified with the I2 statistic. In total, 38 articles were included in this study: 16 using global methylation, 18 using candidate genes, and 11 using EWAS, with 7 studies using more than one approach. Meta-analysis revealed an imprecise but inverse association between exposure to PM2.5 and global DNA methylation (for each 10-μg/m3 PM2.5, combined estimate: 0.39; 95% confidence interval: 0.97 - 0.19). The candidate-gene results were consistent for the ERCC3 and SOX2 genes, suggesting hypermethylation in ERCC3 associated with benzene and that in SOX2 associated with PM2.5 exposure. EWAS identified 201 CpG sites and 148 differentially methylated regions that showed differential methylation associated with air pollution. Among the 307 genes investigated in 11 EWAS, a locus in nucleoredoxin gene was found to be positively associated with PM2.5 in two studies. Current meta-analysis indicates that PM2.5 is imprecisely and inversely associated with DNA methylation. The candidate-gene results consistently suggest hypermethylation in ERCC3 associated with benzene exposure and that in SOX2 associated with PM2.5 exposure. The Kyoto Encyclopedia of Genes and Genomes (KEGG) network analyses revealed that these genes were associated with African trypanosomiasis, Malaria, Antifolate resistance, Graft-versus-host disease, and so on. More evidence is needed to clarify the association between air pollution and DNA methylation.
Collapse
Affiliation(s)
- Yuying Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ranran Qie
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Min Cheng
- Department of Cardiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yunhong Zeng
- Center for Health Management, The Affiliated Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Shengbing Huang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chunmei Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qionggui Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Quanman Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Gang Tian
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Minghui Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yanyan Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Xiaoyan Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yang Li
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xingjin Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yifei Feng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dechen Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Pei Qin
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Lidan Xu
- Department of Nutrition, The Second Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|