1
|
Wang P, Cui J, Du H, Qian Z, Zhan H, Zhang H, Ye W, Meng W, Bai R. Preoperative Prediction of STAS Risk in Primary Lung Adenocarcinoma Using Machine Learning: An Interpretable Model with SHAP Analysis. Acad Radiol 2025:S1076-6332(25)00201-6. [PMID: 40140276 DOI: 10.1016/j.acra.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Accurate preoperative prediction of spread through air spaces (STAS) in primary lung adenocarcinoma (LUAD) is critical for optimizing surgical strategies and improving patient outcomes. OBJECTIVE To develop a machine learning (ML) based model to predict STAS using preoperative CT imaging features and clinicopathological data, while enhancing interpretability through shapley additive explanations (SHAP) analysis. MATERIALS AND METHODS This multicenter retrospective study included 1237 patients with pathologically confirmed primary LUAD from three hospitals. Patients from Center 1 (n=932) were divided into a training set (n=652) and an internal test set (n=280). Patients from Centers 2 (n=165) and 3 (n=140) formed external validation sets. CT imaging features and clinical variables were selected using Boruta and least absolute shrinkage and selection operator regression. Seven ML models were developed and evaluated using five-fold cross-validation. Performance was assessed using F1 score, recall, precision, specificity, sensitivity, and area under the receiver operating characteristic curve (AUC). RESULTS The Extreme Gradient Boosting (XGB) model achieved AUCs of 0.973 (training set), 0.862 (internal test set), and 0.842/0.810 (external validation sets). SHAP analysis identified nodule type, carcinoembryonic antigen, maximum nodule diameter, and lobulated sign as key features for predicting STAS. Logistic regression analysis confirmed these as independent risk factors. CONCLUSION The XGB model demonstrated high predictive accuracy and interpretability for STAS. By integrating widely available clinical and imaging features, this model offers a practical and effective tool for preoperative risk stratification, supporting personalized surgical planning in primary LUAD management.
Collapse
Affiliation(s)
- Ping Wang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China (P.W., J.C., Z.Q., H.Z., H.Z., W.Y., R.B.)
| | - Jianing Cui
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China (P.W., J.C., Z.Q., H.Z., H.Z., W.Y., R.B.)
| | - Haoyuan Du
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China (H.D.)
| | - Zhanhua Qian
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China (P.W., J.C., Z.Q., H.Z., H.Z., W.Y., R.B.)
| | - Huili Zhan
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China (P.W., J.C., Z.Q., H.Z., H.Z., W.Y., R.B.)
| | - Heng Zhang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China (P.W., J.C., Z.Q., H.Z., H.Z., W.Y., R.B.)
| | - Wei Ye
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China (P.W., J.C., Z.Q., H.Z., H.Z., W.Y., R.B.)
| | - Wei Meng
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081, China (W.M.)
| | - Rongjie Bai
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China (P.W., J.C., Z.Q., H.Z., H.Z., W.Y., R.B.).
| |
Collapse
|
2
|
Guigal-Stephan N, Lockhart B, Moser T, Heitzer E. A perspective review on the systematic implementation of ctDNA in phase I clinical trial drug development. J Exp Clin Cancer Res 2025; 44:79. [PMID: 40022112 PMCID: PMC11871688 DOI: 10.1186/s13046-025-03328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
Circulating tumour DNA (ctDNA) represents an increasingly important biomarker for the screening, diagnosis and management of patients in clinical practice in advanced/metastatic disease across multiple cancer types. In this context, ctDNA-based comprehensive genomic profiling is now available for patient management decisions, and several ctDNA-based companion diagnostic assays have been approved by regulatory agencies. However, although the assessment of ctDNA levels in Phase II-III drug development is now gathering momentum, it remains somewhat surprisingly limited in the early Phase I phases in light of the potential opportunities provided by such analysis. In this perspective review, we investigate the potential and hurdles of applying ctDNA testing for the inclusion and monitoring of patients in phase 1 clinical trials. This will enable more informed decisions regarding patient inclusion, dose optimization, and proof-of-mechanism of drug biological activity and molecular response, thereby supporting the evolving oncology drug development paradigm. Furthermore, we will highlight the use of cost-efficient, agnostic genome-wide techniques (such as low-pass whole genome sequencing and fragmentomics) and methylation-based methods to facilitate a more systematic integration of ctDNA in early clinical trial settings.
Collapse
Affiliation(s)
- Nolwen Guigal-Stephan
- Translational Medicine, Institut de Recherches Servier, 22 route 128, Gif-sur-Yvette, Saclay, 91190, France.
| | - Brian Lockhart
- Translational Medicine, Institut de Recherches Servier, 22 route 128, Gif-sur-Yvette, Saclay, 91190, France
| | - Tina Moser
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, Graz, 8010, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, Graz, 8010, Austria.
| |
Collapse
|
3
|
Wang B, Wang M, Lin Y, Zhao J, Gu H, Li X. Circulating tumor DNA methylation: a promising clinical tool for cancer diagnosis and management. Clin Chem Lab Med 2024; 62:2111-2127. [PMID: 38443752 DOI: 10.1515/cclm-2023-1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Cancer continues to pose significant challenges to the medical community. Early detection, accurate molecular profiling, and adequate assessment of treatment response are critical factors in improving the quality of life and survival of cancer patients. Accumulating evidence shows that circulating tumor DNA (ctDNA) shed by tumors into the peripheral blood preserves the genetic and epigenetic information of primary tumors. Notably, DNA methylation, an essential and stable epigenetic modification, exhibits both cancer- and tissue-specific patterns. As a result, ctDNA methylation has emerged as a promising molecular marker for noninvasive testing in cancer clinics. In this review, we summarize the existing techniques for ctDNA methylation detection, describe the current research status of ctDNA methylation, and present the potential applications of ctDNA-based assays in the clinic. The insights presented in this article could serve as a roadmap for future research and clinical applications of ctDNA methylation.
Collapse
Affiliation(s)
- Binliang Wang
- Department of Respiratory Medicine, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou, P.R. China
| | - Meng Wang
- Institute of Health Education, Hangzhou Center for Disease Control and Prevention, Hangzhou, P.R. China
| | - Ya Lin
- Zhejiang University of Chinese Medicine, Hangzhou, P.R. China
| | - Jinlan Zhao
- Scientific Research Department, Zhejiang Shengting Medical Company, Hangzhou, P.R. China
| | - Hongcang Gu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P.R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, P.R. China
| | - Xiangjuan Li
- Department of Gynaecology, Hangzhou Obstetrics and Gynecology Hospital, Hangzhou, P.R. China
| |
Collapse
|
4
|
Zhu S, Wu R, Liu X, Xie B, Xie C, Li S, Wu Z, Zhang Z, Tang Z, Gu L. Clinical application of ctDNA in early diagnosis, treatment and prognosis of patients with non-small cell lung cancer. Future Oncol 2024; 20:2213-2224. [PMID: 39073412 PMCID: PMC11514542 DOI: 10.1080/14796694.2024.2376513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Lung cancer is one of the most common malignancies worldwide, with non-small cell lung cancer (NSCLC) being the most common type. As understanding of precise treatment options for NSCLC deepens, circulating tumor DNA (ctDNA) has emerged as a potential biomarker that has become a research hotspot and may represent a new approach for the individualized diagnosis and treatment of NSCLC. This article reviews the applications of ctDNA for the early screening of patients with NSCLC, guiding targeted therapy and immunotherapy, evaluating chemotherapy and postoperative efficacy, assessing prognosis and monitoring recurrence. With the in-depth study of the pathogenesis of NSCLC, plasma ctDNA may become an indispensable part of the precise treatment of NSCLC, which has great clinical application prospects.
Collapse
Affiliation(s)
- Shenyu Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Rongqian Wu
- Department of Endocrinology and Metabolism, Gaoxin Hospital of The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiangjin Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bin Xie
- First Clinical Medical College, The Gannan Medical University, Ganzhou, China
| | - Chunfa Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Shulin Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Zhicheng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Zuxiong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Zhixian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| | - Liang Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, China
| |
Collapse
|
5
|
Fleischhacker M, Arslan E, Reinicke D, Eisenmann S, Theil G, Kollmeier J, Schäper C, Grah C, Klawonn F, Holdenrieder S, Schmidt B. Cell-Free Methylated PTGER4 and SHOX2 Plasma DNA as a Biomarker for Therapy Monitoring and Prognosis in Advanced Stage NSCLC Patients. Diagnostics (Basel) 2023; 13:2131. [PMID: 37443525 DOI: 10.3390/diagnostics13132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Notwithstanding some improvement in the earlier detection of patients with lung cancer, most of them still present with a late-stage disease at the time of diagnosis. Next to the most frequently utilized factors affecting the prognosis of lung cancer patients (stage, performance, and age), the recent application of biomarkers obtained by liquid profiling has gained more acceptance. In our study, we aimed to answer these questions: (i) Is the quantification of free-circulating methylated PTGER4 and SHOX2 plasma DNA a useful method for therapy monitoring, and is this also possible for patients treated with different therapy regimens? (ii) Is this approach possible when blood-drawing tubes, which allow for a delayed processing of blood samples, are utilized? Baseline values for mPTGER4 and mSHOX2 do not allow for clear discrimination between different response groups. In contrast, the combination of the methylation values for both genes shows a clear difference between responders vs. non-responders at the time of re-staging. Furthermore, blood drawing into tubes stabilizing the sample allows researchers more flexibility.
Collapse
Affiliation(s)
- Michael Fleischhacker
- Klinik für Innere Medizin-Schwerpunkt Pneumologie und Schlafmedizin, DRK Kliniken Berlin/Mitte, 13359 Berlin, Germany
| | - Erkan Arslan
- Lungenarztpraxis Berlin-Reinickendorf, 13403 Berlin, Germany
| | - Dana Reinicke
- Department für Innere Medizin, Universitätsklinikum Halle/Saale, 06120 Halle (Saale), Germany
| | - Stefan Eisenmann
- Department für Innere Medizin, Universitätsklinikum Halle/Saale, 06120 Halle (Saale), Germany
| | - Gerit Theil
- Department für Innere Medizin, Universitätsklinikum Halle/Saale, 06120 Halle (Saale), Germany
| | - Jens Kollmeier
- Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Christoph Schäper
- Klinik und Poliklinik für Innere Medizin B, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Christian Grah
- Gemeinschaftskrankenhaus Havelhöhe, Pneumologie und Lungenkrebszentrum, 14089 Berlin, Germany
| | - Frank Klawonn
- Department of Computer Science, Ostfalia University, 38302 Wolfenbüttel, Germany
- Biostatistics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, 80636 Munich, Germany
| | - Bernd Schmidt
- Klinik für Innere Medizin-Schwerpunkt Pneumologie und Schlafmedizin, DRK Kliniken Berlin/Mitte, 13359 Berlin, Germany
| |
Collapse
|
6
|
Free TJ, Tucker RW, Simonson KM, Smith SA, Lindgren CM, Pitt WG, Bundy BC. Engineering At-Home Dilution and Filtration Methods to Enable Paper-Based Colorimetric Biosensing in Human Blood with Cell-Free Protein Synthesis. BIOSENSORS 2023; 13:104. [PMID: 36671942 PMCID: PMC9855769 DOI: 10.3390/bios13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Diagnostic blood tests can guide the administration of healthcare to save and improve lives. Most clinical biosensing blood tests require a trained technician and specialized equipment to process samples and interpret results, which greatly limits test accessibility. Colorimetric paper-based diagnostics have an equipment-free readout, but raw blood obscures a colorimetric response which has motivated diverse efforts to develop blood sample processing techniques. This work uses inexpensive readily-available materials to engineer user-friendly dilution and filtration methods for blood sample collection and processing to enable a proof-of-concept colorimetric biosensor that is responsive to glutamine in 50 µL blood drop samples in less than 30 min. Paper-based user-friendly blood sample collection and processing combined with CFPS biosensing technology represents important progress towards the development of at-home biosensors that could be broadly applicable to personalized healthcare.
Collapse
|
7
|
Duan J, Zhong B, Fan Z, Zhang H, Xu M, Zhang X, Sanders YY. DNA methylation in pulmonary fibrosis and lung cancer. Expert Rev Respir Med 2022; 16:519-528. [PMID: 35673969 DOI: 10.1080/17476348.2022.2085091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihua Fan
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Breadner DA, Vincent MD, Correa R, Black M, Warner A, Sanatani M, Bhat V, Morris C, Jones G, Allan A, Palma DA, Raphael J. Exploitation of treatment induced tumor lysis to enhance the sensitivity of ctDNA analysis: A first-in-human pilot study. Lung Cancer 2022; 165:145-151. [PMID: 35124411 DOI: 10.1016/j.lungcan.2022.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Blood-based liquid biopsies examining circulating tumour DNA (ctDNA) have increasing applications in non-small cell lung cancer (NSCLC). Limitations in sensitivity remain a barrier to ctDNA replacing tissue-based testing. We hypothesized that testing immediately after starting treatment would yield an increased abundance of ctDNA in plasma because of tumor lysis, allowing for the detection of genetic alterations that were occult in baseline testing. METHODS Three prospective cohorts of patients with stage III/IV NSCLC were enrolled. Cohort 1 (C1) contained patients starting platinum doublet chemoradiation (n = 10) and cohort 2 (C2) initiating platinum doublet cytotoxic chemotherapy ± immunotherapy (n = 10). Cohort 3 (C3) contained patients receiving palliative radiation. Two baseline samples were collected. In C1 and C2, subsequent samples were collected 3, 6, 24 and 48 h post initiation of chemotherapy. Patients in C3 had samples collected immediately prior to the next three radiotherapy fractions. Samples were analyzed for ctDNA using the 36-gene amplicon-based NGS Inivata InVisionFirst®-Lung assay. RESULTS A total of 40 patients were enrolled. Detectable ctDNA was present at baseline in 32 patients (80%), 4 additional patients (50%) had detectable ctDNA in post-treatment samples. Seven patients with detectable ctDNA at baseline (23%) had new genetic alterations detected in post-treatment samples. Mutant molecule numbers increased with treatment in 24 of 31 (77%) pts with detectable ctDNA. ctDNA levels peaked a median of 7 h (IQR:2-26 h) after the initiation of chemotherapy and a median of 2 days (IQR:1-3 days) after radiation was commenced. CONCLUSION ctDNA levels increase in the hours to days after starting treatment. ctDNA testing in the acute post-treatment phase can yield results that were not evident in pre-treatment testing. Application of this principle could improve ctDNA utility as an alternate to tissue-based testing and improve sensitivity for the detection of treatment-resistant clones.(NCT03986463).
Collapse
Affiliation(s)
- Daniel A Breadner
- Division of Medical Oncology, London Regional Cancer Program, 800 Commissioners Road East, N6A5W9 London, Ontario, Canada.
| | - Mark D Vincent
- Division of Medical Oncology, London Regional Cancer Program, 800 Commissioners Road East, N6A5W9 London, Ontario, Canada
| | - Rohann Correa
- Division of Radiation Oncology, London Regional Cancer Program, 800 Commissioners Road East, N6A5W9 London, Ontario, Canada
| | - Morgan Black
- Division of Medical Oncology, London Regional Cancer Program, 800 Commissioners Road East, N6A5W9 London, Ontario, Canada
| | - Andrew Warner
- Division of Radiation Oncology, London Regional Cancer Program, 800 Commissioners Road East, N6A5W9 London, Ontario, Canada
| | - Michael Sanatani
- Division of Medical Oncology, London Regional Cancer Program, 800 Commissioners Road East, N6A5W9 London, Ontario, Canada
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond St, N6A 5C1 London, Ontario, Canada
| | - Clive Morris
- Inivata Inc., 7020 Kit Creek Road, Suite 140, Research Triangle Park, 27560, NC, United States
| | - Greg Jones
- Inivata Inc., 7020 Kit Creek Road, Suite 140, Research Triangle Park, 27560, NC, United States
| | - Alison Allan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond St, N6A 5C1 London, Ontario, Canada
| | - David A Palma
- Division of Radiation Oncology, London Regional Cancer Program, 800 Commissioners Road East, N6A5W9 London, Ontario, Canada
| | - Jacques Raphael
- Division of Medical Oncology, London Regional Cancer Program, 800 Commissioners Road East, N6A5W9 London, Ontario, Canada
| |
Collapse
|
9
|
Boniface CT, Spellman PT. Blood, Toil, and Taxoteres: Biological Determinates of Treatment-Induce ctDNA Dynamics for Interpreting Tumor Response. Pathol Oncol Res 2022; 28:1610103. [PMID: 35665409 PMCID: PMC9160182 DOI: 10.3389/pore.2022.1610103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Collection and analysis of circulating tumor DNA (ctDNA) is one of the few methods of liquid biopsy that measures generalizable and tumor specific molecules, and is one of the most promising approaches in assessing the effectiveness of cancer care. Clinical assays that utilize ctDNA are commercially available for the identification of actionable mutations prior to treatment and to assess minimal residual disease after treatment. There is currently no clinical ctDNA assay specifically intended to monitor disease response during treatment, partially due to the complex challenge of understanding the biological sources of ctDNA and the underlying principles that govern its release. Although studies have shown pre- and post-treatment ctDNA levels can be prognostic, there is evidence that early, on-treatment changes in ctDNA levels are more accurate in predicting response. Yet, these results also vary widely among cohorts, cancer type, and treatment, likely due to the driving biology of tumor cell proliferation, cell death, and ctDNA clearance kinetics. To realize the full potential of ctDNA monitoring in cancer care, we may need to reorient our thinking toward the fundamental biological underpinnings of ctDNA release and dissemination from merely seeking convenient clinical correlates.
Collapse
Affiliation(s)
- Christopher T. Boniface
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| | - Paul T. Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christopher T. Boniface, ; Paul T. Spellman,
| |
Collapse
|
10
|
Palanca-Ballester C, Rodriguez-Casanova A, Torres S, Calabuig-Fariñas S, Exposito F, Serrano D, Redin E, Valencia K, Jantus-Lewintre E, Diaz-Lagares A, Montuenga L, Sandoval J, Calvo A. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers (Basel) 2021; 13:cancers13123016. [PMID: 34208598 PMCID: PMC8233712 DOI: 10.3390/cancers13123016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Early alterations in cancer include the deregulation of epigenetic events such as changes in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies. Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer, biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples are named with the general term "liquid biopsy" (LB). With the advent of ultrasensitive technologies during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is a common practice to decide whether or not targeted therapy should be applied. Likewise, the analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis, prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter methylation of single genes or gene sets are available, with some of them being tested as biomarkers for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A, RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer). Moreover, multi-cancer high-throughput methylation-based tests are now commercially available. Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over the common clinical practice are issues needed to be addressed in the transfer of this knowledge from "bench to bedside".
Collapse
Affiliation(s)
- Cora Palanca-Ballester
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- Roche-CHUS Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Torres
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Francisco Exposito
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Diego Serrano
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
| | - Luis Montuenga
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
- Correspondence: (J.S.); (A.C.)
| | - Alfonso Calvo
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (J.S.); (A.C.)
| |
Collapse
|
11
|
Zheng Y, Deng Z, Tang M, Xiao D, Cai P. Impact of genetic factors on platinum-induced gastrointestinal toxicity. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108324. [PMID: 33339576 DOI: 10.1016/j.mrrev.2020.108324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 01/20/2023]
Abstract
Severe gastrointestinal (GI) toxicity is a common side effect after platinum-based chemotherapy. The incidence and severity of GI toxicity vary among patients with the same chemotherapy. Genetic factors involved in platinum transport, metabolism, detoxification, DNA repair, cell cycle control, and apoptosis pathways may account for the interindividual difference in GI toxicity. The influence of gene polymorphisms in the platinum pathway on GI toxicity has been extensively analyzed. Variations in study sample size, ethnicity, design, treatment schedule, dosing, endpoint definition, and assessment of toxicity make it difficult to precisely interpret the results. Hence, we conducted a review to summarize the most recent pharmacogenomics studies of GI toxicity in platinum-based chemotherapy and identify the most promising avenues for further research.
Collapse
Affiliation(s)
- Yi Zheng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People's Republic of China
| | - Zheng Deng
- Hunan Institute for Tuberculosis Control, Changsha, 410008, People's Republic of China; Hunan Chest Hospital, Changsha, 410008, People's Republic of China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Di Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Pei Cai
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, People's Republic of China.
| |
Collapse
|
12
|
Alves MC, Fonseca FLA, Yamada AMTD, Barros LADR, Lopes A, Silva LCFF, Luz AS, Melo Cruz FJS, Del Giglio A. Increased circulating tumor DNA as a noninvasive biomarker of early treatment response in patients with metastatic ovarian carcinoma: A pilot study. Tumour Biol 2020; 42:1010428320919198. [PMID: 32364828 DOI: 10.1177/1010428320919198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Detection of circulating tumor DNA is a new noninvasive technique with potential roles in diagnostic, follow-up, and prognostic evaluation of patients with many types of solid tumors. We aimed to evaluate the role of circulating tumor DNA in the setting of metastatic ovarian carcinoma. A prospective cohort of patients with metastatic ovarian cancer who were referred to systemic therapy was enrolled. Blood samples were collected before the start of treatment and monthly thereafter for 6 months. Circulating tumor DNA was quantified by real-time quantitative reverse transcription polymerase chain reaction of different lengths of Arthrobacter luteus elements as described by Umetani et al. A total of 11 patients were included, 2 for primary disease and 9 for recurrent disease. After the first cycle of chemotherapy, patients whose circulating tumor DNA levels increased from baseline were more likely to respond to chemotherapy than those whose circulating tumor DNA levels did not increase (p = 0.035). Furthermore, patients whose circulating tumor DNA levels rose after the first cycle of chemotherapy also had improved disease-free survival compared to those whose circulating tumor DNA levels did not increase (p = 0.0074). We conclude that the increase in circulating tumor DNA values collected in peripheral blood after the first cycle of systemic treatment in patients with advanced ovarian cancer is associated with an early response to systemic treatment and correlates with superior disease-free survival in this population. Circulating tumor DNA might be a specific, noninvasive, and cost-effective new biomarker of early response to systemic treatment in these patients.
Collapse
Affiliation(s)
| | - Fernando Luiz Affonso Fonseca
- Clinical Analysis Laboratory and Clinical Analysis Discipline of the ABC Foundation School of Medicine, Santo André, Brazil
| | | | | | - André Lopes
- Department of Gynecologic Oncology, Brazilian Institute for Cancer Control, São Paulo, Brazil
| | | | | | - Felipe José Silva Melo Cruz
- Department of Oncology, Brazilian Institute for Cancer Control, São Paulo, Brazil.,ABC Foundation School of Medicine, São Paulo, Brazil
| | - Auro Del Giglio
- Discipline of Hematology and Oncology at ABC Foundation School of Medicine, Brazilian Institute for Cancer Control and Hospital do Coração, São Paulo, Brazil
| |
Collapse
|
13
|
Constâncio V, Nunes SP, Henrique R, Jerónimo C. DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells 2020; 9:E624. [PMID: 32150897 PMCID: PMC7140532 DOI: 10.3390/cells9030624] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Lung, breast, colorectal, and prostate cancers are the most incident worldwide. Optimal population-based cancer screening methods remain an unmet need, since cancer detection at early stages increases the prospects of successful and curative treatment, leading to a lower incidence of recurrences. Moreover, the current parameters for cancer patients' stratification have been associated with divergent outcomes. Therefore, new biomarkers that could aid in cancer detection and prognosis, preferably detected by minimally invasive methods are of major importance. Aberrant DNA methylation is an early event in cancer development and may be detected in circulating cell-free DNA (ccfDNA), constituting a valuable cancer biomarker. Furthermore, DNA methylation is a stable alteration that can be easily and rapidly quantified by methylation-specific PCR methods. Thus, the main goal of this review is to provide an overview of the most important studies that report methylation biomarkers for the detection and prognosis of the four major cancers after a critical analysis of the available literature. DNA methylation-based biomarkers show promise for cancer detection and management, with some studies describing a "PanCancer" detection approach for the simultaneous detection of several cancer types. Nonetheless, DNA methylation biomarkers still lack large-scale validation, precluding implementation in clinical practice.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
- Master in Oncology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Sandra P. Nunes
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
| | - Rui Henrique
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta 2020; 504:98-108. [PMID: 31981586 DOI: 10.1016/j.cca.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The Ras association domain family 1 isoform A (RASSF1A), a tumor suppressor, regulates several tumor-related signaling pathways and interferes with diverse cellular processes. RASSF1A is frequently demonstrated to be inactivated by hypermethylation in numerous types of solid cancers. It is also associated with lymph node metastasis, vascular invasion, and chemo-resistance. Therefore, reactivation of RASSF1A may be a viable strategy to block tumor progress and reverse drug resistance. In this review, we have summarized the clinical value of RASSF1A for screening, staging, and therapeutic management of human malignancies. We also highlighted the potential mechanism of RASSF1A in chemo-resistance, which may help identify novel drugs in the future.
Collapse
Affiliation(s)
- Yuling Bin
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Institue of Vascular Surgery, Fudan University, Shanghai 200032, China
| | - Weisheng Xiao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Aijun Liao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
15
|
Liu JP, Zhang SC, Pan SY. Value of dynamic plasma cell-free DNA monitoring in septic shock syndrome: A case report. World J Clin Cases 2020; 8:200-207. [PMID: 31970188 PMCID: PMC6962064 DOI: 10.12998/wjcc.v8.i1.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Accepted: 11/30/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mortality due to septic shock is relatively high. The dynamic monitoring of plasma cell-free DNA (cfDNA) can guide the treatment of septic shock.
CASE SUMMARY Herein, we present a typical case of septic shock syndrome caused by the bacilli Acinetobacter baumannii and Pantoea. The patient complained of abdominal pain, fever and chills upon admission to the Emergency Department. Marked decreases in white blood cells and procalcitonin (PCT) were observed after the patient received continuous renal replacement and extracorporeal membrane oxygenation. Plasma cfDNA levels were consistently high, peaking at 1366.40 ng/mL, as measured by a duplex real-time PCR assay with an internal control, which was developed as a novel method for the accurate quantification of cfDNA. The patient died of septic shock on HD 8, suggesting that cfDNA could be used to monitor disease progression more effectively than PCT and the other inflammatory factors measured in this case.
CONCLUSION CfDNA may be a promising marker that complements other inflammatory factors to monitor disease progression in patients with septic shock.
Collapse
Affiliation(s)
- Jing-Ping Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shi-Chang Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shi-Yang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
16
|
Constâncio V, Nunes SP, Moreira-Barbosa C, Freitas R, Oliveira J, Pousa I, Oliveira J, Soares M, Dias CG, Dias T, Antunes L, Henrique R, Jerónimo C. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin Epigenetics 2019; 11:175. [PMID: 31791387 PMCID: PMC6889617 DOI: 10.1186/s13148-019-0779-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lung (LC), prostate (PCa) and colorectal (CRC) cancers are the most incident in males worldwide. Despite recent advances, optimal population-based cancer screening methods remain an unmet need. Due to its early onset, cancer specificity and accessibility in body fluids, aberrant DNA promoter methylation might be a valuable minimally invasive tool for early cancer detection. Herein, we aimed to develop a minimally invasive methylation-based test for simultaneous early detection of LC, PCa and CRC in males, using liquid biopsies. RESULTS Circulating cell-free DNA was extracted from 102 LC, 121 PCa and 100 CRC patients and 136 asymptomatic donors' plasma samples. Sodium-bisulfite modification and whole-genome amplification was performed. Promoter methylation levels of APCme, FOXA1me, GSTP1me, HOXD3me, RARβ2me, RASSF1Ame, SEPT9me and SOX17me were assessed by multiplex quantitative methylation-specific PCR. SEPT9me and SOX17me were the only biomarkers shared by all three cancer types, although they detected CRC with limited sensitivity. A "PanCancer" panel (FOXA1me, RARβ2me and RASSF1Ame) detected LC and PCa with 64% sensitivity and 70% specificity, complemented with "CancerType" panel (GSTP1me and SOX17me) which discriminated between LC and PCa with 93% specificity, but with modest sensitivity. Moreover, a HOXD3me and RASSF1Ame panel discriminated small cell lung carcinoma from non-small cell lung carcinoma with 75% sensitivity, 88% specificity, 6.5 LR+ and 0.28 LR-. An APCme and RASSF1Ame panel independently predicted disease-specific mortality in LC patients. CONCLUSIONS We concluded that a DNA methylation-based test in liquid biopsies might enable minimally invasive screening of LC and PCa, improving patient compliance and reducing healthcare costs. Moreover, it might assist in LC subtyping and prognostication.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Sandra P Nunes
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Catarina Moreira-Barbosa
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Freitas
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Inês Pousa
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Júlio Oliveira
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Marta Soares
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carlos Gonçalves Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Teresa Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
17
|
Xia S, Ye J, Chen Y, Lizaso A, Huang L, Shi L, Su J, Han-Zhang H, Chuai S, Li L, Chen Y. Parallel serial assessment of somatic mutation and methylation profile from circulating tumor DNA predicts treatment response and impending disease progression in osimertinib-treated lung adenocarcinoma patients. Transl Lung Cancer Res 2019; 8:1016-1028. [PMID: 32010579 DOI: 10.21037/tlcr.2019.12.09] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Circulating tumor DNA (ctDNA) harboring tumor-specific genetic and epigenetic aberrations allows for early detection and real-time monitoring of tumor dynamics. In this study, we aimed to evaluate the potential of parallel serial assessment of somatic mutation and methylation profile in monitoring the response to osimertinib of epidermal growth factor receptor (EGFR) T790M-positive advanced lung adenocarcinoma patients. Methods Parallel somatic mutation and DNA methylation profiling was performed on a total of 85 longitudinal plasma samples obtained from 8 stage IV osimertinib-treated EGFR T790M-positive lung adenocarcinoma patients. Results Our results revealed a significant correlation between the by-patient methylation level with the maximum allele fraction (maxAF, P=0.0002). The methylation levels were significantly higher in the plasma samples of patients with detectable somatic mutations than patients without somatic mutations (P=0.0003) and healthy controls (P=0.0018). Moreover, analysis of both the DNA methylation level and maxAF revealed four trends of treatment response. Collectively, the decrease in methylation level and maxAF reflected treatment efficacy, while the gradual increase reflected impending disease progression (PD). Elevated methylation levels and maxAF were observed in 6 and 5 patients in an average lead-time of 3.0 and 1.9 months, respectively, prior to evaluation of PD using radiological imaging. Conclusions DNA methylation profiling has the potential to predict disease relapse prior to evaluation through radiological modalities, suggesting that serial assessment of methylation level in combination with somatic mutation profiling are reliable methods for treatment monitoring. These methods should thus be incorporated with imaging modalities for a more comprehensive work-up of treatment response, particularly for patients treated with targeted therapies.
Collapse
Affiliation(s)
- Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Affiliated Hospital of Qinghai University, Xining 810000, China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou 510300, China
| | - Yu Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | - Le Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Shi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Su
- Burning Rock Biotech, Guangzhou 510300, China
| | | | | | - Lingling Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Rong G, Zhang M, Xia W, Li D, Miao J, Wang H. Plasma CADM1 promoter hypermethylation and D-dimer as novel metastasis predictors of cervical cancer. J Obstet Gynaecol Res 2019; 45:1251-1259. [PMID: 30945386 DOI: 10.1111/jog.13966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/09/2019] [Indexed: 12/28/2022]
Abstract
AIM Cervical cancer (CC) is the fourth malignant tumor in women worldwide. The metastasis is still the major reason for the treatment failures of most CC patients. Cell adhesion molecule 1 (CADM1) promoter methylation and plasma D-dimer levels have been reported to be increased in many types of cancers. The purpose of this study was to investigate the value of combinatorial assay of plasma CADM1 promoter hypermethylation and D-dimer as a metastasis marker in CC. METHODS Two hundred and ninety-two patients with newly diagnosed cervical diseases and 70 healthy women were enrolled. A validation set comprised 36 Stage I CC patients and followed for 3 years. Plasma CADM1 promoter methylation and D-dimer levels were detected. RESULTS The total coincidence rate of CADM1 promoter methylation status was 93.3% between 45 pair-matched tissue and plasma samples. Plasma CADM1 methylation levels in CC patients were higher than other benign disease groups (P = 0.000). Plasma CADM1 methylation levels had statistically differences between CC patients with and without lymph node metastasis (P = 0.049) or in CC patients with and without distant metastasis (P = 0.000). Similarly, plasma D-dimer levels in CC patients were higher than other benign disease groups (P < 0.05). D-dimer levels were only statistically different between CC patients with and without distant metastasis (P = 0.003). Combined assay of the two parameters for metastasis prediction has high sensitivity (80.4%) and specificity (90.5%). CONCLUSION Combinatorial assay of plasma CADM1 methylation and D-dimer is a promising metastasis marker in cervical cancer.
Collapse
Affiliation(s)
- Guodong Rong
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Donghua Li
- Department of obstetrics and gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Miao
- Department of obstetrics and gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
19
|
Chen K, Kang G, Zhao H, Zhang K, Zhang J, Yang F, Wang J. Liquid biopsy in newly diagnosed patients with locoregional (I-IIIA) non-small cell lung cancer. Expert Rev Mol Diagn 2019; 19:419-427. [PMID: 30905203 DOI: 10.1080/14737159.2019.1599717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Liquid biopsy is a promising method for the management of lung cancer, but previous studies focused mainly on patients with advanced-stage disease. As the methodology has progressed for the detection of circulating tumor DNA (ctDNA) and its aberrant methylation, researchers are gradually investigating the utility of liquid biopsy in early-stage patients. As a result, liquid biopsy has shown its potential for the application in patients with early- and locally advanced-stage non-small cell lung cancer (NSCLC). Areas covered: This review summarizes the utility of liquid biopsy in NSCLC and provide an outlook for future development. We focus on the role of ctDNA and its aberrant methylation in patients with stage IA to stageⅢA NSCLC, in the field of early detection and screening, perioperative management, and postoperative surveillance. Expert opinion: Liquid biopsy has shown the potential for clinical application of early-stage patients but has not been routinely applied yet. The utilization of liquid biopsy will be promoted by improved detection methods and data from well-designed clinical trials. With the development of precision medicine, liquid biopsy will likely play an increasingly important clinical role.
Collapse
Affiliation(s)
- Kezhong Chen
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Guannan Kang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Heng Zhao
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Kai Zhang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Jian Zhang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Fan Yang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Jun Wang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| |
Collapse
|
20
|
Role of epigenetic mechanisms in cisplatin-induced toxicity. Crit Rev Oncol Hematol 2019; 137:131-142. [PMID: 31014509 DOI: 10.1016/j.critrevonc.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/13/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cisplatin (CDDP) is a highly effective antineoplastic agent, widely used in the treatment of various malignant tumors. However, its major problems are side effects associated to toxicity. Considerable inter-individual differences have been reported for CDDP-induced toxicity due to genetic and epigenetic factors. Genetic causes are well described; however, epigenetic modifications are not fully addressed. In the last few years, many evidences were found linking microRNA to the development of CDDP-mediated toxicity, particularly nephrotoxicity. In this review, we described how genetic and epigenetic modifications can be important determinants for the development of toxicity in patients treated with CDDP, and how these alterations may be interesting biomarkers for monitoring toxicity induced by CDDP. Considering the validation in different studies, we suggest that miR-34a, -146b, -378a, -192, and -193 represent an attractive study group to evaluate potential biomarkers to detect CDDP-related nephrotoxicity.
Collapse
|
21
|
|
22
|
Epigenetic predictive biomarkers for response or outcome to platinum-based chemotherapy in non-small cell lung cancer, current state-of-art. THE PHARMACOGENOMICS JOURNAL 2018; 19:5-14. [PMID: 30190521 DOI: 10.1038/s41397-018-0029-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/27/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Platinum-based chemotherapy is commonly used to treat non-small cell lung cancer (NSCLC). However, its efficacy is limited and no molecular biomarkers that predict response are available. In this review, we summarize current knowledge concerning potential epigenetic predictive markers for platinum-based chemotherapy response in NSCLC. A systematic search of PubMed and ClinicalTrials.gov using keywords "non-small cell lung cancer" combined with "chemotherapy predictive biomarkers", "chemotherapy epigenetics biomarkers", "chemotherapy microRNA biomarkers", "chemotherapy DNA methylation" and "chemotherapy miRNA biomarkers" revealed 1740 articles from PubMed and 36 clinical trials. Finally, 22 papers and no trials fulfilled the review criteria. Among miRNA, combination of miR-1290, miR-196b and miR-135a in tumor tissue, and miR-21, miR-25, miR27b, and miR-326 in plasma were predictive for response to platinum-based chemotherapy in advanced NSCLC. RASSF1A methylation measured in tumor or blood was predictive for response to neoadjuvant chemotherapy. These biomarkers remain experimental and none have been tested in a prospective trial.
Collapse
|
23
|
Liu J, Zhang W, Gu M, Ji Y, Yang L, Cheng X, Xiao X, Xu J, Gu C, Zhang J, Zhang S, Chen D, Pan S. Serum SP70 is a sensitive predictor of chemotherapy response in patients with advanced nonsmall cell lung cancer. Cancer Med 2018; 7:2925-2933. [PMID: 29767438 PMCID: PMC6051171 DOI: 10.1002/cam4.1555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/09/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
SP70 is a novel tumor biomarker in patients with nonsmall cell lung cancer (NSCLC). However, its role as a marker for predicting the response to chemotherapy for patients with advanced NSCLC has not been investigated. A total of 152 patients were enrolled. Serum SP70, carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA21-1), and neuron-specific enolase (NSE) were detected before and after 2 cycles of chemotherapy. The correlation between serum tumor biomarker levels and chemotherapy responses and their association with epidermal growth factor receptor (EGFR) mutation status and progression-free survival (PFS) were analyzed. Serum SP70 levels were significantly decreased after chemotherapy in the partial remission (PR) group (P < .001) and increased in the progressive disease (PD) group (P < .001), but not significantly changed in the stable disease (SD) group (P = .114). Although similar changes were observed on CEA and CYFRA21-1 levels but not NSE, ROC analysis demonstrated that SP70 is superior to the others. Additionally, patients with EGFR mutation had higher serum SP70 levels and tissue SP70 expression than patients without EGFR mutation (P = .014 and P = .002, respectively). The median PFS of patients with decreased SP70 levels after chemotherapy was longer than that of patients with stable or increased serum SP70 level (24 months vs 12 months vs 2 months, P < .001), and the differences of all other 3 tumor markers were not obvious. Serum SP70 is a sensitive and real-time indicator of chemotherapeutic efficacy in patients with advanced NSCLC and related to PFS.
Collapse
Affiliation(s)
- Jingping Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Yazhou Ji
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangjun Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Xuelian Xiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Chunrong Gu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Shichang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Jiangsu Province Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Bennett CW, Berchem G, Kim YJ, El-Khoury V. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget 2018; 7:71013-71035. [PMID: 27589834 PMCID: PMC5342606 DOI: 10.18632/oncotarget.11717] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022] Open
Abstract
Personalized medicine has emerged as the future of cancer care to ensure that patients receive individualized treatment specific to their needs. In order to provide such care, molecular techniques that enable oncologists to diagnose, treat, and monitor tumors are necessary. In the field of lung cancer, cell free DNA (cfDNA) shows great potential as a less invasive liquid biopsy technique, and next-generation sequencing (NGS) is a promising tool for analysis of tumor mutations. In this review, we outline the evolution of cfDNA and NGS and discuss the progress of using them in a clinical setting for patients with lung cancer. We also present an analysis of the role of cfDNA as a liquid biopsy technique and NGS as an analytical tool in studying EGFR and MET, two frequently mutated genes in lung cancer. Ultimately, we hope that using cfDNA and NGS for cancer diagnosis and treatment will become standard for patients with lung cancer and across the field of oncology.
Collapse
Affiliation(s)
- Catherine W Bennett
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Guy Berchem
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg.,Centre Hospitalier de Luxembourg, L-1210 Luxembourg, Luxembourg
| | - Yeoun Jin Kim
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Victoria El-Khoury
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
25
|
Lauschke VM, Barragan I, Ingelman-Sundberg M. Pharmacoepigenetics and Toxicoepigenetics: Novel Mechanistic Insights and Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2017; 58:161-185. [PMID: 29029592 DOI: 10.1146/annurev-pharmtox-010617-053021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacological treatment and exposure to xenobiotics can cause substantial changes in epigenetic signatures. The majority of these epigenetic changes, caused by the compounds in question, occur downstream of transcriptional activation mechanisms, whereby the epigenetic alterations can create a transcriptional memory and stably modulate cell function. The increasing understanding of epigenetic mechanisms and their importance in disease has prompted the development of therapeutic interventions that target epigenetic modulatory mechanisms, particularly in oncology where inhibitors of epigenetic-modifying proteins (epidrugs) have been successfully used in treatment, mostly in combination with standard-of-care chemotherapy, either provoking direct cytotoxicity or inhibiting resistance to anticancer drugs. In addition, emerging methods for detecting epigenetically modified DNA in bodily fluids may provide information about tumor phenotype or drug treatment success. However, it is important to note that many technical pitfalls, such as the nondeconvolution of methylcytosine and hydroxymethylcytosine, compromise epigenetic analyses and the interpretation of results. In this review, we provide an update on the field, with an emphasis on the novel therapeutic opportunities made possible by epidrugs.
Collapse
Affiliation(s)
- Volker M Lauschke
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden;
| | - Isabel Barragan
- Pharmacoepigenetics Group, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden;
| |
Collapse
|
26
|
Tang Y, Qiao G, Xu E, Xuan Y, Liao M, Yin G. Biomarkers for early diagnosis, prognosis, prediction, and recurrence monitoring of non-small cell lung cancer. Onco Targets Ther 2017; 10:4527-4534. [PMID: 28979144 PMCID: PMC5602468 DOI: 10.2147/ott.s142149] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite advances in the management of non-small cell lung cancer, it remains to be the leading cause of cancer-related deaths worldwide primarily because of diagnosis at a late stage with an overall 5-year survival rate of 17%. A reduction in mortality was achieved by low-dose computed tomography screening of high-risk patients. However, the benefit was later challenged by the high false positive rate, resulting in unnecessary follow-ups, thus entailing a burden on both the health care system and the individual. The diagnostic dilemma imposed by imaging modalities has created a need for the development of biomarkers capable of differentiating benign nodules from malignant ones. In the past decade, with the advancements in high-throughput profiling technologies, a huge amount of work has been done to derive biomarkers to supplement clinical diagnosis. However, only a few of them have efficient sensitivity and specificity to be utilized in clinical settings. Therefore, there is an urgent need for the development of sensitive and specific means to detect and diagnose lung cancers at an early stage, when curative interventions are still possible. Due to the invasiveness of tissue biopsies and inability to capture tumor heterogeneity, nowadays enormous efforts have been invested in the development of technologies and biomarkers that enable sensitive and cost-effective testing using substrates that can be obtained in a noninvasive manner. This review, primarily focusing on liquid biopsy, summarizes all documented potential biomarkers for diagnosis, monitoring recurrence treatment response.
Collapse
Affiliation(s)
- Yong Tang
- Southern Medical University, Guangzhou, Guangdong Province, China.,Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Guibin Qiao
- Southern Medical University, Guangzhou, Guangdong Province, China.,Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Yiwen Xuan
- Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Ming Liao
- Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Guilin Yin
- Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
27
|
Lu Y, Li S, Zhu S, Gong Y, Shi J, Xu L. Methylated DNA/RNA in Body Fluids as Biomarkers for Lung Cancer. Biol Proced Online 2017; 19:2. [PMID: 28331435 PMCID: PMC5356409 DOI: 10.1186/s12575-017-0051-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.
Collapse
Affiliation(s)
- Yan Lu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Shulin/Sl Li
- MD Anderson Cancer Center, the university of Texas, 1840 Old Spanish Trail, Houston, TX USA
| | - Shiguo/Sg Zhu
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai, China
| | - Yabin/Yb Gong
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Jun/J Shi
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Ling/L Xu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| |
Collapse
|
28
|
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Recent implementation of low-dose computed tomography (LDCT) screening is predicted to lead to diagnosis of lung cancer at an earlier stage, with survival benefit. However, there is still a pressing need for biomarkers that will identify individuals eligible for screening, as well as improve the diagnostic accuracy of LDCT. In addition, biomarkers for prognostic stratification of patients with early stage disease, and those that can be used as surrogates to monitor tumor evolution, will greatly improve clinical management. Molecular alterations found in the DNA of tumor cells, such as mutations, translocations and methylation, are reflected in DNA that is released from the tumor into the bloodstream. Thus, in recent years, circulating tumor DNA (ctDNA) has gained increasing attention as a noninvasive alternative to tissue biopsies and potential surrogate for the entire tumor genome. Activating gene mutations found in ctDNA have been proven effective in predicting response to targeted therapy. Analysis of ctDNA is also a valuable tool for longitudinal follow-up of cancer patients that does not require serial biopsies and may anticipate the acquisition of resistance. DNA methylation has also emerged as a promising marker for early detection, prognosis and real-time follow-up of tumor dynamics that is independent of the genomic composition of the primary tumor. This review summarizes the various investigational applications of methylated ctDNA in lung cancer reported to date. It also provides a brief overview of the technologies for analysis of DNA methylation in liquid biopsies, and the challenges that befall the implementation of methylated ctDNA into routine clinical practice.
Collapse
Affiliation(s)
- Delphine Lissa
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer 2016; 23:R157-71. [PMID: 26764421 PMCID: PMC4737995 DOI: 10.1530/erc-15-0369] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
Circulating tumor DNA (ctDNA) in the plasma or serum of cancer patients provides an opportunity for non-invasive sampling of tumor DNA. This 'liquid biopsy' allows for interrogations of DNA such as quantity, chromosomal alterations, sequence mutations and epigenetic changes, and can be used to guide and improve treatment throughout the course of the disease. This tremendous potential for real-time 'tracking' in a cancer patient has led to substantial research efforts in the ctDNA field. ctDNA can be distinguished from non-tumor DNA by the presence of tumor-specific mutations and copy number variations, and also by aberrant DNA methylation, with both DNA sequence and methylation changes corresponding to those found in the tumor. Aberrant methylation of specific promoter regions can be a very consistent feature of cancer, in contrast to mutations, which typically occur at a wide range of sites. This consistency makes ctDNA methylation amenable to the design of widely applicable clinical assays. In this review, we examine ctDNA methylation in the context of monitoring disease status, treatment response and determining the prognosis of cancer patients.
Collapse
Affiliation(s)
- Kristina Warton
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia
| | - Kate L Mahon
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia
| | - Goli Samimi
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia
| |
Collapse
|