1
|
Hilman L, Ondičová M, Caffrey A, Clements M, Conway C, Ward M, Pentieva K, Irwin RE, McNulty H, Walsh CP. Cognitive benefits of folic acid supplementation during pregnancy track with epigenetic changes at an imprint regulator. BMC Med 2024; 22:579. [PMID: 39681839 PMCID: PMC11650848 DOI: 10.1186/s12916-024-03804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The human ZFP57 gene is a major regulator of imprinted genes, maintaining DNA methylation marks that distinguish parent-of-origin-specific alleles. DNA methylation of the gene itself has shown sensitivity to environmental stimuli, particularly folate status. However, the role of DNA methylation in ZFP57's own regulation has not been fully investigated. METHODS We used samples and data from our previously described randomised controlled trial (RCT) in pregnancy called Folic Acid Supplementation in the Second and Third Trimester (FASSTT), including follow-up of the children at age 11. Biometric and blood biochemistry results were examined for mothers and children. Methylation of ZFP57 was analysed by EPIC arrays, pyrosequencing and clonal analysis, and transcription assessed by PCR-based methods. Functional consequences of altered methylation were examined in cultured cells with mutations or by inhibition of the main DNA methyltransferases. DNA variants were examined using pyrosequencing and Sanger sequencing, with results compared to published studies using bioinformatic approaches. Cognitive outcomes were assessed using the Wechsler Intelligence Scale for Children 4th UK Edition (WISC-IV), with neural activity during language tasks quantified using magnetoencephalography (MEG). RESULTS Here we show that methylation at an alternative upstream promoter of ZFP57 is controlled in part by a quantitative trait locus (QTL). By altering DNA methylation levels, we demonstrate that this in turn controls the expression of the ZFP57 isoforms. Methylation at this region is also sensitive to folate levels, as we have previously shown in this cohort. Fully methylated alleles were associated with poorer performance in the Symbol Search and Cancellation subtests of WISC-IV in the children at age 11 years. There were also differences in neural activity during language tasks, as measured by MEG. Analysis of published genome-wide studies indicated other SNPs in linkage disequilibrium with the mQTL were also associated with neurodevelopmental outcomes. CONCLUSIONS While numbers in the current RCT were small and require further validation in larger cohorts, the results nevertheless suggest a molecular mechanism by which maternal folic acid supplementation during pregnancy may help to counteract the effects of folate depletion and positively influence cognitive development in the offspring.
Collapse
Affiliation(s)
- L Hilman
- School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - M Ondičová
- School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - A Caffrey
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - M Clements
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - C Conway
- School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - M Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - K Pentieva
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - R E Irwin
- School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - H McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - C P Walsh
- School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
- Department for Cell and Neurobiology, Biomedical and Clinical Sciences Division, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
2
|
Ying K, Song J, Cui H, Zhang Y, Li S, Chen X, Liu H, Eames A, McCartney DL, Marioni RE, Poganik JR, Moqri M, Wang B, Gladyshev VN. MethylGPT: a foundation model for the DNA methylome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621013. [PMID: 39574641 PMCID: PMC11580859 DOI: 10.1101/2024.10.30.621013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
DNA methylation serves as a powerful biomarker for disease diagnosis and biological age assessment. However, current analytical approaches often rely on linear models that cannot capture the complex, context-dependent nature of methylation regulation. Here we present MethylGPT, a transformer-based foundation model trained on 226,555 (154,063 after QC and deduplication) human methylation profiles spanning diverse tissue types from 5,281 datasets, curated 49,156 CpG sites, and 7.6 billion training tokens. MethylGPT learns biologically meaningful representations of CpG sites, capturing both local genomic context and higher-order chromosomal features without external supervision. The model demonstrates robust methylation value prediction (Pearson R=0.929) and maintains stable performance in downstream tasks with up to 70% missing data. Applied to age prediction across multiple tissue types, MethylGPT achieves superior accuracy compared to existing methods. Analysis of the model's attention patterns reveals distinct methylation signatures between young and old samples, with differential enrichment of developmental and aging-associated pathways. When finetuned to mortality and disease prediction across 60 major conditions using 18,859 samples from Generation Scotland, MethylGPT achieves robust predictive performance and enables systematic evaluation of intervention effects on disease risks, demonstrating potential for clinical applications. Our results demonstrate that transformer architectures can effectively model DNA methylation patterns while preserving biological interpretability, suggesting broad utility for epigenetic analysis and clinical applications.
Collapse
Affiliation(s)
- Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Haotian Cui
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - Yikun Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Siyuan Li
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xingyu Chen
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - Hanna Liu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alec Eames
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jesse R. Poganik
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Bo Wang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Bordoni L, Agostinho de Sousa J, Zhuo J, von Meyenn F. Evaluating the connection between diet quality, EpiNutrient intake and epigenetic age: an observational study. Am J Clin Nutr 2024; 120:1143-1155. [PMID: 39510725 DOI: 10.1016/j.ajcnut.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND DNA methylation (DNAm) has unique properties which makes it a potential biomarker for lifestyle-related exposures. Epigenetic clocks, particularly DNAm-based biological age predictors [epigenetic age (EA)], represent an exciting new area of clinical research and deviations of EA from chronological age [epigenetic age acceleration (EAA)] have been linked to overall health, age-related diseases, and environmental exposures. OBJECTIVES This observational study investigates the relationships between biological aging and various dietary factors within the LifeLines-DEEP Cohort. These factors include diet quality, processed food consumption, dietary glycemic load, and intake of vitamins involved in maintaining the epigenetic homeostasis (vitamins B-9, B-12, B-6, B-2, and C). METHODS Dietary records collected using food-frequency questionnaires were used to estimate diet quality [LifeLines Diet Score (LLDS)], measure the intake of unprocessed/ultraprocessed food according to the NOVA food classification system, and the adequacy of the dietary intake of vitamins B-9, B-12, B-2, B-6, and C. EA using Horvath, Hannum, Levine, and Horvath2 epigenetic clock models and DNAm-predicted telomere length (DNAm-TL) were calculated from DNAm data in 760 subjects. Associations between dietary factors and EAA were tested, adjusting for sex, energy intake, and body composition. RESULTS LLDS was associated with EAA (EAA_Horvath: β: -0.148; P = 1 × 10-4; EAA_Hannum: β: -0.148; P = 9 × 10-5; EAA_Levine: β: -0.174; P = 1 × 10-5; and EAA_Horvath2: β: -0.176; P = 4 × 10-6) and DNAm-TL (β: 0.116; P = 0.003). Particularly, EAA was associated with dietary glycemic load (EAA_Horvath: β: 0.476; P = 9 × 10-10; EAA_Hannum: β: 0.565; P = 1 × 10-13; EAA_Levine: β: 0.469; P = 5 × 10-9; EAA_Horvath2: β: 0.569; P = 1 × 10-13; and DNAmTL adjusted for age: β: -0.340; P = 2 × 10-5) and different measures of food processing (NOVA classes 1 and 4). Positive EAA was also associated with inadequate intake of vitamin B-12 (EAA_Horvath: β: -0.167; P = 0.002; EAA_Hannum: β: -0.144; P = 0.007; and EAA_Horvath2: β: -0.126; P = 0.019) and C (EAA_Hannum: β: -0.136; P = 0.010 and EAA_Horvath2: β: -0.151; P = 0.005). CONCLUSIONS Our findings corroborate the hypothesis that nutrition plays a pivotal role in influencing epigenetic homeostasis, especially DNAm, thereby contributing to individual health trajectories and the pace of aging.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy.
| | - João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Jingran Zhuo
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| |
Collapse
|
4
|
Nicoletti CF, Assmann TS, Souza LL, Martinez JA. DNA Methylation and Non-Coding RNAs in Metabolic Disorders: Epigenetic Role of Nutrients, Dietary Patterns, and Weight Loss Interventions for Precision Nutrition. Lifestyle Genom 2024; 17:151-165. [PMID: 39481358 DOI: 10.1159/000541000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Dysregulation of epigenetic processes and abnormal epigenetic profiles are associated with various metabolic disorders. Nutrition, as an environmental factor, can induce epigenetic changes through both direct exposure and transgenerational inheritance, continuously altering gene expression and shaping the phenotype. Nutrients consumed through food or supplementation, such as vitamin B12, folate, vitamin B6, and choline, play a pivotal role in DNA methylation, a critical process for gene regulation. Additionally, there is mounting evidence that the expression of non-coding RNAs (ncRNAs) can be modulated by the intake of specific nutrients and natural compounds, thereby influencing processes involved in the onset and progression of metabolic diseases. SUMMARY Evidence suggests that dietary patterns, weight loss interventions, nutrients and nutritional bioactive compounds can modulate the expression of various microRNA (miRNAs) and DNA methylation levels, contributing to the development of metabolic disorders such as obesity and type 2 diabetes. Furthermore, several studies have proposed that DNA methylation and miRNA expression could serve as biomarkers for the effects of weight loss programs. KEY MESSAGE Despite ongoing debate regarding the effects of nutrient supplementation on DNA methylation levels and the expression of ncRNAs, certain DNA methylation marks and ncRNA expressions might predict the risk of metabolic disorders and act as biomarkers for forecasting the success of therapies within the framework of precision medicine and nutrition. The role of DNA methylation and miRNA expression as potential mediators of the effects of weight loss underscores their potential as biomarkers for the outcomes of weight loss programs. This highlights the influence of dietary patterns and weight loss interventions on the regulation of miRNA expression and DNA methylation levels, suggesting an interaction between these epigenetic factors and the body's response to weight loss.
Collapse
Affiliation(s)
- Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Taís S Assmann
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - José Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
| |
Collapse
|
5
|
Ren Y, Zeng Y, Wu Y, Zhang Q, Xiao X. Maternal methyl donor supplementation: A potential therapy for metabolic disorder in offspring. J Nutr Biochem 2024; 124:109533. [PMID: 37977406 DOI: 10.1016/j.jnutbio.2023.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The prevalences of diabetes mellitus and obesity are increasing yearly and has become a serious social burden. In addition to genetic factors, environmental factors in early life development are critical in influencing the prevalence of metabolic disorders in offspring. A growing body of evidence suggests the critical role of early methyl donor intervention in offspring health. Emerging studies have shown that methyl donors can influence offspring metabolism through epigenetic modifications and changing metabolism-related genes. In this review, we focus on the role of folic acid, betaine, vitamin B12, methionine, and choline in protecting against metabolic disorders in offspring. To address the current evidence on the potential role of maternal methyl donors, we summarize clinical studies as well as experimental animal models that support the impact of maternal methyl donors on offspring metabolism and discuss the mechanisms of action that may bring about these positive effects. Given the worldwide prevalence of metabolic disorders, these findings could be utilized in clinical practice, in which methyl donor supplementation in the early life years may reverse metabolic disorders in offspring and block the harmful intergenerational effect.
Collapse
Affiliation(s)
- Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
6
|
Derakhshan M, Kessler NJ, Hellenthal G, Silver MJ. Metastable epialleles in humans. Trends Genet 2024; 40:52-68. [PMID: 38000919 DOI: 10.1016/j.tig.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.
Collapse
Affiliation(s)
- Maria Derakhshan
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Matt J Silver
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia.
| |
Collapse
|
7
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA Panel), Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Crous‐Bou M, Molloy A, Ciccolallo L, de Sesmaisons Lecarré A, Fabiani L, Horvath Z, Karavasiloglou N, Naska A. Scientific opinion on the tolerable upper intake level for folate. EFSA J 2023; 21:e08353. [PMID: 37965303 PMCID: PMC10641704 DOI: 10.2903/j.efsa.2023.8353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for folic acid/folate. Systematic reviews of the literature were conducted to assess evidence on priority adverse health effects of excess intake of folate (including folic acid and the other authorised forms, (6S)-5-methyltetrahydrofolic acid glucosamine and l-5-methyltetrahydrofolic acid calcium salts), namely risk of cobalamin-dependent neuropathy, cognitive decline among people with low cobalamin status, and colorectal cancer and prostate cancer. The evidence is insufficient to conclude on a positive and causal relationship between the dietary intake of folate and impaired cognitive function, risk of colorectal and prostate cancer. The risk of progression of neurological symptoms in cobalamin-deficient patients is considered as the critical effect to establish an UL for folic acid. No new evidence has been published that could improve the characterisation of the dose-response between folic acid intake and resolution of megaloblastic anaemia in cobalamin-deficient individuals. The ULs for folic acid previously established by the Scientific Committee on Food are retained for all population groups, i.e. 1000 μg/day for adults, including pregnant and lactating women, 200 μg/day for children aged 1-3 years, 300 μg/day for 4-6 years, 400 μg/day for 7-10 years, 600 μg/day for 11-14 years and 800 μg/day for 15-17 years. A UL of 200 μg/day is established for infants aged 4-11 months. The ULs apply to the combined intake of folic acid, (6S)-5-methyltetrahydrofolic acid glucosamine and l-5-methyltetrahydrofolic acid calcium salts, under their authorised conditions of use. It is unlikely that the ULs for supplemental folate are exceeded in European populations, except for regular users of food supplements containing high doses of folic acid/5-methyl-tetrahydrofolic acid salts.
Collapse
|
8
|
Fernando KK, Craig JM, Dawson SL. Relationships between the maternal prenatal diet and epigenetic state in infants: a systematic review of human studies. J Dev Orig Health Dis 2023; 14:540-555. [PMID: 37496159 DOI: 10.1017/s2040174423000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Most human studies investigating the relationship between maternal diet in pregnancy and infant epigenetic state have focused on macro- and micro-nutrient intake, rather than the whole diet. This makes it difficult to translate the evidence into practical prenatal dietary recommendations.To review the evidence on how the prenatal diet relates to the epigenetic state of infants measured in the first year of life via candidate gene or genome-wide approaches.Following the PRISMA guidelines, this systematic literature search was completed in August 2020, and updated in August 2021 and April 2022. Studies investigating dietary supplementation were excluded. Risk of bias was assessed, and the certainty of results was analysed with consideration of study quality and validity.Seven studies were included, encompassing 6852 mother-infant dyads. One study was a randomised controlled trial and the remaining six were observational studies. There was heterogeneity in dietary exposure measures. Three studies used an epigenome-wide association study (EWAS) design and four focused on candidate genes from cord blood samples. All studies showed inconsistent associations between maternal dietary measures and DNA methylation in infants. Effect sizes of maternal diet on DNA methylation ranged from very low (< 1%) to high (> 10%). All studies had limitations and were assessed as having moderate to high risk of bias.The evidence presented here provides very low certainty that dietary patterns in pregnancy relate to epigenetic state in infants. We recommend that future studies maximise sample sizes and optimise and harmonise methods of dietary measurement and pipelines of epigenetic analysis.
Collapse
Affiliation(s)
- Kathya K Fernando
- Department of Immunology & Pathology, Alfred Health and Monash University, Melbourne, Australia
| | - Jeffrey M Craig
- Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| | - Samantha L Dawson
- Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| |
Collapse
|
9
|
Khare SP, Madhok A, Patta I, Sukla KK, Wagh VV, Kunte PS, Raut D, Bhat D, Kumaran K, Fall C, Tatu U, Chandak GR, Yajnik CS, Galande S. Differential expression of genes influencing mitotic processes in cord blood mononuclear cells after a pre-conceptional micronutrient-based randomised controlled trial: Pune Rural Intervention in Young Adolescents (PRIYA). J Dev Orig Health Dis 2023; 14:437-448. [PMID: 36632790 DOI: 10.1017/s204017442200068x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In The Pune Maternal Nutrition Study, vitamin B12 deficiency was seen in 65% of pregnant women, folate deficiency was rare. Maternal total homocysteine concentrations were inversely associated with offspring birthweight, and low vitamin B12 and high folate concentrations predicted higher offspring adiposity and insulin resistance. These findings guided a nested pre-conceptional randomised controlled trial 'Pune Rural Intervention in Young Adolescents'. The interventions included: (1) vitamin B12+multi-micronutrients as per the United Nations International Multiple Micronutrient Antenatal Preparation, and proteins (B12+MMN), (2) vitamin B12 (B12 alone), and (3) placebo. Intervention improved maternal pre-conceptional and in-pregnancy micronutrient nutrition. Gene expression analysis in cord blood mononuclear cells in 88 pregnancies revealed 75 differentially expressed genes between the B12+MMN and placebo groups. The enriched biological processes included G2/M phase transition, chromosome segregation, and nuclear division. Enriched pathways included, mitotic spindle checkpoint and DNA damage response while enriched human phenotypes were sloping forehead and decreased head circumference. Fructose-bisphosphatase 2 (FBP2) and Cell Division Cycle Associated 2 (CDCA2) genes were under-expressed in the B12 alone group. The latter, involved in chromosome segregation was under-expressed in both intervention groups. Based on the role of B-complex vitamins in the synthesis of nucleotides and S-adenosyl methionine, and the roles of vitamins A and D on gene expression, we propose that the multi-micronutrient intervention epigenetically affected cell cycle dynamics. Neonates in the B12+MMN group had the highest ponderal index. Follow-up studies will reveal if the intervention and the altered biological processes influence offspring diabesity.
Collapse
Affiliation(s)
- Satyajeet P Khare
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Indumathi Patta
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Krishna K Sukla
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Vipul V Wagh
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Pooja S Kunte
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Deepa Raut
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Dattatray Bhat
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | | | - Caroline Fall
- Medical Research Council Lifecourse Epidemiology Centre, Southampton, UK
| | - Utpal Tatu
- Indian Institute of Science (IISc), Bangalore, India
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | | | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
10
|
Caffrey A, Lamers Y, Murphy MM, Letourneau N, Irwin RE, Pentieva K, Ward M, Tan A, Rojas‐Gómez A, Santos‐Calderón LA, Canals‐Sans J, Leung BMY, Bell R, Giesbrecht GF, Dewey D, Field CJ, Kobor M, Walsh CP, McNulty H. Epigenetic effects of folate and related B vitamins on brain health throughout life: Scientific substantiation and translation of the evidence for health improvement strategies. NUTR BULL 2023; 48:267-277. [PMID: 36807740 PMCID: PMC10946506 DOI: 10.1111/nbu.12611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Suboptimal status of folate and/or interrelated B vitamins (B12 , B6 and riboflavin) can perturb one-carbon metabolism and adversely affect brain development in early life and brain function in later life. Human studies show that maternal folate status during pregnancy is associated with cognitive development in the child, whilst optimal B vitamin status may help to prevent cognitive dysfunction in later life. The biological mechanisms explaining these relationships are not clear but may involve folate-related DNA methylation of epigenetically controlled genes related to brain development and function. A better understanding of the mechanisms linking these B vitamins and the epigenome with brain health at critical stages of the lifecycle is necessary to support evidence-based health improvement strategies. The EpiBrain project, a transnational collaboration involving partners in the United Kingdom, Canada and Spain, is investigating the nutrition-epigenome-brain relationship, particularly focussing on folate-related epigenetic effects in relation to brain health outcomes. We are conducting new epigenetics analysis on bio-banked samples from existing well-characterised cohorts and randomised trials conducted in pregnancy and later life. Dietary, nutrient biomarker and epigenetic data will be linked with brain outcomes in children and older adults. In addition, we will investigate the nutrition-epigenome-brain relationship in B vitamin intervention trial participants using magnetoencephalography, a state-of-the-art neuroimaging modality to assess neuronal functioning. The project outcomes will provide an improved understanding of the role of folate and related B vitamins in brain health, and the epigenetic mechanisms involved. The results are expected to provide scientific substantiation to support nutritional strategies for better brain health across the lifecycle.
Collapse
Affiliation(s)
- A. Caffrey
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical SciencesUlster UniversityColeraineUK
| | - Y. Lamers
- British Columbia Children's Hospital Research Institute, Food Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - M. M. Murphy
- Unit of Preventive Medicine & Public Health, Department of Basic Medical Sciences, Faculty of Medicine & Health SciencesUniversitat Rovira i Virgili, IISPVReusSpain
- CIBEROBN, ISCIIIMadridSpain
| | - N. Letourneau
- Faculty of Nursing and Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - R. E. Irwin
- Genomic Medicine Group, School of Biomedical SciencesUlster UniversityColeraineUK
| | - K. Pentieva
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical SciencesUlster UniversityColeraineUK
| | - M. Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical SciencesUlster UniversityColeraineUK
| | - A. Tan
- British Columbia Children's Hospital Research Institute, Food Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - A. Rojas‐Gómez
- Unit of Preventive Medicine & Public Health, Department of Basic Medical Sciences, Faculty of Medicine & Health SciencesUniversitat Rovira i Virgili, IISPVReusSpain
| | - L. A. Santos‐Calderón
- Unit of Preventive Medicine & Public Health, Department of Basic Medical Sciences, Faculty of Medicine & Health SciencesUniversitat Rovira i Virgili, IISPVReusSpain
| | - J. Canals‐Sans
- Department of Psychology, Faculty of Educational Sciences and PsychologyUniversitat Rovira i VirgiliTarragonaSpain
| | - B. M. Y. Leung
- Faulty of Health SciencesUniversity of LethbridgeLethbridgeAlbertaCanada
| | - R. Bell
- Faculty of Agricultural, Life and Environment ScienceUniversity of AlbertaEdmontonAlbertaCanada
| | - G. F. Giesbrecht
- Faculty of Nursing and Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - D. Dewey
- Faculty of Nursing and Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - C. J. Field
- Faculty of Agricultural, Life and Environment ScienceUniversity of AlbertaEdmontonAlbertaCanada
| | - M. Kobor
- British Columbia Children's Hospital Research Institute, Food Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - C. P. Walsh
- Genomic Medicine Group, School of Biomedical SciencesUlster UniversityColeraineUK
| | - H. McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical SciencesUlster UniversityColeraineUK
| |
Collapse
|
11
|
Jankovic-Karasoulos T, Smith MD, Leemaqz S, Williamson J, McCullough D, Arthurs AL, Jones LA, Bogias KJ, Mol BW, Dalton J, Dekker GA, Roberts CT. Elevated Maternal Folate Status and Changes in Maternal Prolactin, Placental Lactogen and Placental Growth Hormone Following Folic Acid Food Fortification: Evidence from Two Prospective Pregnancy Cohorts. Nutrients 2023; 15:1553. [PMID: 37049394 PMCID: PMC10097170 DOI: 10.3390/nu15071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Folic acid (FA) food fortification in Australia has resulted in a higher-than-expected intake of FA during pregnancy. High FA intake is associated with increased insulin resistance and gestational diabetes. We aimed to establish whether maternal one-carbon metabolism and hormones that regulate glucose homeostasis change in healthy pregnancies post-FA food fortification. Circulating folate, B12, homocysteine, prolactin (PRL), human placental lactogen (hPL) and placental growth hormone (GH2) were measured in early pregnancy maternal blood in women with uncomplicated pregnancies prior to (SCOPE: N = 604) and post (STOP: N = 711)-FA food fortification. FA food fortification resulted in 63% higher maternal folate. STOP women had lower hPL (33%) and GH2 (43%) after 10 weeks of gestation, but they had higher PRL (29%) and hPL (28%) after 16 weeks. FA supplementation during pregnancy increased maternal folate and reduced homocysteine but only in the SCOPE group, and it was associated with 54% higher PRL in SCOPE but 28% lower PRL in STOP. FA food fortification increased maternal folate status, but supplements no longer had an effect, thereby calling into question their utility. An altered secretion of hormones that regulate glucose homeostasis in pregnancy could place women post-fortification at an increased risk of insulin resistance and gestational diabetes, particularly for older women and those with obesity.
Collapse
Affiliation(s)
| | - Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Shalem Leemaqz
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Jessica Williamson
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Anya L. Arthurs
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Lauren A. Jones
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | | | - Ben W. Mol
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3800, Australia
| | - Julia Dalton
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
| | - Gustaaf A. Dekker
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
- Lyell McEwin Hospital, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| |
Collapse
|
12
|
Lees-Murdock D, Ward M. Can Nutritional Epigenomics Explain Persistent Effects of Periconceptional Folic Acid in the Methylome? J Nutr 2023; 152:2636-2637. [PMID: 36288239 DOI: 10.1093/jn/nxac224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023] Open
Affiliation(s)
- Diane Lees-Murdock
- Genomic Medicine, School of Biomedical Sciences, Ulster University, Coleraine, N Ireland, United Kingdom
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, N Ireland, United Kingdom
| |
Collapse
|
13
|
Crider KS, Wang A, Ling H, Potischman N, Bailey RL, Lichen Y, Pfeiffer CM, Killian JK, Rose C, Sampson J, Zhu L, Berry RJ, Linet M, Yu W, Su LJ. Maternal Periconceptional Folic Acid Supplementation and DNA Methylation Patterns in Adolescent Offspring. J Nutr 2023; 152:2669-2676. [PMID: 36196007 PMCID: PMC9839994 DOI: 10.1093/jn/nxac184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Folate, including the folic acid form, is a key component of the one-carbon metabolic pathway used for DNA methylation. Changes in DNA methylation patterns during critical development periods are associated with disease outcomes and are associated with changes in nutritional status in pregnancy. The long-term impact of periconceptional folic acid supplementation on DNA methylation patterns is unknown. OBJECTIVES To determine the long-term impact of periconceptional folic acid supplementation on DNA methylation patterns, we examined the association of the recommended dosage (400 μg/d) and time period (periconceptional before pregnancy through first trimester) of folic acid supplementation with the DNA methylation patterns in the offspring at age 14-17 y compared with offspring with no supplementation. METHODS Two geographic sites in China from the 1993-1995 Community Intervention Program of folic acid supplementation were selected for the follow-up study. DNA methylation at 402,730 CpG sites was assessed using saliva samples from 89 mothers and 179 adolescents (89 male). The mean age at saliva collection was 40 y among mothers (range: 35-54 y) and 15 y among adolescents (range: 14-17 y). Epigenome-wide analyses were conducted to assess the interactions of periconceptional folic acid exposure, the 5,10-methylenetetrahydrofolate reductase (MTHFR)-C677T genotype, and epigenome-wide DNA methylation controlling for offspring sex, geographic region, and background cell composition in the saliva. RESULTS In the primary outcome, no significant differences were observed in epigenome-wide methylation patterns between adolescents exposed and those non-exposed to maternal periconceptional folic acid supplementation after adjustment for potential confounders [false discovery rate (FDR) P values < 0.05]. The MTHFR-C677T genotype did not modify this lack of association (FDR P values < 0.05). CONCLUSIONS Overall, there were no differences in DNA methylation between adolescents who were exposed during the critical developmental window and those not exposed to the recommended periconceptional/first-trimester dosage of folic acid.
Collapse
Affiliation(s)
- Krista S Crider
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Arick Wang
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Hao Ling
- US CDC China Office, Beijing, China
| | | | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Yang Lichen
- National Center for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Christine M Pfeiffer
- Division of Laboratory Sciences, National Center for Environmental Health, US CDC, Atlanta, GA, USA
| | - J Keith Killian
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Charles Rose
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Li Zhu
- School of Public Health, Peking University Health Science Center, Beijing, China (retired)
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Martha Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wang Yu
- Director General (former), Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Joseph Su
- Cancer Prevention and Population Sciences Program, Division of Epidemiology, University of Arkansas, Little Rock, AR, USA
| |
Collapse
|
14
|
Fragoso-Bargas N, Page CM, Joubert BR, London SJ, Lee-Ødegård S, Opsahl JO, Sletner L, Jenum AK, Qvigstad E, Prasad RB, Moen GH, Birkeland KI, Sommer C. Epigenome-wide association study of serum folate in maternal peripheral blood leukocytes. Epigenomics 2023; 15:39-52. [PMID: 36974632 PMCID: PMC10072132 DOI: 10.2217/epi-2022-0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Aim: To perform an epigenome-wide association study (EWAS) of serum folate in maternal blood. Methods: Cross-ancestry (Europeans = 302, South Asians = 161) and ancestry-specific EWAS in the EPIPREG cohort were performed, followed by methyl quantitative trait loci analysis and association with cardiometabolic phenotypes. Replication was attempted using maternal folate intake and blood methylation data from the MoBa study and verified if the findings were significant in a previous EWAS of maternal serum folate in cord blood. Results & conclusion: cg19888088 (cross-ancestry) in EBF3, cg01952260 (Europeans) and cg07077240 (South Asians) in HERC3 were associated with serum folate. cg19888088 and cg01952260 were associated with diastolic blood pressure. cg07077240 was associated with variants in CASC15. The findings were not replicated and were not significant in cord blood.
Collapse
Affiliation(s)
- Nicolas Fragoso-Bargas
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Christian M Page
- Centre for Fertility & Health, Norwegian Institute of Public Health, 0403, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics & Natural Sciences, University of Oslo, 0315, Oslo, Norway
| | - Bonnie R Joubert
- Department of Health & Human Services, Population Health Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Stephanie J London
- Department of Health & Human Services, Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Julia O Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Line Sletner
- Department of Pediatric & Adolescents Medicine, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Anne K Jenum
- Department of General Practice, Institute of Health & Society, University of Oslo, 0318, Oslo, Norway
| | - Elisabeth Qvigstad
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Rashmi B Prasad
- Lund University Diabetes Centre, 214 28, Malmö, Sweden
- Institute for Molecular Medicine Finland FIMM, Helsinki University, 00014, Helsinki, Finland
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
- Institute of Molecular Biosciences, The University of Queensland, St Lucia QLD 4072, Australia
- Department of Public Health & Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science & Technology, 7491, Trondheim, Norway
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, Australia
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 1QU, Bristol, United Kingdom
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
| |
Collapse
|
15
|
Seascape genomics of common dolphins (Delphinus delphis) reveals adaptive diversity linked to regional and local oceanography. BMC Ecol Evol 2022; 22:88. [PMID: 35818031 PMCID: PMC9275043 DOI: 10.1186/s12862-022-02038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
High levels of standing genomic variation in wide-ranging marine species may enhance prospects for their long-term persistence. Patterns of connectivity and adaptation in such species are often thought to be influenced by spatial factors, environmental heterogeneity, and oceanographic and geomorphological features. Population-level studies that analytically integrate genome-wide data with environmental information (i.e., seascape genomics) have the potential to inform the spatial distribution of adaptive diversity in wide-ranging marine species, such as many marine mammals. We assessed genotype-environment associations (GEAs) in 214 common dolphins (Delphinus delphis) along > 3000 km of the southern coast of Australia.
Results
We identified 747 candidate adaptive SNPs out of a filtered panel of 17,327 SNPs, and five putatively locally-adapted populations with high levels of standing genomic variation were disclosed along environmentally heterogeneous coasts. Current velocity, sea surface temperature, salinity, and primary productivity were the key environmental variables associated with genomic variation. These environmental variables are in turn related to three main oceanographic phenomena that are likely affecting the dispersal of common dolphins: (1) regional oceanographic circulation, (2) localised and seasonal upwellings, and (3) seasonal on-shelf circulation in protected coastal habitats. Signals of selection at exonic gene regions suggest that adaptive divergence is related to important metabolic traits.
Conclusion
To the best of our knowledge, this represents the first seascape genomics study for common dolphins (genus Delphinus). Information from the associations between populations and their environment can assist population management in forecasting the adaptive capacity of common dolphins to climate change and other anthropogenic impacts.
Collapse
|
16
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Alata Jimenez N, Strobl-Mazzulla PH. Folate Carrier Deficiency Drives Differential Methylation and Enhanced Cellular Potency in the Neural Plate Border. Front Cell Dev Biol 2022; 10:834625. [PMID: 35912103 PMCID: PMC9326018 DOI: 10.3389/fcell.2022.834625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
The neural plate border (NPB) of vertebrate embryos segregates from the neural and epidermal regions, and it is comprised of an intermingled group of multipotent progenitor cells. Folate is the precursor of S-adenosylmethionine, the main methyl donor for DNA methylation, and it is critical for embryonic development, including the specification of progenitors which reside in the NPB. Despite the fact that several intersecting signals involved in the specification and territorial restriction of NPB cells are known, the role of epigenetics, particularly DNA methylation, has been a matter of debate. Here, we examined the temporal and spatial distribution of the methyl source and analyzed the abundance of 5mC/5 hmC and their epigenetic writers throughout the segregation of the neural and NPB territories. Reduced representation bisulfite sequencing (RRBS) on Reduced Folate Carrier 1 (RFC1)-deficient embryos leads to the identification of differentially methylated regions (DMRs). In the RFC1-deficient embryos, we identified several DMRs in the Notch1 locus, and the spatiotemporal expression of Notch1 and its downstream target gene Bmp4 were expanded in the NPB. Cell fate analysis on folate deficient embryos revealed a significant increase in the number of cells coexpressing both neural (SOX2) and NPB (PAX7) markers, which may represent an enhancing effect in the cellular potential of those progenitors. Taken together, our findings propose a model where the RFC1 deficiency drives methylation changes in specific genomic regions that are correlated with a dysregulation of pathways involved in early development such as Notch1 and BMP4 signaling. These changes affect the potency of the progenitors residing in the juncture of the neural plate and NPB territories, thus driving them to a primed state.
Collapse
|
18
|
Yousefi PD, Suderman M, Langdon R, Whitehurst O, Davey Smith G, Relton CL. DNA methylation-based predictors of health: applications and statistical considerations. Nat Rev Genet 2022; 23:369-383. [PMID: 35304597 DOI: 10.1038/s41576-022-00465-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation data have become a valuable source of information for biomarker development, because, unlike static genetic risk estimates, DNA methylation varies dynamically in relation to diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathology. Reliable methods for genome-wide measurement at scale have led to the proliferation of epigenome-wide association studies and subsequently to the development of DNA methylation-based predictors across a wide range of health-related applications, from the identification of risk factors or exposures, such as age and smoking, to early detection of disease or progression in cancer, cardiovascular and neurological disease. This Review evaluates the progress of existing DNA methylation-based predictors, including the contribution of machine learning techniques, and assesses the uptake of key statistical best practices needed to ensure their reliable performance, such as data-driven feature selection, elimination of data leakage in performance estimates and use of generalizable, adequately powered training samples.
Collapse
Affiliation(s)
- Paul D Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Matthew Suderman
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Ryan Langdon
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Oliver Whitehurst
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK.
| |
Collapse
|
19
|
Ondičová M, Irwin RE, Thursby SJ, Hilman L, Caffrey A, Cassidy T, McLaughlin M, Lees-Murdock DJ, Ward M, Murphy M, Lamers Y, Pentieva K, McNulty H, Walsh CP. Folic acid intervention during pregnancy alters DNA methylation, affecting neural target genes through two distinct mechanisms. Clin Epigenetics 2022; 14:63. [PMID: 35578268 PMCID: PMC9112484 DOI: 10.1186/s13148-022-01282-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We previously showed that continued folic acid (FA) supplementation beyond the first trimester of pregnancy appears to have beneficial effects on neurocognitive performance in children followed for up to 11 years, but the biological mechanism for this effect has remained unclear. Using samples from our randomized controlled trial of folic acid supplementation in second and third trimester (FASSTT), where significant improvements in cognitive and psychosocial performance were demonstrated in children from mothers supplemented in pregnancy with 400 µg/day FA compared with placebo, we examined methylation patterns from cord blood (CB) using the EPIC array which covers approximately 850,000 cytosine-guanine (CG) sites across the genome. Genes showing significant differences were verified using pyrosequencing and mechanistic approaches used in vitro to determine effects on transcription. RESULTS FA supplementation resulted in significant differences in methylation, particularly at brain-related genes. Further analysis showed these genes split into two groups. In one group, which included the CES1 gene, methylation changes at the promoters were important for regulating transcription. We also identified a second group which had a characteristic bimodal profile, with low promoter and high gene body (GB) methylation. In the latter, loss of methylation in the GB is linked to decreases in transcription: this group included the PRKAR1B/HEATR2 genes and the dopamine receptor regulator PDE4C. Overall, methylation in CB also showed good correlation with methylation profiles seen in a published data set of late gestation foetal brain samples. CONCLUSION We show here clear alterations in DNA methylation at specific classes of neurodevelopmental genes in the same cohort of children, born to FA-supplemented mothers, who previously showed improved cognitive and psychosocial performance. Our results show measurable differences at neural genes which are important for transcriptional regulation and add to the supporting evidence for continued FA supplementation throughout later gestation. This trial was registered on 15 May 2013 at www.isrctn.com as ISRCTN19917787.
Collapse
Affiliation(s)
- Miroslava Ondičová
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Rachelle E Irwin
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Sara-Jayne Thursby
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Luke Hilman
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Aoife Caffrey
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Tony Cassidy
- Psychology Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Marian McLaughlin
- Psychology Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Michelle Murphy
- Unitat de Medicina Preventiva i Salut Pública, Facultat de Medicina i Ciències de La Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Yvonne Lamers
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, and British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kristina Pentieva
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, UK.
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.
| |
Collapse
|
20
|
Silver MJ, Saffari A, Kessler NJ, Chandak GR, Fall CHD, Issarapu P, Dedaniya A, Betts M, Moore SE, Routledge MN, Herceg Z, Cuenin C, Derakhshan M, James PT, Monk D, Prentice AM. Environmentally sensitive hotspots in the methylome of the early human embryo. eLife 2022; 11:e72031. [PMID: 35188105 PMCID: PMC8912923 DOI: 10.7554/elife.72031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/18/2022] [Indexed: 11/26/2022] Open
Abstract
In humans, DNA methylation marks inherited from gametes are largely erased following fertilisation, prior to construction of the embryonic methylome. Exploiting a natural experiment of seasonal variation including changes in diet and nutritional status in rural Gambia, we analysed three datasets covering two independent child cohorts and identified 259 CpGs showing consistent associations between season of conception (SoC) and DNA methylation. SoC effects were most apparent in early infancy, with evidence of attenuation by mid-childhood. SoC-associated CpGs were enriched for metastable epialleles, parent-of-origin-specific methylation and germline differentially methylated regions, supporting a periconceptional environmental influence. Many SoC-associated CpGs overlapped enhancers or sites of active transcription in H1 embryonic stem cells and fetal tissues. Half were influenced but not determined by measured genetic variants that were independent of SoC. Environmental 'hotspots' providing a record of environmental influence at periconception constitute a valuable resource for investigating epigenetic mechanisms linking early exposures to lifelong health and disease.
Collapse
Affiliation(s)
- Matt J Silver
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - Ayden Saffari
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - Noah J Kessler
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Gririraj R Chandak
- Genomic Research on Complex Diseases, CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Caroline HD Fall
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General HospitalSouthamptonUnited Kingdom
| | - Prachand Issarapu
- Genomic Research on Complex Diseases, CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Akshay Dedaniya
- Genomic Research on Complex Diseases, CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Modupeh Betts
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - Sophie E Moore
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
- Department of Women and Children's Health, King's College LondonLondonUnited Kingdom
| | - Michael N Routledge
- School of Medicine, University of LeedsLeedsUnited Kingdom
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiangChina
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency For Research On CancerLyonFrance
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency For Research On CancerLyonFrance
| | - Maria Derakhshan
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - Philip T James
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - David Monk
- Biomedical Research Centre, University of East AngliaNorwichUnited Kingdom
- Bellvitge Institute for Biomedical ResearchBarcelonaSpain
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| |
Collapse
|
21
|
Janjua KA, Shahzad R, Shehzad A. Development of Novel Cancer Biomarkers for Diagnosis and Prognosis. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:277-343. [DOI: 10.1007/978-981-16-5759-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Matusheski NV, Caffrey A, Christensen L, Mezgec S, Surendran S, Hjorth MF, McNulty H, Pentieva K, Roager HM, Seljak BK, Vimaleswaran KS, Remmers M, Péter S. Diets, nutrients, genes and the microbiome: recent advances in personalised nutrition. Br J Nutr 2021; 126:1489-1497. [PMID: 33509307 PMCID: PMC8524424 DOI: 10.1017/s0007114521000374] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/28/2022]
Abstract
As individuals seek increasingly individualised nutrition and lifestyle guidance, numerous apps and nutrition programmes have emerged. However, complex individual variations in dietary behaviours, genotypes, gene expression and composition of the microbiome are increasingly recognised. Advances in digital tools and artificial intelligence can help individuals more easily track nutrient intakes and identify nutritional gaps. However, the influence of these nutrients on health outcomes can vary widely among individuals depending upon life stage, genetics and microbial composition. For example, folate may elicit favourable epigenetic effects on brain development during a critical developmental time window of pregnancy. Genes affecting vitamin B12 metabolism may lead to cardiometabolic traits that play an essential role in the context of obesity. Finally, an individual's gut microbial composition can determine their response to dietary fibre interventions during weight loss. These recent advances in understanding can lead to a more complete and integrated approach to promoting optimal health through personalised nutrition, in clinical practice settings and for individuals in their daily lives. The purpose of this review is to summarise presentations made during the DSM Science and Technology Award Symposium at the 13th European Nutrition Conference, which focused on personalised nutrition and novel technologies for health in the modern world.
Collapse
Affiliation(s)
- Nathan V. Matusheski
- Nutrition Science and Advocacy, DSM Nutritional Products LLC, Parsippany, NJ, USA
| | - Aoife Caffrey
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, ColeraineBT52 1SA, Northern Republic of Ireland
| | - Lars Christensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Frederiksberg, Denmark
| | - Simon Mezgec
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000Ljubljana, Slovenia
| | - Shelini Surendran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, ReadingRG6 6DZ, UK
| | - Mads F. Hjorth
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Frederiksberg, Denmark
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, ColeraineBT52 1SA, Northern Republic of Ireland
| | - Kristina Pentieva
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, ColeraineBT52 1SA, Northern Republic of Ireland
| | - Henrik M. Roager
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Frederiksberg, Denmark
| | - Barbara Koroušić Seljak
- Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Ljubljana, Slovenia
| | | | | | - Szabolcs Péter
- Nutrition Innovation Center, DSM Nutritional Products Ltd, Kaiseraugst, Switzerland
| |
Collapse
|
23
|
Lecorguillé M, Charles MA, Lepeule J, Lioret S, de Lauzon-Guillain B, Forhan A, Tost J, Suderman M, Heude B. Association between dietary patterns reflecting one-carbon metabolism nutrients intake before pregnancy and placental DNA methylation. Epigenetics 2021; 17:715-730. [PMID: 34461807 DOI: 10.1080/15592294.2021.1957575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The preconception period represents an important window for foetal and epigenetic programming. Some micronutrients (B vitamins, choline, betaine, methionine) implicated in one-carbon metabolism (OCM) are essential for major epigenetic processes that take place in early pregnancy. However, few studies have evaluated the implication of the micronutrients in placental DNA methylation. We investigated whether intake of OCM nutrients in the year before pregnancy was associated with placental DNA methylation in the EDEN mother-child cohort. Maternal dietary intake was assessed with a food-frequency questionnaire. Three dietary patterns, 'varied and balanced diet,' 'vegetarian tendency,' and 'bread and starchy food,' were used to characterize maternal OCM dietary intake. The Illumina Infinium HumanMethylation450 BeadChip was used to measure placental DNA methylation of 573 women included in the analyses. We evaluated the association of dietary patterns with global DNA methylation. Then, we conducted an agnostic epigenome-wide association study (EWAS) and investigated differentially methylated regions (DMRs) associated with each dietary pattern. We found no significant association between the three dietary patterns and global DNA methylation or individual CpG sites. DMR analyses highlighted associations between the 'varied and balanced' or 'vegetarian tendency' pattern and DMRs located at genes previously implicated in functions essential for embryonic development, such as neurodevelopment. The 'bread and starchy food' pattern was associated with regions related to genes whose functions involve various metabolic and cell synthesis-related processes. In mainly well-nourished French women without major deficiencies, OCM intake before pregnancy was not associated with major variation in DNA methylation.
Collapse
Affiliation(s)
| | - Marie-Aline Charles
- Université De Paris, Cress, Inserm, Inrae, Paris, France.,Ined, Inserm, EFS, ELFE Joint Unit, 93322, Aubervilliers, France
| | - Johanna Lepeule
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Université Grenoble Alpes, Grenoble, France
| | | | | | - Anne Forhan
- Université De Paris, Cress, Inserm, Inrae, Paris, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National De Recherche En Génomique Humaine, CEA - Institut De Biologie François Jacob, Evry, France
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Barbara Heude
- Université De Paris, Cress, Inserm, Inrae, Paris, France
| |
Collapse
|
24
|
Davison GW, Irwin RE, Walsh CP. The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radic Biol Med 2021; 170:194-206. [PMID: 33429021 DOI: 10.1016/j.freeradbiomed.2020.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) continues to rise globally. Yet the aetiology and pathophysiology of this noncommunicable, polygenic disease, is poorly understood. Lifestyle factors, such as poor dietary intake, lack of exercise, and abnormal glycaemia, are purported to play a role in disease onset and progression, and these environmental factors may disrupt specific epigenetic mechanisms, leading to a reprogramming of gene transcription. The hyperglycaemic cell per se, alters epigenetics through chemical modifications to DNA and histones via metabolic intermediates such as succinate, α-ketoglutarate and O-GlcNAc. To illustrate, α-ketoglutarate is considered a salient co-factor in the activation of the ten-eleven translocation (TET) dioxygenases, which drives DNA demethylation. On the contrary, succinate and other mitochondrial tricarboxylic acid cycle intermediates, inhibit TET activity predisposing to a state of hypermethylation. Hyperglycaemia depletes intracellular ascorbic acid, and damages DNA by enhancing the production of reactive oxygen species (ROS); this compromised cell milieu exacerbates the oxidation of 5-methylcytosine alongside a destabilisation of TET. These metabolic connections may regulate DNA methylation, affecting gene transcription and pancreatic islet β-cell function in T2DM. This complex interrelationship between metabolism and epigenetic alterations may provide a conceptual foundation for understanding how pathologic stimuli modify and control the intricacies of T2DM. As such, this narrative review will comprehensively evaluate and detail the interplay between metabolism and epigenetic modifications in T2DM.
Collapse
Affiliation(s)
- Gareth W Davison
- Ulster University, Sport and Exercise Sciences Research Institute, Newtownabbey, Northern Ireland, UK.
| | - Rachelle E Irwin
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| |
Collapse
|
25
|
Caffrey A, McNulty H, Rollins M, Prasad G, Gaur P, Talcott JB, Witton C, Cassidy T, Marshall B, Dornan J, Moore AJ, Ward M, Strain JJ, Molloy AM, McLaughlin M, Lees-Murdock DJ, Walsh CP, Pentieva K. Effects of maternal folic acid supplementation during the second and third trimesters of pregnancy on neurocognitive development in the child: an 11-year follow-up from a randomised controlled trial. BMC Med 2021; 19:73. [PMID: 33750355 PMCID: PMC7945668 DOI: 10.1186/s12916-021-01914-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Maternal folic acid (FA) supplementation before and in early pregnancy prevents neural tube defects (NTD), but it is uncertain whether continuing FA after the first trimester has benefits on offspring health. We aimed to evaluate the effect of FA supplementation throughout pregnancy on cognitive performance and brain function in the child. METHODS Follow-up investigation of 11-year-old children, residing in Northern Ireland, whose mothers had participated in a randomised trial of Folic Acid Supplementation in the Second and Third Trimesters (FASSTT) in pregnancy and received 400 μg/day FA or placebo from the 14th gestational week. Cognitive performance (Full Scale Intelligence Quotient, Verbal Comprehension, Working Memory, Perceptual Reasoning, and Processing Speed) was assessed using the Wechsler Intelligence Scale for Children. Neuronal function was assessed using magnetoencephalographic (MEG) brain imaging. RESULTS Of 119 mother-child pairs in the FASSTT trial, 68 children were assessed for neurocognitive performance at 11-year follow-up (Dec 2017 to Nov 2018). Children of mothers randomised to FA compared with placebo scored significantly higher in two Processing Speed tests, i.e. symbol search (mean difference 2.9 points, 95% CI 0.3 to 5.5, p = 0.03) and cancellation (11.3 points, 2.5 to 20.1, p = 0.04), whereas the positive effect on Verbal Comprehension was significant in girls only (6.5 points, 1.2 to 11.8, p = 0.03). MEG assessment of neuronal responses to a language task showed increased power at the Beta (13-30 Hz, p = 0.01) and High Gamma (49-70 Hz, p = 0.04) bands in children from FA-supplemented mothers, suggesting more efficient semantic processing of language. CONCLUSIONS Continued FA supplementation in pregnancy beyond the early period currently recommended to prevent NTD can benefit neurocognitive development of the child. MEG provides a non-invasive tool in paediatric research to objectively assess functional brain activity in response to nutrition and other interventions. TRIAL REGISTRATION ISRCTN ISRCTN19917787 . Registered on 15 May 2013.
Collapse
Affiliation(s)
- Aoife Caffrey
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Mark Rollins
- Northern Health and Social Care Trust, Causeway Hospital, Coleraine, Northern Ireland, UK
| | - Girijesh Prasad
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland, UK
| | - Pramod Gaur
- Intelligent Systems Research Centre, Ulster University, Derry~Londonderry, Northern Ireland, UK.,Department of Computer Science, BITS Pilani, Dubai campus, Dubai, United Arab Emirates
| | - Joel B Talcott
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Caroline Witton
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Tony Cassidy
- Psychology Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Barry Marshall
- Northern Health and Social Care Trust, Causeway Hospital, Coleraine, Northern Ireland, UK
| | - James Dornan
- Royal-Jubilee Maternity Service, Belfast, Northern Ireland, UK
| | - Adrian J Moore
- School of Environmental Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Anne M Molloy
- School of Medicine, Trinity College, Dublin, Ireland
| | - Marian McLaughlin
- Psychology Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Diane J Lees-Murdock
- Genomics Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Genomics Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Kristina Pentieva
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
26
|
Hernández HG, Hernández-Castañeda AA, Pieschacón MP, Arboleda H. ZNF718, HOXA4, and ZFP57 are differentially methylated in periodontitis in comparison with periodontal health: Epigenome-wide DNA methylation pilot study. J Periodontal Res 2021; 56:710-725. [PMID: 33660869 DOI: 10.1111/jre.12868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the differences in the epigenomic patterns of DNA methylation in peripheral leukocytes between patients with periodontitis and gingivally healthy controls evaluating its functional meaning by functional enrichment analysis. BACKGROUND The DNA methylation profiling of peripheral leukocytes as immune-related tissue potentially relevant as a source of biomarkers between periodontitis patients and gingivally healthy subjects has not been investigated. METHODS A DNA methylation epigenome-wide study of peripheral leukocytes was conducted using the Illumina MethylationEPIC platform in sixteen subjects, eight diagnosed with periodontitis patients and eight age-matched and sex-matched periodontally healthy controls. A trained periodontist performed the clinical evaluation. Global DNA methylation was estimated using methylation-sensitive high-resolution melting in LINE1. Routine cell count cytometry and metabolic laboratory tests were also performed. The analysis of differentially methylated positions (DMPs) and differentially methylated regions (DMRs) was made using R/Bioconductor environment considering leukocyte populations assessed in both routine cell counts and using the FlowSorted.Blood.EPIC package. Finally, a DMP and DMR intersection analysis was performed. Functional enrichment analysis was carried out with the differentially methylated genes found in DMP. RESULTS DMP analysis identified 81 differentially hypermethylated genes and 21 differentially hypomethylated genes. Importantly, the intersection analysis showed that zinc finger protein 718 (ZNF718) and homeobox A4 (HOXA4) were differentially hypermethylated and zinc finger protein 57 (ZFP57) was differentially hypomethylated in periodontitis. The functional enrichment analysis found clearly immune-related ontologies such as "detection of bacterium" and "antigen processing and presentation." CONCLUSION The results of this study propose three new periodontitis-related genes: ZNF718, HOXA4, and ZFP57 but also evidence the suitability and relevance of studying leukocytes' DNA methylome for biological interpretation of systemic immune-related epigenetic patterns in periodontitis.
Collapse
Affiliation(s)
- Hernán G Hernández
- Faculty of Dentistry, Division of Health Sciences, Universidad Santo Tomás, Bucaramanga, Colombia
| | | | - Maria P Pieschacón
- Faculty of Dentistry, Division of Health Sciences, Universidad Santo Tomás, Bucaramanga, Colombia
| | - Humberto Arboleda
- Neurosciences Research Group, Faculty of Medicine and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
27
|
Wilson RL, Jones HN. Targeting the Dysfunctional Placenta to Improve Pregnancy Outcomes Based on Lessons Learned in Cancer. Clin Ther 2021; 43:246-264. [PMID: 33446335 PMCID: PMC11917529 DOI: 10.1016/j.clinthera.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
In recent decades, our understanding of the disrupted mechanisms that contribute to major obstetrical diseases, including preeclampsia, fetal growth restriction, preterm birth, and gestational diabetes, has increased exponentially. Common to many of these obstetric diseases is placental maldevelopment and dysfunction; the placenta is a significant component of the maternal-fetal interface involved in coordinating, facilitating, and regulating maternal and fetal nutrient, oxygen and waste exchange, and hormone and cytokine production. Despite the advances in our understanding of placental development and function, there are currently no treatments for placental maldevelopment and dysfunction. However, given the transient nature and accessibility from the maternal circulation, the placenta offers a unique opportunity to develop targeted therapeutics for routine obstetric practices. Furthermore, given the similar developmental paradigms between the placenta and cancer, there is an opportunity to appropriate current knowledge from advances in targeted therapeutics in cancer treatments. In this review, we highlight the similarities between early placental development and cancer and introduce a number of targeted therapies currently being explored in cancer and pregnancy. We also propose a number of new effectors currently being targeted in cancer research that have the potential to be targeted in the development of treatments for pregnancy complications. Finally, we describe a method for targeting the placenta using nonviral polymers that are capable of delivering plasmids, small interfering RNA, and other effector nucleic acids, which could ultimately improve fetal and maternal outcomes from complicated pregnancies.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| | - Helen N Jones
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
28
|
Zhao Y, Wang P, Zhou Y, Xia B, Zhu Q, Ge W, Li J, Shi H, Xiao X, Zhang Y. Prenatal fine particulate matter exposure, placental DNA methylation changes, and fetal growth. ENVIRONMENT INTERNATIONAL 2021; 147:106313. [PMID: 33341587 DOI: 10.1016/j.envint.2020.106313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
This study was designed to examine the impact of prenatal fine particulate matter (PM2.5) exposure on fetal growth and the underlying placental epigenetic mechanism in a cohort of Chinese women. Within the prospective Shanghai Mother-Child Pairs cohort (Shanghai MCPC), 329 women carrying singleton pregnancy with a due date in 2018 were recruited between 2017 and 2018. Maternal PM2.5 exposure levels were estimated using gestational exposure prediction model combining satellite-driven ambient concentrations and personal air sampling. Fetal growth characteristics were evaluated by prenatal ultrasound examinations and anthropometric measurements at birth. In a discovery phase, whole-genome DNA methylation analysis was performed using the Infinium 850 K array. In a validation phase, placental DNA methylation was measured using bisulfite pyrosequencing for five candidate genes that showed the most significant alterations and function relevance in our methylation array screen, including BID (BH3 interacting domain death agonist), FOXN3 (Forkhead box N3), FOXP1 (Forkhead box P1), IGF2 (Insulin-like growth factor 2) and HSD11B2 (Hydroxysteroid 11-beta dehydrogenase 2). Multivariate linear regression models were applied to examine the associations among PM2.5 exposure, fetal growth characteristics and DNA methylation on placental candidate genes. Sobel tests were used to evaluate the mediating role of DNA methylation in multivariable models. After excluding women who withdrew or failed to provide placenta, a total of 287 pregnant women with an average age of 30 entered the final analysis. Increased PM2.5 exposure was significantly associated with reduced biparietal diameter (BPD) (β: -0.136 mm, 95% CI: -0.228 to -0.043), head circumference (HC) (β: -0.462 mm, 95% CI: -0.782 to -0.142), femur length (FL) (β: -0.113 mm, 95% CI: -0.185 to -0.041) and abdominal circumference (AC) (β: -0.371 mm, 95% CI: -0.672 to -0.071) in the second trimester and birth length (β: -0.013 cm, 95% CI: -0.025 to -0.001). Prenatal PM2.5 exposure could lead to aberrant changes in DNA methylation profile of placenta genome, which were mainly enriched in reproductive development, energy metabolism and immune response. DNA methylation of IGF2 and BID showed significant associations with PM2.5 exposures during all exposure windows. In addition, BID methylation was negatively correlated with HC (β: -1.396 mm, 95% CI: -2.582 to -0.209) and BPD (β: -0.330 mm, 95% CI: -0.635 to -0.026) in the second trimester. Further mediation analysis indicated that BID methylation mediated about 30% of the effects of PM2.5 exposure on HC. These findings collectively suggested that prenatal PM2.5 exposure may cause adverse effects on fetal growth by modifying placental DNA methylation.
Collapse
Affiliation(s)
- Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Bin Xia
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China
| | - Qingyang Zhu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China
| | - Wenzhen Ge
- Regeneron Pharmaceuticals Inc., New York, NY, USA
| | - Jialin Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Maruvada P, Stover PJ, Mason JB, Bailey RL, Davis CD, Field MS, Finnell RH, Garza C, Green R, Gueant JL, Jacques PF, Klurfeld DM, Lamers Y, MacFarlane AJ, Miller JW, Molloy AM, O'Connor DL, Pfeiffer CM, Potischman NA, Rodricks JV, Rosenberg IH, Ross SA, Shane B, Selhub J, Stabler SP, Trasler J, Yamini S, Zappalà G. Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: a summary, and perspectives, from an NIH workshop. Am J Clin Nutr 2020; 112:1390-1403. [PMID: 33022704 PMCID: PMC7657327 DOI: 10.1093/ajcn/nqaa259] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Folate, an essential nutrient found naturally in foods in a reduced form, is present in dietary supplements and fortified foods in an oxidized synthetic form (folic acid). There is widespread agreement that maintaining adequate folate status is critical to prevent diseases due to folate inadequacy (e.g., anemia, birth defects, and cancer). However, there are concerns of potential adverse effects of excess folic acid intake and/or elevated folate status, with the original concern focused on exacerbation of clinical effects of vitamin B-12 deficiency and its role in neurocognitive health. More recently, animal and observational studies have suggested potential adverse effects on cancer risk, birth outcomes, and other diseases. Observations indicating adverse effects from excess folic acid intake, elevated folate status, and unmetabolized folic acid (UMFA) remain inconclusive; the data do not provide the evidence needed to affect public health recommendations. Moreover, strong biological and mechanistic premises connecting elevated folic acid intake, UMFA, and/or high folate status to adverse health outcomes are lacking. However, the body of evidence on potential adverse health outcomes indicates the need for comprehensive research to clarify these issues and bridge knowledge gaps. Three key research questions encompass the additional research needed to establish whether high folic acid or total folate intake contributes to disease risk. 1) Does UMFA affect biological pathways leading to adverse health effects? 2) Does elevated folate status resulting from any form of folate intake affect vitamin B-12 function and its roles in sustaining health? 3) Does elevated folate intake, regardless of form, affect biological pathways leading to adverse health effects other than those linked to vitamin B-12 function? This article summarizes the proceedings of an August 2019 NIH expert workshop focused on addressing these research areas.
Collapse
Affiliation(s)
- Padma Maruvada
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Patrick J Stover
- Texas A&M University College of Agriculture and Life Sciences, Texas A&M University AgriLife, College Station, TX, USA
| | - Joel B Mason
- Jean Mayer USDA Human Nutrition Research Center on Aging, Friedman School of Nutrition Science and Policy, and School of Medicine, Tufts University, Boston, MA, USA
| | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Cindy D Davis
- Office of Dietary Supplements, NIH, Bethesda, MD, USA
| | - Martha S Field
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Richard H Finnell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cutberto Garza
- Professor Emeritus, Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Jean-Louis Gueant
- University of Lorraine and University Regional Hospital Centre of Nancy, Nancy, France
| | - Paul F Jacques
- Tufts University Friedman School of Nutritional Science and Policy and the Jean Mayer USDA Human Nutrition Research Center, Boston, MA, USA
| | - David M Klurfeld
- Department of Nutrition, Food Safety, and Quality, USDA Agricultural Research Service, Beltsville, MD, USA
| | - Yvonne Lamers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Anne M Molloy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Irwin H Rosenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Friedman School of Nutrition Science and Policy, and School of Medicine, Tufts University, Boston, MA, USA
| | | | - Barry Shane
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Jacob Selhub
- Tufts University Friedman School of Nutritional Science and Policy and the Jean Mayer USDA Human Nutrition Research Center, Boston, MA, USA
| | - Sally P Stabler
- Department of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Sedigheh Yamini
- Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, US FDA, College Park, MD, USA
| | - Giovanna Zappalà
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Amenyah SD, Ward M, Strain JJ, McNulty H, Hughes CF, Dollin C, Walsh CP, Lees-Murdock DJ. Nutritional Epigenomics and Age-Related Disease. Curr Dev Nutr 2020; 4:nzaa097. [PMID: 32666030 PMCID: PMC7335360 DOI: 10.1093/cdn/nzaa097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent advances in epigenetic research have enabled the development of epigenetic clocks, which have greatly enhanced our ability to investigate molecular processes that contribute to aging and age-related disease. These biomarkers offer the potential to measure the effect of environmental exposures linked to dynamic changes in DNA methylation, including nutrients, as factors in age-related disease. They also offer a compelling insight into how imbalances in the supply of nutrients, particularly B-vitamins, or polymorphisms in regulatory enzymes involved in 1-carbon metabolism, the key pathway that supplies methyl groups for epigenetic reactions, may influence epigenetic age and interindividual disease susceptibility. Evidence from recent studies is critically reviewed, focusing on the significant contribution of the epigenetic clock to nutritional epigenomics and its impact on health outcomes and age-related disease. Further longitudinal studies and randomized nutritional interventions are required to advance the field.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Catherine F Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Caitlin Dollin
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| | - Colum P Walsh
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| |
Collapse
|
31
|
Thursby SJ, Lobo DK, Pentieva K, Zhang SD, Irwin RE, Walsh CP. CandiMeth: Powerful yet simple visualization and quantification of DNA methylation at candidate genes. Gigascience 2020; 9:5860739. [PMID: 32568373 PMCID: PMC7307318 DOI: 10.1093/gigascience/giaa066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/12/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DNA methylation microarrays are widely used in clinical epigenetics and are often processed using R packages such as ChAMP or RnBeads by trained bioinformaticians. However, looking at specific genes requires bespoke coding for which wet-lab biologists or clinicians are not trained. This leads to high demands on bioinformaticians, who may lack insight into the specific biological problem. To bridge this gap, we developed a tool for mapping and quantification of methylation differences at candidate genomic features of interest, without using coding. FINDINGS We generated the workflow "CandiMeth" (Candidate Methylation) in the web-based environment Galaxy. CandiMeth takes as input any table listing differences in methylation generated by either ChAMP or RnBeads and maps these to the human genome. A simple interface then allows the user to query the data using lists of gene names. CandiMeth generates (i) tracks in the popular UCSC Genome Browser with an intuitive visual indicator of where differences in methylation occur between samples or groups of samples and (ii) tables containing quantitative data on the candidate regions, allowing interpretation of significance. In addition to genes and promoters, CandiMeth can analyse methylation differences at long and short interspersed nuclear elements. Cross-comparison to other open-resource genomic data at UCSC facilitates interpretation of the biological significance of the data and the design of wet-lab assays to further explore methylation changes and their consequences for the candidate genes. CONCLUSIONS CandiMeth (RRID:SCR_017974; Biotools: CandiMeth) allows rapid, quantitative analysis of methylation at user-specified features without the need for coding and is freely available at https://github.com/sjthursby/CandiMeth.
Collapse
Affiliation(s)
- Sara-Jayne Thursby
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
| | - Darin K Lobo
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
- Present address: Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964
| | - Kristina Pentieva
- Nutrition Innovation Centre for Food & Health (NICHE), School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
| | - Shu-Dong Zhang
- Stratified Medicine Research Groups, School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
| | - Rachelle E Irwin
- Stratified Medicine Research Groups, School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
| | - Colum P Walsh
- Correspondence address. Colum P. Walsh, Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University UK. Tel: +44 28 7012 4484; E-mail:
| |
Collapse
|
32
|
Epigenetic Biomarkers for Environmental Exposures and Personalized Breast Cancer Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041181. [PMID: 32069786 PMCID: PMC7068429 DOI: 10.3390/ijerph17041181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
Environmental and lifestyle factors are believed to account for >80% of breast cancers; however, it is not well understood how and when these factors affect risk and which exposed individuals will actually develop the disease. While alcohol consumption, obesity, and hormone therapy are some known risk factors for breast cancer, other exposures associated with breast cancer risk have not yet been identified or well characterized. In this paper, it is proposed that the identification of blood epigenetic markers for personal, in utero, and ancestral environmental exposures can help researchers better understand known and potential relationships between exposures and breast cancer risk and may enable personalized prevention strategies.
Collapse
|
33
|
McNulty H, Rollins M, Cassidy T, Caffrey A, Marshall B, Dornan J, McLaughlin M, McNulty BA, Ward M, Strain JJ, Molloy AM, Lees-Murdock DJ, Walsh CP, Pentieva K. Effect of continued folic acid supplementation beyond the first trimester of pregnancy on cognitive performance in the child: a follow-up study from a randomized controlled trial (FASSTT Offspring Trial). BMC Med 2019; 17:196. [PMID: 31672132 PMCID: PMC6823954 DOI: 10.1186/s12916-019-1432-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Periconceptional folic acid prevents neural tube defects (NTDs), but it is uncertain whether there are benefits for offspring neurodevelopment arising from continued maternal folic acid supplementation beyond the first trimester. We investigated the effect of folic acid supplementation during trimesters 2 and 3 of pregnancy on cognitive performance in the child. METHODS We followed up the children of mothers who had participated in a randomized controlled trial in 2006/2007 of Folic Acid Supplementation during the Second and Third Trimesters (FASSTT) and received 400 μg/d folic acid or placebo from the 14th gestational week until the end of pregnancy. Cognitive performance of children at 7 years was evaluated using the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III) and at 3 years using the Bayley's Scale of Infant and Toddler Development (BSITD-III). RESULTS From a total of 119 potential mother-child pairs, 70 children completed the assessment at age 7 years, and 39 at age 3 years. At 7 years, the children of folic acid treated mothers scored significantly higher than the placebo group in word reasoning: mean 13.3 (95% CI 12.4-14.2) versus 11.9 (95% CI 11.0-12.8); p = 0.027; at 3 years, they scored significantly higher in cognition: 10.3 (95% CI 9.3-11.3) versus 9.5 (95% CI 8.8-10.2); p = 0.040. At both time points, greater proportions of children from folic acid treated mothers compared with placebo had cognitive scores above the median values of 10 (girls and boys) for the BSITD-III, and 24.5 (girls) and 21.5 (boys) for the WPPSI-III tests. When compared with a nationally representative sample of British children at 7 years, WPPSI-III test scores were higher in children from folic acid treated mothers for verbal IQ (p < 0.001), performance IQ (p = 0.035), general language (p = 0.002), and full scale IQ (p = 0.001), whereas comparison of the placebo group with British children showed smaller differences in scores for verbal IQ (p = 0.034) and full scale IQ (p = 0.017) and no differences for performance IQ or general language. CONCLUSIONS Continued folic acid supplementation in pregnancy beyond the early period recommended to prevent NTD may have beneficial effects on child cognitive development. Further randomized trials in pregnancy with follow-up in childhood are warranted. TRIAL REGISTRATION ISRCTN ISRCTN19917787 . Registered 15 May 2013.
Collapse
Affiliation(s)
- Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Mark Rollins
- Northern Health and Social Care Trust, Causeway Hospital, Northern Ireland, UK
| | - Tony Cassidy
- Psychology Research Institute, Ulster University, Northern Ireland, UK
| | - Aoife Caffrey
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Barry Marshall
- Northern Health and Social Care Trust, Causeway Hospital, Northern Ireland, UK
| | - James Dornan
- Royal-Jubilee Maternity Service, Belfast, Northern Ireland, UK
| | - Marian McLaughlin
- Psychology Research Institute, Ulster University, Northern Ireland, UK
| | - Breige A McNulty
- Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Anne M Molloy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Diane J Lees-Murdock
- Genomic Medicine Group, School of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Group, School of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Kristina Pentieva
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|