1
|
Zaiou M, Joubert O. Racial and Ethnic Disparities in NAFLD: Harnessing Epigenetic and Gut Microbiota Pathways for Targeted Therapeutic Approaches. Biomolecules 2025; 15:669. [PMID: 40427561 DOI: 10.3390/biom15050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing global health concern, impacting approximately 32.4% of the worldwide population. As a disease linked to metabolic dysfunction, NAFLD continues to rise alongside global increases in obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. There is considerable evidence indicating that NAFLD disproportionately affects racial, ethnic, and minority groups, although the exact reasons for these disparities remain elusive. Contributing factors to this disease may include socioeconomic status, cultural influences, stress, genetic factors, and lifestyle choices. Emerging evidence suggests that these causal factors could influence epigenetic mechanisms, particularly DNA methylation and histone modifications, as well as the composition and diversity of gut microbiota. Nevertheless, there is a scarcity of research that comprehensively examines the interplay between epigenetic changes and gut microbiome variations in relation to NAFLD disparities across different racial and ethnic populations globally. This paper intends to (i) explore the connections between NAFLD, ethnic disparities, gut microbiota composition, and epigenetic alterations, while reviewing pertinent studies that illustrate how these factors contribute to health inequities among various ethnic groups impacted by this disease; (ii) explore potential therapeutic targets and biomarkers to advance the management of NAFLD; and (iii) provide insights to enhance our understanding of the mechanisms associated with this disease, thereby promoting further research in this field. Advancements in this area are anticipated to enhance our understanding of disease susceptibilities in at-risk groups and to provide new therapeutic options for NAFLD and its associated complications.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | | |
Collapse
|
2
|
Wang H, Liu Z, Fan H, Guo C, Zhang X, Li Y, Zhao S, Dai L, Zhao M, Zhang T. Association between advanced fibrosis and epigenetic age acceleration among individuals with MASLD. J Gastroenterol 2025; 60:306-314. [PMID: 39565370 DOI: 10.1007/s00535-024-02181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The biological process of aging plays an important role in the progress of liver fibrosis. However, epidemiological evidence about the associations between advanced fibrosis and epigenetic age acceleration (EAA) among individuals with metabolic dysfunction-associated steatotic liver disease (MASLD) is limited. METHODS We utilized publicly available DNA methylation data (GSE180474) for our analysis. Five EAA measures were calculated in this study, including IEAA, PhenoAA, GrimAA, DunedinPACE, and DNAmTLAA. Separate linear regression models were conducted to explore the associations between different fibrosis grades and each measure of EAA. RESULTS A total of 325 participants were included in this study, with a mean (± SD) age of 48.56 ± 11.50 years. Of these participants, 64.6% with no fibrosis, 16.9% with bridging fibrosis, 11.1% with incomplete cirrhosis, and 7.4% with cirrhosis. After adjusting for demographics and medication status, MASLD individuals with advanced fibrosis were associated with a 5% increase in the pace of aging (DunedinPACE, β = 0.05, 95% CI: 0.03-0.07) and a 10% decrease in DNAmTLAA (β = -0.10, 95% CI: -0.13 to -0.07) compared those without fibrosis. Similarly, higher stages of fibrosis were associated with an increased pace of aging (DunedinPACE, β = 0.02, 95% CI: 0.01-0.03, Ptrend < 0.001) and decreased DNAmTLAA (β = -0.05, 95% CI: -0.07 to -0.04, Ptrend < 0.001). However, no significant association was found between advanced fibrosis and IEAA, PhenoAA, and GrimAA. CONCLUSIONS Our findings suggest that advanced fibrosis was associated with an accelerated pace of aging, as measured by the third-generation EA measure DunedinPACE, and shorter telomere length, captured by DNAmTLAA, among individuals with MASLD. This finding has potential prognostic implications and suggests EAA may serve as a surrogate marker of therapeutic efficacy in MASLD.
Collapse
Affiliation(s)
- Haili Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hong Fan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chengnan Guo
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yi Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Suzhen Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Luojia Dai
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Yiwu Research Institute, Fudan University, Yiwu, China.
| |
Collapse
|
3
|
Li J, Liu X, Tran TT, Lee M, Tsai RYL. DNA Methylation and Target Gene Expression in Fatty Liver Progression From Simple Steatosis to Advanced Fibrosis. Liver Int 2025; 45:e70040. [PMID: 39982030 DOI: 10.1111/liv.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND AND AIM Metabolic dysfunction-associated steatotic liver diseases (MASLD), also known as non-alcoholic fatty liver diseases (NAFLD), have become a leading risk factor for hepatocellular carcinoma (HCC) in Western countries. NAFLD progresses from simple steatosis to HCC, with advanced liver fibrosis (ALF) and metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) representing the two preceding high-risk stages. METHODS We analysed changes in the DNA methylation landscape from simple steatosis to ALF or NASH and determined their relevance in gene regulation and HCC survival. Methylomic datasets generated from applying the Illumina 450K BeadChip on human MASLD/NAFLD liver samples were analysed using integrative data analyses to identify differentially methylated regions (DMRs) associated with ALF (F3/4 vs. F0/1) or non-fibrotic NASH (NASH-F0/1 vs. NAFLD-F0/1). RESULTS Gene Set Enrichment Analysis (GSEA) of genes associated with fibrosis-DMRs showed enrichment in xenobiotic metabolism, UV response and hypoxia pathways. Expression of 25 DMR-associated genes showed significant associations with HCC survival outcomes, including 16 genes with fibrosis-DMRs and 2 with NASH-DMRs mapped to their promoter regions. Binding motifs of seven transcription factors (TFs) were enriched in fibrosis-DMRs. Four DMR-associated genes (ESR1, TYW3, CLGN and TUBB) displayed an inverse relationship between promoter methylation and gene expression during human MASLD progression, which was further validated in a mouse MASLD model. CONCLUSIONS We propose a model in which changes in promoter DNA methylation during NAFLD progression regulate gene expression, impacting HCC survival outcomes.
Collapse
Affiliation(s)
- Jin Li
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Tran T Tran
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Miryoung Lee
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, Texas, USA
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University Health Science Center, Houston, Texas, USA
| |
Collapse
|
4
|
Barchetta I, Zampieri M, Cimini FA, Dule S, Sentinelli F, Passarella G, Oldani A, Karpach K, Bacalini MG, Baroni MG, Reale A, Cavallo MG. Association Between Active DNA Demethylation and Liver Fibrosis in Individuals with Metabolic-Associated Steatotic Liver Disease (MASLD). Int J Mol Sci 2025; 26:1271. [PMID: 39941038 PMCID: PMC11818491 DOI: 10.3390/ijms26031271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) represents the most common chronic hepatopathy worldwide and an independent risk factor for cardiovascular disease and mortality, particularly when liver fibrosis occurs. Epigenetic alterations, such as DNA methylation, may influence MASLD susceptibility and progression; yet mechanisms underlying this process are limited. This study aimed to investigate whether active DNA demethylation in peripheral blood mononuclear cells (PBMCs) from individuals with MASLD, alongside the methylation and mRNA levels of inflammation- and fibrosis-related candidate genes, is associated with liver fibrosis. For this study, global demethylation intermediates (5-hydroxymethylcytosine [5hmC], 5-formylcytosine [5fC]) were quantified in PBMCs from 89 individuals with/without MASLD using ELISA. Site-specific DNA methylation of SOCS3, SREBF1, and TXNIP was analyzed by mass spectrometry-based bisulfite sequencing; mRNA expression was assessed via RT-PCR. Individuals with MASLD and moderate-to-high fibrosis risk (estimated by the fibrosis non-alcoholic steatohepatitis (NASH) index, FNI) progressively exhibited greater global 5hmC and 5fC levels. Higher FNI was associated with reduced methylation of the SOCS3 gene and increased mRNA expression of the SOCS3, TXNIP, IL-6, and MCP-1 genes. In conclusion, elevated fibrosis risk in MASLD is associated with active global DNA demethylation, as well as differential methylation and expression patterns of genes, which are key regulators of inflammation and fibrosis. These epigenetic alterations in PBMCs may mirror DNA methylation changes in the liver, which may potentially contribute to liver fibrogenesis and represent novel biomarkers for MASLD progression toward fibrosis.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Sara Dule
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Federica Sentinelli
- Endocrinology and Diabetes, Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.G.B.)
| | - Giulia Passarella
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Alessandro Oldani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Katsiaryna Karpach
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | | | - Marco Giorgio Baroni
- Endocrinology and Diabetes, Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.G.B.)
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| |
Collapse
|
5
|
DiStefano JK, Gerhard GS. A complement to epigenetics in metabolic dysfunction-associated steatotic liver disease: Editorial on "DNA methylome analysis reveals epigenetic alteration of complement genes in advanced metabolic dysfunction-associated steatotic liver disease". Clin Mol Hepatol 2025; 31:297-300. [PMID: 39188228 PMCID: PMC11791565 DOI: 10.3350/cmh.2024.0704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024] Open
Affiliation(s)
- Johanna K. DiStefano
- Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Tong H, Guo X, Jacques M, Luo Q, Eynon N, Teschendorff AE. Cell-type specific epigenetic clocks to quantify biological age at cell-type resolution. Aging (Albany NY) 2024; 16:13452-13504. [PMID: 39760516 PMCID: PMC11723652 DOI: 10.18632/aging.206184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution. Here we demonstrate that in blood and brain, approximately 39% and 12% of an epigenetic clock's accuracy is driven by underlying shifts in lymphocyte and neuronal subsets, respectively. Using brain and liver tissue as prototypes, we build and validate neuron and hepatocyte specific DNA methylation clocks, and demonstrate that these cell-type specific clocks yield improved estimates of chronological age in the corresponding cell and tissue-types. We find that neuron and glia specific clocks display biological age acceleration in Alzheimer's Disease with the effect being strongest for glia in the temporal lobe. Moreover, CpGs from these clocks display a small but significant overlap with the causal DamAge-clock, mapping to key genes implicated in neurodegeneration. The hepatocyte clock is found accelerated in liver under various pathological conditions. In contrast, non-cell-type specific clocks do not display biological age-acceleration, or only do so marginally. In summary, this work highlights the importance of dissecting epigenetic clocks and quantifying biological age at cell-type resolution.
Collapse
Affiliation(s)
- Huige Tong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Guo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Macsue Jacques
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nir Eynon
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
7
|
Raitoharju E, Rajić S, Marttila S. Non-coding 886 ( nc886/ vtRNA2-1), the epigenetic odd duck - implications for future studies. Epigenetics 2024; 19:2332819. [PMID: 38525792 DOI: 10.1080/15592294.2024.2332819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Non-coding 886 (nc886, vtRNA2-1) is the only human polymorphically imprinted gene, in which the methylation status is not determined by genetics. Existing literature regarding the establishment, stability and consequences of the methylation pattern, as well as the nature and function of the nc886 RNAs transcribed from the locus, are contradictory. For example, the methylation status of the locus has been reported to be stable through life and across somatic tissues, but also susceptible to environmental effects. The nature of the produced nc886 RNA(s) has been redefined multiple times, and in carcinogenesis, these RNAs have been reported to have conflicting roles. In addition, due to the bimodal methylation pattern of the nc886 locus, traditional genome-wide methylation analyses can lead to false-positive results, especially in smaller datasets. Herein, we aim to summarize the existing literature regarding nc886, discuss how the characteristics of nc886 give rise to contradictory results, as well as to reinterpret, reanalyse and, where possible, replicate the results presented in the current literature. We also introduce novel findings on how the distribution of the nc886 methylation pattern is associated with the geographical origins of the population and describe the methylation changes in a large variety of human tumours. Through the example of this one peculiar genetic locus and RNA, we aim to highlight issues in the analysis of DNA methylation and non-coding RNAs in general and offer our suggestions for what should be taken into consideration in future analyses.
Collapse
Affiliation(s)
- Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| |
Collapse
|
8
|
Stols-Gonçalves D, Meijnikman AS, Tristão LS, dos Santos CL, Denswil NP, Verheij J, Bernardo WM, Nieuwdorp M. Metabolic Dysfunction-Associated Steatotic Liver Disease and Alcohol-Associated Liver Disease: Liver DNA Methylation Analysis-A Systematic Review. Cells 2024; 13:1893. [PMID: 39594641 PMCID: PMC11592595 DOI: 10.3390/cells13221893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated liver disease (MASLD) and alcohol-associated liver disease (ALD) are among the leading causes of liver disease worldwide. The exact roles of epigenetic factors in both diseases remains largely unknown. In this context, liver DNA methylation remains a field that requires further exploration and understanding. METHODS We performed a systematic review of liver DNA methylation in humans with MASLD or ALD using Ovid MEDLINE, Ovid Embase, and Cochrane Library. We included human studies where liver DNA methylation was assessed in patients with MASLD and/or ALD. The Rayyan platform was used to select studies. Risk of bias was assessed with the "risk of bias in non-randomized studies of interventions" tool, ROBINS-I. We performed pathway analysis using the most important differentially methylated genes selected in each article. RESULTS Fifteen articles were included in this systematic review. The risk of bias was moderate to serious in all articles and bias due to confounding and patient selection was high. Sixteen common pathways, containing differentially methylated genes, including cancer pathways, were identified in both diseases. CONCLUSIONS There are common pathways, containing differentially methylated genes, in ALD and MASLD, such as pathways in cancer and peroxisome proliferator-activated receptor (PPAR) signaling pathways. In MASLD, the insulin signaling pathway is one of the most important, and in ALD, the MAPK signaling pathway is the most important. Our study adds one more piece to the puzzle of the mechanisms involved in steatotic liver disease.
Collapse
Affiliation(s)
- Daniela Stols-Gonçalves
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Meibergdreef 9 (Room A01-112), 1105 AZ Amsterdam, The Netherlands; (A.S.M.); (M.N.)
| | - Abraham S. Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Meibergdreef 9 (Room A01-112), 1105 AZ Amsterdam, The Netherlands; (A.S.M.); (M.N.)
| | - Luca Schiliró Tristão
- Department of Evidence-Based Medicine, Faculdade de Ciências Médicas de Santos—Lusiada University Center, Santos 11050-071, SP, Brazil; (L.S.T.); (C.L.d.S.); (W.M.B.)
| | - Clara Lucato dos Santos
- Department of Evidence-Based Medicine, Faculdade de Ciências Médicas de Santos—Lusiada University Center, Santos 11050-071, SP, Brazil; (L.S.T.); (C.L.d.S.); (W.M.B.)
| | - Nerissa P. Denswil
- Medical Library, Amsterdam University Medical Centre, University of Amsterdam, 1012 WP Amsterdam, The Netherlands;
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
| | - Wanderley M. Bernardo
- Department of Evidence-Based Medicine, Faculdade de Ciências Médicas de Santos—Lusiada University Center, Santos 11050-071, SP, Brazil; (L.S.T.); (C.L.d.S.); (W.M.B.)
- Faculdade de Medicina d Universidade de São Paulo, São Paulo 05508-220, SP, Brazil
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Meibergdreef 9 (Room A01-112), 1105 AZ Amsterdam, The Netherlands; (A.S.M.); (M.N.)
| |
Collapse
|
9
|
Magdy A, Kim HJ, Go H, Lee JM, Sohn HA, Haam K, Jung HJ, Park JL, Yoo T, Kwon ES, Lee DH, Choi M, Kang KW, Kim W, Kim M, on behalf of the Innovative Target Exploration of NAFLD (ITEN) Consortium. DNA methylome analysis reveals epigenetic alteration of complement genes in advanced metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2024; 30:824-844. [PMID: 39048522 PMCID: PMC11540403 DOI: 10.3350/cmh.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND/AIMS Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD. METHODS Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction-associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing. RESULTS Methylome and transcriptome analyses of liver biopsies revealed significant (P<0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA, and SERPING1, as well as hypomethylation (P<0.0005) and upregulation (P<0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data. CONCLUSION Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.
Collapse
Affiliation(s)
- Amal Magdy
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hee-Jin Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hanyong Go
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jun Min Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hyun Ahm Sohn
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Keeok Haam
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hyo-Jung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jong-Lyul Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Mirang Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - on behalf of the Innovative Target Exploration of NAFLD (ITEN) Consortium
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Tattoli I, Mathew AR, Verrienti A, Pallotta L, Severi C, Andreola F, Cavallucci V, Giorgi M, Massimi M, Bencini L, Fidaleo M. The Interplay between Liver and Adipose Tissue in the Onset of Liver Diseases: Exploring the Role of Vitamin Deficiency. Cells 2024; 13:1631. [PMID: 39404394 PMCID: PMC11475612 DOI: 10.3390/cells13191631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The deficiency of vitamins, a condition known as "hidden hunger", causes comprehensive pathological states. Research over the years has identified a relationship between liver diseases and hypovitaminosis or defects in vitamin metabolism. The exact mechanisms remain elusive; however, the crucial involvement of specific vitamins in metabolic functions, alongside the reclassification of liver disease as metabolic dysfunction-associated steatotic liver disease (MASLD), has prompted researchers to investigate the potential cause-effect dynamics between vitamin deficiency and liver disease. Moreover, scientists are increasingly investigating how the deficiency of vitamins might disrupt specific organ crosstalk, potentially contributing to liver disease. Although the concept of a dysmetabolic circuit linking adipose tissue and the liver, leading to liver disease, has been discussed, the possible involvement of vitamin deficiency in this axis is a relatively recent area of study, with numerous critical aspects yet to be fully understood. In this review, we examine research from 2019 to July 2024 focusing on the possible link between liver-adipose tissue crosstalk and vitamin deficiency involved in the onset and progression of non-alcoholic fatty liver disease (NAFLD). Studies report that vitamin deficiency can affect the liver-adipose tissue axis, mainly affecting the regulation of systemic energy balance and inflammation.
Collapse
Affiliation(s)
- Ivan Tattoli
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK;
| | - Virve Cavallucci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lapo Bencini
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Sun L, Yue Z, Wang L. Research on the function of epigenetic regulation in the inflammation of non-alcoholic fatty liver disease. LIFE MEDICINE 2024; 3:lnae030. [PMID: 39872862 PMCID: PMC11749620 DOI: 10.1093/lifemedi/lnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/30/2024] [Indexed: 01/30/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal. The principal forms of epigenetic modifications include DNA methylation, histone modifications, chromatin remodeling, and noncoding RNAs. These alterations participate in the regulation of hepatic lipid metabolism, insulin resistance, mitochondrial injury, oxidative stress response, and release of inflammatory cytokines, all of which are associated with the onset and progression of NAFLD. This review discussed recent advances in understanding the potential epigenetic regulation of inflammation in NAFLD. Unraveling these epigenetic mechanisms may facilitate the identification of early diagnostic biomarkers and the development of targeted therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Lin Sun
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi’an, Shaanxi 710032, China
| | - Zhensheng Yue
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi’an, Shaanxi 710032, China
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi’an, Shaanxi 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi’an, Shaanxi 710032, China
| |
Collapse
|
12
|
Anand AC, Acharya SK. The Story of Ammonia in Liver Disease: An Unraveling Continuum. J Clin Exp Hepatol 2024; 14:101361. [PMID: 38444405 PMCID: PMC10910335 DOI: 10.1016/j.jceh.2024.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024] Open
Abstract
Hyperammonemia and liver disease are closely linked. Most of the ammonia in our body is produced by transamination and deamination activities involving amino acid, purine, pyrimidines, and biogenic amines, and from the intestine by bacterial splitting of urea. The only way of excretion from the body is by hepatic conversion of ammonia to urea. Hyperammonemia is associated with widespread toxicities such as cerebral edema, hepatic encephalopathy, immune dysfunction, promoting fibrosis, and carcinogenesis. Over the past two decades, it has been increasingly utilized for prognostication of cirrhosis, acute liver failure as well as acute on chronic liver failure. The laboratory assessment of hyperammonemia has certain limitations, despite which its value in the assessment of various forms of liver disease cannot be negated. It may soon become an important tool to make therapeutic decisions about the use of prophylactic and definitive treatment in various forms of liver disease.
Collapse
|
13
|
Zhu T, Tong H, Du Z, Beck S, Teschendorff AE. An improved epigenetic counter to track mitotic age in normal and precancerous tissues. Nat Commun 2024; 15:4211. [PMID: 38760334 PMCID: PMC11101651 DOI: 10.1038/s41467-024-48649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
The cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC. We demonstrate that stemTOC's mitotic age proxy increases with the tumor cell-of-origin fraction in each of 15 cancer-types, in precancerous lesions, and in normal tissues exposed to major cancer risk factors. Extensive benchmarking against 6 other mitotic counters shows that stemTOC compares favorably, specially in the preinvasive and normal-tissue contexts. By cross-correlating stemTOC to two clock-like somatic mutational signatures, we confirm the mitotic-like nature of only one of these. Our data points towards DNAm as a promising molecular substrate for detecting mitotic-age increases in normal tissues and precancerous lesions, and hence for developing cancer-risk prediction strategies.
Collapse
Affiliation(s)
- Tianyu Zhu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Huige Tong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Zhaozhen Du
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Stephan Beck
- Medical Genomics Group, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT, London, UK
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
14
|
Ramezani M, Zobeiry M, Abdolahi S, Hatami B, Zali MR, Baghaei K. A crosstalk between epigenetic modulations and non-alcoholic fatty liver disease progression. Pathol Res Pract 2023; 251:154809. [PMID: 37797383 DOI: 10.1016/j.prp.2023.154809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a major public health concern worldwide due to its rapidly rising prevalence and its potential to progress into end-stage liver disease. While the precise pathophysiology underlying NAFLD remains incompletely understood, it is strongly associated with various environmental triggers and other metabolic disorders. Epigenetics examines changes in gene expression that are not caused by alterations in the DNA sequence itself. There is accumulating evidence that epigenetics plays a key role in linking environmental cues to the onset and progression of NAFLD. Our understanding of how epigenetic mechanisms contribute to NAFLD pathophysiology has expanded considerably in recent years as research on the epigenetics of NAFLD has developed. This review summarizes recent insights into major epigenetic processes that have been implicated in NAFLD pathogenesis including DNA methylation, histone acetylation, and microRNAs that have emerged as promising targets for further investigation. Elucidating epigenetic mechanisms in NAFLD may uncover novel diagnostic biomarkers and therapeutic targets for this disease. However, many questions have remained unanswered regarding how epigenetics promotes NAFLD onset and progression. Additional studies are needed to further characterize the epigenetic landscape of NAFLD and validate the potential of epigenetic markers as clinical tools. Nevertheless, an enhanced understanding of the epigenetic underpinnings of NAFLD promises to provide key insights into disease mechanisms and pave the way for novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Meysam Ramezani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behzad Hatami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Gîlcă-Blanariu GE, Budur DS, Mitrică DE, Gologan E, Timofte O, Bălan GG, Olteanu VA, Ștefănescu G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:1115. [PMID: 37999211 PMCID: PMC10672868 DOI: 10.3390/metabo13111115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic, but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used include imaging techniques that measure liver stiffness and biological markers, with a focus on serum biomarkers. Due to the impressive complexity of the NAFLD's pathophysiology, biomarkers are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation, or even address the genetic background and "omics" technologies. This article reviews not only the currently validated noninvasive methods to investigate NAFLD but also the promising results regarding recently discovered biomarkers, including biomarker panels and the combination of the currently validated evaluation methods and serum markers.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gîlcă-Blanariu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Daniela Simona Budur
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Dana Elena Mitrică
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Elena Gologan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Oana Timofte
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gheorghe Gh Bălan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Vasile Andrei Olteanu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gabriela Ștefănescu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| |
Collapse
|
16
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
17
|
Li Z, Cao S, Zhao S, Kang N. A bibliometric analysis and visualization of nonalcoholic fatty liver disease from 2012 to 2021. Clin Exp Med 2023; 23:1961-1971. [PMID: 36795238 DOI: 10.1007/s10238-023-01023-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
As a common chronic liver disease, nonalcoholic fatty liver disease (NAFLD) has attracted increasing attention in the past decade. Nevertheless, there are few bibliometric analyses that systematically study this field as a whole. This paper explores the latest research progress and future research trends of NAFLD through the method of bibliometric analysis. The articles related to NAFLD, published from 2012 to 2021 in the Web of Science Core Collections, were searched on February 21, 2022, using relevant keywords. Two different scientometrics software tools were used to conduct the knowledge maps of NAFLD research field. A total of 7975 articles on NAFLD research were included. From 2012 to 2021, the publications related to NAFLD increased by year. China ranked on the top of the list with 2043 publications, and the University of California System emerged as the premier institution in this field. PLOs One, Journal of Hepatology and Scientific Reports became the prolific journals in this research field. Co-cited reference analysis revealed the landmark literature in this research field. In terms of potential hotspots, the burst keywords analysis revealed that liver fibrosis stage, sarcopenia, and autophagy will become the focus of future NAFLD research. The annual output of the global publications in the field of NAFLD research showed a strong upward trend. Research in the field of NAFLD in China and America is more mature than in other countries. Classic literature lays the foundation for research, and multi-field studies provide the new development directions. And besides, fibrosis stage, sarcopenia and autophagy research are the hot spots and frontiers of this field.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Shaoli Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
18
|
Chaudhry A, Noor J, Batool S, Fatima G, Noor R. Advancements in Diagnostic and Therapeutic Interventions of Non-alcoholic Fatty Liver Disease: A Literature Review. Cureus 2023; 15:e44924. [PMID: 37814734 PMCID: PMC10560588 DOI: 10.7759/cureus.44924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases of the liver globally. Non-alcoholic steatohepatitis (NASH) has a complicated pathophysiology which includes lipid buildup, oxidative stress, endoplasmic reticulum stress, and lipotoxicity. Recently, there has been tremendous improvement in understanding of NASH pathogenesis due to advancements in the scientific field. It is being investigated how non-invasive circulating and imaging biomarkers can help in NAFLD and NASH diagnosis and monitoring the progress. Multiple medications are now undergoing clinical trials for the treatment of NASH, and lifestyle changes have been acknowledged as one of the main treatment methods. The purpose of this review article is to discuss the incidence of NAFLD globally, management issues with NASH, and its relation to the metabolic syndrome. It explains pathophysiology as well as therapeutic strategies using natural items, dietary changes, and pharmaceutical treatments. While emphasizing the necessity for surrogate endpoints to facilitate medication development for NASH, the study also considers the potential of non-invasive imaging biomarkers including magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE).
Collapse
Affiliation(s)
| | - Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| | - Ghulam Fatima
- Internal Medicine, Medical Unit, Abbasi Shaheed Hospital, Karachi, PAK
| | - Riwad Noor
- Public Health, Nishtar Hospital, Multan, PAK
| |
Collapse
|
19
|
Thomsen KL, Eriksen PL, Kerbert AJC, De Chiara F, Jalan R, Vilstrup H. Role of ammonia in NAFLD: An unusual suspect. JHEP Rep 2023; 5:100780. [PMID: 37425212 PMCID: PMC10326708 DOI: 10.1016/j.jhepr.2023.100780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 07/11/2023] Open
Abstract
Mechanistically, the symptomatology and disease progression of non-alcoholic fatty liver disease (NAFLD) remain poorly understood, which makes therapeutic progress difficult. In this review, we focus on the potential importance of decreased urea cycle activity as a pathogenic mechanism. Urea synthesis is an exclusive hepatic function and is the body's only on-demand and definitive pathway to remove toxic ammonia. The compromised urea cycle activity in NAFLD is likely caused by epigenetic damage to urea cycle enzyme genes and increased hepatocyte senescence. When the urea cycle is dysfunctional, ammonia accumulates in liver tissue and blood, as has been demonstrated in both animal models and patients with NAFLD. The problem may be augmented by parallel changes in the glutamine/glutamate system. In the liver, the accumulation of ammonia leads to inflammation, stellate cell activation and fibrogenesis, which is partially reversible. This may be an important mechanism for the transition of bland steatosis to steatohepatitis and further to cirrhosis and hepatocellular carcinoma. Systemic hyperammonaemia has widespread negative effects on other organs. Best known are the cerebral consequences that manifest as cognitive disturbances, which are prevalent in patients with NAFLD. Furthermore, high ammonia levels induce a negative muscle protein balance leading to sarcopenia, compromised immune function and increased risk of liver cancer. There is currently no rational way to reverse reduced urea cycle activity but there are promising animal and human reports of ammonia-lowering strategies correcting several of the mentioned untoward aspects of NAFLD. In conclusion, the ability of ammonia-lowering strategies to control the symptoms and prevent the progression of NAFLD should be explored in clinical trials.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Annarein JC. Kerbert
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Francesco De Chiara
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Rajiv Jalan
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| |
Collapse
|
20
|
Lei P, Hu N, Wu Y, Tang M, Lin C, Kong L, Zhang L, Luo P, Chan LW. Radiobioinformatics: A novel bridge between basic research and clinical practice for clinical decision support in diffuse liver diseases. IRADIOLOGY 2023; 1:167-189. [DOI: 10.1002/ird3.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/18/2023] [Indexed: 01/04/2025]
Abstract
AbstractThe liver is a multifaceted organ that is responsible for many critical functions encompassing amino acid, carbohydrate, and lipid metabolism, all of which make a healthy liver essential for the human body. Contemporary imaging methodologies have remarkable diagnostic accuracy in discerning focal liver lesions; however, a comprehensive understanding of diffuse liver diseases is a requisite for radiologists to accurately diagnose or predict the progression of such lesions within clinical contexts. Nonetheless, the conventional attributes of radiological features, including morphology, size, margin, density, signal intensity, and echoes, limit their clinical utility. Radiomics is a widely used approach that is characterized by the extraction of copious image features from radiographic depictions, which gives it considerable potential in addressing this limitation. It is worth noting that functional or molecular alterations occur significantly prior to the morphological shifts discernible by imaging modalities. Consequently, the explication of potential mechanisms by multiomics analyses (encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics) is essential for investigating putative signal pathway regulations from a radiological viewpoint. In this review, we elaborate on the principal pathological categorizations of diffuse liver diseases, the evaluation of multiomics approaches pertaining to diffuse liver diseases, and the prospective value of predictive models. Accordingly, the overarching objective of this review is to scrutinize the interrelations between radiological features and bioinformatics as well as to consider the development of prediction models predicated on radiobioinformatics as integral components of clinical decision support systems for diffuse liver diseases.
Collapse
Affiliation(s)
- Pinggui Lei
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
- School of Public Health Guizhou Medical University Guiyang Guizhou China
| | - Na Hu
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Yuhui Wu
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Maowen Tang
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Chong Lin
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Luoyi Kong
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Lingfeng Zhang
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Peng Luo
- School of Public Health Guizhou Medical University Guiyang Guizhou China
| | - Lawrence Wing‐Chi Chan
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| |
Collapse
|
21
|
Mposhi A, Cortés-Mancera F, Heegsma J, de Meijer VE, van de Sluis B, Sydor S, Bechmann LP, Theys C, de Rijk P, De Pooter T, Vanden Berghe W, İnce İA, Faber KN, Rots MG. Mitochondrial DNA methylation in metabolic associated fatty liver disease. Front Nutr 2023; 10:964337. [PMID: 37305089 PMCID: PMC10249072 DOI: 10.3389/fnut.2023.964337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Hepatic lipid accumulation and mitochondrial dysfunction are hallmarks of metabolic associated fatty liver disease (MAFLD), yet molecular parameters underlying MAFLD progression are not well understood. Differential methylation within the mitochondrial DNA (mtDNA) has been suggested to be associated with dysfunctional mitochondria, also during progression to Metabolic Steatohepatitis (MeSH). This study further investigates whether mtDNA methylation is associated with hepatic lipid accumulation and MAFLD. Methods HepG2 cells were constructed to stably express mitochondria-targeted viral and prokaryotic cytosine DNA methyltransferases (mtM.CviPI or mtM.SssI for GpC or CpG methylation, respectively). A catalytically inactive variant (mtM.CviPI-Mut) was constructed as a control. Mouse and human patients' samples were also investigated. mtDNA methylation was assessed by pyro- or nanopore sequencing. Results and discussion Differentially induced mtDNA hypermethylation impaired mitochondrial gene expression and metabolic activity in HepG2-mtM.CviPI and HepG2-mtM.SssI cells and was associated with increased lipid accumulation, when compared to the controls. To test whether lipid accumulation causes mtDNA methylation, HepG2 cells were subjected to 1 or 2 weeks of fatty acid treatment, but no clear differences in mtDNA methylation were detected. In contrast, hepatic Nd6 mitochondrial gene body cytosine methylation and Nd6 gene expression were increased in mice fed a high-fat high cholesterol diet (HFC for 6 or 20 weeks), when compared to controls, while mtDNA content was unchanged. For patients with simple steatosis, a higher ND6 methylation was confirmed using Methylation Specific PCR, but no additional distinctive cytosines could be identified using pyrosequencing. This study warrants further investigation into a role for mtDNA methylation in promoting mitochondrial dysfunction and impaired lipid metabolism in MAFLD.
Collapse
Affiliation(s)
- Archibold Mposhi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fabian Cortés-Mancera
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Departamento de Ciencias Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bart van de Sluis
- Section of Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
- Ruhr-University Bochum, Bochum, Germany
| | - Lars P. Bechmann
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
- Ruhr-University Bochum, Bochum, Germany
| | - Claudia Theys
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter de Rijk
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Tim De Pooter
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - İkbal Agah İnce
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
23
|
Wattacheril JJ, Raj S, Knowles DA, Greally JM. Using epigenomics to understand cellular responses to environmental influences in diseases. PLoS Genet 2023; 19:e1010567. [PMID: 36656803 PMCID: PMC9851565 DOI: 10.1371/journal.pgen.1010567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It is a generally accepted model that environmental influences can exert their effects, at least in part, by changing the molecular regulators of transcription that are described as epigenetic. As there is biochemical evidence that some epigenetic regulators of transcription can maintain their states long term and through cell division, an epigenetic model encompasses the idea of maintenance of the effect of an exposure long after it is no longer present. The evidence supporting this model is mostly from the observation of alterations of molecular regulators of transcription following exposures. With the understanding that the interpretation of these associations is more complex than originally recognised, this model may be oversimplistic; therefore, adopting novel perspectives and experimental approaches when examining how environmental exposures are linked to phenotypes may prove worthwhile. In this review, we have chosen to use the example of nonalcoholic fatty liver disease (NAFLD), a common, complex human disease with strong environmental and genetic influences. We describe how epigenomic approaches combined with emerging functional genetic and single-cell genomic techniques are poised to generate new insights into the pathogenesis of environmentally influenced human disease phenotypes exemplified by NAFLD.
Collapse
Affiliation(s)
- Julia J. Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York, United States of America
| | - Srilakshmi Raj
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Knowles
- New York Genome Center, New York, New York, United States of America
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - John M. Greally
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
24
|
Pal SC, Eslam M, Mendez-Sanchez N. Detangling the interrelations between MAFLD, insulin resistance, and key hormones. Hormones (Athens) 2022; 21:573-589. [PMID: 35921046 DOI: 10.1007/s42000-022-00391-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has increasingly become a significant and highly prevalent cause of chronic liver disease, displaying a wide array of risk factors and pathophysiologic mechanisms of which only a few have so far been clearly elucidated. A bidirectional interaction between hormonal discrepancies and metabolic-related disorders, including obesity, type 2 diabetes mellitus (T2DM), and polycystic ovarian syndrome (PCOS) has been described. Since the change in nomenclature from non-alcoholic fatty liver disease (NAFLD) to MAFLD is based on the clear impact of metabolic elements on the disease, the reciprocal interactions of hormones such as insulin, adipokines (leptin and adiponectin), and estrogens have strongly pointed to the intrinsic links that lead to the heterogeneous epidemiology, clinical presentations, and risk factors involved in MAFLD in different populations. The objective of this work is twofold. Firstly, there is a brief discussion regarding the change in nomenclature as well as epidemiology, risk factors, and pathophysiologic mechanisms other than hormonal effects, which include nutrition and the gut microbiome, as well as genetic and epigenetic influences. Secondly, we review the basis of the most important hormonal factors involved in the development and progression of MAFLD that act both independently and in an interrelated manner.
Collapse
Affiliation(s)
- Shreya C Pal
- Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Coyoacán, 4510, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150. Col. Toriello Guerra, 14050, Tlalpan, Mexico City, Mexico
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nahum Mendez-Sanchez
- Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Coyoacán, 4510, Mexico City, Mexico.
- Liver Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150. Col. Toriello Guerra, 14050, Tlalpan, Mexico City, Mexico.
| |
Collapse
|
25
|
Sokolowska KE, Maciejewska-Markiewicz D, Bińkowski J, Palma J, Taryma-Leśniak O, Kozlowska-Petriczko K, Borowski K, Baśkiewicz-Hałasa M, Hawryłkowicz V, Załęcka P, Ufnal M, Strapagiel D, Jarczak J, Skonieczna-Żydecka K, Ryterska K, Machaliński B, Wojdacz TK, Stachowska E. Identified in blood diet-related methylation changes stratify liver biopsies of NAFLD patients according to fibrosis grade. Clin Epigenetics 2022; 14:157. [PMID: 36447285 PMCID: PMC9710135 DOI: 10.1186/s13148-022-01377-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND High caloric diet and lack of physical activity are considered main causes of NAFLD, and a change in the diet is still the only effective treatment of this disease. However, molecular mechanism of the effectiveness of diet change in treatment of NAFLD is poorly understood. We aimed to assess the involvement of epigenetic mechanisms of gene expression regulation in treatment of NAFLD. Eighteen participants with medium- to high-grade steatosis were recruited and trained to follow the Mediterranean diet modified to include fibre supplements. At three timepoints (baseline, after 30 and 60 days), we evaluated adherence to the diet and measured a number of physiological parameters such as anthropometry, blood and stool biochemistry, liver steatosis and stiffness. We also collected whole blood samples for genome-wide methylation profiling and histone acetylation assessment. RESULTS The diet change resulted in a decrease in liver steatosis along with statistically significant, but a minor change in BMI and weight of our study participants. The epigenetic profiling of blood cells identified significant genome-wide changes of methylation and acetylation with the former not involving regions directly regulating gene expression. Most importantly, we were able to show that identified blood methylation changes occur also in liver cells of NAFLD patients and the machine learning-based classifier that we build on those methylation changes was able to predict the stage of liver fibrosis with ROC AUC = 0.9834. CONCLUSION Methylomes of blood cells from NAFLD patients display a number of changes that are most likely a consequence of unhealthy diet, and the diet change appears to reverse those epigenetic changes. Moreover, the methylation status at CpG sites undergoing diet-related methylation change in blood cells stratifies liver biopsies from NAFLD patients according to fibrosis grade.
Collapse
Affiliation(s)
- Katarzyna Ewa Sokolowska
- grid.107950.a0000 0001 1411 4349Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Dominika Maciejewska-Markiewicz
- grid.107950.a0000 0001 1411 4349Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Jan Bińkowski
- grid.107950.a0000 0001 1411 4349Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Joanna Palma
- grid.107950.a0000 0001 1411 4349Department of Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Olga Taryma-Leśniak
- grid.107950.a0000 0001 1411 4349Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Katarzyna Kozlowska-Petriczko
- grid.107950.a0000 0001 1411 4349Translational Medicine Group, Pomeranian Medical University, 70-204 Szczecin, Poland ,Department of Gastroenterology and Internal Medicine, SPWSZ Hospital, 71-455 Szczecin, Poland
| | - Konrad Borowski
- grid.107950.a0000 0001 1411 4349Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Magdalena Baśkiewicz-Hałasa
- grid.107950.a0000 0001 1411 4349Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Viktoria Hawryłkowicz
- grid.107950.a0000 0001 1411 4349Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Patrycja Załęcka
- grid.107950.a0000 0001 1411 4349Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Marcin Ufnal
- grid.13339.3b0000000113287408Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Dominik Strapagiel
- grid.10789.370000 0000 9730 2769Biobank Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Justyna Jarczak
- grid.10789.370000 0000 9730 2769Biobank Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland ,grid.413454.30000 0001 1958 0162Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Karolina Skonieczna-Żydecka
- grid.107950.a0000 0001 1411 4349Department of Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Karina Ryterska
- grid.107950.a0000 0001 1411 4349Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Bogusław Machaliński
- grid.107950.a0000 0001 1411 4349Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Tomasz Kazimierz Wojdacz
- grid.107950.a0000 0001 1411 4349Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Ewa Stachowska
- grid.107950.a0000 0001 1411 4349Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland
| |
Collapse
|
26
|
Moylan CA, Mavis AM, Jima D, Maguire R, Bashir M, Hyun J, Cabezas MN, Parish A, Niedzwiecki D, Diehl AM, Murphy SK, Abdelmalek MF, Hoyo C. Alterations in DNA methylation associate with fatty liver and metabolic abnormalities in a multi-ethnic cohort of pre-teenage children. Epigenetics 2022; 17:1446-1461. [PMID: 35188871 PMCID: PMC9586600 DOI: 10.1080/15592294.2022.2039850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022] Open
Abstract
Non-Alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. Epigenetic alterations, such as through DNA methylation (DNAm), may link adverse childhood exposures and fatty liver and provide non-invasive methods for identifying children at high risk for NAFLD and associated metabolic dysfunction. We investigated the association between differential DNAm and liver fat content (LFC) and liver injury in pre-adolescent children. Leveraging data from the Newborn Epigenetics Study (NEST), we enrolled 90 mother-child dyads and used linear regression to identify CpG sites and differentially methylated regions (DMRs) in peripheral blood associated with LFC and alanine aminotransferase (ALT) levels in 7-12yo children. DNAm was measured using Infinium HumanMethylationEPIC BeadChips (Illumina). LFC and fibrosis were quantified by magnetic resonance imaging proton density fat fraction and elastography. Median LFC was 1.4% (range, 0.3-13.4%) and MRE was 2.5 kPa (range, 1.5-3.6kPa). Three children had LFC ≥ 5%, while six (7.6%) met our definition of NAFLD (LFC ≥ 3.7%). All children with NAFLD were obese and five were Black. LFC was associated with 88 DMRs and 106 CpGs (FDR<5%). The top two CpGs, cg25474373 and cg07264203, mapped to or near RFTN2 and PRICKLE2 genes. These two CpG sites were also significantly associated with a NAFLD diagnosis. As higher LFC associates with an adverse cardiometabolic profile already in childhood, altered DNAm may identify these children early in disease course for targeted intervention. Larger, longitudinal studies are needed to validate these findings and determine mechanistic relevance.
Collapse
Affiliation(s)
- Cynthia A. Moylan
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alisha M. Mavis
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Dereje Jima
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rachel Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mustafa Bashir
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Jeongeun Hyun
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Melanie N. Cabezas
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Alice Parish
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Donna Niedzwiecki
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Susan K. Murphy
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
- Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Manal F. Abdelmalek
- Department of Radiology, Center of Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
27
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
28
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
29
|
Kemas AM, Youhanna S, Lauschke VM. Non-alcoholic fatty liver disease - opportunities for personalized treatment and drug development. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2053285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aurino M. Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
30
|
Martinou E, Pericleous M, Stefanova I, Kaur V, Angelidi AM. Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics (Basel) 2022; 12:407. [PMID: 35204498 PMCID: PMC8871470 DOI: 10.3390/diagnostics12020407] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is currently the most common cause of chronic liver disease worldwide, and its prevalence is increasing globally. NAFLD is a multifaceted disorder, and its spectrum includes steatosis to steatohepatitis, which may evolve to advanced fibrosis and cirrhosis. In addition, the presence of NAFLD is independently associated with a higher cardiometabolic risk and increased mortality rates. Considering that the vast majority of individuals with NAFLD are mainly asymptomatic, early diagnosis of non-alcoholic steatohepatitis (NASH) and accurate staging of fibrosis risk is crucial for better stratification, monitoring and targeted management of patients at risk. To date, liver biopsy remains the gold standard procedure for the diagnosis of NASH and staging of NAFLD. However, due to its invasive nature, research on non-invasive tests is rapidly increasing with significant advances having been achieved during the last decades in the diagnostic field. New promising non-invasive biomarkers and techniques have been developed, evaluated and assessed, including biochemical markers, imaging modalities and the most recent multi-omics approaches. Our article provides a comprehensive review of the currently available and emerging non-invasive diagnostic tools used in assessing NAFLD, also highlighting the importance of accurate and validated diagnostic tools.
Collapse
Affiliation(s)
- Eirini Martinou
- Hepatobiliary and Pancreatic Surgery Department, Royal Surrey County Hospital, Guildford GU2 7XX, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Marinos Pericleous
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- Department of Gastroenterology and Hepatology, Royal Surrey County Hospital, Guildford GU2 7XX, UK
| | - Irena Stefanova
- Department of General Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
| | - Vasha Kaur
- Department of Upper Gastrointestinal and Bariatric Surgery, St George’s Hospital, London SW17 0QT, UK;
| | - Angeliki M. Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
31
|
The Potential Role of Cellular Senescence in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23020652. [PMID: 35054837 PMCID: PMC8775400 DOI: 10.3390/ijms23020652] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing global health burden. Cellular senescence develops in response to cellular injury, leading not only to cell cycle arrest but also to alterations of the cellular phenotype and metabolic functions. In this review, we critically discuss the currently existing evidence for the involvement of cellular senescence in NAFLD in order to identify areas requiring further exploration. Hepatocyte senescence can be a central pathomechanism as it may foster intracellular fat accumulation, fibrosis and inflammation, also due to secretion of senescence-associated inflammatory mediators. However, in some non-parenchymal liver cell types, such as hepatic stellate cells, senescence may be beneficial by reducing the extracellular matrix deposition and thereby reducing fibrosis. Deciphering the detailed interaction between NAFLD and cellular senescence will be essential to discover novel therapeutic targets halting disease progression.
Collapse
|
32
|
New advances of DNA/RNA methylation modification in liver fibrosis. Cell Signal 2021; 92:110224. [PMID: 34954394 DOI: 10.1016/j.cellsig.2021.110224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022]
Abstract
Liver fibrosis is a complex pathological process caused by multiple pathogenic factors,such as ethanol, viruses, toxins, drugs or cholestasis, and it can eventually develop into liver cirrhosis without effective treatment. Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in the pathogenesis of liver fibrosis. However, the pathogenesis of liver fibrosis has not been fully elucidated. DNA/RNA methylation can regulate gene expression without alteration in its sequence, and numerous studies have shown the involvement of DNA methylation in the activation of HSCs and then promote the progression of liver fibrosis. In addition, RNA methylation has recently been reported to play a regulatory role in this process. In this review, we focus on the aberrant DNA/RNA methylation of selected genes and explore their functional mechanism in regulating HSCs activation and liver fibrogenesis. All of these findings will enhance our understanding of DNA/RNA methylation and their roles in liver fibrosis and provide the basis to identify effective therapeutic targets.
Collapse
|
33
|
Parameswaran M, Hasan HA, Sadeque J, Jhaveri S, Avanthika C, Arisoyin AE, Dhanani MB, Rath SM. Factors That Predict the Progression of Non-alcoholic Fatty Liver Disease (NAFLD). Cureus 2021; 13:e20776. [PMID: 35111461 PMCID: PMC8794413 DOI: 10.7759/cureus.20776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a spectrum of diseases involving the deposition of fat in the hepatocytes of people with little to no alcohol consumption. NAFLD is associated with hypertension, diabetes, obesity, etc. As their prevalence increases, the propensity and severity of NAFLD might increase. As per the recently developed multi-hit hypothesis, factors like oxidative stress, genetic predisposition, lipotoxicity, and insulin resistance have been found to play a key role in the development of NAFLD and its associated complications. This article focuses on NAFLD, its pathophysiology, risk factors, and the various genetic and epigenetic factors involved in its development along with possible treatment modalities. We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar until October 2021. The following search strings and Medical Subject Heading (MeSH) terms were used: “NAFLD,” “NASH,” “Fibrosis,” and “Insulin Resistance.” We explored the literature on NAFLD for its epidemiology, pathophysiology, the role of various genes, and how they influence the disease and associated complications about the disease and its hepatic and extrahepatic complications. With its rapidly increasing prevalence rates across the world and serious complications like NASH and hepatocellular carcinoma, NAFLD is becoming a major public health issue and more research is needed to formulate better screening tools and treatment protocols.
Collapse
Affiliation(s)
| | | | - Jafor Sadeque
- Internal Medicine, Al Mostaqbal Hospital, Jeddah, SAU
| | - Sharan Jhaveri
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | | | | | - Maulik B Dhanani
- Internal Medicine, Southwestern University School of Medicine, Cebu City, PHL
| | - Swaroopa M Rath
- Medicine, Srirama Chandra Bhanja Medical College and Hospital, Cuttack, IND
| |
Collapse
|
34
|
Epigenetic Changes Affecting the Development of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13164237. [PMID: 34439391 PMCID: PMC8392268 DOI: 10.3390/cancers13164237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma is a life-threatening disease. Despite many efforts to understand the exact pathogenesis and the signaling pathways involved in its formation, treatment remains unsatisfactory. Currently, an important function in the development of neoplastic diseases and treatment effects is attributed to changes taking place at the epigenetic level. Epigenetic studies revealed modified methylation patterns in HCC, dysfunction of enzymes engaged in the DNA methylation process, the aberrant function of non-coding RNAs, and a set of histone modifications that influence gene expression. The aim of this review is to summarize the current knowledge on the role of epigenetics in the formation of hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) remains a serious oncologic issue with still a dismal prognosis. So far, no key molecular mechanism that underlies its pathogenesis has been identified. Recently, by specific molecular approaches, many genetic and epigenetic changes arising during HCC pathogenesis were detected. Epigenetic studies revealed modified methylation patterns in HCC tumors, dysfunction of enzymes engaged in the DNA methylation process, and a set of histone modifications that influence gene expression. HCC cells are also influenced by the disrupted function of non-coding RNAs, such as micro RNAs and long non-coding RNAs. Moreover, a role of liver cancer stem cells in HCC development is becoming evident. The reversibility of epigenetic changes offers the possibility of influencing them and regulating their undesirable effects. All these data can be used not only to identify new therapeutic targets but also to predict treatment response. This review focuses on epigenetic changes in hepatocellular carcinoma and their possible implications in HCC therapy.
Collapse
|