1
|
Nicholls LA, Zeile KA, Scotto LD, Ryznar RJ. Timing of dietary effects on the epigenome and their potential protective effects against toxins. Epigenetics 2025; 20:2451495. [PMID: 39825851 DOI: 10.1080/15592294.2025.2451495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025] Open
Abstract
Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome. Most notably, the timing when dietary interventions are given - during a parent's early development, pregnancy, and/or lifetime - result in similar transgenerational epigenetic durations. This implies the existence of multiple opportunities to strategically fortify the epigenome. This narrative review explores how to best utilize dietary modifications to modify the epigenome to protect future generations against negative health effects of persistent environmental toxins. Furthermore, by suggesting an ideal diet with specific micronutrients, macronutrients, and food groups, epigenetics can play a key role in the field of preventive medicine. Based on these findings, longitudinal research should be conducted to determine if a high protein, high-fat, and low-carbohydrate diet during a mother's puberty or pregnancy can epigenetically protect against alcohol, tobacco smoke, and air pollution across multiple generations.
Collapse
Affiliation(s)
- Lynnea A Nicholls
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| | - Kendall A Zeile
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| | - London D Scotto
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| | - Rebecca J Ryznar
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
- Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| |
Collapse
|
2
|
Kuang Z, Zhu L, Zheng H, Zhang J, Wang Y, Tang Z, Li Y, Huang Y, Ding Z, Zhang Y. Individual and joint exposure to PM 2.5 constituents and incident risk of metabolic syndrome: A national cohort study. J Environ Sci (China) 2025; 155:633-644. [PMID: 40246497 DOI: 10.1016/j.jes.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 04/19/2025]
Abstract
Cohort evidence linking fine particulate matter (PM2.5) constituents to metabolic syndrome (MetS) was extensively scarce. A nationwide MetS-free cohort of 3658 participants aged 45 and above, followed up from 2011 to 2015, were enrolled from 125 cities across China's mainland. Cox proportional hazards models and quantile-based g-computation were adopted to investigate individual and joint effects of exposure to PM2.5 constituents with MetS and its components. Monte Carlo simulations (n = 1000) were utilized to generate quasi-concentration-response (C-R) curve of joint exposure. A total of 633 MetS events occurred during 14,766.5 person-years follow-up (median 4.1 years). An estimated excess risk of 33 %-51 % in MetS incidence was linked to per interquartile range (IQR) increase in individual exposure to PM2.5 constituents. For an IQR-equivalent increase in joint exposure, we estimated a hazard ratio of 1.45 (95 % confidence interval: 1.23-1.69) for MetS, 1.49 (1.31-1.69) for central obesity, 1.19 (1.06-1.34) for high BP, 1.57 (1.34-1.84) for low HDL-C, 1.31 (1.14-1.51) for high TG, and 1.23 (1.02-1.48) for elevated FBG, respectively. Approximately linear or J-shaped C-R curves were consistently observed in individual and joint associations of PM2.5 constituents with MetS and its components. Joint-exposure analyses provided consistent evidence for the greatest contribution of SO42- in triggering PM2.5-associated risks of overall MetS and its components. Stratified analysis suggested higher PM2.5-related MetS risks among older participants and urban residents. These findings added longitudual population-based evidence for increased incident risks of MetS and its components associated with long-term exposures to PM2.5 constituents in middle-aged and older adults.
Collapse
Affiliation(s)
- Zhengling Kuang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lifeng Zhu
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Jingjing Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yixiang Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ziqing Tang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yachen Li
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuqian Huang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zan Ding
- Baoan Central Hospital of Shenzhen, Shenzhen 518102, China.
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Zhang Y, Ding R, Hu L, Liu E, Qu P. Epigenetics in metabolic dysfunction-associated steatohepatitis. Cell Signal 2025; 130:111684. [PMID: 39999913 DOI: 10.1016/j.cellsig.2025.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a complex disease involving genetics, environment, and lifestyle, with the potential to progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Although the pathogenesis of MASH is not fully clear, increasing evidence has indicated that epigenetics plays an important role in the genesis and progression of MASH, during which, as drastic changes in metabolites, epigenetics undergo drastic changes. Roles of chromatin structure, chromatin accessibility, DNA methylation, histone modification, and non-coding RNAs were considered as bridges of pathogenic factors and MASH. In this review, the research progress on the epigenetics of MASH was summarized, and indepth research and therapeutic strategies based on epigenetics is expected to bring new hope to MASH patients.
Collapse
Affiliation(s)
- Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China.
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China.
| |
Collapse
|
4
|
Kim HJ, Hwang J, Park JH. Long-Term Exposure to Ambient Air Pollution and Metabolic Syndrome and Its Components. J Obes Metab Syndr 2025; 34:91-104. [PMID: 40090381 PMCID: PMC12067007 DOI: 10.7570/jomes24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/23/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025] Open
Abstract
Ambient air pollution is a serious public health issue worldwide. A growing number of studies has highlighted the negative effects of air pollution on metabolic syndrome (MetS) and its components, including abdominal obesity, disorders of lipid metabolism, elevated blood pressure, and impaired fasting blood glucose. This review provides a brief overview of epidemiological and genetic interaction studies of the links between chronic exposure to ambient air pollution and MetS and its components, as well as plausible mechanisms underlying these relationships. The cumulative evidence suggests that long-term exposure to air pollution, especially particulate matter, increases the risk of MetS and its components. These associations can be partly modified by baseline characteristics, lifestyle, and health conditions. Gene-by-air-pollution interaction studies, limited to candidate genes in the past, have recently been conducted at an expanded genome-wide level. However, more such studies are needed to comprehensively understand the genetics involved in the association between air pollution and MetS. Mechanistic evidence suggests potential biological pathways, including inflammation, oxidative stress, and endothelial dysfunction.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Juyeon Hwang
- National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Liu X, Ding F, Tian J, Wu J, Zhao S, Zhao Y. Causal association between PM 2.5 and metabolic syndrome in the Chinese elderly population-insights from a cohort study of CHARLS. Sci Rep 2025; 15:15028. [PMID: 40301484 PMCID: PMC12041316 DOI: 10.1038/s41598-025-00160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025] Open
Abstract
Existing evidence suggests that the components of metabolic syndrome (MS) are sensitive to PM2.5, especially in the elderly population, and related results targeting different regions and populations are inconsistent. This study aims to quantify the risk of association between PM2.5 and MS components in the elderly population, as well as the moderating effect of physical exercise (PE) for this association. Biochemical data, demographic data and health behavior data were obtained from CHARLS dataset in 2011 and 2015, and the individual information was matched to obtain the two-wave panel data. We match meteorological data by region to obtain population exposure indicators. Subsequently, the directed acyclic graphs was used to control confonding, then instrumental variable method and fixed effects model were employed to evaluate the causal relationship between PM2.5 and MS components and the moderating effect of PE. A total of 6125 individuals were included. The prevalence of MS was 34.5% and 32.9% in 2011 and 2015 respectively. The instrumental variable probit regression indicated that high concentration PM2.5 exposure (coefPM2.5 = 0.007, P < 0.001) may increase the risk of MS, and PM2.5 had a significant impact on the components of MS, with a positive impact on waist circumference (WC) (coef = 0.052, P < 0.001) and systolic blood pressure (SYS) (coef = 0.214, P < 0.001), and with a negative impact on high-density lipoprotein cholesterol (HDL-C) (coef = - 0.030, P = 0.021), Triglyceride (TG) (coef = - 0.275, P = 0.048) and diastolic blood pressure (DIA) (coef = - 0.030, P = 0.007). Specifically, for each 1 SD increase in PM2.5 exposure, HDL-C decreased by 0.57 mg/dL, TG decreased by 5.29 mg/dL, DIA decreased by 0.57 mmHg, waist circumference increased by 1.001 cm, and SYS increased by 4.11 mmHg. Additionally, low-intensity physical exercise may alleviate the effect of PM2.5 on WC and SYS, while the high intensity exercise may increase the effect of PM2.5 on WC. Exposure to PM2.5 is associated with the occurrence of MS in the elderly population, and has a significant impact on the components of MS in different directions. The moderating effect of physical activity on PM2.5 and MS varies by component. These results may provide scientific support for the prevention and treatment of MS in the elderly.
Collapse
Affiliation(s)
- Xianglong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Fan Ding
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiayi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jie Wu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300203, China.
| | - Yu Zhao
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Liu Q, Zhang D, Liang F, Liu F, Xiao L, An X, Chen X, Liang X. Air pollution and hypertension in rural versus urban children: Lipidomic insights into PM2.5 impacts. ENVIRONMENTAL RESEARCH 2025; 278:121715. [PMID: 40306456 DOI: 10.1016/j.envres.2025.121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Fine particulate matter and its impact on blood pressure (BP) in children remain a concern, with the role of lipid metabolism as a potential mediator not fully elucidated. We conducted a cohort study of 2239 urban subjects and 2194 rural subjects at baseline in China from 2014 to 2024 and a nested case-control study with lipidomics analyses. Analysis results showed that higher fine particulate matter smaller than 2.5 μm (PM2.5) exposure associated with high density lipoprotein cholesterol (HDL-C), non-HDL-C, and higher systolic blood pressure (SBP), partially mediated by HDL-C/non-HDL-C changes. Mediation analysis indicated a significant mediating effect of HDL-C on the PM2.5-DBP and PM2.5-MAP (DBP, diastolic blood pressure; MAP, mean arterial pressure) association in urban subjects, while no mediation effect was found in rural subjects. For non-HDL-C, significant mediating effects were observed in both urban and rural subjects. Further analyses revealed distinct urban-rural lipidomic patterns, with specific phosphatidylethanolamine (PEs) mediating PM2.5-related hypertension in rural subjects, while lactosylceramides (LacCer) played this role in urban youth. These patterns extended to other BP indices as well. In the urban area, PG(44:11), LacCer(d45:1), were identified as playing significant mediating roles in the association between PM2.5 exposure and hypertension while for rural subjects, PEs including PE(16:0/16:0) and PE(18:0/18:2) showed significant mediating effects. Our findings underscore the impact of PM2.5 exposure on lipid profiles and BP risk in children, suggesting area-specific mechanisms and the potential for lipidomic-based interventions to mitigate environmental health risks.
Collapse
Affiliation(s)
- Qin Liu
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Di Zhang
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leyuan Xiao
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xizhou An
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xin Chen
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xiaohua Liang
- Department of Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
| |
Collapse
|
7
|
Shin H, Song M, Bae S. Association between annual concentration of air pollutants and incidence of metabolic syndrome among Korean adults: Korean Genome and Epidemiology Study (KoGES). Environ Health 2025; 24:3. [PMID: 39934787 PMCID: PMC11818349 DOI: 10.1186/s12940-025-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Air pollution is a global public health concern and incidence rates of metabolic syndrome (MetS) are increasing. To evaluate the effect of long-term air pollution exposure, we examined the association between long-term exposure to ambient air pollution and the incidences of MetS among Korean adults. METHODS We used data from the Korean Genome and Epidemiology Study's Cardiovascular Disease Association Study, a population-based cohort consisting of community-dwelling Korean adults between 2005 and 2011, who were followed up with until 2016 (n = 7,428). Air pollution exposure was estimated using the Congestion Mitigation and Air Quality model based on the participants' addresses. The participants had a physical examination at every visit during follow-up, and MetS was defined based on the National Institute of Health's National Cholesterol Education Program-Adult Treatment Panel III. We used Cox proportional hazard model to analyze the association between long-term air pollution exposure and incidences of MetS per interquartile range (IQR) increment of the annual concentration after adjusting for potential confounders using single and two-pollutant analysis. RESULTS The hazard ratios (HR) of MetS per IQR increment in PM2.5, SO2, NO2, and CO were 1.19 (95% CI: 1.12-1.27), 1.57 (95% CI: 1.47-1.68), 1.11 (95% CI: 1.03-1.20), and 1.63 (95% CI: 1.48-1.78), respectively. The incidences of MetS components, which are high blood pressure, elevated fasting glucose, abdominal obesity, high fasting triglyceride (TG), and low fasting high-density lipoprotein (HDL-C), were significantly associated with an IQR increment especially in SO2 and CO. In subgroup analysis, males had higher risk of MetS than females. The HR was the highest in the 60-69 year old age group for all pollutants. CONCLUSION In the present study, we found that long-term ambient air pollution exposure increased the incidences of MetS and its components among Korean adults, especially in males and the elderly population.
Collapse
Affiliation(s)
- Hanuel Shin
- Graduate School of Public Health and Healthcare Management, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Nursing, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Minkyo Song
- Immunoepidemiology Unit, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, USA
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
8
|
Qian J, Zhu J, Wang Y, Dai R, Miao J, Yang Y, Zhao W, Wang J, Ding L, Zhou D, Yu M, Li Y. Associations and potential epigenetic changes between air pollution and osteoarthritis risk and survival: Insights from a prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117770. [PMID: 39847883 DOI: 10.1016/j.ecoenv.2025.117770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND The influence of air pollution on osteoarthritis (OA) remains underexplored. METHODS We conducted a prospective cohort study in the UK Biobank, estimating exposure levels of particulate matter (PM2.5, PM10, PM2.5-10), nitrogen oxides (NO2, NOx), and air pollutants exposure score (APES). Cox models assessed associations between air pollution exposure and OA incidence, joint replacement, and survival. Additionally, using genome-wide association statistics, we examined the potential causal associations between air pollution-related DNA methylation (DNAm) and OA risk. Gene-environment interaction analyses were conducted to explore the potential modification effect of DNA methylation-related genetic variants on the impact of air pollution on OA risk. RESULTS Individual exposure to each air pollutant was associated with an increased risk of developing OA, but not with progression from OA to joint replacement. For APES, the hazard ratio for incident OA was 1.09 (95 % CI = 1.04-1.13), and the hazard ratio of progression from OA to death was 1.16 (95 % CI = 1.00-1.35) in the highest quartile group compared to the lowest quartile group. Moreover, genetically predicted methylation at the PM2.5-related CpG site cg04027612 near the GDF5 gene was associated with a lower risk of OA. A potential epigenetic modification effect of cg04027612 near GDF5 on OA risk was observed. CONCLUSION Long-term exposure to air pollution was associated with an increased risk of OA in the population and poorer survival outcomes for OA patients, with epigenetic changes in GDF5 potentially playing a role in the underlying mechanisms.
Collapse
Affiliation(s)
- Jing Qian
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Jiahao Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Yifan Wang
- Department of Psychology, University of Toronto Scarborough, Toronto, Canada.
| | - Ruoqi Dai
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Jingyou Miao
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Ye Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Wenxia Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Jing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Lilu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
9
|
Xue J, Chen S, Jiang Y, Liu Q, Wang Y, Jiao Y, Shao Y, Zhao J, Zhou Y, Wang D, Tang L. Association between solid cooking fuels exposure and metabolic syndrome: Evidence from China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117648. [PMID: 39752918 DOI: 10.1016/j.ecoenv.2024.117648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Epidemiological evidence connecting cooking fuel use to metabolic syndrome (MetS) is lacking. Solid cooking fuel usage and MetS prevalence were prospectively investigated in this study. We included participants in 2011 and 2015 from the China Health and Retirement Longitudinal Study (CHARLS) data. Through cross-sectional and longitudinal studies, we found that the use of solid fuels reduced the risk of MetS in participants compared with clean fuels (cross-sectional study: 2011: Odds ratio (OR): 0.819, 95 %confidence interval (CI): 0.747-0.897, P < 0.001; 2015: OR: 0.766, 95 %CI: 0.708-0.851, P < 0.001; longitudinal study: OR: 0.736, 95 %CI: 0.652-0.831, P < 0.001).This impact ceases to exist whenever a switch in fuel type occurs (Non persistent clean: OR: 0.937, 95 %CI: 0.837-1.050, P = 0.262; Persistent solid: OR: 0.767, 95 %CI: 0.691-0.853, P < 0.001). Moreover, we found that biomass (crop residue and wood burning) combustion reduced the prevalence of MetS (OR: 0.653, 95 %CI: 0.573-0.743, P < 0.001), while coal had no effect on the prevalence of MetS (OR: 1.092, 95 %CI: 0.907-1.315, P = 0.352). Based on mediation analysis, triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) cholesterol mediated 61.3 % and 39.8 % of the reduction in MetS prevalence observed with solid fuel. In summary, our research showed that household solid cooking fuels were associated with less MetS risk. Among them, biomass combustion may play an important role.
Collapse
Affiliation(s)
- Jiaming Xue
- Department of Graduate School, Dalian Medical University, Dalian City, Liaoning Province 116011, China; Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China
| | - Shuai Chen
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China
| | - Yicheng Jiang
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China
| | - Qi Liu
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China
| | - Yuwen Jiao
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China
| | - Yuancheng Shao
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China
| | - Jie Zhao
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China
| | - Dongmei Wang
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China.
| | - Liming Tang
- Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
10
|
Chen J, Zhang H, Fu T, Zhao J, Nowak JK, Kalla R, Wellens J, Yuan S, Noble A, Ventham NT, Dunlop MG, Halfvarson J, Mao R, Theodoratou E, Satsangi J, Li X. Exposure to air pollution increases susceptibility to ulcerative colitis through epigenetic alterations in CXCR2 and MHC class III region. EBioMedicine 2024; 110:105443. [PMID: 39536393 PMCID: PMC11605448 DOI: 10.1016/j.ebiom.2024.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aims to confirm the associations of air pollution with ulcerative colitis (UC) and Crohn's disease (CD); to explore interactions with genetics and lifestyle; and to characterize potential epigenetic mechanisms. METHODS We identified over 450,000 individuals from the UK Biobank and investigated the relationship between air pollution and incident inflammatory bowel disease (IBD). Cox regression was utilized to calculate hazard ratios (HRs), while also exploring potential interactions with genetics and lifestyle factors. Additionally, we conducted epigenetic Mendelian randomization (MR) analyses to examine the association between air pollution-related DNA methylation and UC. Finally, our findings were validated through genome-wide DNA methylation analysis of UC, as well as co-localization and gene expression analyses. FINDINGS Higher exposures to NOx (HR = 1.20, 95% CI 1.05-1.38), NO2 (HR = 1.19, 95% CI = 1.03-1.36), PM2.5 (HR = 1.19, 95% CI = 1.05-1.36) and combined air pollution score (HR = 1.26, 95% CI = 1.11-1.45) were associated with incident UC but not CD. Interactions with genetic risk score and lifestyle were observed. In MR analysis, we found five and 22 methylated CpG sites related to PM2.5 and NO2 exposure to be significantly associated with UC. DNA methylation alterations at CXCR2 and sites within the MHC class III region, were validated in genome-wide DNA methylation analysis, co-localization analysis and analysis of colonic tissue. INTERPRETATION We report a potential causal association between air pollution and UC, modified by lifestyle and genetic influences. Biological pathways implicated include epigenetic alterations in key genetic loci, including CXCR2 and susceptible loci within MHC class III region. FUNDING Xue Li was supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001) and the National Nature Science Foundation of China (No. 82204019). ET was supported by the CRUK Career Development Fellowship (C31250/A22804) and the Research Foundation Flanders (FWO). JW was supported by Belgium by a PhD Fellowship strategic basic research (SB) grant (1S06023N). JKN was supported by the National Science Center, Poland (No. 2020/39/D/NZ5/02720). The IBD Character was supported by the European Union's Seventh Framework Programme [FP7] grant IBD Character (No. 2858546).
Collapse
Affiliation(s)
- Jie Chen
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Han Zhang
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tian Fu
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University Medical College, Hangzhou, China
| | - Jianhui Zhao
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jan Krzysztof Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60572, Poznan, Poland
| | - Rahul Kalla
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith Wellens
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium; Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Noble
- Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Evropi Theodoratou
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Jack Satsangi
- Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK.
| | - Xue Li
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 PMCID: PMC12043015 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M. Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
12
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
13
|
Dai W, Xu W, Zhou J, Liu S, Zhou Q. Individual and joint exposure to air pollutants and patterns of multiple chronic conditions. Sci Rep 2024; 14:22733. [PMID: 39349744 PMCID: PMC11443143 DOI: 10.1038/s41598-024-73485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Existing research on the detrimental effects of air pollution and its mixture on multiple chronic conditions (MCC) is not yet fully recognized. Our objective was to examine if individual and joint exposure to air pollution is associated with the incidence and patterns of MCC. Totally 10,231 CHARLS 2015 participants aged over 45 years and 1,938 without MCC were followed up in 2018 and 2020. Residential-levelcumulative personal exposure concentrations of PM1, PM10, PM2.5, CO, O3, NO2, SO2, NO3-, Cl-, NH4+, and SO42- at the residential level were determined utilizing a spatio-temporal random forest model with a spatial resolution of 0.1° × 0.1°. In the cross-sectional and longitudinal research, logistic regression, cox regression analysis, and quantile g-computation were utilized to estimate the single and joint effect with MCC and its patterns, respectively. Interaction analyses and stratified analyses were also performed. A correlation was observed between the prevalence of cardiovascular illnesses and the presence of all 11 major air pollutants. PM2.5, PM10, NH4+, NO3-, CO, and SO42- are associated with an increased frequency of respiratory disorders. An increase of PM2.5, PM1, PM10, NO2, and SO2 (a 10 µg/m3 rise), CO (a 0.1 mg/m3 rise), and PMCs (Cl-, NH4+, NO3-, and SO42-) (a 1 µg/m3 rise) corresponded to the HRs (95% CI) for developing MCC of 1.194 (95% CI: 1.043, 1.367), 1.362 (95% CI: 1.073, 1.728), 1.115 (95% CI: 1.026, 1.212), 1.443 (95% CI: 1.151, 1.808), 3.175 (95% CI: 2.291, 4.401), 1.272 (95% CI: 1.149,1.410), 1.382 (95% CI: 1.011, 1.888), 1.107 (95% CI: 1.003, 1.222), 1.035 (95% CI: 0.984, 1.088), and 1.122 (95% CI: 1.086, 1.160), respectively. SO2 was the predominant contributor to the combined effect (HR: 2.083, 95% CI: 1.659-2.508). Gender, age, drinking, and health status could modify the effects of air pollutants on MCC patterns. Long-term exposure to air pollution is correlated to the incidence and patterns of MCC in middle-aged and elderly Chinese individuals. Preventive methods are essential to safeguarding those susceptible to MCC.
Collapse
Affiliation(s)
- Weifang Dai
- Department of Information Technology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Weina Xu
- Department of Geriatric, Center for Regeneration and Aging Medicine,the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiayu Zhou
- School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shanna Liu
- Department of Information Technology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qingli Zhou
- Department of Information Technology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
14
|
Zhang Y, Zheng P, Shi J, Ma Y, Chen Z, Wang T, Jia G. The modification effect of fasting blood glucose level on the associations between short-term ambient air pollution and blood lipids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2998-3010. [PMID: 37975287 DOI: 10.1080/09603123.2023.2283048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The association between short-term ambient air pollution (AAP) exposure and blood lipids is inconsistent across populations. This study aimed to investigate the modifying effects of fasting blood glucose (FBG) levels on the associations between short-term AAP exposure and blood lipids in 110,637 male participants from Beijing, China. The results showed that FBG modified the association between short-term AAP exposure and blood lipids, especially low-density lipoprotein cholesterol (LDL-C). In the hyperglycemia group, a 10-μg/m3 increase in particles with diameters ≤ 2.5 μm (PM2.5), particles with diameters ≤ 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or a 1-mg/m3 increase in carbon monoxide (CO) was associated with a 0.454%, 0.305%, 1.507%, 0.872%, or 3.961% increase in LDL-C, respectively. In the nonhyperglycemic group, short-term increases in air pollutants were even associated with small decreases in LDL-C. The findings demonstrate that lipids in hyperglycemic individuals are more vulnerable to short-term AAP exposure than those in normal populations.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
15
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Huang Y, Jing H, Wang Z, Li Z, Chacha S, Teng Y, Mi B, Zhang B, Liu Y, Li Q, Shen Y, Yang J, Qu Y, Wang D, Yan H, Dang S. Does Serum Uric Acid Mediate Relation between Healthy Lifestyle and Components of Metabolic Syndrome? Nutrients 2024; 16:2137. [PMID: 38999885 PMCID: PMC11243389 DOI: 10.3390/nu16132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
A healthy lifestyle is related to metabolic syndrome (MetS), but the mechanism is not fully understood. This study aimed to examine the association of components of MetS with lifestyle in a Chinese population and potential mediation role of serum uric acid (SUA) in the association between lifestyle behaviors and risk of components of MetS. Data were derived from a baseline survey of the Shaanxi urban cohort in the Regional Ethnic Cohort Study in northwest China. The relationship between components of MetS, healthy lifestyle score (HLS), and SUA was investigated by logistic or linear regression. A counterfactual-based mediation analysis was performed to ascertain whether and to what extent SUA mediated the total effect of HLS on components of MetS. Compared to those with 1 or less low-risk lifestyle factors, participants with 4-5 factors had 43.6% lower risk of impaired glucose tolerance (OR = 0.564; 95%CI: 0.408~0.778), 60.8% reduction in risk of high blood pressure (OR = 0.392; 95%CI: 0.321~0.478), 69.4% reduction in risk of hypertriglyceridemia (OR = 0.306; 95%CI: 0.252~0.372), and 47.3% lower risk of low levels of HDL cholesterol (OR = 0.527; 95%CI: 0.434~0.641). SUA mediated 2.95% (95%CI: 1.81~6.16%) of the total effect of HLS on impaired glucose tolerance, 14.68% (95%CI: 12.04~18.85%) on high blood pressure, 17.29% (95%CI: 15.01~20.5%) on hypertriglyceridemia, and 12.83% (95%CI: 10.22~17.48%) on low levels of HDL cholesterol. Increased HLS tends to reduce risk of components of MetS partly by decreasing the SUA level, which could be an important mechanism by which lifestyle influences MetS.
Collapse
Affiliation(s)
- Yan Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Hui Jing
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Ziping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Zongkai Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Samuel Chacha
- Department of Molecular Diagnostics, Sumbwanga Regional Referral Hospital, Rukwa 413, Tanzania;
| | - Yuxin Teng
- Department of Human Resources, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
| | - Baibing Mi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Binyan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Yezhou Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Qiang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Yuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Jiaomei Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Yang Qu
- HKU Business School, 3/F K.K. Leung Building, The University of Hong Kong, Pokfulam Road, Hong Kong;
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L7 8XZ, UK;
| | - Hong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
| | - Shaonong Dang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.H.); (H.J.); (Z.W.); (Z.L.); (B.M.); (B.Z.); (Y.L.); (Q.L.); (Y.S.); (J.Y.); (H.Y.)
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| |
Collapse
|
17
|
Singh S, Kriti M, K.S. A, Sarma DK, Verma V, Nagpal R, Mohania D, Tiwari R, Kumar M. Deciphering the complex interplay of risk factors in type 2 diabetes mellitus: A comprehensive review. Metabol Open 2024; 22:100287. [PMID: 38818227 PMCID: PMC11137529 DOI: 10.1016/j.metop.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The complex and multidimensional landscape of type 2 diabetes mellitus (T2D) is a major global concern. Despite several years of extensive research, the precise underlying causes of T2D remain elusive, but evidence suggests that it is influenced by a myriad of interconnected risk factors such as epigenetics, genetics, gut microbiome, environmental factors, organelle stress, and dietary habits. The number of factors influencing the pathogenesis is increasing day by day which worsens the scenario; meanwhile, the interconnections shoot up the frame. By gaining deeper insights into the contributing factors, we may pave the way for the development of personalized medicine, which could unlock more precise and impactful treatment pathways for individuals with T2D. This review summarizes the state of knowledge about T2D pathogenesis, focusing on the interplay between various risk factors and their implications for future therapeutic strategies. Understanding these factors could lead to tailored treatments targeting specific risk factors and inform prevention efforts on a population level, ultimately improving outcomes for individuals with T2D and reducing its burden globally.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Mona Kriti
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Anamika K.S.
- Christ Deemed to Be University Bangalore, Karnataka, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Dheeraj Mohania
- Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Rajnarayan Tiwari
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| |
Collapse
|
18
|
Domingo-Relloso A, Tellez-Plaza M, Valeri L. Methods for the Analysis of Multiple Epigenomic Mediators in Environmental Epidemiology. Curr Environ Health Rep 2024; 11:109-117. [PMID: 38386268 DOI: 10.1007/s40572-024-00436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW Epigenetic changes can be highly influenced by environmental factors and have in turn been proposed to influence chronic disease. Being able to quantify to which extent epigenomic processes are mediators of the association between environmental exposures and diseases is of interest for epidemiologic research. In this review, we summarize the proposed mediation analysis methods with applications to epigenomic data. RECENT FINDINGS The ultra-high dimensionality and high correlations that characterize omics data have hindered the precise quantification of mediated effects. Several methods have been proposed to deal with mediation in high-dimensional settings, including methods that incorporate dimensionality reduction techniques to the mediation algorithm. Although important methodological advances have been conducted in the previous years, key challenges such as the development of sensitivity analyses, dealing with mediator-mediator interactions, including environmental mixtures as exposures, or the integration of different omic data should be the focus of future methodological developments for epigenomic mediation analysis.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Biostatistics, Columbia University Mailman School of Public Health, 722 West 168Th Street, New York, NY, 10032, USA.
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, 722 West 168Th Street, New York, NY, 10032, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
19
|
Zhang K, Chen G, He J, Chen Z, Pan M, Tong J, Liu F, Xiang H. DNA methylation mediates the effects of PM 2.5 and O 3 on ceramide metabolism: A novel mechanistic link between air pollution and insulin resistance. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133864. [PMID: 38457969 DOI: 10.1016/j.jhazmat.2024.133864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Insulin resistance (IR), linked to air pollution, is an initial stage of early-onset Type 2 diabetes mellitus (T2DM). While ceramide metabolism plays an important role in IR pathogenesis, the effects of air pollution on this process and its mechanisms remain unclear. We recruited young adults aged 18-30 years to a panel study in Wuhan, China. Using personal portable devices and stationary monitoring stations, we tracked particulate matter with aerodynamic diameters≤ 2.5 µm (PM2.5) and Ozone (O3) levels. Liquid chromatography/mass spectrometry (LC-MS) based metabolomics quantified ceramide metabolism, and Illumina Infinium Human Methylation 850 kBeadChip assay measured deoxyribonucleic acid (DNA) methylation. Linear mixed-effects models assessed relationships of air pollution with i) IR indexes, ii) ceramide metabolism, and iii) DNA methylation. Mediation analysis was subsequently performed to evaluate the potential mediating effect of DNA methylation in the association between air pollution and ceramide metabolism. PM2.5 and O3 were associated with elevated IR. Specifically, each 10 μg/m3 increase in PM2.5 and O3 at lag0-12 h significantly increased triglyceride‑glucose index (TyG index) and TyG-BMI (TyG - Body mass index) by 0.88%, 0.89% and 0.26%, 0.26%, respectively. Furthermore, levels of eight ceramides were altered by air pollution exposure, and nine methylated CpG sites in inflammation genes mediated the effects of air pollution on ceramide metabolism. Our findings imply the existence of a novel mechanism connecting air pollution to IR.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, China; Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jie He
- Department of Environmental Health Sciences, School of Public Health, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| | - Zhongyang Chen
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, China; Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Mengnan Pan
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, China; Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Jiahui Tong
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, China; Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, China; Global Health Institute, School of Public Health, Wuhan University, Wuhan, China.
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, China; Global Health Institute, School of Public Health, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Skevaki C, Nadeau KC, Rothenberg ME, Alahmad B, Mmbaga BT, Masenga GG, Sampath V, Christiani DC, Haahtela T, Renz H. Impact of climate change on immune responses and barrier defense. J Allergy Clin Immunol 2024; 153:1194-1205. [PMID: 38309598 DOI: 10.1016/j.jaci.2024.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Blandina T Mmbaga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Gileard G Masenga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Obstetrics and Gynecology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany; Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia.
| |
Collapse
|
21
|
Dong R, Chang D, Shen C, Shen Y, Shen Z, Tian T, Wang J. Association of volatile organic compound exposure with metabolic syndrome and its components: a nationwide cross-sectional study. BMC Public Health 2024; 24:671. [PMID: 38431552 PMCID: PMC10909266 DOI: 10.1186/s12889-024-18198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a health issue consisting of multiple metabolic abnormalities. The impact of exposure to volatile organic compounds (VOCs) on MetS and its components remains uncertain. This study aimed to assess the associations of individual urinary metabolites of VOC (mVOCs) and mVOC mixtures with MetS and its components among the general adult population in the United States. METHODS A total of 5345 participants with eligible data were filtered from the 2011-2020 cycles of the National Health and Nutrition Examination Survey. Multivariate logistic regression models were applied to assess the associations of individual mVOCs with MetS and its components. The least absolute shrinkage and selection operator (LASSO) regression models were constructed to identify more relevant mVOCs. The weight quantile sum regression model was applied to further explore the links between mVOC co-exposure and MetS and its components. RESULTS The results indicated positive associations between multiple mVOCs and MetS, including CEMA, DHBMA, and HMPMA. CEMA was found to be positively correlated with all components of MetS. HMPMA was associated with elevated triglyceride (TG), reduced high-density lipoprotein, and fasting blood glucose (FBG) impairment; 3HPMA was associated with an elevated risk of high TG and FBG impairment; and DHBMA had positive associations with elevated TG and high blood pressure. The co-exposure of LASSO-selected mVOCs was associated with an increased risk of elevated TG, high blood pressure, and FBG impairment. CONCLUSION Positive associations of certain individual urinary mVOCs and mVOC mixtures with MetS and its components were observed by utilizing multiple statistical models and large-scale national data. These findings may serve as the theoretical basis for future experimental and mechanistic studies and have important implications for public health.
Collapse
Affiliation(s)
- Rui Dong
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Dongchun Chang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Chao Shen
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Ya Shen
- Department of Integrated Service and Management, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Zhengkai Shen
- Department of Integrated Service and Management, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Ting Tian
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Nutrition and Food Safety, Nanjing, China.
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Yeung-Luk BH, Wally A, Swaby C, Jauregui S, Lee E, Zhang R, Chen D, Luk SH, Upadya N, Tieng E, Wilmsen K, Sherman E, Sudhakar D, Luk M, Shrivastav AK, Cao S, Ghosh B, Christenson SA, Huang YJ, Ortega VE, Biswal S, Tang WY, Sidhaye VK. Epigenetic Reprogramming Drives Epithelial Disruption in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2024; 70:165-177. [PMID: 37976469 PMCID: PMC10914773 DOI: 10.1165/rcmb.2023-0147oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.
Collapse
Affiliation(s)
| | - Ara Wally
- Department of Environmental Health and Engineering and
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Carter Swaby
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sofia Jauregui
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Esther Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Zhang
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sean H Luk
- Department of Environmental Health and Engineering and
| | - Nisha Upadya
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ethan Tieng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Kai Wilmsen
- Department of Environmental Health and Engineering and
| | - Ethan Sherman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Dheeksha Sudhakar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Luk
- Department of Environmental Health and Engineering and
| | - Abhishek Kumar Shrivastav
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Shuo Cao
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | | | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Yvonne J Huang
- Department of Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Victor E Ortega
- Department of Pulmonary Medicine, Mayo Clinic, Phoenix, Arizona
| | - Shyam Biswal
- Department of Environmental Health and Engineering and
| | - Wan-Yee Tang
- Department of Environmental Health and Engineering and
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering and
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Cai X, Li K, Meng X, Song Q, Shi S, Li W, Niu Y, Jin L, Kan H, Wang S. Epigenome-wide association study on short-, intermediate- and long-term ozone exposure in Han Chinese, the NSPT study. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132780. [PMID: 37898092 DOI: 10.1016/j.jhazmat.2023.132780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Epidemiological and epigenetic studies have acknowledged ambient ozone exposure associated with inflammatory and cardiovascular disease. However, the molecular mechanisms still remained unclear, and epigenome-wide analysis in cohort were lacking, especially in Chinese. We included blood-derived DNA methylation for 3365 Chinese participants from the NSPT cohort and estimated individual ozone exposure level of short-, intermediate- and long-term, based on a validated prediction model. We performed epigenome-wide association studies which identified 59 CpGs and 30 DMRs at a strict genome-wide significance (P < 5 ×10-8). We also conducted comparison on the DNA methylation alteration corresponding to different time windows, and observed an enhanced differentiated methylation trend for intermediate- and long-term exposure, while the short-term exposure associated methylation changes did not retain. The targeted genes of methylation alteration were involved in mechanism related to aging, inflammation disease, metabolic syndrome, neurodevelopmental disorders, and oncogenesis. Underlying pathways were enriched in biological activities including telomere maintenance process, DNA damage response and megakaryocyte differentiation. In conclusion, our study is the first EWAS on ozone exposure conducted in large-scale Han Chinese cohort and identified associated DNA methylation change on CpGs and regions, as well as related gene functions and pathways.
Collapse
Affiliation(s)
- Xiyang Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaixuan Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Meng
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qinglin Song
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Su Shi
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yue Niu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
24
|
Kim J, Kim Y, Song Y, Kim TJ, Lee SH, Kim HJ. Indoor particulate matter induces epigenetic changes in companion atopic dogs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115544. [PMID: 37827097 DOI: 10.1016/j.ecoenv.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
The prevalence of atopic dermatitis (AD) is increasing and environmental factors are receiving attention as contributing causes. Indoor air pollutants (IAPs), especially particulate matter (PM) can alter epigenetic markers, DNA methylation (DNAm). Although DNAm-mediated epigenetic changes have been reported to modulate the pathogenesis of AD, their role at high risk of exposure to PM is still unclear. The study investigated the effects of exposure to IAPs in the development of AD and epigenetic changes through DNAm in companion atopic dogs that share indoor environment with their owners. Dogs were divided into two groups: AD (n = 47) and controls (n = 21). The IAPs concentration in each household was measured for 48 h, and a questionnaire on the residential environment was completed in all dogs. Eighteen dogs with AD and 12 healthy dogs were selected for DNAm analysis. In addition, clinical and immunological evaluations were conducted. The concentrations of PM2.5, PM10, and volatile organic compounds (VOCs) were significantly higher in the AD group. Moreover, there were more significant methylation differences in the LDLRAD4, KHSRP, and CTDSP2 genes in connection with PM10 in AD group compared to the controls. The degree of methylation of the LDLRAD4 and CTDSP2 genes was also correlated with related protein productions. The present study revealed that exposure to high indoor PM can cause epigenetic development of AD by methylation of the LDLRAD4, KHSRP, and CTDSP2 genes in dogs. Under the concept of "One Health," improving indoor environments should be considered to prevent the development of AD.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Yeji Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Yunji Song
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Tae Jung Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea
| | - Seung-Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Ha-Jung Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea; BK 21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
25
|
Koenigsberg SH, Chang CJ, Ish J, Xu Z, Kresovich JK, Lawrence KG, Kaufman JD, Sandler DP, Taylor JA, White AJ. Air pollution and epigenetic aging among Black and White women in the US. ENVIRONMENT INTERNATIONAL 2023; 181:108270. [PMID: 37890265 PMCID: PMC10872847 DOI: 10.1016/j.envint.2023.108270] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND DNA methylation-based measures of biological aging have been associated with air pollution and may link pollutant exposures to aging-related health outcomes. However, evidence is inconsistent and there is little information for Black women. OBJECTIVE We examined associations of ambient particulate matter <2.5 μm and <10 μm in diameter (PM2.5 and PM10) and nitrogen dioxide (NO2) with DNA methylation, including epigenetic aging and individual CpG sites, and evaluated whether associations differ between Black and non-Hispanic White (NHW) women. METHODS Validated models were used to estimate annual average outdoor residential exposure to PM2.5, PM10, and NO2 in a sample of self-identified Black (n=633) and NHW (n=3493) women residing in the contiguous US. We used sampling-weighted generalized linear regression to examine the effects of pollutants on six epigenetic aging measures (primary: DunedinPACE, GrimAgeAccel, and PhenoAgeAccel; secondary: Horvath intrinsic epigenetic age acceleration [EAA], Hannum extrinsic EAA, and skin & blood EAA) and epigenome-wide associations for individual CpG sites. Wald tests of nested models with and without interaction terms were used to examine effect measure modification by race/ethnicity. RESULTS Black participants had higher median air pollution exposure than NHW participants. GrimAgeAccel was associated with both PM10 and NO2 among Black participants, (Q4 versus Q1, PM10: β=1.09, 95% CI: 0.16-2.03; NO2: β=1.01, 95% CI 0.08-1.94) but not NHW participants (p-for-heterogeneity: PM10=0.10, NO2=0.20). In Black participants, we also observed a monotonic exposure-response relationship between NO2 and DunedinPACE (Q4 versus Q1, NO2: β=0.029, 95% CI: 0.004-0.055; p-for-trend=0.03), which was not observed in NHW participants (p-for-heterogeneity=0.09). In the EWAS, pollutants were significantly associated with differential methylation at 19 CpG sites in Black women and one in NHW women. CONCLUSIONS In a US-wide cohort study, our findings suggest that air pollution is associated with DNA methylation alterations consistent with higher epigenetic aging among Black, but not NHW, women.
Collapse
Affiliation(s)
- Sarah H Koenigsberg
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 123 W. Franklin St., Chapel Hill, NC 27517, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Jennifer Ish
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Jacob K Kresovich
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA; Departments of Cancer Epidemiology and Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
26
|
Zhang Y, Shi J, Ma Y, Yu N, Zheng P, Chen Z, Wang T, Jia G. Association between Air Pollution and Lipid Profiles. TOXICS 2023; 11:894. [PMID: 37999546 PMCID: PMC10675150 DOI: 10.3390/toxics11110894] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Dyslipidemia is a critical factor in the development of atherosclerosis and consequent cardiovascular disease. Numerous pieces of evidence demonstrate the association between air pollution and abnormal blood lipids. Although the results of epidemiological studies on the link between air pollution and blood lipids are unsettled due to different research methods and conditions, most of them corroborate the harmful effects of air pollution on blood lipids. Mechanism studies have revealed that air pollution may affect blood lipids via oxidative stress, inflammation, insulin resistance, mitochondrial dysfunction, and hypothalamic hormone and epigenetic changes. Moreover, there is a risk of metabolic diseases associated with air pollution, including fatty liver disease, diabetes mellitus, and obesity, which are often accompanied by dyslipidemia. Therefore, it is biologically plausible that air pollution affects blood lipids. The overall evidence supports that air pollution has a deleterious effect on blood lipid health. However, further research into susceptibility, indoor air pollution, and gaseous pollutants is required, and the issue of assessing the effects of mixtures of air pollutants remains an obstacle for the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China;
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| |
Collapse
|
27
|
Balogun AO, Weigel MM, Estévez E, Armijos RX. Chronic Occupational Exposure to Traffic Pollution Is Associated with Increased Carotid Intima-Media Thickness in Healthy Urban Traffic Control Police. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6701. [PMID: 37681841 PMCID: PMC10487607 DOI: 10.3390/ijerph20176701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Urban traffic officers in many low- and middle-income countries are exposed to high levels of traffic-related air pollutants (TRAP) while working vehicle control on heavily congested streets. The impact of chronic TRAP exposure on the cardiovascular health, including the carotid intima-media thickness (CIMT), of this outdoor occupational group remains unclear. This cross-sectional study compared the average mean and maximum CIMT measurements of two groups of relatively young, healthy traffic police (32 ± 7 years; 77% male) in Quito, Ecuador, who were without clinical evidence of serious cardiovascular or other disease. Previously published background data on PM10 (a TRAP surrogate) indicated that street levels of the pollutant were several orders of magnitude higher at the street intersections worked by traffic police compared to those working only in an office. Accordingly, officers permanently assigned to daily traffic control duties requiring them to stand 0-3 m from heavily trafficked street intersections were assigned to the high exposure group (n = 61). The control group (n = 54) consisted of officers from the same organization who were permanently assigned to office duties inside an administration building. Mean and maximum CIMT were measured with ultrasound. General linear models were used to compare the CIMT measurements of the high exposure and control groups, adjusting for covariates. The adjusted average mean and maximum CIMT measures of the high exposure group were increased by 11.5% and 10.3%, respectively, compared to the control group (p = 0.0001). These findings suggest that chronic occupational exposure to TRAP is associated with increased CIMT in traffic police. This is important since even small increases in arterial thickening over time may promote earlier progression to clinical disease and increased premature mortality risk.
Collapse
Affiliation(s)
- Abdulrazak O. Balogun
- Department of Safety and Occupational Health Applied Sciences, Keene State College, Keene, NH 03431, USA;
| | - M. Margaret Weigel
- Department of Environmental & Occupational Health, School of Public Health, Indiana University-Bloomington, 1025 E. 7th Street, Bloomington, IN 47403, USA;
- Global Environmental Health Research Laboratory, Indiana University-Bloomington School of Public Health, Bloomington, IN 47405, USA
- Center for Latin American & Caribbean Studies, Indiana University-Bloomington, Bloomington, IN 47405, USA
- IU Center for Global Health Equity, Indiana University, 702 Rotary Circle, Indianapolis, IN 46202, USA
| | - Edmundo Estévez
- Centro de Biomedicina, Universidad Central del Ecuador, Quito 170129, Ecuador;
- Postgraduate Program in Public Health, Universidad Autónoma Regional de los Andes (UNIANDES), Ambato 180150, Ecuador
| | - Rodrigo X. Armijos
- Department of Environmental & Occupational Health, School of Public Health, Indiana University-Bloomington, 1025 E. 7th Street, Bloomington, IN 47403, USA;
- Global Environmental Health Research Laboratory, Indiana University-Bloomington School of Public Health, Bloomington, IN 47405, USA
- Center for Latin American & Caribbean Studies, Indiana University-Bloomington, Bloomington, IN 47405, USA
- IU Center for Global Health Equity, Indiana University, 702 Rotary Circle, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Baradaran Mahdavi S, Kelishadi R. DNA methylation as a potential mediator between environmental pollutants and osteoporosis; a current hypothesis. BIOIMPACTS : BI 2023; 13:521-523. [PMID: 38022380 PMCID: PMC10676528 DOI: 10.34172/bi.2023.27717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/31/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Sadegh Baradaran Mahdavi
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Khalil WJ, Akeblersane M, Khan AS, Moin ASM, Butler AE. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int J Mol Sci 2023; 24:8870. [PMID: 37240215 PMCID: PMC10219141 DOI: 10.3390/ijms24108870] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
To meet the increased need for food and energy because of the economic shift brought about by the Industrial Revolution in the 19th century, there has been an increase in persistent organic pollutants (POPs), atmospheric emissions and metals in the environment. Several studies have reported a relationship between these pollutants and obesity, and diabetes (type 1, type 2 and gestational). All of the major pollutants are considered to be endocrine disruptors because of their interactions with various transcription factors, receptors and tissues that result in alterations of metabolic function. POPs impact adipogenesis, thereby increasing the prevalence of obesity in exposed individuals. Metals impact glucose regulation by disrupting pancreatic β-cells, causing hyperglycemia and impaired insulin signaling. Additionally, a positive association has been observed between the concentration of endocrine disrupting chemicals (EDCs) in the 12 weeks prior to conception and fasting glucose levels. Here, we evaluate what is currently known regarding the link between environmental pollutants and metabolic disorders. In addition, we indicate where further research is required to improve our understanding of the specific effects of pollutants on these metabolic disorders which would enable implementation of changes to enable their prevention.
Collapse
Affiliation(s)
- William Junior Khalil
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Meriem Akeblersane
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Ana Saad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
30
|
Travagli V, Iorio EL. The Biological and Molecular Action of Ozone and Its Derivatives: State-of-the-Art, Enhanced Scenarios, and Quality Insights. Int J Mol Sci 2023; 24:ijms24108465. [PMID: 37239818 DOI: 10.3390/ijms24108465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The ultimate objective of this review is to encourage a multi-disciplinary and integrated methodological approach that, starting from the recognition of some current uncertainties, helps to deepen the molecular bases of ozone treatment effects on human and animal well-being and to optimize their performance in terms of reproducibility of results, quality, and safety. In fact, the common therapeutic treatments are normally documented by healthcare professionals' prescriptions. The same applies to medicinal gases (whose uses are based on their pharmacological effects) that are intended for patients for treatment, diagnostic, or preventive purposes and that have been produced and inspected in accordance with good manufacturing practices and pharmacopoeia monographs. On the contrary, it is the responsibility of healthcare professionals, who thoughtfully choose to use ozone as a medicinal product, to achieve the following objectives: (i) to understand the molecular basis of the mechanism of action; (ii) to adjust the treatment according to the clinical responses obtained in accordance with the principles of precision medicine and personalized therapy; (iii) to ensure all quality standards.
Collapse
Affiliation(s)
- Valter Travagli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Viale Aldo Moro 2, 53100 Siena, Italy
| | - Eugenio Luigi Iorio
- International Observatory of Oxidative Stress, 84127 Salerno, Italy
- Campus Uberlândia, Universidade de Uberaba (UNIUBE), Uberlândia 38055-500, Brazil
| |
Collapse
|
31
|
Wang Y, Tan H, Zheng H, Ma Z, Zhan Y, Hu K, Yang Z, Yao Y, Zhang Y. Exposure to air pollution and gains in body weight and waist circumference among middle-aged and older adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161895. [PMID: 36709892 DOI: 10.1016/j.scitotenv.2023.161895] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Emerging research suggested a nexus between air pollution exposure and risks of overweight and obesity, while existing longitudinal evidence was extensively sparse, particularly in densely populated regions. This study aimed to quantify concentration-response associations of changes in weight and waist circumference (WC) related to air pollution in Chinese adults. METHODS We conceived a nationally representative longitudinal study from 2011 to 2015, by collecting 34,854 observations from 13,757 middle-aged and older adults in 28 provincial regions of China. Participants' height, weight and WC were measured by interviewers using standardized devices. Concentrations of major air pollutants including fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) predicted by well-validated spatiotemporal models were assigned to participants according to their residential cities. Possible exposure biases were checked through 1000 random simulated exposure at individual level, using a Monte Carlo simulation approach. Linear mixed-effects models were applied to estimate the relationships of air pollution with weight and WC changes, and restricted cubic spline functions were adopted to smooth concentration-response (C-R) curves. RESULTS Each 10-μg/m3 rise in PM2.5, NO2 and O3 was associated with an increase of 0.825 (95% confidence interval: 0.740, 0.910), 0.921 (0.811, 1.032) and 1.379 (1.141, 1.616) kg in weight, respectively, corresponding to WC gains of 0.688 (0.592, 0.784), 1.189 (1.040, 1.337) and 0.740 (0.478, 1.002) cm. Non-significant violation for linear C-R relationships was observed with exception of NO2-weight and PM2.5/NO2-WC associations. Sex-stratified analyses revealed elevated vulnerability in women to gain of weight in exposure to PM2.5 and NO2. Sensitive analyses largely supported our primary findings via assessing exposure estimates from 1000 random simulations, and performing reanalysis based on non-imputed covariates and non-obese participants, as well as alternative indicators (i.e., body mass index and waist-to-height ratio). CONCLUSIONS We found positively robust associations of later-life exposure to air pollutants with gains in weight and WC based on a national sample of Chinese adult men and women. Our findings suggested that mitigation of air pollution may be an efficient intervention to relieve obesity burden.
Collapse
Affiliation(s)
- Yaqi Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huiyue Tan
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Healthcare Associated Infection Control Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Yao Yao
- China Center for Health Development Studies, Peking University, Beijing 100871, China
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
32
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
33
|
Shi X, Zheng Y, Cui H, Zhang Y, Jiang M. Exposure to outdoor and indoor air pollution and risk of overweight and obesity across different life periods: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113893. [PMID: 35917711 DOI: 10.1016/j.ecoenv.2022.113893] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Due to the highly evolved industrialization and modernization, air quality has deteriorated in most countries. As reported by the World Health Organization (WHO), air pollution is now considered as one of the major threats to global health and a principal risk factor for noncommunicable diseases. Meanwhile, the increasing worldwide prevalence of overweight and obesity is attracting more public attentions. Recently, accumulating epidemiological studies have provided evidence that overweight and obesity may be partially attributable to environmental exposure to air pollution. This review summarizes the epidemiological evidence for the correlation between exposure to various outdoor and indoor air pollutants (mainly particulate matter (PM), nitrogen oxides (NOx), ozone (O3), and polycyclic aromatic hydrocarbons (PAHs)) and overweight and obesity outcomes in recent years. Moreover, it discusses the multiple effects of air pollution during exposure periods throughout life and sex differences in populations. This review also describes the potential mechanism underlying the increased risk of obesity caused by air pollution, including inflammation, oxidative stress, metabolic imbalance, intestinal flora disorders and epigenetic modifications. Finally, this review proposes macro- and micro-measures to prevent the negative effects of air pollution exposure on the obesity prevalence.
Collapse
Affiliation(s)
- Xiaoyi Shi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haiwen Cui
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxi Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|