1
|
Que X, Zhang T, Liu X, Yin Y, Xia X, Gong P, Song W, Qin Q, Xu ZQD, Tang Y. The role of TREM2 in myelin sheath dynamics: A comprehensive perspective from physiology to pathology. Prog Neurobiol 2025; 247:102732. [PMID: 40021075 DOI: 10.1016/j.pneurobio.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Demyelinating disorders, characterizing by the loss of myelin integrity, present significant challenges due to their impact on neurological function and lack of effective treatments. Understanding the mechanisms underlying myelin damage is crucial for developing therapeutic strategies. Triggering receptor expressed on myeloid cells 2 (TREM2), a pivotal immune receptor predominantly found on microglial cells, plays essential roles in phagocytosis and lipid metabolism, vital processes in neuroinflammation and immune regulation. Emerging evidence indicates a close relationship between TREM2 and various aspects of myelin sheath dynamics, including maintenance, response to damage, and regeneration. This review provides a comprehensive discussion of TREM2's influence on myelin physiology and pathology, highlighting its therapeutic potential and putative mechanisms in the progression of demyelinating disorders.
Collapse
Affiliation(s)
- Xinwei Que
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China; Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China
| | - Tongtong Zhang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Xueyu Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Xinyi Xia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Ping Gong
- Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China
| | - Weiyi Song
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China; Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China.
| | - Zhi-Qing David Xu
- Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China.
| |
Collapse
|
2
|
Zhao W, Zhang X, Li F, Yan C. Mendelian Randomization Estimates the Effects of Plasma and Cerebrospinal Fluid Proteins on Intelligence, Fluid Intelligence Score, and Cognitive Performance. Mol Neurobiol 2025; 62:4922-4934. [PMID: 39495227 DOI: 10.1007/s12035-024-04542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Observational studies have revealed associations between levels of plasma and cerebrospinal fluid (CSF) proteins and cognition-related traits. However, these associations may be influenced by confounding factors inherent in observational research. This study aims to identify plasma and CSF proteins associated with intelligence, fluid intelligence score, and cognitive performance through the application of Mendelian randomization (MR). Proteomic quantitative trait locus (pQTL) data for plasma and CSF proteins were sourced from existing genome-wide association study (GWAS). Intelligence, fluid intelligence score, and cognitive performance GWAS summary statistics provided comprehensive data for two-sample MR analysis. Extensive sensitivity analyses, including Steiger testing, reverse MR analysis, and Bayesian co-localization, were conducted to validate associations and identify shared genetic variants. Phenotype scanning explored potential pleiotropic effects. MR analysis identified several proteins in plasma and CSF significantly associated with intelligence, fluid intelligence scores, and cognitive performance. For intelligence, negatively associated proteins in plasma include endoplasmic reticulum aminopeptidase 2 (ERAP2) and secretogranin III (SCG3), while positively associated proteins are myeloperoxidase (MPO), signal regulatory protein alpha (SIRPA), regulator of microtubule dynamics 1 (RMDN1), and endoplasmic reticulum lectin 1 (ERLEC1). In CSF, C1-esterase inhibitor and carboxypeptidase E (CBPE) both exhibited positive associations with intelligence. For fluid intelligence scores, negatively associated proteins in plasma are copine 1 (CPNE1) and SCG3, while positively associated proteins are nudix hydrolase 12 (NUDT12) and RMDN1. In CSF, Macrophage Stimulating Protein (MSP) demonstrated a significant negative impact. For cognitive performance, negatively associated proteins in plasma include ERAP2, tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1), and SCG3, while positively associated proteins are NUDT12, RMDN1, ERLEC1, and ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (ENPP5). In CSF, C1-esterase inhibitor was positively associated, while MSP and soluble tyrosine kinase with immunoglobulin-like and EGF-like domains 1(sTie-1) showed a negative association. Bayesian co-localization analysis revealed significant genetic overlaps between SIRPA, RMDN1, and ERLEC1 in plasma with intelligence; NUDT12 and SCG3 in plasma with fluid intelligence scores; and TIE1, NUDT12, RMDN1, ERLEC1, and ENPP5 in plasma with cognitive performance. Additionally, significant co-localization was identified between C1-esterase inhibitor and CBPE in CSF with intelligence, as well as between C1-esterase inhibitor and sTie-1 in CSF with cognitive performance. Reverse causality analysis confirmed the causal direction from proteins to cognitive traits. This study identifies specific plasma and CSF proteins that significantly impact intelligence, fluid intelligence scores, and cognitive performance. These proteins could serve as biomarkers and targets for future research and therapeutic interventions aimed at sustaining cognitive abilities and reducing impairment risks.
Collapse
Affiliation(s)
- Wei Zhao
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, 453000, China
| | - Xinyu Zhang
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, 453000, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, 453000, China
| | - Cheng Yan
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, 453000, China.
| |
Collapse
|
3
|
Erichsen PA, Henriksen EE, Nielsen JE, Ejlerskov P, Simonsen AH, Toft A. Immunological Fluid Biomarkers in Frontotemporal Dementia: A Systematic Review. Biomolecules 2025; 15:473. [PMID: 40305176 PMCID: PMC12025258 DOI: 10.3390/biom15040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 05/02/2025] Open
Abstract
Dysregulated immune activation plays a key role in the pathogenesis of neurodegenerative diseases, including frontotemporal dementia (FTD). This study reviews immunological biomarkers associated with FTD and its subtypes. A systematic search of PubMed and Web of Science was conducted for studies published before 1 January 2025, focusing on immunological biomarkers in CSF or blood from FTD patients with comparisons to healthy or neurological controls. A total of 124 studies were included, involving 6686 FTD patients and 202 immune biomarkers. Key findings include elevated levels of GFAP and MCP1/CCL2 in both CSF and blood and consistently increased CHIT1 and YKL-40 in CSF. Complement proteins from the classical activation pathway emerged as promising targets. Distinct immune markers were found to differentiate FTD from Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), with GFAP, SPARC, and SPP1 varying between FTD and AD and IL-15, HERV-K, NOD2, and CHIT1 differing between FTD and ALS. A few markers, such as Galectin-3 and PGRN, distinguished FTD subtypes. Enrichment analysis highlighted IL-10 signaling and immune cell chemotaxis as potential pathways for further exploration. This study provides an overview of immunological biomarkers in FTD, emphasizing those most relevant for future research on immune dysregulation in FTD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Anders Toft
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Rigshospitalet, 2100 Copenhagen, Denmark; (P.A.E.); (E.E.H.); (J.E.N.); (P.E.); (A.H.S.)
| |
Collapse
|
4
|
Avalos B, Kulbe JR, Ford MK, Laird AE, Walter K, Mante M, Florio JB, Boustani A, Chaillon A, Schlachetzki JCM, Sundermann EE, Volsky DJ, Rissman RA, Ellis RJ, Letendre SL, Iudicello J, Fields JA. Cannabis Use and Cannabidiol Modulate HIV-Induced Alterations in TREM2 Expression: Implications for Age-Related Neuropathogenesis. Viruses 2024; 16:1509. [PMID: 39459844 PMCID: PMC11512329 DOI: 10.3390/v16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in neuroinflammation and HIV-associated neurocognitive impairment (NCI). People with HIV (PWH) using cannabis exhibit lower inflammation and neurological disorders. We hypothesized that TREM2 dysfunction mediates HIV neuropathogenesis and can be reversed by cannabinoids. EcoHIV-infected wildtype (WT) and TREM2R47H mutant mice were used to study HIV's impact on TREM2 and behavior. TREM2 and related gene expressions were examined in monocyte-derived macrophages (MDMs) from PWH (n = 42) and people without HIV (PWoH; n = 19) with varying cannabis use via RNA sequencing and qPCR. Differences in membrane-bound and soluble TREM2 (sTREM2) were evaluated using immunocytochemistry (ICC) and ELISA. EcoHIV increased immature and C-terminal fragment forms of TREM2 in WT mice but not in TREM2R47H mice, with increased IBA1 protein in TREM2R47H hippocampi, correlating with worse memory test performance. TREM2 mRNA levels increased with age in PWoH but not in PWH. Cannabidiol (CBD) treatment increased TREM2 mRNA alone and with IL1β. RNA-seq showed the upregulation of TREM2-related transcripts in cannabis-using PWH compared to naïve controls. IL1β increased sTREM2 and reduced membrane-bound TREM2, effects partially reversed by CBD. These findings suggest HIV affects TREM2 expression modulated by cannabis and CBD, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Bryant Avalos
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jacqueline R. Kulbe
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Mary K. Ford
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Kyle Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Michael Mante
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Jazmin B. Florio
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ali Boustani
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | | | - Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Jennifer Iudicello
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| |
Collapse
|
5
|
Fieldhouse JLP, van Paassen DN, van Engelen MPE, De Boer SCM, Hartog WL, Braak S, Schoonmade LJ, Schouws SNTM, Krudop WA, Oudega ML, Mutsaerts HJMM, Teunissen CE, Vijverberg EGB, Pijnenburg YAL. The pursuit for markers of disease progression in behavioral variant frontotemporal dementia: a scoping review to optimize outcome measures for clinical trials. Front Aging Neurosci 2024; 16:1382593. [PMID: 38784446 PMCID: PMC11112081 DOI: 10.3389/fnagi.2024.1382593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative disorder characterized by diverse and prominent changes in behavior and personality. One of the greatest challenges in bvFTD is to capture, measure and predict its disease progression, due to clinical, pathological and genetic heterogeneity. Availability of reliable outcome measures is pivotal for future clinical trials and disease monitoring. Detection of change should be objective, clinically meaningful and easily assessed, preferably associated with a biological process. The purpose of this scoping review is to examine the status of longitudinal studies in bvFTD, evaluate current assessment tools and propose potential progression markers. A systematic literature search (in PubMed and Embase.com) was performed. Literature on disease trajectories and longitudinal validity of frequently-used measures was organized in five domains: global functioning, behavior, (social) cognition, neuroimaging and fluid biomarkers. Evaluating current longitudinal data, we propose an adaptive battery, combining a set of sensitive clinical, neuroimaging and fluid markers, adjusted for genetic and sporadic variants, for adequate detection of disease progression in bvFTD.
Collapse
Affiliation(s)
- Jay L. P. Fieldhouse
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Dirk N. van Paassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Marie-Paule E. van Engelen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Sterre C. M. De Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Willem L. Hartog
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Simon Braak
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, Netherlands
| | | | - Sigfried N. T. M. Schouws
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Welmoed A. Krudop
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Mardien L. Oudega
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Charlotte E. Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Everard G. B. Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| |
Collapse
|
6
|
Olğun Y, Poyraz CA, Bozluolçay M, Konukoğlu D, Poyraz BÇ. Plasma Biomarkers in Neurodegenerative Dementias: Unrevealing the Potential of Serum Oxytocin, BDNF, NPTX1, TREM2, TNF-alpha, IL-1 and Prolactin. Curr Alzheimer Res 2024; 21:109-119. [PMID: 38803182 DOI: 10.2174/0115672050313419240520051751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Dementia encompasses a range of neurodegenerative disorders characterized by cognitive decline and functional impairment. The identification of reliable biomarkers is essential for accurate diagnosis and gaining insights into the mechanisms underlying diseases. OBJECTIVE This study aimed to investigate the plasma biomarker profiles associated with Brain- Derived Neurotrophic Factor (BDNF), Oxytocin, Neuronal Pentraxin-1 (NPTX1), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), Tumor Necrosis Factor-alpha (TNF-alpha), Interleukin- 1 (IL-1) and Prolactin in Alzheimer's disease (AD), dementia with Lewy bodies (DLB), frontotemporal dementias (FTD) and healthy controls. METHODS Serum levels of the aforementioned biomarkers were analyzed in 23 AD, 28 DLB, 15 FTD patients recruited from outpatient units and 22 healthy controls. Diagnostic evaluations followed established criteria and standardized clinical tests were conducted. Blood samples were collected and analyzed using ELISA and electrochemiluminescence immunoassay methods. RESULTS Serum BDNF and oxytocin levels did not significantly differ across groups. NPTX1, TREM2, TNF-alpha and IL-1 levels also did not show significant differences among dementia groups. However, prolactin levels exhibited distinct patterns, with lower levels in male DLB patients and higher levels in female AD patients compared to controls. CONCLUSION The study findings suggest potential shared mechanisms in dementia pathophysiology and highlight the importance of exploring neuroendocrine responses, particularly in AD and DLB. However, further research is warranted to elucidate the role of these biomarkers in dementia diagnosis and disease progression.
Collapse
Affiliation(s)
- Yeşim Olğun
- Department of Psychiatry, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| | - Cana Aksoy Poyraz
- Department of Psychiatry, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| | - Melda Bozluolçay
- Department of Neurology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| | - Dildar Konukoğlu
- Department of Medical Biochemistry, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| | - Burç Çağrı Poyraz
- Department of Psychiatry, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical School, Istanbul, Turkey
| |
Collapse
|
7
|
Ling Y, Crotti A. Emerging Microglial Therapies and Targets in Clinical Trial. ADVANCES IN NEUROBIOLOGY 2024; 37:623-637. [PMID: 39207717 DOI: 10.1007/978-3-031-55529-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Modulation of microglia function for treatment of neurodegenerative and neuropsychiatric disorders is an emerging field of neuroscience drug development. This is largely attributed to human genetic association studies combined with biological evidence indicating that the innate immune system acts as a causal contributor superimposed on the reactive component of neuronal loss in neurological dysfunction. The identification of disease risk gene variants that encode immune-modulatory proteins in microglia provides tools to evaluate how microglia cellular function or dysfunction affect neuronal health. The development of clinical stage therapeutic compounds that modify myeloid cell function enables us to investigate how modulating microglia function could become a transformational approach to mitigate neurological disorders. Improving our ability to boost microglia-promoting homeostatic and reparative functions hopefully will translate into achieving a better outcome for patients affected by neurological diseases. In this chapter, we aim to provide an overview of the microglial emerging therapies and targets being studied in current clinical trials.
Collapse
Affiliation(s)
- Yan Ling
- Neuroscience Translational Medicine, Takeda Pharmaceutical Co. Ltd., Tokyo, Japan
| | | |
Collapse
|
8
|
Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front Mol Neurosci 2023; 16:1210091. [PMID: 37781097 PMCID: PMC10535108 DOI: 10.3389/fnmol.2023.1210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Approximately 70% of relapsing-remitting multiple sclerosis (RRMS) patients will develop secondary progressive multiple sclerosis (SPMS) within 10-15 years. This progression is characterized by a gradual decline in neurological functionality and increasing limitations of daily activities. Growing evidence suggests that both inflammation and neurodegeneration are associated with various pathological processes throughout the development of MS; therefore, to delay disease progression, it is critical to initiate disease-modifying therapy as soon as it is diagnosed. Currently, a diagnosis of SPMS requires a retrospective assessment of physical disability exacerbation, usually over the previous 6-12 months, which results in a delay of up to 3 years. Hence, there is a need to identify reliable and objective biomarkers for predicting and defining SPMS conversion. This review presents current knowledge of such biomarkers in the context of neurodegeneration associated with MS, and SPMS conversion.
Collapse
Affiliation(s)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marta Dziaduch
- Medical Radiology Department of Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
De Marchi F, Tondo G, Corrado L, Menegon F, Aprile D, Anselmi M, D’Alfonso S, Comi C, Mazzini L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes (Basel) 2023; 14:1658. [PMID: 37628709 PMCID: PMC10454262 DOI: 10.3390/genes14081658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FDT) are progressive neurodegenerative disorders that, in several cases, overlap in clinical presentation, and genetic and pathological disease mechanisms. About 10-15% of ALS cases and up to 40% of FTD are familial, usually with dominant traits. ALS and FTD, in several cases, share common gene mutations, such as in C9ORF72, TARDBP, SQSTM-1, FUS, VCP, CHCHD10, and TBK-1. Also, several mechanisms are involved in ALS and FTD pathogenesis, such as protein misfolding, oxidative stress, and impaired axonal transport. In addition, neuroinflammation and neuroinflammatory cells, such as astrocytes, oligodendrocytes, microglia, and lymphocytes and, overall, the cellular microenvironment, have been proposed as pivotal players in the pathogenesis the ALS-FTD spectrum disorders. This review overviews the current evidence regarding neuroinflammatory markers in the ALS/FTD continuum, focusing on the neuroinflammatory pathways involved in the genetic cases, moving from post-mortem reports to in vivo biofluid and neuroimaging data. We further discuss the potential link between genetic and autoimmune disorders and potential therapeutic implications.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Sandra D’Alfonso
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
10
|
Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, Mancuso M, Gragnaniello D, Granieri E, Pugliatti M, Di Lorenzo F, Koch G. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. Int J Mol Sci 2023; 24:11732. [PMID: 37511491 PMCID: PMC10380352 DOI: 10.3390/ijms241411732] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease of growing interest, since it accounts for up to 10% of middle-age-onset dementias and entails a social, economic, and emotional burden for the patients and caregivers. It is characterised by a (at least initially) selective degeneration of the frontal and/or temporal lobe, generally leading to behavioural alterations, speech disorders, and psychiatric symptoms. Despite the recent advances, given its extreme heterogeneity, an overview that can bring together all the data currently available is still lacking. Here, we aim to provide a state of the art on the pathogenesis of this disease, starting with established findings and integrating them with more recent ones. In particular, advances in the genetics field will be examined, assessing them in relation to both the clinical manifestations and histopathological findings, as well as considering the link with other diseases, such as amyotrophic lateral sclerosis (ALS). Furthermore, the current diagnostic criteria will be explored, including neuroimaging methods, nuclear medicine investigations, and biomarkers on biological fluids. Of note, the promising information provided by neurophysiological investigations, i.e., electroencephalography and non-invasive brain stimulation techniques, concerning the alterations in brain networks and neurotransmitter systems will be reviewed. Finally, current and experimental therapies will be considered.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Emanuela Maria Raho
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonia Pia Pace
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Emergency Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Martina Assogna
- Centro Demenze, Policlinico Tor Vergata, University of Rome 'Tor Vergata', 00133 Rome, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Daniela Gragnaniello
- Nuerology Unit, Neurosciences and Rehabilitation Department, Ferrara University Hospital, 44124 Ferrara, Italy
| | - Enrico Granieri
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
- Iit@Unife Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section of Human Physiology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Zhou W, Zhou Y, Li J. Association between Cerebrospinal Fluid Soluble TREM2, Alzheimer's Disease and Other Neurodegenerative Diseases. J Clin Med 2023; 12:jcm12103589. [PMID: 37240695 DOI: 10.3390/jcm12103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) soluble triggering receptor expressed on myeloid cells 2 (sTREM2) is a potential biomarker and therapy target for neurodegenerative diseases (NDDs). The purpose of this meta-analysis was to investigate the association between CSF sTREM2 level and NDDs, and to reveal the dynamic changes in CSF sTREM2 level in Alzheimer's disease (AD) continuum. METHODS We systematically searched PubMed, Embase, Web of Science, and Cochrane Library databases for observational studies, which compared the levels of CSF sTREM2 between NDDs and controls. Sources of heterogeneity were analyzed using sensitivity analysis, subgroup analysis and meta-regression. We assessed pooled data using a random-effects model. RESULTS Twenty-two observational studies which included 5716 participates were identified. Compared with the controls, the whole AD continuum group showed a significant increase in CSF sTREM2 level (standardized mean difference [SMD]: 0.41, 95% confidence intervals [CI]: 0.24, 0.58, p < 0.001). The mild cognitive impairment (MCI) group displayed the largest effect size (SMD, 0.49 [95% CI: 0.10, 0.88], p = 0.014), followed by the AD cohort (SMD, 0.40 [95% CI: 0.18, 0.63], p < 0.001). The increase in sTREM2 in the preclinical stage of AD (pre-AD) group was the lowest (SMD, 0.29 [95% CI: 0.03, 0.55], p = 0.031). Other NDDs also showed an increase in the CSF sTREM2 levels compared with control groups (SMD, 0.77 [95% CI: 0.37, 1.16], p < 0.001). CONCLUSIONS The pooled data confirmed that NDDs are associated with increased CSF sTREM2 level, thereby suggesting the CSF sTREM2 as a potential dynamic biomarker and therapy target for NDDs.
Collapse
Affiliation(s)
- Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
12
|
Chu M, Wen L, Jiang D, Liu L, Nan H, Yue A, Wang Y, Wang Y, Qu M, Wang N, Wu L. Peripheral inflammation in behavioural variant frontotemporal dementia: associations with central degeneration and clinical measures. J Neuroinflammation 2023; 20:65. [PMID: 36890594 PMCID: PMC9996857 DOI: 10.1186/s12974-023-02746-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Neuroinflammation plays a significant role in the progression of frontotemporal dementia (FTD). However, the association between peripheral inflammatory factors and brain neurodegeneration is poorly understood. We aimed to examine changes in peripheral inflammatory markers in patients with behavioural variant FTD (bvFTD) and explore the potential association between peripheral inflammation and brain structure, metabolism, and clinical parameters. METHODS Thirty-nine bvFTD patients and 40 healthy controls were enrolled and underwent assessment of plasma inflammatory factors, positron emission tomography/magnetic resonance imaging, and neuropsychological assessments. Group differences were tested using Student's t test, Mann‒Whitney U test, or ANOVA. Partial correlation analysis and multivariable regression analysis were implemented using age and sex as covariates to explore the association between peripheral inflammatory markers, neuroimaging, and clinical measures. The false discovery rate was used to correct for the multiple correlation test. RESULTS Plasma levels of six factors, including interleukin (IL)-2, IL-12p70, IL-17A, tumour necrosis superfamily member 13B (TNFSF/BAFF), TNFSF12 (TWEAK), and TNFRSF8 (sCD30), were increased in the bvFTD group. Five factors were significantly associated with central degeneration, including IL-2, IL-12p70, IL-17A, sCD30/TNFRSF8, and tumour necrosis factor (TNF)-α; the association between inflammation and brain atrophy was mainly distributed in frontal-limbic-striatal brain regions, whereas the association with brain metabolism was mainly in the frontal-temporal-limbic-striatal regions. BAFF/TNFSF13B, IL-4, IL-6, IL-17A and TNF-α were found to correlate with clinical measures. CONCLUSION Peripheral inflammation disturbance in patients with bvFTD participates in disease-specific pathophysiological mechanisms, which could be a promising target for diagnosis, treatment, and monitoring therapeutic efficacy.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ailing Yue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingtao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ningqun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
13
|
TDP-43 Proteinopathy Specific Biomarker Development. Cells 2023; 12:cells12040597. [PMID: 36831264 PMCID: PMC9954136 DOI: 10.3390/cells12040597] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
TDP-43 is the primary or secondary pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis, half of frontotemporal dementia cases, and limbic age-related TDP-43 encephalopathy, which clinically resembles Alzheimer's dementia. In such diseases, a biomarker that can detect TDP-43 proteinopathy in life would help to stratify patients according to their definite diagnosis of pathology, rather than in clinical subgroups of uncertain pathology. For therapies developed to target pathological proteins that cause the disease a biomarker to detect and track the underlying pathology would greatly enhance such undertakings. This article reviews the latest developments and outlooks of deriving TDP-43-specific biomarkers from the pathophysiological processes involved in the development of TDP-43 proteinopathy and studies using biosamples from clinical entities associated with TDP-43 pathology to investigate biomarker candidates.
Collapse
|
14
|
Woollacott IOC, Swift IJ, Sogorb‐Esteve A, Heller C, Knowles K, Bouzigues A, Russell LL, Peakman G, Greaves CV, Convery R, Heslegrave A, Rowe JB, Borroni B, Galimberti D, Tiraboschi P, Masellis M, Tartaglia MC, Finger E, van Swieten JC, Seelaar H, Jiskoot L, Sorbi S, Butler CR, Graff C, Gerhard A, Laforce R, Sanchez‐Valle R, de Mendonça A, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Ber IL, Levin J, Otto M, Pasquier F, Santana I, Zetterberg H, Rohrer JD. CSF glial markers are elevated in a subset of patients with genetic frontotemporal dementia. Ann Clin Transl Neurol 2022; 9:1764-1777. [PMID: 36245297 PMCID: PMC9639635 DOI: 10.1002/acn3.51672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Neuroinflammation has been shown to be an important pathophysiological disease mechanism in frontotemporal dementia (FTD). This includes activation of microglia, a process that can be measured in life through assaying different glia-derived biomarkers in cerebrospinal fluid. However, only a few studies so far have taken place in FTD, and even fewer focusing on the genetic forms of FTD. METHODS We investigated the cerebrospinal fluid concentrations of TREM2, YKL-40 and chitotriosidase using immunoassays in 183 participants from the Genetic FTD Initiative (GENFI) study: 49 C9orf72 (36 presymptomatic, 13 symptomatic), 49 GRN (37 presymptomatic, 12 symptomatic) and 23 MAPT (16 presymptomatic, 7 symptomatic) mutation carriers and 62 mutation-negative controls. Concentrations were compared between groups using a linear regression model adjusting for age and sex, with 95% bias-corrected bootstrapped confidence intervals. Concentrations in each group were correlated with the Mini-Mental State Examination (MMSE) score using non-parametric partial correlations adjusting for age. Age-adjusted z-scores were also created for the concentration of markers in each participant, investigating how many had a value above the 95th percentile of controls. RESULTS Only chitotriosidase in symptomatic GRN mutation carriers had a concentration significantly higher than controls. No group had higher TREM2 or YKL-40 concentrations than controls after adjusting for age and sex. There was a significant negative correlation of chitotriosidase concentration with MMSE in presymptomatic GRN mutation carriers. In the symptomatic groups, for TREM2 31% of C9orf72, 25% of GRN, and 14% of MAPT mutation carriers had a concentration above the 95th percentile of controls. For YKL-40 this was 8% C9orf72, 8% GRN and 0% MAPT mutation carriers, whilst for chitotriosidase it was 23% C9orf72, 50% GRN, and 29% MAPT mutation carriers. CONCLUSIONS Although chitotriosidase concentrations in GRN mutation carriers were the only significantly raised glia-derived biomarker as a group, a subset of mutation carriers in all three groups, particularly for chitotriosidase and TREM2, had elevated concentrations. Further work is required to understand the variability in concentrations and the extent of neuroinflammation across the genetic forms of FTD. However, the current findings suggest limited utility of these measures in forthcoming trials.
Collapse
Affiliation(s)
- Ione O. C. Woollacott
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Imogen J. Swift
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Aitana Sogorb‐Esteve
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Carolin Heller
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Kathryn Knowles
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Lucy L. Russell
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Caroline V. Greaves
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Rhian Convery
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | | | - James B. Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | | | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research InstituteUniversity of TorontoTorontoCanada
| | | | - Elizabeth Finger
- Department of Clinical Neurological SciencesUniversity of Western OntarioLondonOntarioCanada
| | | | - Harro Seelaar
- Department of NeurologyErasmus Medical CentreRotterdamThe Netherlands
| | - Lize Jiskoot
- Department of NeurologyErasmus Medical CentreRotterdamThe Netherlands
| | - Sandro Sorbi
- Department of NeurofarbaUniversity of FlorenceFlorenceItaly
- IRCCS Fondazione Don Carlo GnocchiFlorenceItaly
| | - Chris R. Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences DivisionUniversity of OxfordOxfordUnited Kingdom
- Department of Brain SciencesImperial College LondonUnited Kingdom
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of NeurobiologyCare Sciences and Society, Bioclinicum, Karolinska InstitutetSolnaSweden
- Unit for Hereditary Dementias, Theme AgingKarolinska University HospitalSolnaSweden
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging CentreUniversity of ManchesterManchesterUnited Kingdom
- Departments of Geriatric Medicine and Nuclear MedicineUniversity of Duisburg‐EssenEssenGermany
- Cerebral Function Unit, Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUnited Kingdom
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de MédecineUniversité LavalQuébecCanada
| | - Raquel Sanchez‐Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I SunyerUniversity of BarcelonaBarcelonaSpain
| | | | - Fermin Moreno
- Cognitive Disorders Unit, Department of NeurologyDonostia University HospitalSan SebastianGipuzkoaSpain
- Neuroscience AreaBiodonostia Health Research InstituteSan SebastianGipuzkoaSpain
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Neurology ServiceUniversity Hospitals LeuvenLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Simon Ducharme
- Douglas Mental Health University Institute, Department of PsychiatryMcGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & NeurosurgeryMcGill UniversityMontrealCanada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
- Centre de référence des démences rares ou précoces, IM2A, Département de NeurologieAP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
- Département de NeurologieAP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig‐Maximilians‐UniversitätMunichGermany
- Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems NeurologyMunichGermany
| | - Markus Otto
- Department of NeurologyUniversity of UlmUlmGermany
| | - Florence Pasquier
- Univ LilleLilleFrance
- Inserm 1172LilleFrance
- CHU, CNR‐MAJ, Labex Distalz, LiCEND LilleLilleFrance
| | - Isabel Santana
- Neurology Service, Faculty of MedicineUniversity Hospital of Coimbra (HUC), University of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Hong Kong Center for Neurodegenerative DiseasesClear Water Bay, Hong KongChina
| | - Jonathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | | |
Collapse
|
15
|
van der Ende EL, Heller C, Sogorb-Esteve A, Swift IJ, McFall D, Peakman G, Bouzigues A, Poos JM, Jiskoot LC, Panman JL, Papma JM, Meeter LH, Dopper EGP, Bocchetta M, Todd E, Cash D, Graff C, Synofzik M, Moreno F, Finger E, Sanchez-Valle R, Vandenberghe R, Laforce R, Masellis M, Tartaglia MC, Rowe JB, Butler C, Ducharme S, Gerhard A, Danek A, Levin J, Pijnenburg YAL, Otto M, Borroni B, Tagliavini F, de Mendonça A, Santana I, Galimberti D, Sorbi S, Zetterberg H, Huang E, van Swieten JC, Rohrer JD, Seelaar H. Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study. J Neuroinflammation 2022; 19:217. [PMID: 36064709 PMCID: PMC9446850 DOI: 10.1186/s12974-022-02573-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation is emerging as an important pathological process in frontotemporal dementia (FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key components of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic genetic FTD mutation carriers. METHODS We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and symptomatic GRN, C9orf72 or MAPT mutation carriers and non-carriers participating in the Genetic Frontotemporal Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corresponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). RESULTS CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared to presymptomatic carriers and non-carriers. In genetic subgroup analyses, these differences remained statistically significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated negatively with grey matter volume of FTD-related regions and positively with NfL and GFAP. In symptomatic carriers, correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores. CONCLUSIONS Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of complement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their potential to monitor dysregulation of the complement system in FTD.
Collapse
Affiliation(s)
- Emma L. van der Ende
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Imogen J. Swift
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David McFall
- Department of Pathology, University of California San Francisco, San Francisco, USA
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jackie M. Poos
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lize C. Jiskoot
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jessica L. Panman
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Janne M. Papma
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lieke H. Meeter
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Elise G. P. Dopper
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Emily Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, San Sebastian, Gipuzkoa Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa Spain
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON Canada
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département Des Sciences Neurologiques, CHU de Québec, Université Laval, Québec, Canada
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON Canada
| | - James B. Rowe
- Cambridge University Centre for Frontotemporal Dementia, University of Cambridge, Cambridge, UK
| | - Chris Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute and McGill University Health Centre, McGill University, Montreal, Québec Canada
| | - Alexander Gerhard
- Department of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, Essen, Germany
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Adrian Danek
- Neurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Neurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yolande A. L. Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Markus Otto
- Department of Neurology, Universität Ulm, Ulm, Germany
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Daniela Galimberti
- Fondazione IRCCS, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
- University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Eric Huang
- Department of Pathology, University of California San Francisco, San Francisco, USA
| | - John C. van Swieten
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jonathan D. Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Harro Seelaar
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
16
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
17
|
Dong MH, Zhou LQ, Tang Y, Chen M, Xiao J, Shang K, Deng G, Qin C, Tian DS. CSF sTREM2 in neurological diseases: a two-sample Mendelian randomization study. J Neuroinflammation 2022; 19:79. [PMID: 35382840 PMCID: PMC8985278 DOI: 10.1186/s12974-022-02443-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been described as a biomarker for microglial activation, which were observed increased in a variety of neurological disorders. Objective Our objective was to explore whether genetically determined CSF sTREM2 levels are causally associated with different neurological diseases by conducting a two-sample Mendelian randomization (MR) study. Methods Single nucleotide polymorphisms significantly associated with CSF sTREM2 levels were selected as instrumental variables to estimate the causal effects on clinically common neurological diseases, including stroke, Alzheimer’s diseases, Parkinson’s diseases, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy and their subtypes. Summary-level statistics of both exposure and outcomes were applied in an MR framework. Results Genetically predicted per 1 pg/dL increase of CSF sTREM2 levels was associated with higher risk of multiple sclerosis (OR = 1.038, 95%CI = 1.014–1.064, p = 0.002). Null association was found in risk of other included neurological disorders. Conclusions These findings provide support for a potential causal relationship between elevated CSF sTREM2 levels and higher risk of multiple sclerosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02443-9.
Collapse
Affiliation(s)
- Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Filipello F, Goldsbury C, You SF, Locca A, Karch CM, Piccio L. Soluble TREM2: Innocent bystander or active player in neurological diseases? Neurobiol Dis 2022; 165:105630. [PMID: 35041990 PMCID: PMC10108835 DOI: 10.1016/j.nbd.2022.105630] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed by macrophages and microglia in the central nervous system (CNS). TREM2 has attracted a lot of interest in the past decade for its critical role in modulating microglia functions under homeostatic conditions and in neurodegenerative diseases. Genetic variation in TREM2 is sufficient to cause Nasu-Hakola disease, a rare pre-senile dementia with bone cysts, and to increase risk for Alzheimer's disease, frontotemporal dementia, and other neurodegenerative disorders. Beyond the role played by TREM2 genetic variants in these diseases, TREM2 engagement is a key step in microglia activation in response to different types of tissue injury (e.g. β-Amyloid deposition, demyelination, apoptotic cell death) leading to enhanced microglia metabolism, phagocytosis, proliferation and survival. TREM2 also exists as a soluble form (sTREM2), generated from receptor shedding or alternative splicing, which is detectable in plasma and cerebrospinal fluid (CSF). Genetic variation, physiological conditions and disease status impact CSF sTREM2 levels. Clinical and preclinical studies suggest that targeting and/or monitoring sTREM2 could have clinical and therapeutic implications. Despite the critical role of sTREM2 in neurologic disease, its function remains poorly understood. Here, we review the current literature on sTREM2 regarding its origin, genetic variation, and possible functions as a biomarker in neurological disorders and as a potential active player in CNS diseases and target for therapies.
Collapse
Affiliation(s)
- Fabia Filipello
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Claire Goldsbury
- Brain and Mind Centre and Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Shih Feng You
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alberto Locca
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Brain and Mind Centre and Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Zhang SS, Zhu L, Peng Y, Zhang L, Chao FL, Jiang L, Xiao Q, Liang X, Tang J, Yang H, He Q, Guo YJ, Zhou CN, Tang Y. Long-term running exercise improves cognitive function and promotes microglial glucose metabolism and morphological plasticity in the hippocampus of APP/PS1 mice. J Neuroinflammation 2022; 19:34. [PMID: 35123512 PMCID: PMC8817568 DOI: 10.1186/s12974-022-02401-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background The role of physical exercise in the prevention of Alzheimer’s disease (AD) has been widely studied. Microglia play an important role in AD. Triggering receptor expressed in myeloid cells 2 (TREM2) is expressed on microglia and is known to mediate microglial metabolic activity and brain glucose metabolism. However, the relationship between brain glucose metabolism and microglial metabolic activity during running exercise in APP/PS1 mice remains unclear. Methods Ten-month-old male APP/PS1 mice and wild-type mice were randomly divided into sedentary groups or running groups (AD_Sed, WT_Sed, AD_Run and WT_Run, n = 20/group). Running mice had free access to a running wheel for 3 months. Behavioral tests, [18]F-FDG-PET and hippocampal RNA-Seq were performed. The expression levels of microglial glucose transporter (GLUT5), TREM2, soluble TREM2 (sTREM2), TYRO protein tyrosine kinase binding protein (TYROBP), secreted phosphoprotein 1 (SPP1), and phosphorylated spleen tyrosine kinase (p-SYK) were estimated by western blot or ELISA. Immunohistochemistry, stereological methods and immunofluorescence were used to investigate the morphology, proliferation and activity of microglia. Results Long-term voluntary running significantly improved cognitive function in APP/PS1 mice. Although there were few differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) showed enriched glycometabolic pathways in APP/PS1 running mice. Running exercise increased FDG uptake in the hippocampus of APP/PS1 mice, as well as the protein expression of GLUT5, TREM2, SPP1 and p-SYK. The level of sTREM2 decreased in the plasma of APP/PS1 running mice. The number of microglia, the length and endpoints of microglial processes, and the ratio of GLUT5+/IBA1+ microglia were increased in the dentate gyrus (DG) of APP/PS1 running mice. Running exercise did not alter the number of 5-bromo-2′-deoxyuridine (BrdU)+/IBA1+ microglia but reduced the immunoactivity of CD68 in the hippocampus of APP/PS1 mice. Conclusions Running exercise inhibited TREM2 shedding and maintained TREM2 protein levels, which were accompanied by the promotion of brain glucose metabolism, microglial glucose metabolism and morphological plasticity in the hippocampus of AD mice. Microglia might be a structural target responsible for the benefits of running exercise in AD. Promoting microglial glucose metabolism and morphological plasticity modulated by TREM2 might be a novel strategy for AD treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02401-5.
Collapse
|
20
|
Reyes-Leiva D, Dols-Icardo O, Sirisi S, Cortés-Vicente E, Turon-Sans J, de Luna N, Blesa R, Belbin O, Montal V, Alcolea D, Fortea J, Lleó A, Rojas-García R, Illán-Gala I. Pathophysiological Underpinnings of Extra-Motor Neurodegeneration in Amyotrophic Lateral Sclerosis: New Insights From Biomarker Studies. Front Neurol 2022; 12:750543. [PMID: 35115992 PMCID: PMC8804092 DOI: 10.3389/fneur.2021.750543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) lie at opposing ends of a clinical, genetic, and neuropathological continuum. In the last decade, it has become clear that cognitive and behavioral changes in patients with ALS are more frequent than previously recognized. Significantly, these non-motor features can impact the diagnosis, prognosis, and management of ALS. Partially overlapping neuropathological staging systems have been proposed to describe the distribution of TAR DNA-binding protein 43 (TDP-43) aggregates outside the corticospinal tract. However, the relationship between TDP-43 inclusions and neurodegeneration is not absolute and other pathophysiological processes, such as neuroinflammation (with a prominent role of microglia), cortical hyperexcitability, and synaptic dysfunction also play a central role in ALS pathophysiology. In the last decade, imaging and biofluid biomarker studies have revealed important insights into the pathophysiological underpinnings of extra-motor neurodegeneration in the ALS-FTLD continuum. In this review, we first summarize the clinical and pathophysiological correlates of extra-motor neurodegeneration in ALS. Next, we discuss the diagnostic and prognostic value of biomarkers in ALS and their potential to characterize extra-motor neurodegeneration. Finally, we debate about how biomarkers could improve the diagnosis and classification of ALS. Emerging imaging biomarkers of extra-motor neurodegeneration that enable the monitoring of disease progression are particularly promising. In addition, a growing arsenal of biofluid biomarkers linked to neurodegeneration and neuroinflammation are improving the diagnostic accuracy and identification of patients with a faster progression rate. The development and validation of biomarkers that detect the pathological aggregates of TDP-43 in vivo are notably expected to further elucidate the pathophysiological underpinnings of extra-motor neurodegeneration in ALS. Novel biomarkers tracking the different aspects of ALS pathophysiology are paving the way to precision medicine approaches in the ALS-FTLD continuum. These are essential steps to improve the diagnosis and staging of ALS and the design of clinical trials testing novel disease-modifying treatments.
Collapse
Affiliation(s)
- David Reyes-Leiva
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sonia Sirisi
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Janina Turon-Sans
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Noemi de Luna
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
- *Correspondence: Ignacio Illán-Gala
| |
Collapse
|
21
|
Borghesani V, DeLeon J, Gorno-Tempini ML. Frontotemporal dementia: A unique window on the functional role of the temporal lobes. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:429-448. [PMID: 35964986 PMCID: PMC9793689 DOI: 10.1016/b978-0-12-823493-8.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) is an umbrella term covering a plethora of progressive changes in executive functions, motor abilities, behavior, and/or language. Different clinical syndromes have been described in relation to localized atrophy, informing on the functional networks that underlie these specific cognitive, emotional, and behavioral processes. These functional declines are linked with the underlying neurodegeneration of frontal and/or temporal lobes due to diverse molecular pathologies. Initially, the accumulation of misfolded proteins targets specifically susceptible cell assemblies, leading to relatively focal neurodegeneration that later spreads throughout large-scale cortical networks. Here, we discuss the most recent clinical, neuropathological, imaging, and genetics findings in FTD-spectrum syndromes affecting the temporal lobe. We focus on the semantic variant of primary progressive aphasia and its mirror image, the right temporal variant of FTD. Incipient focal atrophy of the left anterior temporal lobe (ATL) manifests with predominant naming, word comprehension, reading, and object semantic deficits, while cases of predominantly right ATL atrophy present with impairments of socioemotional, nonverbal semantic, and person-specific knowledge. Overall, the observations in FTD allow for crucial clinical-anatomic inferences, shedding light on the role of the temporal lobes in both cognition and complex behaviors. The concerted activity of both ATLs is critical to ensure that percepts are translated into concepts, yet important hemispheric differences should be acknowledged. On one hand, the left ATL attributes meaning to linguistic, external stimuli, thus supporting goal-oriented, action-related behaviors (e.g., integrating sounds and letters into words). On the other hand, the right ATL assigns meaning to emotional, visceral stimuli, thus guiding socially relevant behaviors (e.g., integrating body sensations into feelings of familiarity).
Collapse
Affiliation(s)
- Valentina Borghesani
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal, Montréal, QC, Canada.
| | - Jessica DeLeon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| |
Collapse
|
22
|
Sogorb-Esteve A, Colas RA, Dalli J, Rohrer JD. Differential Lipid Mediator Involvement in the Different Forms of Genetic Frontotemporal Dementia: Novel Insights into Neuroinflammation. J Alzheimers Dis 2021; 84:283-289. [PMID: 34542074 DOI: 10.3233/jad-210559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The pathophysiology of frontotemporal dementia (FTD) is poorly understood but recent studies implicate neuroinflammation as an important factor. However, little is known so far about the role of the resolution pathway, the response to inflammation that allows tissue to return to a homeostatic state. OBJECTIVE We aimed to measure the concentrations of lipid mediators including specialized proresolving mediators (SPMs) and proinflammatory eicosanoids in the cerebrospinal fluid (CSF) of people with FTD. METHODS 15 people with genetic FTD (5 with C9orf72 expansions, 5 with GRN mutations, and 5 with MAPT mutations) were recruited to the study along with 15 age- and sex-matched healthy controls. Targeted liquid chromatography-tandem mass spectrometry techniques were used to measure the CSF concentrations of lipid mediators in the docosahexaenoic acid (DHA), n-3 docosapentaenoic acid, eicosapentaenoic acid, and arachidonic acid (AA) metabolomes. RESULTS Only the C9orf72 expansion carriers had higher concentrations of SPMs (DHA-derived maresins and DHA-derived resolvins) compared with controls. In contrast, GRN and MAPT mutation carriers had normal concentrations of SPMs but significantly higher concentrations of the proinflammatory AA-derived leukotrienes and AA-derived thromboxane compared with controls. Additionally, the C9orf72 expansion carriers also had significantly higher concentrations of AA-derived leukotrienes. CONCLUSION This initial pilot study of lipid mediators provides a window into a novel biological pathway not previously investigated in FTD, showing differential patterns of alterations between those with C9orf72 expansions (where SPMs are higher) and GRN and MAPT mutations (where only proinflammatory eicosanoids are higher).
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, University College London, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Romain A Colas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
23
|
Hartnell IJ, Blum D, Nicoll JAR, Dorothee G, Boche D. Glial cells and adaptive immunity in frontotemporal dementia with tau pathology. Brain 2021; 144:724-745. [PMID: 33527991 DOI: 10.1093/brain/awaa457] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is involved in the aetiology of many neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and motor neuron disease. Whether neuroinflammation also plays an important role in the pathophysiology of frontotemporal dementia is less well known. Frontotemporal dementia is a heterogeneous classification that covers many subtypes, with the main pathology known as frontotemporal lobar degeneration. The disease can be categorized with respect to the identity of the protein that causes the frontotemporal lobar degeneration in the brain. The most common subgroup describes diseases caused by frontotemporal lobar degeneration associated with tau aggregation, also known as primary tauopathies. Evidence suggests that neuroinflammation may play a role in primary tauopathies with genome-wide association studies finding enrichment of genetic variants associated with specific inflammation-related gene loci. These loci are related to both the innate immune system, including brain resident microglia, and the adaptive immune system through possible peripheral T-cell involvement. This review discusses the genetic evidence and relates it to findings in animal models expressing pathogenic tau as well as to post-mortem and PET studies in human disease. Across experimental paradigms, there seems to be a consensus regarding the involvement of innate immunity in primary tauopathies, with increased microglia and astrocyte density and/or activation, as well as increases in pro-inflammatory markers. Whilst it is less clear as to whether inflammation precedes tau aggregation or vice versa; there is strong evidence to support a microglial contribution to the propagation of hyperphosphorylated in tau frontotemporal lobar degeneration associated with tau aggregation. Experimental evidence-albeit limited-also corroborates genetic data pointing to the involvement of cellular adaptive immunity in primary tauopathies. However, it is still unclear whether brain recruitment of peripheral immune cells is an aberrant result of pathological changes or a physiological aspect of the neuroinflammatory response to the tau pathology.
Collapse
Affiliation(s)
- Iain J Hartnell
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Blum
- University of Lille, Inserm, CHU-Lille, UMR-S 1172-Lille Neuroscience and Cognition, Lille, France.,Alzheimer & Tauopathies, LabEx DISTALZ, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Guillaume Dorothee
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
24
|
Zhang PF, Hu H, Tan L, Yu JT. Microglia Biomarkers in Alzheimer's Disease. Mol Neurobiol 2021; 58:3388-3404. [PMID: 33713018 DOI: 10.1007/s12035-021-02348-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Early detection and clinical diagnosis of Alzheimer's disease (AD) have become an extremely important link in the prevention and treatment of AD. Because of the occult onset, the diagnosis and treatment of AD based on clinical symptoms are increasingly challenged by current severe situations. Therefore, molecular diagnosis models based on early AD pathological markers have received more attention. Among the possible pathological mechanisms, microglia which are necessary for normal brain function are highly expected and have been continuously studied in various models. Several AD biomarkers already exist, but currently there is a paucity of specific and sensitive microglia biomarkers which can accurately measure preclinical AD. Bringing microglia biomarkers into the molecular diagnostic system which is based on fluid and neuroimaging will play an important role in future scientific research and clinical practice. Furthermore, developing novel, more specific, and sensitive microglia biomarkers will make it possible to pharmaceutically target chemical pathways that preserve beneficial microglial functions in response to AD pathology. This review discusses microglia biomarkers in the context of AD.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
van der Ende EL, Morenas-Rodriguez E, McMillan C, Grossman M, Irwin D, Sanchez-Valle R, Graff C, Vandenberghe R, Pijnenburg YAL, Laforce R, Ber IL, Lleo A, Haass C, Suarez-Calvet M, van Swieten JC, Seelaar H. CSF sTREM2 is elevated in a subset in GRN-related frontotemporal dementia. Neurobiol Aging 2021; 103:158.e1-158.e5. [PMID: 33896652 DOI: 10.1016/j.neurobiolaging.2021.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Excessive microglial activation might be a central pathological process in GRN-related frontotemporal dementia (FTD-GRN). We measured soluble triggering receptor expressed on myeloid cells 2 (sTREM2), which is shed from disease-associated microglia following cleavage of TREM2, in cerebrospinal fluid of 34 presymptomatic and 35 symptomatic GRN mutation carriers, 6 presymptomatic and 32 symptomatic C9orf72 mutation carriers and 67 healthy noncarriers by ELISA. Although no group differences in sTREM2 levels were observed (GRN: symptomatic (median 5.2 ng/mL, interquartile range [3.9-9.2]) vs. presymptomatic (4.3 ng/mL [2.6-6.1]) vs. noncarriers (4.2 ng/mL [2.6-5.5]): p = 0.059; C9orf72: symptomatic (4.3 [2.9-7.0]) vs. presymptomatic (3.2 [2.2-4.2]) vs. noncarriers: p = 0.294), high levels were seen in a subset of GRN, but not C9orf72, mutation carriers, which might reflect differential TREM2-related microglial activation. Interestingly, 2 presymptomatic carriers with low sTREM2 levels developed symptoms after 1 year, whereas 2 with high levels became symptomatic after >5 years. While sTREM2 is not a promising diagnostic biomarker for FTD-GRN or FTD-C9orf72, further research might elucidate its potential to monitor microglial activity and predict disease progression.
Collapse
Affiliation(s)
- Emma L van der Ende
- Alzheimer Center Rotterdam and Dept. of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Estrella Morenas-Rodriguez
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximillians-Universität München, Munich, Germany
| | - Corey McMillan
- Dept. of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Dept. of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David Irwin
- Dept. of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clinic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Caroline Graff
- Karolinska Institutet, Dept. NVS, Division of Neurogeriatrics, Bioclinicum, Stockholm, Sweden; Unit of Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire du CHU de Québec, Département des Sciences Neurologiques, Université Laval, Québec, Canada
| | - Isabelle Le Ber
- APHP, Reference Centre for Rare or Early Onset Dementias, IM2A, Department of Neurology, Hôpital La Pitié-Salpêtrière, Paris, France; Sorbonne Université, Paris Brain Institute, Institut du Cerveau, ICM, Inserm U1127, CNRS UMR 7225, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alberto Lleo
- Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximillians-Universität München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Suarez-Calvet
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - John C van Swieten
- Alzheimer Center Rotterdam and Dept. of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Harro Seelaar
- Alzheimer Center Rotterdam and Dept. of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
26
|
Swift IJ, Sogorb-Esteve A, Heller C, Synofzik M, Otto M, Graff C, Galimberti D, Todd E, Heslegrave AJ, van der Ende EL, Van Swieten JC, Zetterberg H, Rohrer JD. Fluid biomarkers in frontotemporal dementia: past, present and future. J Neurol Neurosurg Psychiatry 2021; 92:204-215. [PMID: 33188134 DOI: 10.1136/jnnp-2020-323520] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022]
Abstract
The frontotemporal dementia (FTD) spectrum of neurodegenerative disorders includes a heterogeneous group of conditions. However, following on from a series of important molecular studies in the early 2000s, major advances have now been made in the understanding of the pathological and genetic underpinnings of the disease. In turn, alongside the development of novel methodologies for measuring proteins and other molecules in biological fluids, the last 10 years have seen a huge increase in biomarker studies within FTD. This recent past has focused on attempting to develop markers that will help differentiate FTD from other dementias (particularly Alzheimer's disease (AD)), as well as from non-neurodegenerative conditions such as primary psychiatric disorders. While cerebrospinal fluid, and more recently blood, markers of AD have been successfully developed, specific markers identifying primary tauopathies or TDP-43 proteinopathies are still lacking. More focus at the moment has been on non-specific markers of neurodegeneration, and in particular, multiple studies of neurofilament light chain have highlighted its importance as a diagnostic, prognostic and staging marker of FTD. As clinical trials get under way in specific genetic forms of FTD, measures of progranulin and dipeptide repeat proteins in biofluids have become important potential measures of therapeutic response. However, understanding of whether drugs restore cellular function will also be important, and studies of key pathophysiological processes, including neuroinflammation, lysosomal function and synaptic health, are also now becoming more common. There is much still to learn in the fluid biomarker field in FTD, but the creation of large multinational cohorts is facilitating better powered studies and will pave the way for larger omics studies, including proteomics, metabolomics and lipidomics, as well as investigations of multimodal biomarker combinations across fluids, brain imaging and other domains. Here we provide an overview of the past, present and future of fluid biomarkers within the FTD field.
Collapse
Affiliation(s)
- Imogen Joanna Swift
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Caroline Graff
- Division for Neurogeriatrics, Center for Alzheimer Research, Department of NVS, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy.,Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Emily Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
| | | | | | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan Daniel Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
27
|
Fluid Biomarkers of Frontotemporal Lobar Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:123-139. [PMID: 33433873 DOI: 10.1007/978-3-030-51140-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A timely diagnosis of frontotemporal degeneration (FTD) is frequently challenging due to the heterogeneous symptomatology and poor phenotype-pathological correlation. Fluid biomarkers that reflect FTD pathophysiology could be instrumental in both clinical practice and pharmaceutical trials. In recent years, significant progress has been made in developing biomarkers of neurodegenerative diseases: amyloid-β and tau in cerebrospinal fluid (CSF) can be used to exclude Alzheimer's disease, while neurofilament light chain (NfL) is emerging as a promising, albeit nonspecific, marker of neurodegeneration in both CSF and blood. Gene-specific biomarkers such as PGRN in GRN mutation carriers and dipeptide repeat proteins in C9orf72 mutation carriers are potential target engagement markers in genetic FTD trials. Novel techniques capable of measuring very low concentrations of brain-derived proteins in peripheral fluids are facilitating studies of blood biomarkers as a minimally invasive alternative to CSF. A major remaining challenge is the identification of a biomarker that can be used to predict the neuropathological substrate in sporadic FTD patients.
Collapse
|
28
|
Tiraboschi JM, Rojas J, Zetterberg H, Blennow K, Niubo J, Gostner J, Navarro-Alcaraz A, Piatti C, Fuchs D, Gisslén M, Rigo-Bonnin R, Martinez E, Podzamczer D. No Changes in Human Immunodeficiency Virus (HIV) Suppression and Inflammatory Markers in Cerebrospinal Fluid in Patients Randomly Switched to Dolutegravir Plus Lamivudine (Spanish HIV/AIDS Research Network, PreEC/RIS 62). J Infect Dis 2020; 223:1928-1933. [PMID: 33049035 DOI: 10.1093/infdis/jiaa645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 11/14/2022] Open
Abstract
A major concern of human immunodeficiency virus (HIV) dual therapy is a potentially lower efficacy in viral reservoirs, especially in the central nervous system (CNS). We evaluated HIV RNA, neuronal injury, and inflammatory biomarkers and dolutegravir (DTG) exposure in cerebrospinal fluid (CSF) in patients switching to DTG plus lamivudine (3TC). All participants maintained viral suppression in plasma and CSF at week 48. We observed no increase in CSF markers of inflammation or neuronal injury. Median (interquartile range) total and unbound DTG in CSF were 7.3 (5.9-8.4) and 1.7 (1.2-1.9) ng/mL, respectively. DTG+3TC may maintain viral control without changes in inflammatory/injury markers within the CNS reservoir.
Collapse
Affiliation(s)
- Juan M Tiraboschi
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| | - Jhon Rojas
- Infectious Diseases Service, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jordi Niubo
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| | | | - Antonio Navarro-Alcaraz
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| | - Camila Piatti
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| | | | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Raul Rigo-Bonnin
- Pharmacology Service, Bellvitge University Hospital, Barcelona, Spain
| | - Esteban Martinez
- Infectious Diseases Service, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Daniel Podzamczer
- Bellvitge University Hospital. Bellvitge Biomedical Research Institute. University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Knapskog AB, Henjum K, Idland AV, Eldholm RS, Persson K, Saltvedt I, Watne LO, Engedal K, Nilsson LNG. Cerebrospinal fluid sTREM2 in Alzheimer's disease: comparisons between clinical presentation and AT classification. Sci Rep 2020; 10:15886. [PMID: 32985583 PMCID: PMC7522273 DOI: 10.1038/s41598-020-72878-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed by microglia. Its cleaved fragments, soluble TREM2 (sTREM2), can be measured in the cerebrospinal fluid (CSF). Previous studies indicate higher CSF sTREM2 in symptomatic AD; however most of these studies have included biomarker positive AD cases and biomarker negative controls. The aim of the study was to explore potential differences in the CSF level of sTREM2 and factors associated with an increased sTREM2 level in patients diagnosed with mild cognitive impairment (MCI) or dementia due to AD compared with cognitively unimpaired controls as judged by clinical symptoms and biomarker category (AT). We included 299 memory clinic patients, 62 (20.7%) with AD-MCI and 237 (79.3%) with AD dementia, and 113 cognitively unimpaired controls. CSF measures of the core biomarkers were applied to determine AT status. CSF sTREM2 was analyzed by ELISA. Patients presented with comparable CSF sTREM2 levels as the cognitively unimpaired (9.6 ng/ml [SD 4.7] versus 8.8 ng/ml [SD 3.6], p = 0.27). We found that CSF sTREM2 associated with age-related neuroinflammation and tauopathy irrespectively of amyloid β, APOE ε4 status or gender. The findings were similar in both symptomatic and non-symptomatic individuals.
Collapse
Affiliation(s)
- Anne-Brita Knapskog
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.
| | - Kristi Henjum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Geriatric Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ane-Victoria Idland
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Geriatrics, St Olavs Hospital, University Hospital of Trondheim, Trondheim, Norway
| | - Karin Persson
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.,Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Geriatrics, St Olavs Hospital, University Hospital of Trondheim, Trondheim, Norway
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway
| | - Knut Engedal
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Postboks 4956, Nydalen, 0424, Oslo, Norway.,Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Lars N G Nilsson
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
30
|
Woollacott IO, Nicholas JM, Heller C, Foiani MS, Moore KM, Russell LL, Paterson RW, Keshavan A, Schott JM, Warren JD, Heslegrave A, Zetterberg H, Rohrer JD. Cerebrospinal Fluid YKL-40 and Chitotriosidase Levels in Frontotemporal Dementia Vary by Clinical, Genetic and Pathological Subtype. Dement Geriatr Cogn Disord 2020; 49:56-76. [PMID: 32344399 PMCID: PMC7513620 DOI: 10.1159/000506282] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic glial dysfunction may contribute to the pathogenesis of frontotemporal dementia (FTD). Cerebrospinal fluid (CSF) levels of glia-derived proteins YKL-40 and chitotriosidase are increased in Alzheimer's disease (AD) but have not been explored in detail across the spectrum of FTD. METHODS We investigated whether CSF YKL-40 and chitotriosidase levels differed between FTD patients and controls, across different clinical and genetic subtypes of FTD, and between individuals with a clinical FTD syndrome due to AD versus non-AD (frontotemporal lobar degeneration, FTLD) pathology (based on CSF neurodegenerative biomarkers). Eighteen healthy controls and 64 people with FTD (behavioural variant FTD, n = 20; primary progressive aphasia [PPA], n = 44: nfvPPA, n = 16, svPPA, n = 11, lvPPA, n = 14, PPA-NOS, n = 3) were included. 10/64 had familial FTD, with mutations in GRN(n = 3), MAPT(n = 4), or C9orf72 (n = 3). 15/64 had neurodegenerative biomarkers consistent with AD pathology. Levels were measured by immunoassay and compared using multiple linear regressions. We also examined relationships of YKL-40 and chitotriosidase with CSF total tau (T-tau), phosphorylated tau 181 (P-tau) and β-amyloid 1-42 (Aβ42), with each other, and with age and disease du-ration. RESULTS CSF YKL-40 and chitotriosidase levels were higher in FTD, particularly lvPPA (both) and nfvPPA (YKL-40), compared with controls. GRN mutation carriers had higher levels of both proteins than controls and C9orf72 expansion carriers, and YKL-40 was higher in MAPT mutation carriers than controls. Individuals with underlying AD pathology had higher YKL-40 and chitotriosidase levels than both controls and those with likely FTLD pathology. CSF YKL-40 and chitotriosidase levels were variably associated with levels of T-tau, P-tau and Aβ42, and with each other, depending on clinical syndrome and underlying pathology. CSF YKL-40 but not chitotriosidase was associated with age, but not disease duration. CONCLUSION CSF YKL-40 and chitotriosidase levels are increased in individuals with clinical FTD syndromes, particularly due to AD pathology. In a preliminary analysis of genetic groups, levels of both proteins are found to be highly elevated in FTD due to GRN mutations, while YKL-40 is increased in individuals with MAPT mutations. As glia-derived protein levels generally correlate with T-tau and P-tau levels, they may reflect the glial response to neurodegeneration in FTLD.
Collapse
Affiliation(s)
- Ione O.C. Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Jennifer M. Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carolin Heller
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Martha S. Foiani
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Katrina M. Moore
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Lucy L. Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Ross W. Paterson
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Jonathan M. Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Jason D. Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Amanda Heslegrave
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Henrik Zetterberg
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan D. Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom,*Dr. Jonathan D. Rohrer, Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London WC1N 3BG (UK),
| |
Collapse
|
31
|
Altmann A, Cash DM, Bocchetta M, Heller C, Reynolds R, Moore K, Convery RS, Thomas DL, van Swieten JC, Moreno F, Sanchez-Valle R, Borroni B, Laforce R, Masellis M, Tartaglia MC, Graff C, Galimberti D, Rowe JB, Finger E, Synofzik M, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Frisoni G, Ghidoni R, Sorbi S, Otto M, Ryten M, Rohrer JD. Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia. Brain Commun 2020; 2. [PMID: 33210084 PMCID: PMC7667525 DOI: 10.1093/braincomms/fcaa122] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia is a heterogeneous neurodegenerative disorder characterized by neuronal loss in the frontal and temporal lobes. Despite progress in understanding which genes are associated with the aetiology of frontotemporal dementia, the biological basis of how mutations in these genes lead to cell loss in specific cortical regions remains unclear. In this work we combined gene expression data for 16,772 genes from the Allen Institute for Brain Science atlas with brain maps of gray matter atrophy in symptomatic C9orf72, GRN and MAPT mutation carriers obtained from the Genetic Frontotemporal dementia Initiative study. No significant association was seen between C9orf72, GRN and MAPT expression and the atrophy patterns in the respective genetic groups. After adjusting for spatial autocorrelation, between 1,000 and 5,000 genes showed a negative or positive association with the atrophy pattern within each individual genetic group, with the most significantly associated genes being TREM2, SSBP3 and GPR158 (negative association in C9orf72, GRN and MAPT respectively) and RELN, MXRA8 and LPA (positive association in C9orf72, GRN and MAPT respectively). An overrepresentation analysis identified a negative association with genes involved in mitochondrial function, and a positive association with genes involved in vascular and glial cell function in each of the genetic groups. A set of 423 and 700 genes showed significant positive and negative association, respectively, with atrophy patterns in all three maps. The gene set with increased expression in spared cortical regions was enriched for neuronal and microglial genes, while the gene set with increased expression in atrophied regions was enriched for astrocyte and endothelial cell genes. Our analysis suggests that these cell types may play a more active role in the onset of neurodegeneration in frontotemporal dementia than previously assumed, and in the case of the positively-associated cell marker genes, potentially through emergence of neurotoxic astrocytes and alteration in the blood-brain barrier respectively.
Collapse
Affiliation(s)
- Andre Altmann
- Centre of Medical Image Computing, Department of Medical Physics, University College London, London, UK
| | - David M Cash
- Centre of Medical Image Computing, Department of Medical Physics, University College London, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Carolin Heller
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Regina Reynolds
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Katrina Moore
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - David L Thomas
- Neuroimaging Analysis Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
| | | | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Daniela Galimberti
- University of Milan, Centro Dino Ferrari, Milan, Italy.,Fondazione IRCCS Ospedale Policlinico, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Neurology Service, University Hospitals Leuven, Belgium
| | - Alexandre de Mendonça
- Laboratory of Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologica Carlo Besta, Milano, Italy
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Alex Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.,Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Johannes Levin
- Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giovanni Frisoni
- Instituto di Recovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm
| | - Mina Ryten
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | | |
Collapse
|
32
|
Kleineidam L, Chouraki V, Próchnicki T, van der Lee SJ, Madrid-Márquez L, Wagner-Thelen H, Karaca I, Weinhold L, Wolfsgruber S, Boland A, Martino Adami PV, Lewczuk P, Popp J, Brosseron F, Jansen IE, Hulsman M, Kornhuber J, Peters O, Berr C, Heun R, Frölich L, Tzourio C, Dartigues JF, Hüll M, Espinosa A, Hernández I, de Rojas I, Orellana A, Valero S, Stringa N, van Schoor NM, Huisman M, Scheltens P, Rüther E, Deleuze JF, Wiltfang J, Tarraga L, Schmid M, Scherer M, Riedel-Heller S, Heneka MT, Amouyel P, Jessen F, Boada M, Maier W, Schneider A, González-Pérez A, van der Flier WM, Wagner M, Lambert JC, Holstege H, Sáez ME, Latz E, Ruiz A, Ramirez A. PLCG2 protective variant p.P522R modulates tau pathology and disease progression in patients with mild cognitive impairment. Acta Neuropathol 2020; 139:1025-1044. [PMID: 32166339 PMCID: PMC7244617 DOI: 10.1007/s00401-020-02138-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
A rare coding variant (rs72824905, p.P522R) conferring protection against Alzheimer's disease (AD) was identified in the gene encoding the enzyme phospholipase-C-γ2 (PLCG2) that is highly expressed in microglia. To explore the protective nature of this variant, we employed latent process linear mixed models to examine the association of p.P522R with longitudinal cognitive decline in 3595 MCI patients, and in 10,097 individuals from population-based studies. Furthermore, association with CSF levels of pTau181, total tau, and Aβ1-42 was assessed in 1261 MCI patients. We found that MCI patients who carried the p.P522R variant showed a slower rate of cognitive decline compared to non-carriers and that this effect was mediated by lower pTau181 levels in CSF. The effect size of the association of p.P522R with the cognitive decline and pTau181 was similar to that of APOE-ε4, the strongest genetic risk factor for AD. Interestingly, the protective effect of p.P522R was more pronounced in MCI patients with low Aβ1-42 levels suggesting a role of PLCG2 in the response to amyloid pathology. In line with this hypothesis, we observed no protective effect of the PLCG2 variant on the cognitive decline in population-based studies probably due to the lower prevalence of amyloid positivity in these samples compared to MCI patients. Concerning the potential biological underpinnings, we identified a network of co-expressed proteins connecting PLCG2 to APOE and TREM2 using unsupervised co-regulatory network analysis. The network was highly enriched for the complement cascade and genes differentially expressed in disease-associated microglia. Our data show that p.P522R in PLCG2 reduces AD disease progression by mitigating tau pathology in the presence of amyloid pathology and, as a consequence, maintains cognitive function. Targeting the enzyme PLCG2 might provide a new therapeutic approach for treating AD.
Collapse
Affiliation(s)
- Luca Kleineidam
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Vincent Chouraki
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque Et déterminants moléculaires des maladies liées au vieillissement, Lille, France
- Epidemiology and Public Health Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Tomasz Próchnicki
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
| | - Sven J van der Lee
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Holger Wagner-Thelen
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ilker Karaca
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Leonie Weinhold
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Steffen Wolfsgruber
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Évry, France
| | - Pamela V Martino Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
- Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Julius Popp
- Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Frederic Brosseron
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Iris E Jansen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marc Hulsman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Claudine Berr
- INSERM, University Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Reinhard Heun
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127, Bonn, Germany
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Christophe Tzourio
- Inserm, Bordeaux Population Health Research Center, UMR1219, University of Bordeaux, Bordeaux, France
| | - Jean-François Dartigues
- Inserm, Bordeaux Population Health Research Center, UMR1219, University of Bordeaux, Bordeaux, France
| | - Michael Hüll
- Department of Psychiatry and Psychotherapy, Center for Psychiatry, Clinic for Geriatric Psychiatry and Psychotherapy Emmendingen, University of Freiburg, Freiburg, Germany
| | - Ana Espinosa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Najada Stringa
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eckart Rüther
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Évry, France
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Lluis Tarraga
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque Et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Merce Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque Et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Henne Holstege
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mª Eugenia Sáez
- Andalusian Bioinformatics Research Centre (CAEBi), Seville, Spain
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Centre for Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, Trondheim, Norway
| | - Agustin Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfredo Ramirez
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
33
|
Deczkowska A, Weiner A, Amit I. The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell 2020; 181:1207-1217. [DOI: 10.1016/j.cell.2020.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
|
34
|
Bevan-Jones WR, Cope TE, Jones PS, Kaalund SS, Passamonti L, Allinson K, Green O, Hong YT, Fryer TD, Arnold R, Coles JP, Aigbirhio FI, Larner AJ, Patterson K, O’Brien JT, Rowe JB. Neuroinflammation and protein aggregation co-localize across the frontotemporal dementia spectrum. Brain 2020; 143:1010-1026. [PMID: 32179883 PMCID: PMC7089669 DOI: 10.1093/brain/awaa033] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical syndromes of frontotemporal dementia are clinically and neuropathologically heterogeneous, but processes such as neuroinflammation may be common across the disease spectrum. We investigated how neuroinflammation relates to the localization of tau and TDP-43 pathology, and to the heterogeneity of clinical disease. We used PET in vivo with (i) 11C-PK-11195, a marker of activated microglia and a proxy index of neuroinflammation; and (ii) 18F-AV-1451, a radioligand with increased binding to pathologically affected regions in tauopathies and TDP-43-related disease, and which is used as a surrogate marker of non-amyloid-β protein aggregation. We assessed 31 patients with frontotemporal dementia (10 with behavioural variant, 11 with the semantic variant and 10 with the non-fluent variant), 28 of whom underwent both 18F-AV-1451 and 11C-PK-11195 PET, and matched control subjects (14 for 18F-AV-1451 and 15 for 11C-PK-11195). We used a univariate region of interest analysis, a paired correlation analysis of the regional relationship between binding distributions of the two ligands, a principal component analysis of the spatial distributions of binding, and a multivariate analysis of the distribution of binding that explicitly controls for individual differences in ligand affinity for TDP-43 and different tau isoforms. We found significant group-wise differences in 11C-PK-11195 binding between each patient group and controls in frontotemporal regions, in both a regions-of-interest analysis and in the comparison of principal spatial components of binding. 18F-AV-1451 binding was increased in semantic variant primary progressive aphasia compared to controls in the temporal regions, and both semantic variant primary progressive aphasia and behavioural variant frontotemporal dementia differed from controls in the expression of principal spatial components of binding, across temporal and frontotemporal cortex, respectively. There was a strong positive correlation between 11C-PK-11195 and 18F-AV-1451 uptake in all disease groups, across widespread cortical regions. We confirmed this association with post-mortem quantification in 12 brains, demonstrating strong associations between the regional densities of microglia and neuropathology in FTLD-TDP (A), FTLD-TDP (C), and FTLD-Pick's. This was driven by amoeboid (activated) microglia, with no change in the density of ramified (sessile) microglia. The multivariate distribution of 11C-PK-11195 binding related better to clinical heterogeneity than did 18F-AV-1451: distinct spatial modes of neuroinflammation were associated with different frontotemporal dementia syndromes and supported accurate classification of participants. These in vivo findings indicate a close association between neuroinflammation and protein aggregation in frontotemporal dementia. The inflammatory component may be important in shaping the clinical and neuropathological patterns of the diverse clinical syndromes of frontotemporal dementia.
Collapse
Affiliation(s)
| | - Thomas E Cope
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sanne S Kaalund
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Luca Passamonti
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi, Milano, Italy
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridge, UK
| | - Oliver Green
- Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi, Milano, Italy
| | - Young T Hong
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Robert Arnold
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | | | | | - Karalyn Patterson
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Cambridge University Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Milà-Alomà M, Suárez-Calvet M, Molinuevo JL. Latest advances in cerebrospinal fluid and blood biomarkers of Alzheimer's disease. Ther Adv Neurol Disord 2019; 12:1756286419888819. [PMID: 31897088 PMCID: PMC6920596 DOI: 10.1177/1756286419888819] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and its diagnosis has classically been based on clinical symptoms. Recently, a biological rather than a syndromic definition of the disease has been proposed that is based on biomarkers that reflect neuropathological changes. In AD, there are two main biomarker categories, namely neuroimaging and fluid biomarkers [cerebrospinal fluid (CSF) and blood]. As a complex and multifactorial disease, AD biomarkers are important for an accurate diagnosis and to stage the disease, assess the prognosis, test target engagement, and measure the response to treatment. In addition, biomarkers provide us with information that, even if it does not have a current clinical use, helps us to understand the mechanisms of the disease. In addition to the pathological hallmarks of AD, which include amyloid-β and tau deposition, there are multiple concomitant pathological events that play a key role in the disease. These include, but are not limited to, neurodegeneration, inflammation, vascular dysregulation or synaptic dysfunction. In addition, AD patients often have an accumulation of other proteins including α-synuclein and TDP-43, which may have a pathogenic effect on AD. In combination, there is a need to have biomarkers that reflect different aspects of AD pathogenesis and this will be important in the future to establish what are the most suitable applications for each of these AD-related biomarkers. It is unclear whether sex, gender, or both have an effect on the causes of AD. There may be differences in fluid biomarkers due to sex but this issue has often been neglected and warrants further research. In this review, we summarize the current state of the principal AD fluid biomarkers and discuss the effect of sex on these biomarkers.
Collapse
Affiliation(s)
- Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- Department of Neurology, Hospital del Mar,
Barcelona
| | - José Luís Molinuevo
- Scientific Director, Alzheimer’s Prevention
Program, Barcelonaβeta Brain Research Center, Wellington 30, Barcelona,
08005, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- CIBER Fragilidad y Envejecimiento Saludable,
Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
36
|
Clarke MTM, Brinkmalm A, Foiani MS, Woollacott IOC, Heller C, Heslegrave A, Keshavan A, Fox NC, Schott JM, Warren JD, Blennow K, Zetterberg H, Rohrer JD. CSF synaptic protein concentrations are raised in those with atypical Alzheimer's disease but not frontotemporal dementia. Alzheimers Res Ther 2019; 11:105. [PMID: 31847891 PMCID: PMC6918699 DOI: 10.1186/s13195-019-0564-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increased CSF levels of a number of synaptic markers have been reported in Alzheimer's disease (AD), but little is known about their concentrations in frontotemporal dementia (FTD). We investigated this in three synaptic proteins, neurogranin, SNAP-25, and synaptotagmin-1. METHODS CSF samples were analysed from 66 patients with a disorder in the FTD spectrum and 19 healthy controls. Patients were stratified by their tau to Aβ42 ratio: those with a ratio of > 1 considered as having likely AD pathology, i.e. an atypical form of AD ('AD biomarker' group [n = 18]), and < 1 as likely FTD pathology ('FTD biomarker' group [n = 48]). A subgroup analysis compared those in the FTD group with likely tau (n = 7) and TDP-43 (n = 18) pathology. Concentrations of neurogranin were measured using two different ELISAs (Ng22 and Ng36), and concentrations of two SNAP-25 fragments (SNAP-25tot and SNAP-25aa40) and synaptotagmin-1 were measured via mass spectrometry. RESULTS The AD biomarker group had significantly higher concentrations of all synaptic proteins compared to controls except for synaptotagmin-1 where there was only a trend to increased levels-Ng22, AD mean 232.2 (standard deviation 138.9) pg/ml, controls 137.6 (95.9); Ng36, 225.5 (148.8) pg/ml, 130.0 (80.9); SNAP-25tot, 71.4 (27.9) pM, 53.5 (11.7); SNAP-25aa40, 14.0 (6.3), 7.9 (2.3) pM; and synaptotagmin-1, 287.7 (156.0) pM, 238.3 (71.4). All synaptic measures were significantly higher in the atypical AD group than the FTD biomarker group except for Ng36 where there was only a trend to increased levels-Ng22, 114.0 (117.5); Ng36, 171.1 (75.2); SNAP-25tot, 49.2 (16.7); SNAP-25aa40, 8.2 (3.4); and synaptotagmin-1, 197.1 (78.9). No markers were higher in the FTD biomarker group than controls. No significant differences were seen in the subgroup analysis, but there was a trend to increased levels in those with likely tau pathology. CONCLUSIONS No CSF synaptic proteins have been shown to be abnormal in those with likely FTD pathologically. Higher CSF synaptic protein concentrations of neurogranin, SNAP-25, and synaptotagmin-1 appear to be related to AD pathology.
Collapse
Affiliation(s)
- Mica T M Clarke
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Martha S Foiani
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, University College London, London, UK
| | - Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Carolin Heller
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, University College London, London, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, University College London, London, UK
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, University College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
37
|
Illán-Gala I, Pegueroles J, Montal V, Alcolea D, Vilaplana E, Bejanin A, Borrego-Écija S, Sampedro F, Subirana A, Sánchez-Saudinós MB, Rojas-García R, Vanderstichele H, Blesa R, Clarimón J, Antonell A, Lladó A, Sánchez-Valle R, Fortea J, Lleó A. APP-derived peptides reflect neurodegeneration in frontotemporal dementia. Ann Clin Transl Neurol 2019; 6:2518-2530. [PMID: 31789459 PMCID: PMC6917306 DOI: 10.1002/acn3.50948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Objective We aimed to investigate the relationship between cerebrospinal fluid levels (CSF) of amyloid precursor protein (APP)‐derived peptides related to the amyloidogenic pathway, cortical thickness, neuropsychological performance, and cortical gene expression profiles in frontotemporal lobar degeneration (FTLD)‐related syndromes, Alzheimer’s disease (AD), and healthy controls. Methods We included 214 participants with CSF available recruited at two centers: 93 with FTLD‐related syndromes, 57 patients with AD, and 64 healthy controls. CSF levels of amyloid β (Aβ)1‐42, Aβ1‐40, Aβ1‐38, and soluble β fragment of APP (sAPPβ) were centrally analyzed. We compared CSF levels of APP‐derived peptides between groups and, we studied the correlation between CSF biomarkers, cortical thickness, and domain‐specific cognitive composites in each group. Then, we explored the relationship between cortical thickness, CSF levels of APP‐derived peptides, and regional gene expression profile using a brain‐wide regional gene expression data in combination with gene set enrichment analysis. Results The CSF levels of Aβ1‐40, Aβ1‐38, and sAPPβ were lower in the FTLD‐related syndromes group than in the AD and healthy controls group. CSF levels of all APP‐derived peptides showed a positive correlation with cortical thickness and the executive cognitive composite in the FTLD‐related syndromes group but not in the healthy control or AD groups. In the cortical regions where we observed a significant association between cortical thickness and CSF levels of APP‐derived peptides, we found a reduced expression of genes related to synaptic function. Interpretation APP‐derived peptides in CSF may reflect FTLD‐related neurodegeneration. This observation has important implications as Aβ1‐42 levels are considered an indirect biomarker of cerebral amyloidosis.
Collapse
Affiliation(s)
- Ignacio Illán-Gala
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Jordi Pegueroles
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Victor Montal
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Eduard Vilaplana
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Alexandre Bejanin
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders, Neurology Department, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andrea Subirana
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María-Belén Sánchez-Saudinós
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Rafael Blesa
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Jordi Clarimón
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders, Neurology Department, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders, Neurology Department, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders, Neurology Department, Hospital Clínic, Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| |
Collapse
|
38
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
39
|
Naseri NN, Wang H, Guo J, Sharma M, Luo W. The complexity of tau in Alzheimer's disease. Neurosci Lett 2019; 705:183-194. [PMID: 31028844 PMCID: PMC7060758 DOI: 10.1016/j.neulet.2019.04.022] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is characterized by two major pathological lesions in the brain, amyloid plaques and neurofibrillary tangles (NFTs) composed mainly of amyloid-β (Aβ) peptides and hyperphosphorylated tau, respectively. Although accumulation of toxic Aβ species in the brain has been proposed as one of the important early events in AD, continued lack of success of clinical trials based on Aβ-targeting drugs has triggered the field to seek out alternative disease mechanisms and related therapeutic strategies. One of the new approaches is to uncover novel roles of pathological tau during disease progression. This review will primarily focus on recent advances in understanding the contributions of tau to AD.
Collapse
Affiliation(s)
- Nima N Naseri
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA.
| | - Hong Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, USA
| | - Jennifer Guo
- The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
40
|
Late Breaking Abstracts. J Cereb Blood Flow Metab 2019; 39:609-637. [PMID: 31265795 PMCID: PMC6610573 DOI: 10.1177/0271678x19850989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Katisko K, Cajanus A, Korhonen T, Remes AM, Haapasalo A, Solje E. Prodromal and Early bvFTD: Evaluating Clinical Features and Current Biomarkers. Front Neurosci 2019; 13:658. [PMID: 31293376 PMCID: PMC6598427 DOI: 10.3389/fnins.2019.00658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the current diagnostic criteria, early diagnostics of behavioral variant of frontotemporal dementia (bvFTD) has remained challenging. Patients with bvFTD often present with misleading psychiatric phenotype, and, on the other hand, impairment in memory functions have increasingly been reported. However, impaired episodic memory is currently considered as an exclusion criterion for bvFTD. Single biofluid-based or imaging biomarkers do not currently provide sufficient sensitivity or specificity for early bvFTD diagnosis at single-subject level, although studies have suggested improved accuracy with different biomarker combinations. In this mini review, we evaluate the core clinical features of early bvFTD and summarize the most potential imaging and fluid biomarkers for bvFTD diagnostics.
Collapse
Affiliation(s)
- Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Antti Cajanus
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Titta Korhonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland.,Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
42
|
An update on genetic frontotemporal dementia. J Neurol 2019; 266:2075-2086. [PMID: 31119452 PMCID: PMC6647117 DOI: 10.1007/s00415-019-09363-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a highly heritable group of neurodegenerative disorders, with around 30% of patients having a strong family history. The majority of that heritability is accounted for by autosomal dominant mutations in the chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) genes, with mutations more rarely seen in a number of other genes. This review will discuss the recent updates in the field of genetic FTD. Age at symptom onset in genetic FTD is variable with recently identified genetic modifiers including TMEM106B (in GRN carriers particularly) and a polymorphism at a locus containing two overlapping genes LOC101929163 and C6orf10 (in C9orf72 carriers). Behavioural variant FTD (bvFTD) is the most common diagnosis in each of the genetic groups, although in C9orf72 carriers amyotrophic lateral sclerosis either alone, or with bvFTD, is also common. An atypical neuropsychiatric presentation is also seen in C9orf72 carriers and family members of carriers are at greater risk of psychiatric disorders including schizophrenia and autistic spectrum disorders. Large natural history studies of presymptomatic genetic FTD are now underway both in Europe/Canada (GENFI—the Genetic FTD Initiative) and in the US (ARTFL/LEFFTDS study), collaborating together under the banner of the FTD Prevention Initiative (FPI). These studies are taking forward the validation of cognitive, imaging and fluid biomarkers that aim to robustly measure disease onset, staging and progression in genetic FTD. Grey matter changes on MRI and hypometabolism on FDG-PET are seen at least 10 years before symptom onset with white matter abnormalities seen earlier, but the pattern and exact timing of changes differ between different genetic groups. In contrast, tau PET has yet to show promise in genetic FTD. Three key fluid biomarkers have been identified so far that are likely to be helpful in clinical trials—CSF or blood neurofilament light chain levels (in all groups), CSF or blood progranulin levels (in GRN carriers) and CSF poly(GP) dipeptide repeat protein levels (in C9orf72 carriers). Increased knowledge about genetic FTD has led to more clinical presymptomatic genetic testing but this has not yet been mirrored in the development of either an accepted FTD-specific testing protocol or provision of appropriate psychological support mechanisms for those living through the at-risk phase. This will become even more relevant as disease-modifying therapy trials start in each of the genetic groups over the next few years.
Collapse
|
43
|
Gut Microbiota Disorder, Gut Epithelial and Blood-Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways. Neuromolecular Med 2019; 21:205-226. [PMID: 31115795 DOI: 10.1007/s12017-019-08547-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Emerging evidences indicate a critical role of the gut microbiota in etiopathogenesis of dementia, a debilitating multifactorial disorder characterized by progressive deterioration of cognition and behavior that interferes with the social and professional functions of the sufferer. Available data suggest that gut microbiota disorder that triggers development of dementia is characterized by substantial reduction in specific species belonging to the Firmicutes and Bacteroidetes phyla and presence of pathogenic species, predominantly, pro-inflammatory bacteria of the Proteobacteria phylum. These changes in gut microbiota microecology promote the production of toxic metabolites and pro-inflammatory cytokines, and reduction in beneficial substances such as short chain fatty acids and other anti-inflammatory factors, thereby, enhancing destruction of the gut epithelial barrier with concomitant activation of local and distant immune cells as well as dysregulation of enteric neurons and glia. This subsequently leads to blood-brain barrier dysfunctions that trigger neuroinflammatory reactions and predisposes to apoptotic neuronal and glial cell death, particularly in the hippocampus and cerebral cortex, which underlie the development of dementia. However, the molecular switches that control these processes in the histo-hematic barriers of the gut and brain are not exactly known. This review integrates very recent data on the molecular mechanisms that link gut microbiota disorder to gut epithelial and blood-brain barrier dysfunctions, underlying the development of dementia. The signaling pathways that link gut microbiota disorder with impairment in cognition and behavior are also discussed. The review also highlights potential therapeutic options for dementia.
Collapse
|
44
|
Hammond TR, Marsh SE, Stevens B. Immune Signaling in Neurodegeneration. Immunity 2019; 50:955-974. [PMID: 30995509 PMCID: PMC6822103 DOI: 10.1016/j.immuni.2019.03.016] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases of the central nervous system progressively rob patients of their memory, motor function, and ability to perform daily tasks. Advances in genetics and animal models are beginning to unearth an unexpected role of the immune system in disease onset and pathogenesis; however, the role of cytokines, growth factors, and other immune signaling pathways in disease pathogenesis is still being examined. Here we review recent genetic risk and genome-wide association studies and emerging mechanisms for three key immune pathways implicated in disease, the growth factor TGF-β, the complement cascade, and the extracellular receptor TREM2. These immune signaling pathways are important under both healthy and neurodegenerative conditions, and recent work has highlighted new functional aspects of their signaling. Finally, we assess future directions for immune-related research in neurodegeneration and potential avenues for immune-related therapies.
Collapse
Affiliation(s)
- Timothy R Hammond
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
45
|
Zetterberg H, van Swieten JC, Boxer AL, Rohrer JD. Review: Fluid biomarkers for frontotemporal dementias. Neuropathol Appl Neurobiol 2018; 45:81-87. [DOI: 10.1111/nan.12530] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- H. Zetterberg
- Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at the University of Gothenburg; Mölndal Sweden
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital; Mölndal Sweden
- Department of Neurodegenerative Disease; UCL Queen Square Institute of Neurology; Queen Square London UK
- UK Dementia Research Institute at UCL; London UK
| | - J. C. van Swieten
- Department of Neurology; Erasmus Medical Center; Rotterdam The Netherlands
- Department of Clinical Genetics; VU University Medical Center; Amsterdam The Netherlands
| | - A. L. Boxer
- Memory and Aging Center; Department of Neurology; University of California; San Francisco CA USA
| | - J. D. Rohrer
- Department of Neurodegenerative Disease; UCL Queen Square Institute of Neurology; Queen Square London UK
| |
Collapse
|