1
|
Cummings JL, Teunissen CE, Fiske BK, Le Ber I, Wildsmith KR, Schöll M, Dunn B, Scheltens P. Biomarker-guided decision making in clinical drug development for neurodegenerative disorders. Nat Rev Drug Discov 2025:10.1038/s41573-025-01165-w. [PMID: 40185982 DOI: 10.1038/s41573-025-01165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Neurodegenerative disorders are characterized by complex neurobiological changes that are reflected in biomarker alterations detectable in blood, cerebrospinal fluid (CSF) and with brain imaging. As accessible proxies for processes that are difficult to measure, biomarkers are tools that hold increasingly important roles in drug development and clinical trial decision making. In the past few years, biomarkers have been the basis for accelerated approval of new therapies for Alzheimer disease and amyotrophic lateral sclerosis as surrogate end points reasonably likely to predict clinical benefit.Blood-based biomarkers are emerging for Alzheimer disease and other neurodegenerative disorders (for example, Parkinson disease, frontotemporal dementia), and some biomarkers may be informative across multiple disease states. Collection of CSF provides access to biomarkers not available in plasma, including markers of synaptic dysfunction and neuroinflammation. Molecular imaging is identifying an increasing array of targets, including amyloid plaques, neurofibrillary tangles, inflammation, mitochondrial dysfunction and synaptic density. In this Review, we consider how biomarkers can be implemented in clinical trials depending on their context of use, including providing information on disease risk and/or susceptibility, diagnosis, prognosis, pharmacodynamic outcomes, monitoring, prediction of response to therapy and safety. Informed choice of increasingly available biomarkers and rational deployment in clinical trials support drug development decision making and de-risk the drug development process for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Brian K Fiske
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Göteborg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Billy Dunn
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Philip Scheltens
- Alzheimer's Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
- EQT Group, Dementia Fund, Stockholm, Sweden
| |
Collapse
|
2
|
Jobin B, Magdamo C, Delphus D, Runde A, Reineke S, Soto AA, Ergun B, Mukhija S, Albers AD, Albers MW. The AROMHA brain health test is a remote olfactory assessment to screen for cognitive impairment. Sci Rep 2025; 15:9290. [PMID: 40128240 PMCID: PMC11933705 DOI: 10.1038/s41598-025-92826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
Cost-effective, noninvasive screening methods for preclinical Alzheimer's disease (AD) and other neurocognitive disorders remain an unmet need. The olfactory neural circuits develop AD pathological changes prior to symptom onset. To probe these vulnerable circuits, we developed the digital remote AROMHA Brain Health Test (ABHT), an at-home odor identification, discrimination, memory, and intensity assessment. The ABHT was self-administered among cognitively normal (CN) English and Spanish speakers (n = 127), participants with subjective cognitive complaints (SCC; n = 34), and mild cognitive impairment (MCI; n = 19). Self-administered tests took place remotely at home under unobserved (among interested CN participants) and observed modalities (CN, SCC, and MCI), as well as in-person with a research assistant present (CN, SCC, and MCI). Olfactory performance was similar across observed and unobserved remote self-administration and between English and Spanish speakers. Odor memory, identification, and discrimination scores decreased with age, and olfactory identification and discrimination were lower in the MCI group compared to CN and SCC groups, independent of age, sex, and education. The ABHT revealed age-related olfactory decline, and discriminated CN older adults from those with cognitive impairment. Replication of our results in other populations would support the use of the ABHT to identify and monitor individuals at risk for developing dementia.
Collapse
Affiliation(s)
- Benoît Jobin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Colin Magdamo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Daniela Delphus
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Andreas Runde
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | | | | | - Beyzanur Ergun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Sasha Mukhija
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Alefiya Dhilla Albers
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA.
- Department of Psychology, Endicott College, Beverly, MA, 01915, USA.
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
- , 114 16th Street, Room 2003, Charlestown, MA, 02129, USA.
| |
Collapse
|
3
|
Slade B, Williams B, Engelbrecht R, Ciorciari J. Improving executive functioning and reducing the risk of Alzheimer's disease with music therapy: A narrative review of potential neural mechanisms. J Alzheimers Dis 2025:13872877251327762. [PMID: 40123371 DOI: 10.1177/13872877251327762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The incidence of Alzheimer's disease (AD) and the concurrent cost of healthcare will increase as the population continues to age. Pharmaceutical interventions effectively manage symptoms of AD but carry side effects and ineffectively address underlying causes and disease prevention. Non-pharmaceutical interventions for AD, such as music training and therapy do not carry these side effects and can improve symptoms, and should therefore be explored as stand-alone or co-therapy for AD. In addition, music encapsulates modifiable lifestyle factors, such as cognitive stimulation, that have been shown to delay progression of and prevent AD. However, the neural mechanisms underpinning how music improves AD symptoms are not fully understood and whether music can target compensatory processes, activate neural networks, or even slow or prevent AD needs further research. Research suggests neural mechanism may involve stimulating brain areas to promote neurogenesis, dopaminergic rewards systems, and the default mode network (DMN). Alternatively, this review proposes that music improve symptoms of AD via the fronto-parietal control network (FPCN), the salience network (SN) and DMN, and neural compensation. This review will then present evidence for how music could activate the FPCN, SN, and DMN to improve their efficiency, organization, and cognitive functions they govern, protecting the brain from damage, slowing progression, and possibly preventing AD. Establishing how music improves symptoms of AD can lead to tailored music therapy protocols that target functional neural networks responsible for impaired executive functions common in AD.
Collapse
Affiliation(s)
- Benjamin Slade
- Centre for Mental Health and Brain Science, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| | - Ben Williams
- School of Health Sciences, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| | - Romy Engelbrecht
- Department of Psychological Sciences, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| | - Joseph Ciorciari
- Centre for Mental Health and Brain Science, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
- Department of Psychological Sciences, Swinburne University of Technology, John Street Hawthorn VIC, Melbourne, Australia
| |
Collapse
|
4
|
Cuní-López C, Stewart R, Okano S, Redlich GL, Appleby MW, White AR, Quek H. Exploring a patient-specific in vitro pipeline for stratification and drug response prediction of microglia-based therapeutics. Sci Rep 2025; 15:8296. [PMID: 40064964 PMCID: PMC11894103 DOI: 10.1038/s41598-025-92593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The scarcity of effective biomarkers and therapeutic strategies for predicting disease onset and progression in neurodegenerative diseases such as Alzheimer's disease (AD) is a major challenge. Conventional drug discovery approaches have been unsuccessful in providing efficient interventions due to their 'one-size-fits-all' nature. As an alternative, personalised drug development holds promise to pre-select responders and identifying suitable indicators of drug efficacy. In this exploratory study, we have established a pipeline with the potential to guide patient stratification studies before clinical trials. This pipeline uses 2D and 3D in vitro models of monocyte-derived microglia-like cells (MDMi) from AD and mild cognitive impairment (MCI) patients, and matched healthy control (HC) individuals. By profiling cytokine responses in these models using multidimensional analyses, we have observed that the 3D model offers a more defined separation of profiles between individuals based on disease status. While this pilot study focuses on AD and MCI, future investigations incorporating other neurodegenerative disorders will be necessary to validate the pipeline's findings and demonstrate its broader applicability.
Collapse
Affiliation(s)
- Carla Cuní-López
- Brain and Mental Health, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia.
- Faculty of Medicine, The University of Queensland, 20 Weightman St, Herston, QLD, 4006, Australia.
| | - Romal Stewart
- Brain and Mental Health, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia
- UQ Centre for Clinical Research, the University of Queensland, Building 71/918 RBWH , Herston, Brisbane City, QLD, 4029, Australia
| | - Satomi Okano
- Statistics, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia
| | - Garry L Redlich
- Implicit Bioscience, 523 Broadway E, Seattle, WA, 98102, USA
- Implicit Bioscience, 32 Logan Rd, Woolloongabba, QLD, 4102, Australia
| | - Mark W Appleby
- Implicit Bioscience, 523 Broadway E, Seattle, WA, 98102, USA
- Implicit Bioscience, 32 Logan Rd, Woolloongabba, QLD, 4102, Australia
| | - Anthony R White
- Brain and Mental Health, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia.
- School of Biomedical Sciences, The University of Queensland, Chancellors Pl, St Lucia, QLD, 4072, Australia.
| | - Hazel Quek
- Brain and Mental Health, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD, 4006, Australia.
- UQ Centre for Clinical Research, the University of Queensland, Building 71/918 RBWH , Herston, Brisbane City, QLD, 4029, Australia.
- School of Biomedical Sciences, The University of Queensland, Chancellors Pl, St Lucia, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
5
|
Pan Y, Li L, Cao N, Liao J, Chen H, Zhang M. Advanced nano delivery system for stem cell therapy for Alzheimer's disease. Biomaterials 2025; 314:122852. [PMID: 39357149 DOI: 10.1016/j.biomaterials.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's Disease (AD) represents one of the most significant neurodegenerative challenges of our time, with its increasing prevalence and the lack of curative treatments underscoring an urgent need for innovative therapeutic strategies. Stem cells (SCs) therapy emerges as a promising frontier, offering potential mechanisms for neuroregeneration, neuroprotection, and disease modification in AD. This article provides a comprehensive overview of the current landscape and future directions of stem cell therapy in AD treatment, addressing key aspects such as stem cell migration, differentiation, paracrine effects, and mitochondrial translocation. Despite the promising therapeutic mechanisms of SCs, translating these findings into clinical applications faces substantial hurdles, including production scalability, quality control, ethical concerns, immunogenicity, and regulatory challenges. Furthermore, we delve into emerging trends in stem cell modification and application, highlighting the roles of genetic engineering, biomaterials, and advanced delivery systems. Potential solutions to overcome translational barriers are discussed, emphasizing the importance of interdisciplinary collaboration, regulatory harmonization, and adaptive clinical trial designs. The article concludes with reflections on the future of stem cell therapy in AD, balancing optimism with a pragmatic recognition of the challenges ahead. As we navigate these complexities, the ultimate goal remains to translate stem cell research into safe, effective, and accessible treatments for AD, heralding a new era in the fight against this devastating disease.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| | - Long Li
- Department of Neurosurgery, First Hospital of China Medical University, Liaoning, 110001, China.
| | - Ning Cao
- Army Medical University, Chongqing, 400000, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Huiyue Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110001, China.
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
6
|
Sinha S, Wal P, Goudanavar P, Divya S, Kimothi V, Jyothi D, Sharma MC, Wal A. Research on Alzheimer's Disease (AD) Involving the Use of In vivo and In vitro Models and Mechanisms. Cent Nerv Syst Agents Med Chem 2025; 25:123-142. [PMID: 38803173 DOI: 10.2174/0118715249293642240522054929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the progressive formation of extracellular amyloid plaques, intracellular neurofibrillary tangles, inflammation, and impaired antioxidant systems. Early detection and intervention are vital for managing AD effectively. OBJECTIVES This review scrutinizes both in-vivo and in-vitro screening models employed in Alzheimer's disease research. in-vivo models, including transgenic mice expressing AD-related mutations, offer profound insights into disease progression and potential therapeutic targets. A thorough understanding of these models and mechanisms will facilitate the development of novel therapies and interventions for Alzheimer's disease. This review aims to provide an overview of the current experimental models in AD research, assess their strengths and weaknesses as model systems, and underscore the future prospects of experimental AD modeling. METHODS We conducted a systematic literature search across multiple databases, such as Pub- Med, Bentham Science, Elsevier, Springer Nature, Wiley, and Research Gate. The search strategy incorporated pertinent keywords related to Alzheimer's disease, in-vivo models, in-vitro models, and screening mechanisms. Inclusion criteria were established to identify studies focused on in-vivo and in-vitro screening models and their mechanisms in Alzheimer's disease research. Studies not meeting the predefined criteria were excluded from the review. RESULTS A well-structured experimental animal model can yield significant insights into the neurobiology of AD, enhancing our comprehension of its pathogenesis and the potential for cutting-edge therapeutic strategies. Given the limited efficacy of current AD medications, there is a pressing need for the development of experimental models that can mimic the disease, particularly in pre-symptomatic stages, to investigate prevention and treatment approaches. To address this requirement, numerous experimental models replicating human AD pathology have been established, serving as invaluable tools for assessing potential treatments. CONCLUSION In summary, this comprehensive review underscores the pivotal role of in-vivo and in-vitro screening models in advancing our understanding of Alzheimer's disease. These models offer invaluable insights into disease progression, pathological mechanisms, and potential therapeutic targets. By conducting a rigorous investigation and evaluation of these models and mechanisms, effective screening and treatment methods for Alzheimer's disease can be devised. The review also outlines future research directions and areas for enhancing AD screening models.
Collapse
Affiliation(s)
- Sweta Sinha
- LCIT School of Pharmacy, Bilaspur, Chattisgarh, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy) NH19 Kanpur Agra Highway, Bhaunti Kanpur, India
| | - Prakash Goudanavar
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University B.G.Nagara, Karnataka, India
| | | | | | - Divya Jyothi
- NGSM Institute of Pharmaceutical Sciences, Nitte University, Paneer Deralakatte, Mangaluru, 575018, India
| | | | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy) NH19 Kanpur Agra Highway, Bhaunti Kanpur, India
| |
Collapse
|
7
|
Jutten RJ, Ho EH, Karpouzian‐Rogers T, van Hulle C, Carlsson C, Dodge HH, Nowinski CJ, Gershon R, Weintraub S, Rentz DM. Computerized cognitive testing to capture cognitive decline in Alzheimer's disease: Longitudinal findings from the ARMADA study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70046. [PMID: 39811701 PMCID: PMC11730193 DOI: 10.1002/dad2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Timely detection and tracking of Alzheimer's disease (AD) -related cognitive decline has become a public health priority. We investigated whether the NIH Toolbox for Assessment of Neurological and Behavioral Function-Cognition Battery (NIHTB-CB) detects AD-related cognitive decline. METHODS N = 171 participants (age 76.5 ± 8; 53% female, 34% Aβ-positive) from the ARMADA study completed the NIHTB-CB at baseline, 12 months, and 24 months. Linear mixed-effect models correcting for demographics were used to examine cross-sectional and longitudinal NIHTB-CB scores in individuals across the clinical AD spectrum. RESULTS Compared to Aβ-negative healthy controls, Aβ-positive individuals with amnestic MCI or mild AD performed worse on all NIHTB-CB measures and showed an accelerated decline in processing speed, working memory, and auditory word comprehension tests. DISCUSSION These findings support the use of the NIHTB-CB in early AD, but also imply that the optimal NIHTB-CB composite score to detect change over time may differ across clinical stages of AD. Future directions include replication of these findings in larger and more demographically diverse samples. Highlights We examined NIH Toolbox-Cognition Battery scores across the clinical AD spectrum.All NIH Toolbox tests detected cross-sectional cognitive impairment in MCI-to-mild AD.Three NIH Toolbox tests captured further decline over time in MCI-to-mild AD.The NIH Toolbox can facilitate timely detection of AD-related cognitive decline.
Collapse
Affiliation(s)
- Roos J. Jutten
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Emily H. Ho
- Department of Medical Social SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Tatiana Karpouzian‐Rogers
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Carol van Hulle
- Department of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public Health and Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
| | - Cynthia Carlsson
- Department of MedicineUniversity of Wisconsin‐Madison School of Medicine and Public Health and Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
| | - Hiroko H. Dodge
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Cindy J. Nowinski
- Department of Medical Social SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Richard Gershon
- Department of Medical Social SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Sandra Weintraub
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Mesulam Center for Cognitive Neurology and Alzheimer's DiseaseNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Dorene M. Rentz
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
8
|
Zhang C, An L, Wulan N, Nguyen KN, Orban C, Chen P, Chen C, Zhou JH, Liu K, Yeo BT. Cross-dataset Evaluation of Dementia Longitudinal Progression Prediction Models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317513. [PMID: 39606367 PMCID: PMC11601715 DOI: 10.1101/2024.11.18.24317513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Accurate Alzheimer's Disease (AD) progression prediction is essential for early intervention. The TADPOLE challenge, involving 92 algorithms, used multimodal biomarkers to predict future clinical diagnosis, cognition, and ventricular volume. The winning algorithm, FROG, utilized a Longitudinal-to-Cross-sectional (L2C) transformation to convert variable longitudinal histories into fixed-length feature vectors, which contrasted with most existing approaches that fitted models to entire longitudinal histories, e.g., AD Course Map (AD-Map) and minimal recurrent neural networks (MinimalRNN). The TADPOLE challenge only utilized the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. To evaluate FROG's generalizability, we trained it on the ADNI dataset and tested it on three external datasets covering 2,312 participants and 13,200 timepoints. We also introduced two FROG variants. One variant, L2C feedforward neural network (L2C-FNN), unified all XGBoost models used by the original FROG with an FNN. Across external datasets, L2C-FNN and AD-Map were the best for predicting cognition and ventricular volume. For clinical diagnosis prediction, L2C-FNN was the best, while AD-Map was the worst. L2C-FNN compared favorably with other approaches regardless of the number of observed timepoints, and when predicting from 0 to 6 years into the future, underscoring its potential for long-term dementia progression prediction. Pretrained ADNI models are publicly available: GITHUB_LINK.
Collapse
Affiliation(s)
- Chen Zhang
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Lijun An
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Naren Wulan
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Kim-Ngan Nguyen
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Csaba Orban
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Pansheng Chen
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
| | | | - B.T. Thomas Yeo
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | |
Collapse
|
9
|
Valdevila Figueira JA, Valdevila Santiesteban R, Carvajal Parra ID, Benenaula Vargas LP, Ramírez A, Leon-Rojas JE, Rodas JA. Multimorbidity patterns in dementia and mild cognitive impairment. Front Psychiatry 2024; 15:1432848. [PMID: 39575196 PMCID: PMC11578943 DOI: 10.3389/fpsyt.2024.1432848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Design This is a retrospective cohort study. Setting: The study was conducted at the Instituto de Neurociencias de la Junta de Beneficencia de Guayaquil, a primary neuroscience institute in Ecuador. Participants The study evaluated 425 participants diagnosed with Mild Cognitive Impairment (MCI) or dementia, out of which 272 individuals (mean age = 75 years; 164 female) presenting specific medical conditions were selected for analysis. Measurements Data were collected on demographics, medical history, and neuropsychological assessment using the Neuropsi scale. Conditions such as Type 2 Diabetes Mellitus, hypertension, obesity, and history of traumatic brain injury were specifically noted. Results Latent Class Analysis identified three distinct classes of patients: Unspecified Cognitive Deterioration, Dementia, and MCI. The three-class model provided the best fit, revealing varied morbidity patterns and highlighting the influence of vascular and metabolic conditions on cognitive decline. Notably, similarities in hypertension and diabetes prevalence between Dementia and MCI classes suggested shared risk factors. The study also found no significant age differences between the classes, indicating that age alone might not be the primary determinant in the progression of cognitive decline. Conclusions The study underscores the complexity of dementia and MCI in an ageing Ecuadorian population, with vascular health playing a crucial role in cognitive impairment. These findings advocate for a holistic approach in managing dementia and MCI, emphasising the importance of addressing cardiovascular and metabolic health alongside neurocognitive care. The distinct morbidity patterns identified offer insights into tailored intervention strategies, highlighting the need for comprehensive, multidisciplinary care in dementia management.
Collapse
Affiliation(s)
- José Alejandro Valdevila Figueira
- Faculty of Marketing and Communication, Universidad Ecotec, Guayaquil, Ecuador
- Research Network in Psychology and Psychiatry (GIPSI), Guayaquil, Ecuador
- Institute of Neurosciences, Junta de Beneficencia de Guayaquil, Guayaquil, Ecuador
| | | | - Indira Dayana Carvajal Parra
- Research Network in Psychology and Psychiatry (GIPSI), Guayaquil, Ecuador
- Institute of Neurosciences, Junta de Beneficencia de Guayaquil, Guayaquil, Ecuador
| | - Luis Patricio Benenaula Vargas
- Faculty of Marketing and Communication, Universidad Ecotec, Guayaquil, Ecuador
- Research Network in Psychology and Psychiatry (GIPSI), Guayaquil, Ecuador
| | - Andrés Ramírez
- Carrera de Psicología Clínica, Universidad Politécnica Salesiana, Cuenca, Ecuador
| | | | - Jose A. Rodas
- Research Network in Psychology and Psychiatry (GIPSI), Guayaquil, Ecuador
- Escuela de Psicología, Universidad Espíritu Santo, Samborondón, Ecuador
- School of Psychology, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Gheidari D, Mehrdad M, Karimelahi Z. Virtual screening, ADMET prediction, molecular docking, and dynamic simulation studies of natural products as BACE1 inhibitors for the management of Alzheimer's disease. Sci Rep 2024; 14:26431. [PMID: 39488559 PMCID: PMC11531584 DOI: 10.1038/s41598-024-75292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological disorder that chronically and irreversibly affects memory, cognitive function, learning ability, and organizational skills. Numerous studies have demonstrated BACE1 as a critical therapeutic target for AD, emphasizing the need for specific inhibition of BACE1 to develop effective therapeutics. However, current BACE1 inhibitors have certain limitations. Therefore, the aim of this study was to identify potential novel candidates derived from natural products that can be utilized for the treatment of AD. To achieve this, 80,617 natural compounds from the ZINC database were subjected to virtual screening and subsequently filtered according to the rule of five (RO5), leading to the identification of 1,200 compounds. Subsequently, the 1,200 compounds underwent molecular docking studies against the BACE1 receptor, utilizing high-throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) techniques to identify high-affinity ligands. Of the 50 ligands that exhibited the highest G-Scores in HTVS, further analysis was conducted using SP docking and scoring methods. This analysis led to the identification of seven ligands with enhanced binding affinities, which were then subjected to additional screening via XP docking and scoring. Finally, the stability of the most promising ligand in relation to BACE1 was assessed through molecular dynamics (MD) simulations. The computational screening demonstrated that the docking energy values for seven ligands binding to target enzymes ranged between - 6.096 and - 7.626 kcal/mol. Among these, ligand 2 (L2) exhibited the best binding energy at -7.626 kcal/mol with BACE1. MD simulations further confirmed the stability of the BACE1-L2 complex, emphasizing the formation of a robust interaction between L2 and the target enzymes. Additionally, pharmacokinetic and drug-likeness evaluations indicated that L2 is non-carcinogenic and able to permeate the blood-brain barrier (BBB). The findings of this study will contribute to narrowing down the selection of candidates for subsequent in vitro and in vivo testing.
Collapse
Affiliation(s)
- Davood Gheidari
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Morteza Mehrdad
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Zahra Karimelahi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
11
|
Leuzy A, Heeman F, Bosch I, Lenér F, Dottori M, Quitz K, Moscoso A, Kern S, Zetterberg H, Blennow K, Schöll M. REAL AD-Validation of a realistic screening approach for early Alzheimer's disease. Alzheimers Dement 2024; 20:8172-8182. [PMID: 39311530 PMCID: PMC11567841 DOI: 10.1002/alz.14219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 11/17/2024]
Abstract
Early diagnosis is crucial to treatment success. This is especially relevant for Alzheimer's disease (AD), with its protracted preclinical phase. Most health care systems do not have the resources to conduct large-scale AD screenings in middle-aged individuals in need of novel AD treatment options and early, accurate diagnosis. Recent developments in blood-based biomarkers and remote cognitive testing offer novel, cost-effective, and scalable methods to detect cognitive and biomarker changes that may indicate early AD. In research cohorts, promising results have been reported, but these modalities have not been validated in population-based settings. The validation of a realistic screening approach for early Alzheimer's disease (REAL AD) study aims to validate the diagnostic and prognostic performance of the combined use of blood-based biomarkers and remote cognitive testing as a screening approach for early AD employing an existing health care infrastructure (the Swedish Västra Götaland Region Primary Healthcare). REAL AD aims to provide a concrete, individualized diagnostic framework, which could significantly improve AD prognosis. HIGHLIGHTS: In Sweden, most Alzheimer's disease (AD) diagnoses are made in primary care, where access to AD biomarkers is almost non-existent. Most health care systems have limited resources for the screening of middle-aged adults for early evidence of AD pathology. Blood-based biomarkers and remote cognitive testing offer novel, cost-effective, and scalable methods for detecting cognitive and biomarker changes that may indicate early AD. The REAL AD study aims to validate the diagnostic and prognostic performance of blood-based biomarkers and remote cognitive testing as a screening approach for early AD in an existing primary health care infrastructure in the Västra Götaland Region in Sweden. Studies such as REAL AD will play a vital role in helping to move the field toward concrete implementation of biomarkers in AD diagnostic workup at all care levels, eventually providing more comprehensive treatments options for the large and growing AD population, and for those at risk.
Collapse
Affiliation(s)
- Antoine Leuzy
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of NeuropsychiatryRegion Västra GötalandSahlgrenska University HospitalGötalandSweden
| | - Fiona Heeman
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
| | - Iris Bosch
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of NeuropsychiatryRegion Västra GötalandSahlgrenska University HospitalGötalandSweden
| | - Frida Lenér
- Centre for REDI FyrbodalPrimary Health Care, Region VästraGötalandSweden
- Department of Public Health and Community MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria Dottori
- Region Västra Götaland, Research, Education, Development & Innovation (REDI)Primary Health CareGothenburgSweden
| | - Kajsa Quitz
- Department of Public Health and Community MedicineUniversity of GothenburgGothenburgSweden
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
| | - Silke Kern
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of NeuropsychiatryRegion Västra GötalandSahlgrenska University HospitalGötalandSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of Public Health and Community MedicineUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
- UK Dementia Research Institute, UCL Institute of NeurologyUniversity College LondonLondonUK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Psychiatry and NeurochemistryUniversity of GothenburgMölndalSweden
- Department of NeuropsychiatryRegion Västra GötalandSahlgrenska University HospitalGötalandSweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
12
|
Liu S, Du X, Chen Z, Zhou R, Wang H, Mao X, Du J, Zhang G, Li H, Song Y, Chang L, Wu Y. Activation of astrocytic NMDA receptors counteracted Aβ-induced reduction of BDNF and elevation of GFAP and complement 3 in the hippocampal astrocytes. Neuroscience 2024; 559:303-315. [PMID: 39276842 DOI: 10.1016/j.neuroscience.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a crucial role in mediating Amyloid-β (Aβ) synaptotoxicity. Our previous studies have demonstrated an opposite (neuroprotection and neurotoxicity) effect of activating astrocytic and neuronal NMDARs with higher dose (10 μM) of NMDA, an agonist of NMDARs. By contrast, activating neuronal or astrocyitc NMDARs with lower dose (1 μM) of NMDA both exerts neuroprotective effect in Aβ-induced neurotoxicity. However, the underlying mechanism of activating astrocytic NMDARs with lower dose of NMDA to protect against Aβ neurotoxicity remains unclear. Based on our previous related work, in this study, using a co-cultured cell model of primary hippocampal neurons and astrocytes, we further investigated the possible factors involved in 1 μM of NMDA activating astrocytic NMDARs to oppose Aβ-induced synaptotoxicity. Our results showed that activation of astrocytic NMDARs by 1 μM NMDA rescued Aβ-induced reduction of brain-derived neurotrophic factor (BDNF), and inhibited Aβ-induced increase of GFAP, complement 3 (C3) and activation of NF-κB. Furthermore, blockade of astrocytic GluN2A with TCN201 abrogated the ability of 1 μM NMDA to counteract the effects of Aβ decreasing BDNF, and increasing GFAP, C3 and activation of NF-κB. These findings suggest that activation of astrocytic NMDARs protect against Aβ-induced synaptotoxicity probably through elevating BDNF and suppressing GFAP and C3. Our present research provides valuable insights for elucidating the underlying mechanism of astrocytic NMDARs activation resisting the toxic effects of Aβ.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xiaoqiang Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyan Chen
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ruying Zhou
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xin Mao
- Department of Radiology, Peking University Third Hospital, Beijing 100068, China
| | - Jiahe Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; College of Veterinary Medicine, Beijing University of Agriculture, Beijing 100096, China.
| |
Collapse
|
13
|
Wang Y, Xiao Z, Yin H, Ren Z, Ma X, Wang Y, Zhang Y, Fu X, Zhang F, Zeng L. miRNA375-3p/rapamycin mediates the mTOR pathway by decreasing PS1, enhances microglial cell activity to regulate autophagy in Alzheimer's disease. Heliyon 2024; 10:e37589. [PMID: 39386837 PMCID: PMC11461998 DOI: 10.1016/j.heliyon.2024.e37589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
The clinical prevention, diagnosis, treatment, and drug development of Alzheimer's disease (AD) require urgent detection of novel targets and methods. Autophagy and microglia are significantly associated with the pathogenesis of early AD. This study indicated that microRNA-375-3p can inhibit autophagy by promoting mTOR phosphorylation in normal physiological conditions, while microRNA-375-3p promoted autophagy and enhanced neural repair by inhibiting the expression of presenilin 1 in early AD pathogenesis. Furthermore, co-treatment of rapamycin, and microRNA-375-3p can synergistically promote the autophagy and microglial activation in a neuroprotective manner, clear Aβ accumulation, repair nerve damage, and alleviate cognitive dysfunction and memory defects in APP/PS1 TG mice. This research revealed the impact and mechanism of miR375-3p on the early stage of AD through in vivo and in vitro experiments and provides new ideas and directions for the early treatment of AD.
Collapse
Affiliation(s)
- Yuxiang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zixuan Xiao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Hanlan Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zhichao Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xueting Ma
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yibo Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xueqi Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Fuqiang Zhang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Linlin Zeng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| |
Collapse
|
14
|
Wang X, Ye T, Huang Z, Zhou W, Zhang J. Individualized and Biomarker-Based Prognosis of Longitudinal Cognitive Decline in Early Symptomatic Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1301-1315. [PMID: 39434814 PMCID: PMC11491935 DOI: 10.3233/adr-240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/27/2024] [Indexed: 10/23/2024] Open
Abstract
Background Although individualized models using demographic, MRI, and biological markers have recently been applied in mild cognitive impairment (MCI), a similar study is lacking for patients with early Alzheimer's disease (AD) with biomarker evidence of abnormal amyloid in the brain. Objective We aimed to develop prognostic models for individualized prediction of cognitive change in early AD. Methods A total of 421 individuals with early AD (MCI or mild dementia due to AD) having biomarker evidence of abnormal amyloid in the brain were included in the current study. The primary cognitive outcome was the slope of change in Alzheimer's Disease Assessment Scale-cognitive subscale-13 (ADAS-Cog-13) over a period of up to 5 years. Results A model combining demographics, baseline cognition, neurodegenerative markers, and CSF AD biomarkers provided the best predictive performance, achieving an overfitting-corrected R2 of 0.59 (bootstrapping validation). A nomogram was created to enable clinicians or trialists to easily and visually estimate the individualized magnitude of cognitive change in the context of patient characteristics. Simulated clinical trials suggested that the inclusion of our nomogram into the enrichment strategy would lead to a substantial reduction of sample size in a trial of early AD. Conclusions Our findings may be of great clinical relevance to identify individuals with early AD who are likely to experience fast cognitive deterioration in clinical practice and in clinical trials.
Collapse
Affiliation(s)
- Xiwu Wang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Teng Ye
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziye Huang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Wenjun Zhou
- Research and Development, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China
| | - Jie Zhang
- Department of Data Science, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China
| | | |
Collapse
|
15
|
Lui E, Venkatraman VK, Finch S, Chua M, Li TQ, Sutton BP, Steward CE, Moffat B, Cyarto EV, Ellis KA, Rowe CC, Masters CL, Lautenschlager NT, Desmond PM. 3T sodium-MRI as predictor of neurocognition in nondemented older adults: a cross sectional study. Brain Commun 2024; 6:fcae307. [PMID: 39318783 PMCID: PMC11420980 DOI: 10.1093/braincomms/fcae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Dementia is a burgeoning global problem. Novel magnetic resonance imaging (MRI) metrics beyond volumetry may bring new insight and aid clinical trial evaluation of interventions early in the Alzheimer's disease course to complement existing imaging and clinical metrics. To determine whether: (i) normalized regional sodium-MRI values (Na-SI) are better predictors of neurocognitive status than volumetry (ii) cerebral amyloid PET status improves modelling. Nondemented older adult (>60 years) volunteers of known Alzheimer's Disease Assessment Scale (ADAS-Cog11), Mini-Mental State Examination (MMSE) and Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neurocognitive test scores, ApolipoproteinE (APOE) e4 +/- cerebral amyloid PET status were prospectively recruited for 3T sodium-MRI brain scans. Left and right hippocampal, entorhinal and precuneus volumes and Na-SI (using the proportional intensity scaling normalization method with field inhomogeneity and partial volume corrections) were obtained after segmentation and co-registration of 3D-T1-weighted proton images. Descriptive statistics, correlation and best-subset regression analyses were performed. In our 76 nondemented participants (mean(standard deviation) age 75(5) years; woman 47(62%); cognitively unimpaired 54/76(71%), mildly cognitively impaired 22/76(29%)), left hippocampal Na-SI, not volume, was preferentially in the best models for predicting MMSE (Odds Ratio (OR) = 0.19(Confidence Interval (CI) = 0.07,0.53), P-value = 0.001) and ADAS-Cog11 (Beta(B) = 1.2(CI = 0.28,2.1), P-value = 0.01) scores. In the entorhinal analysis, right entorhinal Na-SI, not volume, was preferentially selected in the best model for predicting ADAS-Cog11 (B = 0.94(CI = 0.11,1.8), P-value = 0.03). While right entorhinal Na-SI and volume were both selected for MMSE modelling (Na-SI OR = 0.23(CI = 0.09,0.6), P-value = 0.003; volume OR = 2.6(CI = 1.0,6.6), P-value = 0.04), independently, Na-SI explained more of the variance (Na-SI R 2 = 10.3; volume R 2 = 7.5). No imaging variable was selected in the best CERAD models. Adding cerebral amyloid status improved model fit (Akaike Information Criterion increased 2.0 for all models, P-value < 0.001-0.045). Regional Na-SI were more predictive of MMSE and ADAS-Cog11 scores in our nondemented older adult cohort than volume, hippocampal more robust than entorhinal region of interest. Positive amyloid status slightly further improved model fit.
Collapse
Affiliation(s)
- Elaine Lui
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| | - Vijay K Venkatraman
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| | - Sue Finch
- Statistical Consulting Centre, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Michelle Chua
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Bradley P Sutton
- Beckman Institute for Advance Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Christopher E Steward
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| | - Bradford Moffat
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
| | - Elizabeth V Cyarto
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Kathryn A Ellis
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Melbourne, 3010 Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, 3084 Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 3052 Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 3052 Victoria, Australia
| | - Nicola T Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Melbourne, 3010 Victoria, Australia
- Royal Melbourne Hospital Mental Health Service, Royal Melbourne Hospital, Parkville, Melbourne, 3052 Victoria, Australia
| | - Patricia M Desmond
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| |
Collapse
|
16
|
Fang L, Cheng H, Chen W, Peng C, Liu Y, Zhang C. Therapeutic effects of Tanshinone IIA and Tetramethylpyrazine nanoemulsions on cognitive impairment and neuronal damage in Alzheimer's disease rat models. J Pharm Pharmacol 2024; 76:1169-1177. [PMID: 38934298 DOI: 10.1093/jpp/rgae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the therapeutic effects and related mechanisms of Tanshinone IIA and Tetramethylpyrazine O/W composite nanoemulsions on Alzheimer's disease (AD) rats. METHODS The therapeutic effect of TSN/TMP O/W NEs on AD rats was evaluated by behavioral tests, H&E, Nissl, and Immunohistochemistry staining. ELISA and Western blot were used to analyze the mechanism. KEY FINDINGS The results showed that TSN/TMP O/W NEs could down-regulate the expression of Bax and Caspase-3 proteins, decrease the level of MDA, increase the expression of SOD and GSH-Px, and alleviate cognitive impairment in AD rats. CONCLUSIONS TSN/TMP O/W NEs can inhibit MAPK/ERK/CREB signaling pathway and effectively alleviate cognitive impairment, oxidative stress injury, and neuronal apoptosis in AD rats.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Weidong Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Can Peng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Yuanxu Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| |
Collapse
|
17
|
Zota I, Chanoumidou K, Gravanis A, Charalampopoulos I. Stimulating myelin restoration with BDNF: a promising therapeutic approach for Alzheimer's disease. Front Cell Neurosci 2024; 18:1422130. [PMID: 39285941 PMCID: PMC11402763 DOI: 10.3389/fncel.2024.1422130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder constituting the most common form of dementia (60%-70% of cases). Although AD presents majorly a neurodegenerative pathology, recent clinical evidence highlights myelin impairment as a key factor in disease pathogenesis. The lack of preventive or restorative treatment is emphasizing the need to develop novel therapeutic approaches targeting to the causes of the disease. Recent studies in animals and patients have highlighted the loss of myelination of the neuronal axons as an extremely aggravating factor in AD, in addition to the formation of amyloid plaques and neurofibrillary tangles that are to date the main pathological hallmarks of the disease. Myelin breakdown represents an early stage event in AD. However, it is still unclear whether myelin loss is attributed only to exogenous factors like inflammatory processes of the tissue or to impaired oligodendrogenesis as well. Neurotrophic factors are well established protective molecules under many pathological conditions of the neural tissue, contributing also to proper myelination. Due to their inability to be used as drugs, many research efforts are focused on substituting neurotrophic activity with small molecules. Our research team has recently developed novel micromolecular synthetic neurotrophin mimetics (MNTs), selectively acting on neurotrophin receptors, and thus offering a unique opportunity for innovative therapies against neurodegenerative diseases. These small sized, lipophilic molecules address the underlying biological effect of these diseases (neuroprotective action), but also they exert significant neurogenic actions inducing neuronal replacement of the disease areas. One of the significant neurotrophin molecules in the Central Nervous System is Brain-Derived-Neurotrophin-Factor (BDNF). BDNF is a neurotrophin that not only supports neuroprotection and adult neurogenesis, but also mediates pro-myelinating effects in the CNS. BDNF binds with high-affinity on the TrkB neurotrophin receptor and enhances myelination by increasing the density of oligodendrocyte progenitor cells (OPCs) and playing an important role in CNS myelination. Conclusively, in the present review, we discuss the myelin pathophysiology in Alzheimer's Diseases, as well as the role of neurotrophins, and specifically BDNF, in myelin maintenance and restoration, revealing its valuable therapeutic potential against AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
18
|
Ghaffarian A, Cheraghi A, Ferdosi M. Accreditation Modules According to Hospital Types: A Scoping Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:2006-2019. [PMID: 39429669 PMCID: PMC11490331 DOI: 10.18502/ijph.v53i9.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/13/2024] [Indexed: 10/22/2024]
Abstract
Background One of the upcoming challenges in hospital accreditation is using the same and similar standards for all types of hospitals in size and type of activity. We aimed to identify the accreditation modules for all types of hospitals in size (small hospitals) and type of activity (special hospitals). Methods This research was conducted as a scoping review from Mar to May 2023. "Arsky and O'Malley" six-step protocol was used to conduct this study. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) was used to identify, evaluate, and select research articles. The "framework analysis" method was used to analyze the data. Results Of 14 articles, 64% have been published in peer-reviewed scientific journals. Moreover, 36% of them were accreditation organizations' standards at the national level. The accreditation modules of small hospitals are Responsibilities of Management, Care of Patients, Management of Medication, Patient Safety, Infection Control, Continuous Quality Improvement, Patient Rights and Education, Blood and Blood Products, and Partnering with Consumers. The accreditation modules of special hospitals are Governing Body and Administration, Clinical Management, Prevention and Health, Care and Treatment, Diagnostic Services, Patient Rights, and Quality Improvement. Conclusion Identifying the main modules of accreditation for small and special hospitals can help policymakers and hospital managers improve the quality and safety of their hospitals by using appropriate standards and help improve the services provided to patients and increase their satisfaction.
Collapse
Affiliation(s)
- Ali Ghaffarian
- Department of Health Services Management, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Cheraghi
- Department of Hospitals Supervision and Accreditation, Vice-Chancellery for Clinical Affairs, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Ferdosi
- Health Management and Economics Research Center, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Islam MR, Rabbi MA, Hossain T, Sultana S, Uddin S. Mechanistic Approach to Immunity and Immunotherapy of Alzheimer's Disease: A Review. ACS Chem Neurosci 2024. [PMID: 39173186 DOI: 10.1021/acschemneuro.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative condition characterized by progressive cognitive decline and memory loss, affecting millions of people worldwide. Traditional treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, offer limited symptomatic relief without addressing the underlying disease mechanisms. These limitations have driven the development of more potent and effective therapies. Recent advances in immunotherapy present promising avenues for AD treatment. Immunotherapy strategies, including both active and passive approaches, harness the immune system to target and mitigate AD-related pathology. Active immunotherapy stimulates the patient's immune response to produce antibodies against AD-specific antigens, while passive immunotherapy involves administering preformed antibodies or immune cells that specifically target amyloid-β (Aβ) or tau proteins. Monoclonal antibodies, such as aducanumab and lecanemab, have shown potential in reducing Aβ plaques and slowing cognitive decline in clinical trials, despite challenges related to adverse immune responses and the need for precise targeting. This comprehensive review explores the role of the immune system in AD, evaluates the current successes and limitations of immunotherapeutic approaches, and discusses future directions for enhancing the treatment efficacy.
Collapse
Affiliation(s)
- Md Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanbir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sadia Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shihab Uddin
- Department of Bioengineering, King Fahad University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Bio Systems and Machines, King Fahad University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| |
Collapse
|
20
|
Wang X, Ye T, Jiang D, Zhou W, Zhang J. Characterizing the clinical heterogeneity of early symptomatic Alzheimer's disease: a data-driven machine learning approach. Front Aging Neurosci 2024; 16:1410544. [PMID: 39193492 PMCID: PMC11348433 DOI: 10.3389/fnagi.2024.1410544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is highly heterogeneous, with substantial individual variabilities in clinical progression and neurobiology. Amyloid deposition has been thought to drive cognitive decline and thus a major contributor to the variations in cognitive deterioration in AD. However, the clinical heterogeneity of patients with early symptomatic AD (mild cognitive impairment or mild dementia due to AD) already with evidence of amyloid abnormality in the brain is still unknown. Methods Participants with a baseline diagnosis of mild cognitive impairment or mild dementia, a positive amyloid-PET scan, and more than one follow-up Alzheimer's Disease Assessment Scale-Cognitive Subscale-13 (ADAS-Cog-13) administration within a period of 5-year follow-up were selected from the Alzheimer's Disease Neuroimaging Initiative database (n = 421; age = 73±7; years of education = 16 ± 3; percentage of female gender = 43%; distribution of APOE4 carriers = 68%). A non-parametric k-means longitudinal clustering analysis in the context of the ADAS-Cog-13 data was performed to identify cognitive subtypes. Results We found a highly variable profile of cognitive decline among patients with early AD and identified 4 clusters characterized by distinct rates of cognitive progression. Among the groups there were significant differences in the magnitude of rates of changes in other cognitive and functional outcomes, clinical progression from mild cognitive impairment to dementia, and changes in markers presumed to reflect neurodegeneration and neuronal injury. A nomogram based on a simplified logistic regression model predicted steep cognitive trajectory with an AUC of 0.912 (95% CI: 0.88 - 0.94). Simulation of clinical trials suggested that the incorporation of the nomogram into enrichment strategies would reduce the required sample sizes from 926.8 (95% CI: 822.6 - 1057.5) to 400.9 (95% CI: 306.9 - 516.8). Discussion Our findings show usefulness in the stratification of patients in early AD and may thus increase the chances of finding a treatment for future AD clinical trials.
Collapse
Affiliation(s)
- Xiwu Wang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Teng Ye
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Wenjun Zhou
- Research and Development, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China
| | - Jie Zhang
- Department of Data Science, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China
| | | |
Collapse
|
21
|
Jobin B, Magdamo C, Delphus D, Runde A, Reineke S, Soto AA, Ergun B, Albers AD, Albers MW. AROMHA Brain Health Test: A Remote Olfactory Assessment as a Screen for Cognitive Impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.03.24311283. [PMID: 39211882 PMCID: PMC11361214 DOI: 10.1101/2024.08.03.24311283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cost-effective, noninvasive screening methods for preclinical Alzheimer's disease (AD) and other neurocognitive disorders remain an unmet need. The olfactory neural circuits develop AD pathological changes prior to symptom onset. To probe these vulnerable circuits, we developed the digital remote AROMHA Brain Health Test (ABHT), an at-home odor identification, discrimination, memory, and intensity assessment. The ABHT was self-administered among cognitively normal (CN) English and Spanish speakers (n=127), participants with subjective cognitive complaints (SCC; n=34), and mild cognitive impairment (MCI; n=19). Self-administered tests took place remotely at home under unobserved (among interested CN participants) and observed modalities (CN, SCC, and MCI), as well as in-person with a research assistant present (CN, SCC, and MCI). Olfactory performance was similar across observed and unobserved remote self-administration and between English and Spanish speakers. Odor memory, identification, and discrimination scores decreased with age, and olfactory identification and discrimination were lower in the MCI group compared to CN and SCC groups, independent of age, sex, and education. The ABHT revealed age-related olfactory decline, and discriminated CN older adults from those with cognitive impairment. Replication of our results in other populations would support the use of the ABHT to identify and monitor individuals at risk for developing dementia.
Collapse
|
22
|
Odenkirk MT, Zheng X, Kyle JE, Stratton KG, Nicora CD, Bloodsworth KJ, Mclean CA, Masters CL, Monroe ME, Doecke JD, Smith RD, Burnum-Johnson KE, Roberts BR, Baker ES. Deciphering ApoE Genotype-Driven Proteomic and Lipidomic Alterations in Alzheimer's Disease Across Distinct Brain Regions. J Proteome Res 2024; 23:2970-2985. [PMID: 38236019 PMCID: PMC11255128 DOI: 10.1021/acs.jproteome.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States of America
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Catriona A Mclean
- Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3181, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - James D Doecke
- CSIRO Health and Biosecurity, Herston, Queensland 4029, Australia
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kristin E Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Blaine R Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States of America
- Department of Neurology, Emory University, Atlanta, Georgia 30322, United States of America
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States of America
| |
Collapse
|
23
|
Sun Y, Zhang H, Liu R, Wang Y, Zhang X, Huang R, Zhu B, Wu H. Zexieyin formula alleviates Alzheimer's disease via post-synaptic CaMKII modulating AMPA receptor: Involved in promoting neurogenesis to strengthen synaptic plasticity in mice hippocampus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155802. [PMID: 38852473 DOI: 10.1016/j.phymed.2024.155802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disease and brings a serious burden to society and families. Due to lack of effective drugs for the treatment of AD, it's urgent to develop new and effective drug for the treatment of AD. PURPOSE The study aimed to investigate the potential of Zexieyin formula (ZXYF), a Chinese medicine formula, for the treatment of AD and its potential mechanism of action. METHODS We used chronic scopolamine (SCOP) induction mice model and APP/PS1 mice to reveal and confirm ZXYF for the treatment of AD with donepezil (DON) as a positive reference. The learning and memory function were detected by morris water maze test (MWM) and y-maze test. Moreover, western blot and immunofluorescence were used to detect the molecular mechanism of ZXYF for the alleviation of AD in hippocampus. Lastly, pharmacological technology was applied to evaluate AMPA receptor involved in the role of ZXYF in the treatment of AD. RESULTS The results showed that ZXYF could improve memory and learning deficits both in two AD models including scopolamine (SCOP)-induced mice model and APP/PS1mice. Moreover, ZXYF or not DON increased expressions of BrdU/DCX and Ki67 positive cells in dentate gyrus (DG), up-regulated the levels of AMPA subunit type (GluA1) and PKA in hippocampus in SCOP-induced mice model, although ZXYF and DON activated CaMKII, CaMKII-phosphorylation, CREB, CREB-phosphorylation and PSD95 in hippocampus in SCOP-induced mice model. ZXYF also activated CaMKII, CaMKII-phosphorylation and GluA1 in HT22 cells. Furthermore, transient inhibiting AMPA receptor was capable of blocking the effects of ZXYF to treat AD in MWM and suppressing the number of BrdU/DCX positive cells increased by ZXYF in DG in SCOP-induced mice model, but had no effect on the alteration of Ki67 positive cells. CONCLUSION ZXYF had the therapeutic effects on AD-treatment, which activated CaMKII to promote AMPA receptor (GluA1) and subsequently up-regulated PKA/CREB signaling to facilitate neurogenesis to achieve enhanced postsynaptic protein.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China.
| | - Ruiyi Liu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, PR China
| | - Yanqing Wang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Xiangrui Zhang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Rumin Huang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China
| | - Boran Zhu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China.
| | - Haoxin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
24
|
Menegon F, De Marchi F, Aprile D, Zanelli I, Decaroli G, Comi C, Tondo G. From Mild Cognitive Impairment to Dementia: The Impact of Comorbid Conditions on Disease Conversion. Biomedicines 2024; 12:1675. [PMID: 39200140 PMCID: PMC11351954 DOI: 10.3390/biomedicines12081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The conversion from mild cognitive impairment (MCI) to dementia is influenced by several factors, including comorbid conditions such as metabolic and vascular diseases. Understanding the impact of these comorbidities can help in the disease management of patients with a higher risk of progressing to dementia, improving outcomes. In the current study, we aimed to analyze data from a large cohort of MCI (n = 188) by principal component analysis (PCA) and cluster analysis (CA) to classify patients into distinct groups based on their comorbidity profile and to predict the risk of conversion to dementia. From our analysis, four clusters emerged. CA showed a significantly higher rate of disease progression for Cluster 1, which was predominantly characterized by extremely high obesity and diabetes compared to other clusters. In contrast, Cluster 3, which was defined by a lower prevalence of all comorbidities, had a lower conversion rate. Cluster 2, mainly including subjects with traumatic brain injuries, showed the lowest rate of conversion. Lastly, Cluster 4, including a high load of hearing loss and depression, showed an intermediate risk of conversion. This study underscores the significant impact of specific comorbidity profiles on the progression from MCI to dementia, highlighting the need for targeted interventions and management strategies for individuals with these comorbidity profiles to potentially delay or prevent the onset of dementia.
Collapse
Affiliation(s)
- Federico Menegon
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
| | - Fabiola De Marchi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
| | - Iacopo Zanelli
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
| | - Greta Decaroli
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy; (G.D.); (C.C.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy; (G.D.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (F.D.M.); (D.A.); (I.Z.)
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy; (G.D.); (C.C.)
| |
Collapse
|
25
|
Sheikh M, Ammar M. Efficacy of 5 and 10 mg donepezil in improving cognitive function in patients with dementia: a systematic review and meta-analysis. Front Neurosci 2024; 18:1398952. [PMID: 39104606 PMCID: PMC11298496 DOI: 10.3389/fnins.2024.1398952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Objective The purpose of this study was to compare donepezil at 5 mg and 10 mg/day against a placebo to systematically evaluate its effectiveness in improving cognitive function among patients suffering from dementia at any stage. Method For this systematic review and meta-analysis, we looked up Medline, Scopus, Embase, Web of Science, and The Cochrane Library for articles on the efficacy of donepezil in dementia published in the past 20 years and summarized the placebo and intervention data. Initially, a total of 2,272 articles were extracted using our search query and after the inclusion and exclusion criteria set for extraction of data, 18 studies were included in this review using PRISMA flowchart. The ADAS-cog and MMSE assessment scales were used for measuring the outcomes using IBM SPSS 29.0 for the meta-analysis. Result The meta-analysis comprised a total of 18 RCTs (randomized controlled trials) that were randomized to receive either donepezil 5 mg/day (n = 1,556), 10 mg/day (n = 2050) or placebo (n = 2,342). Meta-analysis concerning efficacy showed that donepezil at 10 mg/day significantly improved the MMSE score (g: 2.27, 95%CI: 1.25-3.29) but could not substantially reduce the ADAS-cog. At 5 mg/day donepezil, an overall slight improvement in MMSE score (Hedges' g: 2.09, 95%CI: 0.88-3.30) was observed. Conclusion Both donepezil 5 mg/day and 10 mg/day doses demonstrated improved cognitive functions for patients with dementia, however results indicated that the 10 mg/day dose was more efficacious.
Collapse
Affiliation(s)
- Mehak Sheikh
- Faculty of Pharmaceutical Sciences (FOP), University of Central Punjab, Lahore, Pakistan
| | - Mohammad Ammar
- Qatar University Young Scientists Center (QUYSC), Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
27
|
Lerch O, Ferreira D, Stomrud E, van Westen D, Tideman P, Palmqvist S, Mattsson-Carlgren N, Hort J, Hansson O, Westman E. Predicting progression from subjective cognitive decline to mild cognitive impairment or dementia based on brain atrophy patterns. Alzheimers Res Ther 2024; 16:153. [PMID: 38970077 PMCID: PMC11225196 DOI: 10.1186/s13195-024-01517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder where pathophysiological changes begin decades before the onset of clinical symptoms. Analysis of brain atrophy patterns using structural MRI and multivariate data analysis are an effective tool in identifying patients with subjective cognitive decline (SCD) at higher risk of progression to AD dementia. Atrophy patterns obtained from models trained to classify advanced AD versus normal subjects, may not be optimal for subjects at an early stage, like SCD. In this study, we compared the accuracy of the SCD progression prediction using the 'severity index' generated using a standard classification model trained on patients with AD dementia versus a new model trained on β-amyloid (Aβ) positive patients with amnestic mild cognitive impairment (aMCI). METHODS We used structural MRI data of 504 patients from the Swedish BioFINDER-1 study cohort (cognitively normal (CN), Aβ-negative = 220; SCD, Aβ positive and negative = 139; aMCI, Aβ-positive = 106; AD dementia = 39). We applied multivariate data analysis to create two predictive models trained to discriminate CN individuals from either individuals with Aβ positive aMCI or AD dementia. Models were applied to individuals with SCD to classify their atrophy patterns as either high-risk "disease-like" or low-risk "CN-like". Clinical trajectory and model accuracy were evaluated using 8 years of longitudinal data. RESULTS In predicting progression from SCD to MCI or dementia, the standard, dementia-based model, reached 100% specificity but only 10.6% sensitivity, while the new, aMCI-based model, reached 72.3% sensitivity and 60.9% specificity. The aMCI-based model was superior in predicting progression from SCD to MCI or dementia, reaching a higher receiver operating characteristic area under curve (AUC = 0.72; P = 0.037) in comparison with the dementia-based model (AUC = 0.57). CONCLUSION When predicting conversion from SCD to MCI or dementia using structural MRI data, prediction models based on individuals with milder levels of atrophy (i.e. aMCI) may offer superior clinical value compared to standard dementia-based models.
Collapse
Affiliation(s)
- Ondrej Lerch
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, 15006, Czech Republic.
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, 14183, Sweden.
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, 14183, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Institution for Clinical Sciences Lund, Lund University, Lund, 22184, Sweden
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, 15006, Czech Republic
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, 14183, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE58AF, UK
| |
Collapse
|
28
|
Jakovljevic M, Deceuninck P, Pistollato F, Daskalopoulos E, Bernasconi C, Carausu F, Rosa M, Progri A, Makarieva M, Krstic K. Return on investment in science: twenty years of European Commission funded research in Alzheimer's dementia, breast cancer and prostate cancer. COST EFFECTIVENESS AND RESOURCE ALLOCATION 2024; 22:51. [PMID: 38880873 PMCID: PMC11181594 DOI: 10.1186/s12962-024-00540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 06/18/2024] Open
Abstract
Alzheimer's disease (AD), breast cancer (BC) and prostate cancer (PC) continue to be high in the research and innovation agenda of the European Commission (EC). This is due to their exceptionally large burden to the national health systems, the profound economic effects of opportunity costs attributable to decreased working ability, premature mortality and the ever-increasing demand for both hospital and home-based medical care. Over the last two decades, the EC has been steadily increasing both the number of proposals being funded and the amounts of financial resources being allocated to these fields of research. This trend has continued throughout four consecutive science funding cycles, namely framework programme (FP)5, FP6, FP7 and Horizon 2020 (H2020). We performed a retrospective assessment of the outputs and outcomes of EC funding in AD, BC and PC research over the 1999-2019 period by means of selected indicators. These indicators were assessed for their ability to screen the past, present and future for an array of causal relationships and long-term trends in clinical, epidemiological and public health sphere, while considering also the broader socioeconomic impact of funded research on the society at large. This analysis shows that public-private partnerships with large industry and university-based consortia have led to some of the most impactful proposals being funded over the analysed time period. New pharmaceuticals, small molecules and monoclonal antibodies alike, along with screening and prevention, have been the most prominent sources of innovation in BC and PC, extending patients' survival and enhancing their quality of life. Unlike oncology, dementia drug development has been way less successful, with only minor improvements related to the quality of supportive medical care for symptoms and more sensitive diagnostics, without any ground-breaking disease-modifying treatment(s). Significant progresses in imaging diagnostics and nanotechnology have been largely driven by the participation of medical device industry multinational companies. Clinical trials funded by the EC were conducted, leading to the development of brand-new drug molecules featuring novel mechanisms of action. Some prominent cases of breakthrough discoveries serve as evidence for the European capability to generate cutting-edge technological innovation in biomedicine. Less productive areas of research may be reconsidered as priorities when shaping the new agenda for forthcoming science funding programmes.
Collapse
Affiliation(s)
- Mihajlo Jakovljevic
- UNESCO - The World Academy of Sciences (TWAS), Trieste, Italy.
- Shaanxi University of Technology, Hantai District, Hanzhong, 723099, Shaanxi, China.
- Department of Global Health Economics and Policy, University of Kragujevac, Kragujevac, Serbia.
| | | | - Francesca Pistollato
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Humane Society International, Europe, Av. Des Arts 50, 1000, Bruxelles, Belgium
| | | | | | - Florabela Carausu
- GOPA Worldwide Consultants GmbH, Hindenburgring 18, 61348, Bad Homburg Vor Der Höhe, Germany
| | | | | | | | - Kristijan Krstic
- Department of Global Health Economics and Policy, University of Kragujevac, Kragujevac, Serbia
- Clinic of Physiatrics and Rehabilitation Medicine, University Clinical Centre Kragujevac, Kragujevac, Serbia
| |
Collapse
|
29
|
Oosthoek M, Vermunt L, de Wilde A, Bongers B, Antwi-Berko D, Scheltens P, van Bokhoven P, Vijverberg EGB, Teunissen CE. Utilization of fluid-based biomarkers as endpoints in disease-modifying clinical trials for Alzheimer's disease: a systematic review. Alzheimers Res Ther 2024; 16:93. [PMID: 38678292 PMCID: PMC11055304 DOI: 10.1186/s13195-024-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Clinical trials in Alzheimer's disease (AD) had high failure rates for several reasons, including the lack of biological endpoints. Fluid-based biomarkers may present a solution to measure biologically relevant endpoints. It is currently unclear to what extent fluid-based biomarkers are applied to support drug development. METHODS We systematically reviewed 272 trials (clinicaltrials.gov) with disease-modifying therapies starting between 01-01-2017 and 01-01-2024 and identified which CSF and/or blood-based biomarker endpoints were used per purpose and trial type. RESULTS We found that 44% (N = 121) of the trials employed fluid-based biomarker endpoints among which the CSF ATN biomarkers (Aβ (42/40), p/tTau) were used most frequently. In blood, inflammatory cytokines, NFL, and pTau were most frequently employed. Blood- and CSF-based biomarkers were used approximately equally. Target engagement biomarkers were used in 26% (N = 72) of the trials, mainly in drugs targeting inflammation and amyloid. Lack of target engagement markers is most prominent in synaptic plasticity/neuroprotection, neurotransmitter receptor, vasculature, epigenetic regulators, proteostasis and, gut-brain axis targeting drugs. Positive biomarker results did not always translate to cognitive effects, most commonly the small significant reductions in CSF tau isoforms that were seen following anti-Tau treatments. On the other hand, the positive anti-amyloid trials results on cognitive function were supported by clear effect in most fluid markers. CONCLUSIONS As the field moves towards primary prevention, we expect an increase in the use of fluid-based biomarkers to determine disease modification. Use of blood-based biomarkers will rapidly increase, but CSF markers remain important to determine brain-specific treatment effects. With improving techniques, new biomarkers can be found to diversify the possibilities in measuring treatment effects and target engagement. It remains important to interpret biomarker results in the context of the trial and be aware of the performance of the biomarker. Diversifying biomarkers could aid in the development of surrogacy biomarkers for different drug targets.
Collapse
Affiliation(s)
- Marlies Oosthoek
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Lisa Vermunt
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Arno de Wilde
- EQT Life Sciences, Johannes Vermeersplein 9, 1071 DV, Amsterdam, The Netherlands
| | - Bram Bongers
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Daniel Antwi-Berko
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Philip Scheltens
- EQT Life Sciences, Johannes Vermeersplein 9, 1071 DV, Amsterdam, The Netherlands
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Everard G B Vijverberg
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Nehra G, Promsan S, Yubolphan R, Chumboatong W, Vivithanaporn P, Maloney BJ, Lungkaphin A, Bauer B, Hartz AMS. Cognitive decline, Aβ pathology, and blood-brain barrier function in aged 5xFAD mice. Fluids Barriers CNS 2024; 21:29. [PMID: 38532486 PMCID: PMC10967049 DOI: 10.1186/s12987-024-00531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) develop blood-brain barrier dysfunction to varying degrees. How aging impacts Aβ pathology, blood-brain barrier function, and cognitive decline in AD remains largely unknown. In this study, we used 5xFAD mice to investigate changes in Aβ levels, barrier function, and cognitive decline over time. METHODS 5xFAD and wild-type (WT) mice were aged between 9.5 and 15.5 months and tested for spatial learning and reference memory with the Morris Water Maze (MWM). After behavior testing, mice were implanted with acute cranial windows and intravenously injected with fluorescent-labeled dextrans to assess their in vivo distribution in the brain by two-photon microscopy. Images were processed and segmented to obtain intravascular intensity, extravascular intensity, and vessel diameters as a measure of barrier integrity. Mice were sacrificed after in vivo imaging to isolate brain and plasma for measuring Aβ levels. The effect of age and genotype were evaluated for each assay using generalized or cumulative-linked logistic mixed-level modeling and model selection by Akaike Information Criterion (AICc). Pairwise comparisons were used to identify outcome differences between the two groups. RESULTS 5xFAD mice displayed spatial memory deficits compared to age-matched WT mice in the MWM assay, which worsened with age. Memory impairment was evident in 5xFAD mice by 2-threefold higher escape latencies, twofold greater cumulative distances until they reach the platform, and twice as frequent use of repetitive search strategies in the pool when compared with age-matched WT mice. Presence of the rd1 allele worsened MWM performance in 5xFAD mice at all ages but did not alter the rate of learning or probe trial outcomes. 9.5-month-old 15.5-month-old 5xFAD mice had twofold higher brain Aβ40 and Aβ42 levels (p < 0.001) and 2.5-fold higher (p = 0.007) plasma Aβ40 levels compared to 9.5-month-old 5xFAD mice. Image analysis showed that vessel diameters and intra- and extravascular dextran intensities were not significantly different in 9.5- and 15.5-month-old 5xFAD mice compared to age-matched WT mice. CONCLUSION 5xFAD mice continue to develop spatial memory deficits and increased Aβ brain levels while aging. Given in vivo MP imaging limitations, further investigation with smaller molecular weight markers combined with advanced imaging techniques would be needed to reliably assess subtle differences in barrier integrity in aged mice.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Sasivimon Promsan
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Mahidol University, Nakhon Pathom, Thailand
| | - Wijitra Chumboatong
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Pornpun Vivithanaporn
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Mahidol University, Nakhon Pathom, Thailand
| | - Bryan J Maloney
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | - Anika M S Hartz
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, USA.
| |
Collapse
|
31
|
Fang L, Li J, Cheng H, Liu H, Zhang C. Dual fluorescence images, transport pathway, and blood-brain barrier penetration of B-Met-W/O/W SE. Int J Pharm 2024; 652:123854. [PMID: 38280499 DOI: 10.1016/j.ijpharm.2024.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Borneol is an aromatic traditional Chinese medicine that can improve the permeability of the blood-brain barrier (BBB), enter the brain, and promote the brain tissue distribution of many other drugs. In our previous study, borneol-metformin hydrochloride water/oil/water composite submicron emulsion (B-Met-W/O/W SE) was prepared using borneol and SE to promote BBB penetration, which significantly increased the brain distribution of Met. However, the dynamic images, transport pathway (uptake and efflux), promotion of BBB permeability, and mechanisms of B-Met-W/O/W SE before and after entering cells have not been clarified. In this study, rhodamine B and coumarin-6 were selected as water-soluble and oil-soluble fluorescent probes to prepare B-Met-W/O/W dual-fluorescent SE (B-Met-W/O/W DFSE) with concentric circle imaging. B-Met-W/O/W SE can be well taken up by brain microvascular endothelial cells (BMECs). The addition of three inhibitors (chlorpromazine hydrochloride, methyl-β-cyclodextrin, and amiloride hydrochloride) indicated that its main pathway may be clathrin-mediated and fossa protein-mediated endocytosis. Meanwhile, B-Met-W/O/W SE was obviously shown to inhibit the efflux of BMECs. Next, BMECs were cultured in the Transwell chamber to establish a BBB model, and Western blot was employed to detect the protein expressions of Occludin, Zona Occludens 1 (ZO-1), and p-glycoprotein (P-gp) after B-Met-W/O/W SE treatment. The results showed that B-Met-W/O/W SE significantly down-regulated the expression of Occludin, ZO-1, and P-gp, which increased the permeability of BBB, promoted drug entry into the brain through BBB, and inhibited BBB efflux. Furthermore, 11 differentially expressed genes (DEGs) and 7 related signaling pathways in BMECs treated with B-W/O/W SE were detected by transcriptome sequencing and verified by quantitative real-time polymerase chain reaction (qRT-PCR). These results provide a scientific experimental basis for the dynamic monitoring, transmembrane transport mode, and permeation-promoting mechanism of B-Met-W/O/W SE as a new brain-targeting drug delivery system.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Junying Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Huanhuan Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
32
|
Dubbelman MA, Hendriksen HMA, Harrison JE, Vijverberg EGB, Prins ND, Kroeze LA, Ottenhoff L, Van Leeuwenstijn MMSSA, Verberk IMW, Teunissen CE, van de Giessen EM, Van Harten AC, Van Der Flier WM, Sikkes SAM. Cognitive and Functional Change Over Time in Cognitively Healthy Individuals According to Alzheimer Disease Biomarker-Defined Subgroups. Neurology 2024; 102:e207978. [PMID: 38165338 PMCID: PMC10962908 DOI: 10.1212/wnl.0000000000207978] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES It is unclear to what extent cognitive outcome measures are sensitive to capture decline in Alzheimer disease (AD) prevention trials. We aimed to analyze the sensitivity to changes over time of a range of neuropsychological tests in several cognitively unimpaired, biomarker-defined patient groups. METHODS Cognitively unimpaired individuals from the Amsterdam Dementia Cohort and the SCIENCe project with available AD biomarkers, obtained from CSF, PET scans, and plasma at baseline, were followed over time (4.5 ± 3.1 years, range 0.6-18.9 years). Based on common inclusion criteria for clinical trials, we defined groups (amyloid, phosphorylated tau [p-tau], APOE ε4). Linear mixed models, adjusted for age, sex, and education, were used to estimate change over time in neuropsychological tests, a functional outcome, and 2 cognitive composite measures. Standardized regression coefficients of time in years (βtime) were reported as outcome of interest. We analyzed change over time with full follow-up, as well as with follow-up limited to 1.5 and 3 years. RESULTS We included 387 individuals (aged 61.7 ± 8.6 years; 44% female) in the following (partly overlapping) biomarker groups: APOE ε4 carriers (n = 212), amyloid-positive individuals (n = 109), amyloid-positive APOE ε4 carriers (n = 66), CSF p-tau-positive individuals (n = 127), plasma p-tau-positive individuals (n = 71), and amyloid and CSF p-tau-positive individuals (n = 50), or in a control group (normal biomarkers; n = 65). An executive functioning task showed most decline in all biomarker groups (βtime range -0.30 to -0.71), followed by delayed word list recognition (βtime range -0.18 to -0.50). Functional decline (βtime range -0.17 to -0.63) was observed in all, except the CSF and plasma tau-positive groups. Both composites showed comparable amounts of change (βtime range -0.12 to -0.62) in all groups, except plasma p-tau-positive individuals. When limiting original follow-up duration, many effects disappeared or even flipped direction. DISCUSSION In conclusion, functional, composite, and neuropsychological outcome measures across all cognitive domains detect changes over time in various biomarker-defined groups, with changes being most evident among individuals with more AD pathology. AD prevention trials should use sufficiently long follow-up duration and/or more sensitive outcome measures to optimally capture subtle cognitive changes over time.
Collapse
Affiliation(s)
- Mark A Dubbelman
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Heleen M A Hendriksen
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - John E Harrison
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Everard G B Vijverberg
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Niels D Prins
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Lior A Kroeze
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Lois Ottenhoff
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Mardou M S S A Van Leeuwenstijn
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Inge M W Verberk
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elsmarieke M van de Giessen
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Argonde C Van Harten
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Wiesje M Van Der Flier
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Sietske A M Sikkes
- From the Alzheimer Center Amsterdam, Neurology (M.A.D., H.M.A.H., J.E.H., E.G.B.V., L.A.K., L.O., M.M.S.S.A.V.L., I.M.W.V., C.E.T., A.C.V.H., W.M.V.D.F., S.A.M.S.), and Departments of Radiology & Nuclear Medicine (E.M.v.d.G.), Epidemiology & Data Science (W.M.V.D.F.), and Neurochemistry Laboratory, Department of Laboratory Medicine (I.M.W.V., C.E.T.), Amsterdam UMC, Vrije Universiteit Amsterdam; Neurodegeneration, Amsterdam Neuroscience; Brain Research Center (N.D.P., L.O.); and Department of Clinical, Neuro and Developmental Psychology (S.A.M.S.), Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Isik AT, Kaya D, Gokden M. Brain Banking in Dementia Studies. Methods Mol Biol 2024; 2785:287-295. [PMID: 38427200 DOI: 10.1007/978-1-0716-3774-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
It is now well-established practice in dementia that one clinical entity may be caused by various neurodegenerative disorders, each with different histopathological findings, whereas neuropathologically confirmed patients may have different, unusual, and atypical clinical manifestations.This inconsistency in dementia patients leads to neuropathological examination of cases, and neuropathological examination seems to be an inevitable part of dementia practice, at least until all clinical entities are properly identified for humans.Additionally, the development of disease-modifying therapies and confirmation of the actual accurate diagnosis of the neurodegenerative disease that the drug is thought to modify or act upon are of great importance for neuropathological evaluation in brain banks.Neuropathological processes coexisting among patients diagnosed with established clinical criteria or international guidelines have provided a new perspective in the context of drug development.Here, we review our routinely used methodology in the context of the brain banking process.
Collapse
Affiliation(s)
- Ahmet Turan Isik
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Derya Kaya
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Murat Gokden
- Division of Neuropathology, Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
34
|
Abstract
Maintaining diversity in drug development in research into Alzheimer's disease (AD) is necessary to avoid over-reliance on targeting AD neuropathology. Treatments that reduce or prevent the generation of oxidative stress, frequently cited for its causal role in the aging process and AD, could be useful in at-risk populations or diagnosed AD patients. However, in this review, it is argued that clinical research into antioxidants in AD could provide more useful feedback as to the therapeutic value of the oxidative stress theory of AD. Improving comparability between randomized controlled trials (RCTs) is vital from a waste-reduction and priority-setting point of view for AD clinical research. For as well as attempting to improve meaningful outcomes for patients, RCTs of antioxidants in AD should strive to maximize the extraction of clinically useful information and actionable feedback from trial outcomes. Solutions to maximize information flow from RCTs of antioxidants in AD are offered here in the form of checklist questions to improve ongoing and future trials centered around the following dimensions: adhesion to reporting guidelines like CONSORT, biomarker enrichment, simple tests of treatment, and innovative trial design.
Collapse
Affiliation(s)
- Timothy Daly
- Science Norms Democracy UMR 8011, Sorbonne Université, Paris, France
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina
| |
Collapse
|
35
|
Anderson C, Bucholc M, McClean PL, Zhang SD. The Potential of a Stratified Approach to Drug Repurposing in Alzheimer's Disease. Biomolecules 2023; 14:11. [PMID: 38275752 PMCID: PMC10813465 DOI: 10.3390/biom14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that is characterized by the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown. Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD have been identified. To date, only eight AD drugs have ever gained regulatory approval, including six symptomatic and two disease-modifying drugs. However, not all are available in all countries and high costs associated with new disease-modifying biologics prevent large proportions of the patient population from accessing them. With the current patient population expected to triple by 2050, it is imperative that new, effective, and affordable drugs become available to patients. Traditional drug development strategies have a 99% failure rate in AD, which is far higher than in other disease areas. Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug repurposing approach may address some of the limitations and barriers that traditional strategies face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies may expedite the discovery of alternative, effective, and more affordable treatment options for a rapidly expanding patient population in comparison with traditional drug development methods.
Collapse
Affiliation(s)
- Chloe Anderson
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Magda Bucholc
- School of Computing, Engineering and Intelligent Systems, Magee Campus, Ulster University, Northland Road, Derry/Londonderry BT48 7JL, UK
| | - Paula L. McClean
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| |
Collapse
|
36
|
Doherty T, Yao Z, Khleifat AAL, Tantiangco H, Tamburin S, Albertyn C, Thakur L, Llewellyn DJ, Oxtoby NP, Lourida I, Ranson JM, Duce JA. Artificial intelligence for dementia drug discovery and trials optimization. Alzheimers Dement 2023; 19:5922-5933. [PMID: 37587767 DOI: 10.1002/alz.13428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 08/18/2023]
Abstract
Drug discovery and clinical trial design for dementia have historically been challenging. In part these challenges have arisen from patient heterogeneity, length of disease course, and the tractability of a target for the brain. Applying big data analytics and machine learning tools for drug discovery and utilizing them to inform successful clinical trial design has the potential to accelerate progress. Opportunities arise at multiple stages in the therapy pipeline and the growing availability of large medical data sets opens possibilities for big data analyses to answer key questions in clinical and therapeutic challenges. However, before this goal is reached, several challenges need to be overcome and only a multi-disciplinary approach can promote data-driven decision-making to its full potential. Herein we review the current state of machine learning applications to clinical trial design and drug discovery, while presenting opportunities and recommendations that can break down the barriers to implementation.
Collapse
Affiliation(s)
- Thomas Doherty
- Eisai Europe Ltd, Hatfield, UK
- University of Westminster, London, UK
| | | | - Ahmad A L Khleifat
- Institute of Psychiatry, Psychology & Neuroscience, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | | | - Stefano Tamburin
- University of Verona, Department of Neurosciences, Biomedicine & Movement Sciences, Verona, Italy
| | - Chris Albertyn
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lokendra Thakur
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- Alan Turing Institute, London, UK
| | - Neil P Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | | | | | - James A Duce
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
37
|
Simard MA, Kozlowski D, Segal J, Messer M, Ocay DD, Saari T, Ferland CE, Larivière V. Trends in Brain Research: A Bibliometric Analysis. Can J Neurol Sci 2023:1-11. [PMID: 37933094 DOI: 10.1017/cjn.2023.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
BACKGROUND Bibliometrics methods have allowed researchers to assess the popularity of brain research through the ever-growing number of brain-related research papers. While many topics of brain research have been covered by previous studies, there is no comprehensive overview of the evolution of brain research and its various specialties and funding practices over a long period of time. OBJECTIVE This paper aims to (1) determine how brain research has evolved over time in terms of number of papers, (2) countries' relative and absolute positioning in terms of papers and impact, and (3) how those various trends vary by area. METHODS Using a list of validated keywords, we extracted brain-related articles and journals indexed in the Web of Science over the 1991-2020 period, for a total of 2,467,708 papers. We used three indicators to perform: number of papers, specialization, and research impact. RESULTS Our results show that over the past 30 years, the number of brain-related papers has grown at a faster pace than science in general, with China being at the forefront of this growth. Different patterns of specialization among countries and funders were also underlined. Finally, the NIH, the European Commission, the National Natural Science Foundation of China, the UK Medical Research Council, and the German Research Foundation were found to be among the top funders. CONCLUSION Despite data-related limitations, our findings provide a large-scope snapshot of the evolution of brain research and its funding, which may be used as a baseline for future studies on these topics.
Collapse
Affiliation(s)
- Marc-André Simard
- École de bibliothéconomie et des sciences de l'information, Université de Montréal, Montréal, QC, Canada
| | - Diego Kozlowski
- École de bibliothéconomie et des sciences de l'information, Université de Montréal, Montréal, QC, Canada
| | - Julia Segal
- Brain Canada Foundation, Montréal, QC, Canada
| | - Mia Messer
- Brain Canada Foundation, Montréal, QC, Canada
| | | | - Toni Saari
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | | | - Vincent Larivière
- École de bibliothéconomie et des sciences de l'information, Université de Montréal, Montréal, QC, Canada
- Observatoire des sciences et des technologies, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
38
|
Boxer AL, Sperling R. Accelerating Alzheimer's therapeutic development: The past and future of clinical trials. Cell 2023; 186:4757-4772. [PMID: 37848035 PMCID: PMC10625460 DOI: 10.1016/j.cell.2023.09.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/03/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Alzheimer's disease (AD) research has entered a new era with the recent positive phase 3 clinical trials of the anti-Aβ antibodies lecanemab and donanemab. Why did it take 30 years to achieve these successes? Developing potent therapies for reducing fibrillar amyloid was key, as was selection of patients at relatively early stages of disease. Biomarkers of the target pathologies, including amyloid and tau PET, and insights from past trials were also critical to the recent successes. Moving forward, the challenge will be to develop more efficacious therapies with greater efficiency. Novel trial designs, including combination therapies and umbrella and basket protocols, will accelerate clinical development. Better diversity and inclusivity of trial participants are needed, and blood-based biomarkers may help to improve access for medically underserved groups. Incentivizing innovation in both academia and industry through public-private partnerships, collaborative mechanisms, and the creation of new career paths will be critical to build momentum in these exciting times.
Collapse
Affiliation(s)
- Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute of Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, MassGeneral Brigham, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Scheijbeler EP, de Haan W, Stam CJ, Twisk JWR, Gouw AA. Longitudinal resting-state EEG in amyloid-positive patients along the Alzheimer's disease continuum: considerations for clinical trials. Alzheimers Res Ther 2023; 15:182. [PMID: 37858173 PMCID: PMC10585755 DOI: 10.1186/s13195-023-01327-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND To enable successful inclusion of electroencephalography (EEG) outcome measures in Alzheimer's disease (AD) clinical trials, we retrospectively mapped the progression of resting-state EEG measures over time in amyloid-positive patients with mild cognitive impairment (MCI) or dementia due to AD. METHODS Resting-state 21-channel EEG was recorded in 148 amyloid-positive AD patients (MCI, n = 88; dementia due to AD, n = 60). Two or more EEG recordings were available for all subjects. We computed whole-brain and regional relative power (i.e., theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz)), peak frequency, signal variability (i.e., theta permutation entropy), and functional connectivity values (i.e., alpha and beta corrected amplitude envelope correlation, theta phase lag index, weighted symbolic mutual information, inverted joint permutation entropy). Whole-group linear mixed effects models were used to model the development of EEG measures over time. Group-wise analysis was performed to investigate potential differences in change trajectories between the MCI and dementia subgroups. Finally, we estimated the minimum sample size required to detect different treatment effects (i.e., 50% less deterioration, stabilization, or 50% improvement) on the development of EEG measures over time, in hypothetical clinical trials of 1- or 2-year duration. RESULTS Whole-group analysis revealed significant regional and global oscillatory slowing over time (i.e., increased relative theta power, decreased beta power), with strongest effects for temporal and parieto-occipital regions. Disease severity at baseline influenced the EEG measures' rates of change, with fastest deterioration reported in MCI patients. Only AD dementia patients displayed a significant decrease of the parieto-occipital peak frequency and theta signal variability over time. We estimate that 2-year trials, focusing on amyloid-positive MCI patients, require 36 subjects per arm (2 arms, 1:1 randomization, 80% power) to detect a stabilizing treatment effect on temporal relative theta power. CONCLUSIONS Resting-state EEG measures could facilitate early detection of treatment effects on neuronal function in AD patients. Their sensitivity depends on the region-of-interest and disease severity of the study population. Conventional spectral measures, particularly recorded from temporal regions, present sensitive AD treatment monitoring markers.
Collapse
Affiliation(s)
- Elliz P Scheijbeler
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands.
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands.
| | - Willem de Haan
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Alida A Gouw
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
40
|
Cummings JL, Gonzalez MI, Pritchard MC, May PC, Toledo-Sherman LM, Harris GA. The therapeutic landscape of tauopathies: challenges and prospects. Alzheimers Res Ther 2023; 15:168. [PMID: 37803386 PMCID: PMC10557207 DOI: 10.1186/s13195-023-01321-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Tauopathies are a group of neurodegenerative disorders characterized by the aggregation of the microtubule-associated protein tau. Aggregates of misfolded tau protein are believed to be implicated in neuronal death, which leads to a range of symptoms including cognitive decline, behavioral change, dementia, and motor deficits. Currently, there are no effective treatments for tauopathies. There are four clinical candidates in phase III trials and 16 in phase II trials. While no effective treatments are currently approved, there is increasing evidence to suggest that various therapeutic approaches may slow the progression of tauopathies or improve symptoms. This review outlines the landscape of therapeutic drugs (indexed through February 28, 2023) that target tau pathology and describes drug candidates in clinical development as well as those in the discovery and preclinical phases. The review also contains information on notable therapeutic programs that are inactive or that have been discontinued from development.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas (UNLV), Henderson, NV, USA
| | | | | | - Patrick C May
- ADvantage Neuroscience Consulting LLC, Fort Wayne, IN, USA
| | | | - Glenn A Harris
- Rainwater Charitable Foundation, 777 Main Street, Suite 2250, Fort Worth, TX, 76102, USA.
| |
Collapse
|
41
|
Forno G, Parra MA, Thumala D, Villagra R, Cerda M, Zitko P, Ibañez A, Lillo P, Slachevsky A. The "when" matters: Evidence from memory markers in the clinical continuum of Alzheimer's disease. Neuropsychology 2023; 37:753-768. [PMID: 37227845 PMCID: PMC10522796 DOI: 10.1037/neu0000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVE Cognitive assessment able to detect impairments in the early neuropathological stages of Alzheimer's disease (AD) is urgently needed. The visual short-term memory binding task (VSTMBT) and the Free and Cued Selective Reminding Test (FCSRT) have been recommended by the neurodegenerative disease working group as promising tests to aid in the early detection of AD. In this study, we investigated their complementary value across the clinical stages of the AD continuum. METHOD One hundred and seventeen older adults with subjective cognitive complaint (SCC), 79 with mild cognitive impairment (MCI), 31 patients with AD dementia (ADD), and 37 cognitively unimpaired (CU) subjects, underwent assessment with the VSTMBT and the picture version of the Spanish FCSRT. RESULTS After controlling for multiple comparisons, significant differences were found across groups. The VSTMBT was the only test that "marginally" differentiated between CU and SCC (d = 0.47, p = .052). Moreover, whereas the FCSRT showed a gradient (CU = SCC) > MCI > ADD, the VSTMBT gradient was CU > SCC > (MCI = ADD) suggesting that conjunctive binding deficits assessed by the latter may be sensitive to the very early stages of the disease. CONCLUSIONS Our results suggest that the VSTMBT and the FCSRT are sensitive to the clinical continuum of AD. Whereas the former detects changes in the early prodromal stages, the latter is more sensitive to the advanced prodromal stages of AD. These novel tests can aid in the early detection, monitor disease progression and response to treatment, and thus support drug development programs. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Gonzalo Forno
- School of Psychology, Universidad de los Andes, Santiago, Chile
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Daniela Thumala
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Psychology Department, Faculty of Social Sciences, University of Chile, Santiago, Chile
- Interuniversity Center on Healthy Aging (Plan to Strengthen State Universities, Chilean Ministry of Education RED21993). Santiago, Chile
| | - Roque Villagra
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Centro de Parkinson (CENPAR), Santiago, Chile
| | - Mauricio Cerda
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas y Centro de Informática Médica y Telemedicina, Facultad de Medicina, Universidad de Chile
| | - Pedro Zitko
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Departamento de Salud Global, Escuela de Salud Pública, Universidad de Chile
- Department of Health Services & Population Research, IoPPN, King’s College London
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin (TCD), Dublin, Ireland
| | - Patricia Lillo
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile
- Unidad de Neurología, Hospital San José, Santiago, Chile
| | - Andrea Slachevsky
- Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, Institute of Biomedical Science (ICBM), Neuroscience and East Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
- East Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
42
|
Fay SM, García-Toro M, Henao LH, Villegas ÁA, Lopera F. Creativity During COVID-19: Evaluating an Online TimeSlips Storytelling Program for People Living With Dementia During Quarantine in Colombia. THE GERONTOLOGIST 2023; 63:1279-1288. [PMID: 36660858 DOI: 10.1093/geront/gnac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Since its first implementation in 1998, evidence has been presented of the positive impact of the TimeSlips storytelling method for people with dementia in long-term care (LTC) settings. This article extends this evidence in important new directions: it is the longest TimeSlips study to date and the first to evaluate the feasibility of online delivery of the method (in response to the coronavirus disease 2019 [COVID-19] quarantine) and the impact of this on the personhood, quality of life, and psychological well-being of Spanish-speaking participants in non-LTC settings in the Global South. RESEARCH DESIGN AND METHODS Trained facilitators provided weekly, 1-hr TimeSlips sessions via Zoom over 32 consecutive weeks to 8 participants with dementia. Semistructured interviews of participants and care partners were conducted within 1 week of the final intervention. Thematic analysis evaluated the resultant qualitative data. RESULTS This online implementation of the TimeSlips creative expression (CE) method reinforced key facets of participants' personhood (self-expression and self-perception, which led in turn to increased care partner appreciation), had a positive impact on key domains of quality of life (mood, energy levels, and cognitive function), and stimulated a key aspect of psychological well-being (the formation and maintenance of social ties). DISCUSSION AND IMPLICATIONS The online delivery of the TimeSlips method to participants who remain in their own homes is feasible and effective. Future research should compare the benefits of online versus face-to-face delivery of this CE method.
Collapse
Affiliation(s)
- Stephen M Fay
- Faculty of Arts and Social Sciences, School of Literature and Languages, University of Surrey, Guildford, UK
| | - Maritza García-Toro
- Facultad de Ciencias de la Salud, Grupo de Investigación en Neurociencias y Envejecimiento (GISAM), Corporación Universitaria Remington, Medellín, Colombia
| | | | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
43
|
Daly T. Amyloid-β, vitamin D: why we should triangulate conclusions about therapeutic targets in Alzheimer's disease. Neurol Sci 2023; 44:3321-3322. [PMID: 37145228 DOI: 10.1007/s10072-023-06840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Timothy Daly
- Science Norms Democracy UMR 8011, Sorbonne Université, Paris, France.
- Bioethics Program, FLACSO Argentina, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Wang C, Shao S, Li N, Zhang Z, Zhang H, Liu B. Advances in Alzheimer's Disease-Associated Aβ Therapy Based on Peptide. Int J Mol Sci 2023; 24:13110. [PMID: 37685916 PMCID: PMC10487952 DOI: 10.3390/ijms241713110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) urgently needs innovative treatments due to the increasing aging population and lack of effective drugs and therapies. The amyloid fibrosis of AD-associated β-amyloid (Aβ) that could induce a series of cascades, such as oxidative stress and inflammation, is a critical factor in the progression of AD. Recently, peptide-based therapies for AD are expected to be great potential strategies for the high specificity to the targets, low toxicity, fast blood clearance, rapid cell and tissue permeability, and superior biochemical characteristics. Specifically, various chiral amino acids or peptide-modified interfaces draw much attention as effective manners to inhibit Aβ fibrillation. On the other hand, peptide-based inhibitors could be obtained through affinity screening such as phage display or by rational design based on the core sequence of Aβ fibrosis or by computer aided drug design based on the structure of Aβ. These peptide-based therapies can inhibit Aβ fibrillation and reduce cytotoxicity induced by Aβ aggregation and some have been shown to relieve cognition in AD model mice and reduce Aβ plaques in mice brains. This review summarizes the design method and characteristics of peptide inhibitors and their effect on the amyloid fibrosis of Aβ. We further describe some analysis methods for evaluating the inhibitory effect and point out the challenges in these areas, and possible directions for the design of AD drugs based on peptides, which lay the foundation for the development of new effective drugs in the future.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
| | - Shuai Shao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
45
|
Simon PYR, Bus J, David R. [Alzheimer's disease, amyloid-b peptides and ubiquitin-proteasome system: Therapeutic perspectives]. Med Sci (Paris) 2023; 39:643-649. [PMID: 37695154 DOI: 10.1051/medsci/2023094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The Alzheimer's disease - an age-related neurodegenerative disorder leading to a progressive cognitive impairment - is characterized by an intracerebral accumulation of soluble β-amyloid (Aβ) oligomers, followed by the appearance of abnormally ubiquitinylated neurofibrillary tangles - a process associated with a chronic inflammation. The systematic presence of ubiquitinylated inclusions reflects a decrease in the proteasome activity due to (and contributing to) the presence of Aβ oligomers - a central dysfunction in the etiology of the disease. The involvement of the ubiquitin-proteasome system opens new therapeutic perspectives for both prevention and treatment.
Collapse
Affiliation(s)
| | - Johanna Bus
- Communication, hôpital d'instruction des armées Sainte-Anne, 83800 Toulon, France
| | - Renaud David
- Centre hospitalier universitaire de Nice, hôpital Cimiez, 06000 Nice, France
| |
Collapse
|
46
|
Han Y, Liu D, Cheng Y, Ji Q, Liu M, Zhang B, Zhou S. Maintenance of mitochondrial homeostasis for Alzheimer's disease: Strategies and challenges. Redox Biol 2023; 63:102734. [PMID: 37159984 PMCID: PMC10189488 DOI: 10.1016/j.redox.2023.102734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and its early onset is closely related to mitochondrial energy metabolism. The brain is only 2% of body weight, but consumes 20% of total energy needs. Mitochondria are responsible for providing energy in cells, and maintaining their homeostasis ensures an adequate supply of energy to the brain. Mitochondrial homeostasis is constituted by mitochondrial quantity and quality control, which is dynamically regulated by mitochondrial energy metabolism, mitochondrial dynamics and mitochondrial quality control. Impaired energy metabolism of brain cells occurs early in AD, and maintaining mitochondrial homeostasis is a promising therapeutic target in the future. We summarized the mechanism of mitochondrial homeostasis in AD, its influence on the pathogenesis of early AD, strategies for maintaining mitochondrial homeostasis, and mitochondrial targeting strategies. This review concludes with the authors' opinions on future research and development for mitochondrial homeostasis of early AD.
Collapse
Affiliation(s)
- Ying Han
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
47
|
Comi G, Leocani L, Tagliavini F. Preserving the brain: forum on neurodegenerative diseases. Neurol Sci 2023; 44:2613-2616. [PMID: 37002504 PMCID: PMC10257600 DOI: 10.1007/s10072-023-06721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa Di Cura Igea, Milan, Italy.
| | - Letizia Leocani
- University Vita-Salute San Raffaele and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute San Raffaele, Milan, Italy
| | | |
Collapse
|
48
|
Verdi S, Rutherford S, Fraza C, Tosun D, Altmann A, Raket LL, Schott JM, Marquand AF, Cole JH. Personalising Alzheimer's Disease progression using brain atrophy markers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.15.23291418. [PMID: 37398392 PMCID: PMC10312850 DOI: 10.1101/2023.06.15.23291418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Neuroanatomical normative modelling can capture individual variability in Alzheimer's Disease (AD). We used neuroanatomical normative modelling to track individuals' disease progression in people with mild cognitive impairment (MCI) and patients with AD. METHODS Cortical thickness and subcortical volume neuroanatomical normative models were generated using healthy controls (n~58k). These models were used to calculate regional Z-scores in 4361 T1-weighted MRI time-series scans. Regions with Z-scores <-1.96 were classified as outliers and mapped on the brain, and also summarised by total outlier count (tOC). RESULTS Rate of change in tOC increased in AD and in people with MCI who converted to AD and correlated with multiple non-imaging markers. Moreover, a higher annual rate of change in tOC increased the risk of MCI progression to AD. Brain Z-score maps showed that the hippocampus had the highest rate of atrophy change. CONCLUSIONS Individual-level atrophy rates can be tracked by using regional outlier maps and tOC.
Collapse
Affiliation(s)
- Serena Verdi
- Centre for Medical Image Computing, University College London, London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Saige Rutherford
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6525EN, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525EN, the Netherlands
| | - Charlotte Fraza
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6525EN, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525EN, the Netherlands
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Andre Altmann
- Centre for Medical Image Computing, University College London, London, UK
| | - Lars Lau Raket
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6525EN, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525EN, the Netherlands
| | - James H Cole
- Centre for Medical Image Computing, University College London, London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
49
|
Mehta RI, Carpenter JS, Mehta RI, Haut MW, Wang P, Ranjan M, Najib U, D'Haese PF, Rezai AR. Ultrasound-mediated blood-brain barrier opening uncovers an intracerebral perivenous fluid network in persons with Alzheimer's disease. Fluids Barriers CNS 2023; 20:46. [PMID: 37328855 DOI: 10.1186/s12987-023-00447-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is under investigation as a therapeutic modality for neurodegeneration, yet its effects in humans are incompletely understood. Here, we assessed physiologic responses to FUS administered in multifocal brain sites of persons with Alzheimer's disease (AD). METHODS At a tertiary neuroscience institute, eight participants with AD (mean age 65, 38% F) enrolled in a phase 2 clinical trial underwent three successive targeted BBB opening procedures at 2 week intervals using a 220 kHz FUS transducer in combination with systemically administered microbubbles. In all, 77 treatment sites were evaluated and encompassed hippocampal, frontal, and parietal brain regions. Post-FUS imaging changes, including susceptibility effects and spatiotemporal gadolinium-based contrast agent enhancement patterns, were analyzed using serial 3.0-Tesla MRI. RESULTS Post-FUS MRI revealed expected intraparenchymal contrast extravasation due to BBB opening at all targeted brain sites. Immediately upon BBB opening, hyperconcentration of intravenously-administered contrast tracer was consistently observed around intracerebral veins. Following BBB closure, within 24-48 h of FUS intervention, permeabilization of intraparenchymal veins was observed and persisted for up to one week. Notably, extraparenchymal meningeal venous permeabilization and associated CSF effusions were also elicited and persisted up to 11 days post FUS treatment, prior to complete spontaneous resolution in all participants. Mild susceptibility effects were detected, however no overt intracranial hemorrhage or other serious adverse effects occurred in any participant. CONCLUSIONS FUS-mediated BBB opening is safely and reproducibly achieved in multifocal brain regions of persons with AD. Post-FUS tracer enhancement phenomena suggest the existence of a brain-wide perivenous fluid efflux pathway in humans and demonstrate reactive physiological changes involving these conduit spaces in the delayed, subacute phase following BBB disruption. The delayed reactive venous and perivenous changes are consistent with a dynamic, zonal exudative response to upstream capillary manipulation. Further preclinical and clinical investigations of these FUS-related imaging phenomena and of intracerebral perivenous compartment changes are needed to elucidate physiology of this pathway as well as biological effects of FUS administered with and without adjuvant neurotherapeutics. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03671889, registered 9/14/2018.
Collapse
Affiliation(s)
- Rashi I Mehta
- Department of Neuroradiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA.
| | - Jeffrey S Carpenter
- Department of Neuroradiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV, 26506, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Rupal I Mehta
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Marc W Haut
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, 26506, USA
- Department of Neurology, West Virginia University, Morgantown, WV, 26506, USA
| | - Peng Wang
- Department of Neuroradiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV, 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Manish Ranjan
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
- Department of Neurosurgery, West Virginia University, Morgantown, WV, 26506, USA
| | - Umer Najib
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
- Department of Neurology, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Ali R Rezai
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
- Department of Neurosurgery, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
50
|
Rudge JD. The Lipid Invasion Model: Growing Evidence for This New Explanation of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221175. [PMID: 37302030 PMCID: PMC10357195 DOI: 10.3233/jad-221175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Lipid Invasion Model (LIM) is a new hypothesis for Alzheimer's disease (AD) which argues that AD is a result of external lipid invasion to the brain, following damage to the blood-brain barrier (BBB). The LIM provides a comprehensive explanation of the observed neuropathologies associated with the disease, including the lipid irregularities first described by Alois Alzheimer himself, and accounts for the wide range of risk factors now identified with AD, all of which are also associated with damage to the BBB. This article summarizes the main arguments of the LIM, and new evidence and arguments in support of it. The LIM incorporates and extends the amyloid hypothesis, the current main explanation of the disease, but argues that the greatest cause of late-onset AD is not amyloid-β (Aβ) but bad cholesterol and free fatty acids, let into the brain by a damaged BBB. It suggests that the focus on Aβ is the reason why we have made so little progress in treating the disease in the last 30 years. As well as offering new perspectives for further research into the diagnosis, prevention, and treatment of AD, based on protecting and repairing the BBB, the LIM provides potential new insights into other neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis/motor neuron disease.
Collapse
|